elink3.c revision 1.21 1 /* $NetBSD: elink3.c,v 1.21 1997/03/15 18:11:29 is Exp $ */
2
3 /*
4 * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
5 * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Herb Peyerl.
19 * 4. The name of Herb Peyerl may not be used to endorse or promote products
20 * derived from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include "bpfilter.h"
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/mbuf.h>
39 #include <sys/socket.h>
40 #include <sys/ioctl.h>
41 #include <sys/errno.h>
42 #include <sys/syslog.h>
43 #include <sys/select.h>
44 #include <sys/device.h>
45
46 #include <net/if.h>
47 #include <net/if_dl.h>
48 #include <net/if_ether.h>
49 #include <net/if_types.h>
50
51
52 #ifdef INET
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57 #include <netinet/if_inarp.h>
58 #endif
59
60 #ifdef NS
61 #include <netns/ns.h>
62 #include <netns/ns_if.h>
63 #endif
64
65 #if NBPFILTER > 0
66 #include <net/bpf.h>
67 #include <net/bpfdesc.h>
68 #endif
69
70 #include <machine/cpu.h>
71 #include <machine/bus.h>
72 #include <machine/intr.h>
73
74 #include <dev/ic/elink3var.h>
75 #include <dev/ic/elink3reg.h>
76
77 #define ETHER_MIN_LEN 64
78 #define ETHER_MAX_LEN 1518
79 #define ETHER_ADDR_LEN 6
80
81 struct cfdriver ep_cd = {
82 NULL, "ep", DV_IFNET
83 };
84
85 void ep_internalconfig __P((struct ep_softc *sc));
86 void ep_vortex_probemedia __P((struct ep_softc *sc));
87 void ep_default_probemedia __P((struct ep_softc *sc));
88
89 static void eptxstat __P((struct ep_softc *));
90 static int epstatus __P((struct ep_softc *));
91 void epinit __P((struct ep_softc *));
92 int epioctl __P((struct ifnet *, u_long, caddr_t));
93 void epstart __P((struct ifnet *));
94 void epwatchdog __P((struct ifnet *));
95 void epreset __P((struct ep_softc *));
96 static void epshutdown __P((void *));
97 void epread __P((struct ep_softc *));
98 struct mbuf *epget __P((struct ep_softc *, int));
99 void epmbuffill __P((void *));
100 void epmbufempty __P((struct ep_softc *));
101 void epsetfilter __P((struct ep_softc *));
102 void epsetlink __P((struct ep_softc *));
103
104 static int epbusyeeprom __P((struct ep_softc *));
105 static inline void ep_complete_cmd __P((struct ep_softc *sc,
106 u_int cmd, u_int arg));
107
108
109 /*
110 * Issue a (reset) command, and be sure it has completed.
111 * Used for commands that reset part or all of the board.
112 * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
113 * but older hardware doesn't implement it and we must delay.
114 * It's easiest to just delay always.
115 */
116 static inline void
117 ep_complete_cmd(sc, cmd, arg)
118 struct ep_softc *sc;
119 u_int cmd, arg;
120 {
121 register bus_space_tag_t iot = sc->sc_iot;
122 register bus_space_handle_t ioh = sc->sc_ioh;
123
124 bus_space_write_2(iot, ioh, cmd, arg);
125
126 #ifdef notyet
127 /* if this adapter family has S_COMMAND_IN_PROGRESS, use it */
128 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
129 ;
130 else
131 #else
132 DELAY(100000); /* need at least 1 ms, but be generous. */
133 #endif
134 }
135
136
137
138 /*
139 * Back-end attach and configure.
140 */
141 void
142 epconfig(sc, chipset)
143 struct ep_softc *sc;
144 u_short chipset;
145 {
146 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
147 bus_space_tag_t iot = sc->sc_iot;
148 bus_space_handle_t ioh = sc->sc_ioh;
149 u_int16_t i;
150 u_int8_t myla[6];
151
152 printf("%s: ", sc->sc_dev.dv_xname);
153
154
155 /* print RAM size */
156 ep_internalconfig(sc);
157 GO_WINDOW(0);
158
159 sc->ep_chipset = chipset;
160
161 /*
162 * Read the station address from the eeprom
163 */
164 for (i = 0; i < 3; i++) {
165 u_int16_t x;
166 if (epbusyeeprom(sc))
167 return;
168 bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
169 READ_EEPROM | i);
170 if (epbusyeeprom(sc))
171 return;
172 x = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA);
173 myla[(i << 1)] = x >> 8;
174 myla[(i << 1) + 1] = x;
175 }
176
177 printf("MAC address %s\n", ether_sprintf(myla));
178
179 /*
180 * Vortex-based (3c59x, eisa)? and Boomerang (3c900)cards allow
181 * FDDI-sized (4500) byte packets. Commands only take an 11-bit
182 * parameter, and 11 bits isn't enough to hold a full-size pkt length.
183 * Commands to these cards implicitly upshift a packet size
184 * or threshold by 2 bits.
185 * To detect cards with large-packet support, we probe by setting
186 * the transmit threshold register, then change windows and
187 * read back the threshold register directly, and see if the
188 * threshold value was shifted or not.
189 */
190 bus_space_write_2(iot, ioh, EP_COMMAND,
191 SET_TX_AVAIL_THRESH | EP_LARGEWIN_PROBE );
192 GO_WINDOW(5);
193 i = bus_space_read_2(iot, ioh, EP_W5_TX_AVAIL_THRESH);
194 GO_WINDOW(1);
195 switch (i) {
196 case EP_LARGEWIN_PROBE:
197 case (EP_LARGEWIN_PROBE & EP_LARGEWIN_MASK):
198 sc->ep_pktlenshift = 0;
199 break;
200
201 case (EP_LARGEWIN_PROBE << 2):
202 sc->ep_pktlenshift = 2;
203 /* XXX do 3c579, 3c515 support Vortex-style RESET_OPTIONS? */
204 break;
205
206 default:
207 printf("%s: wrote %d to TX_AVAIL_THRESH, read back %d. "
208 "Interface disabled\n",
209 sc->sc_dev.dv_xname, EP_THRESH_DISABLE, (int) i);
210 return;
211 }
212
213 /*
214 * Ensure Tx-available interrupts are enabled for
215 * start the interface.
216 * XXX should be in epinit().
217 */
218 bus_space_write_2(iot, ioh, EP_COMMAND,
219 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
220
221
222 #ifdef notyet
223 /*
224 * If we've got an indirect (ISA, PCMCIA?) board, the chipset
225 * is unknown. If the board has large-packet support, it's a
226 * Vortex/Boomerang, otherwise it's a 3c509.
227 * XXX use eeprom capability word instead?
228 */
229 if (sc->sc_chipset == EP_CHIPSET_UNKNOWN && sc->ep_pktlenshift) {
230 sc->sc_chipset = EP_CHIPSET_VORTEX;
231 }
232 #endif /* notyet */
233
234 /*
235 * Ascertain which media types are present.
236 */
237 switch (sc->ep_chipset) {
238 /* on a direct bus, the attach routine can tell, but check anyway. */
239 case EP_CHIPSET_VORTEX:
240 case EP_CHIPSET_BOOMERANG2:
241 ep_vortex_probemedia(sc);
242 break;
243
244 /* on ISA we can't yet tell 3c509 from 3c515. Assume the former. */
245 case EP_CHIPSET_3C509:
246 default:
247 ep_default_probemedia(sc);
248 break;
249 }
250 GO_WINDOW(1); /* Window 1 is operating window */
251
252
253 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
254 ifp->if_softc = sc;
255 ifp->if_start = epstart;
256 ifp->if_ioctl = epioctl;
257 ifp->if_watchdog = epwatchdog;
258 ifp->if_flags =
259 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
260
261 if_attach(ifp);
262 ether_ifattach(ifp, myla);
263
264 #if NBPFILTER > 0
265 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
266 sizeof(struct ether_header));
267 #endif
268
269 sc->tx_start_thresh = 20; /* probably a good starting point. */
270
271 /* Establish callback to reset card when we reboot. */
272 shutdownhook_establish(epshutdown, sc);
273
274 ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
275 ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
276 }
277
278 /*
279 * Show interface-model-independent info from window 3
280 * internal-configuration register.
281 */
282 void
283 ep_internalconfig(sc)
284 struct ep_softc *sc;
285 {
286 bus_space_tag_t iot = sc->sc_iot;
287 bus_space_handle_t ioh = sc->sc_ioh;
288
289 u_int config0;
290 u_int config1;
291
292 int ram_size, ram_width, ram_speed, rom_size, ram_split;
293 /*
294 * NVRAM buffer Rx:Tx config names for busmastering cards
295 * (Demon, Vortex, and later).
296 */
297 const char *onboard_ram_config[] = {
298 "5:3", "3:1", "1:1", "(undefined)" };
299
300 GO_WINDOW(3);
301 config0 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG);
302 config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG+2);
303 GO_WINDOW(0);
304
305 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
306 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
307 ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
308 rom_size = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
309
310 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
311
312 printf("%dKB %s-wide FIFO, %s Rx:Tx split, ",
313 8 << ram_size,
314 (ram_width) ? "word" : "byte",
315 onboard_ram_config[ram_split]);
316 }
317
318 /*
319 * Find media present on 3c509-generation hardware that doesn't have
320 * a "reset_options" register in window 3.
321 * Use the config_cntrl register in window 0.
322 * XXX ifmedia?
323 */
324 void
325 ep_default_probemedia(sc)
326 struct ep_softc *sc;
327 {
328 bus_space_tag_t iot = sc->sc_iot;
329 bus_space_handle_t ioh = sc->sc_ioh;
330 int conn;
331
332 GO_WINDOW(0);
333 conn = bus_space_read_2(iot, ioh, EP_W0_CONFIG_CTRL);
334 if (conn & IS_AUI)
335 sc->ep_connectors |= AUI;
336 if (conn & IS_BNC)
337 sc->ep_connectors |= BNC;
338 if (conn & IS_UTP)
339 sc->ep_connectors |= UTP;
340 }
341
342
343 /*
344 * Find media present on large-packet-capable elink3 devices (Demon,
345 * Vortex, Boomerang), using media and card-version info in window 3.
346 *
347 * XXX How much of this works with 3c515, pcmcia 10/100? With 3c509, 3c589?
348 * XXX Be noisy about what's present, as NetBSD provides no way to
349 * change media. You need to run the vendor config utility under DOS.
350 * XXX ifmedia?
351 */
352 void
353 ep_vortex_probemedia(sc)
354 struct ep_softc *sc;
355 {
356 bus_space_tag_t iot = sc->sc_iot;
357 bus_space_handle_t ioh = sc->sc_ioh;
358 u_int config0;
359 u_int config1;
360 int reset_options;
361 int conn;
362
363 int defmedia, autoselect;
364 /* Names for media in the media bitmask field. */
365 const char *medium_name;
366 const char *media_names[8] ={
367 "10baseT",
368 "10base AUI",
369 "undefined",
370 "10base2",
371 "100baseTX",
372 "100baseFX",
373 "MII",
374 "100baseT4"};
375
376 GO_WINDOW(3);
377 config0 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG);
378 config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG+2);
379 reset_options = (int)bus_space_read_1(iot, ioh, EP_W3_RESET_OPTIONS);
380 GO_WINDOW(0);
381
382
383 defmedia = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
384 autoselect = (config1 & CONFIG_AUTOSELECT) >> CONFIG_AUTOSELECT_SHIFT;
385
386 medium_name = (defmedia > 8) ? "(unknown/impossible media)"
387 : media_names[defmedia];
388
389 conn = 0;
390 if (reset_options & IS_PCI_AUI)
391 conn |= AUI;
392 if (reset_options & IS_PCI_BNC)
393 conn |= BNC;
394 if (reset_options & IS_PCI_UTP)
395 conn |= UTP;
396 if (reset_options & IS_PCI_100BASE_TX)
397 conn |= TX;
398 if (reset_options & IS_PCI_100BASE_T4)
399 conn |= T4;
400 if (reset_options & IS_PCI_100BASE_FX)
401 conn |= FX;
402 if (reset_options & IS_PCI_100BASE_MII)
403 conn |= MII;
404
405 sc->ep_connectors = conn;
406
407 printf("%s: default medium %s, autoselect %s\n",
408 sc->sc_dev.dv_xname,
409 medium_name, (autoselect)? "on" : "off" );
410 }
411
412
413 /*
414 * Bring device up.
415 *
416 * The order in here seems important. Otherwise we may not receive
417 * interrupts. ?!
418 */
419 void
420 epinit(sc)
421 register struct ep_softc *sc;
422 {
423 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
424 bus_space_tag_t iot = sc->sc_iot;
425 bus_space_handle_t ioh = sc->sc_ioh;
426 int i;
427
428 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
429 ;
430
431 if (sc->bustype != EP_BUS_PCI) {
432 GO_WINDOW(0);
433 bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, 0);
434 bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
435 }
436
437 if (sc->bustype == EP_BUS_PCMCIA) {
438 #ifdef EP_COAX_DEFAULT
439 bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,3<<14);
440 #else
441 bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,0<<14);
442 #endif
443 bus_space_write_2(iot, ioh, EP_W0_RESOURCE_CFG, 0x3f00);
444 }
445
446 GO_WINDOW(2);
447 for (i = 0; i < 6; i++) /* Reload the ether_addr. */
448 bus_space_write_1(iot, ioh, EP_W2_ADDR_0 + i,
449 LLADDR(ifp->if_sadl)[i]);
450
451 /*
452 * Reset the station-address receive filter.
453 * A bug workaround for busmastering (Vortex, Demon) cards.
454 */
455 for (i = 0; i < 6; i++)
456 bus_space_write_1(iot, ioh, EP_W2_RECVMASK_0 + i, 0);
457
458 ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
459 ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
460
461 GO_WINDOW(1); /* Window 1 is operating window */
462 for (i = 0; i < 31; i++)
463 bus_space_read_1(iot, ioh, EP_W1_TX_STATUS);
464
465 /* Enable interrupts. */
466 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK | S_CARD_FAILURE |
467 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
468 bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK | S_CARD_FAILURE |
469 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
470
471 /*
472 * Attempt to get rid of any stray interrupts that occured during
473 * configuration. On the i386 this isn't possible because one may
474 * already be queued. However, a single stray interrupt is
475 * unimportant.
476 */
477 bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | 0xff);
478
479 epsetfilter(sc);
480 epsetlink(sc);
481
482 bus_space_write_2(iot, ioh, EP_COMMAND, RX_ENABLE);
483 bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
484
485 epmbuffill(sc);
486
487 /* Interface is now `running', with no output active. */
488 ifp->if_flags |= IFF_RUNNING;
489 ifp->if_flags &= ~IFF_OACTIVE;
490
491 /* Attempt to start output, if any. */
492 epstart(ifp);
493 }
494
495
496 /*
497 * Set multicast receive filter.
498 * elink3 hardware has no selective multicast filter in hardware.
499 * Enable reception of all multicasts and filter in software.
500 */
501 void
502 epsetfilter(sc)
503 register struct ep_softc *sc;
504 {
505 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
506
507 GO_WINDOW(1); /* Window 1 is operating window */
508 bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_COMMAND, SET_RX_FILTER |
509 FIL_INDIVIDUAL | FIL_BRDCST |
510 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
511 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
512 }
513
514
515 /*
516 * Select media based on link{0,1,2} switches.
517 * Assumes 10Mbit interface, totatlly broken for 10/100 adaptors.
518 */
519 void
520 epsetlink(sc)
521 register struct ep_softc *sc;
522 {
523 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
524 bus_space_tag_t iot = sc->sc_iot;
525 bus_space_handle_t ioh = sc->sc_ioh;
526
527 /*
528 * you can `ifconfig (link0|-link0) ep0' to get the following
529 * behaviour:
530 * -link0 disable AUI/UTP. enable BNC.
531 * link0 disable BNC. enable AUI.
532 * link1 if the card has a UTP connector, and link0 is
533 * set too, then you get the UTP port.
534 */
535 GO_WINDOW(4);
536 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, DISABLE_UTP);
537 if (!(ifp->if_flags & IFF_LINK0) && (sc->ep_connectors & BNC)) {
538 if (sc->bustype == EP_BUS_PCMCIA) {
539 GO_WINDOW(0);
540 bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,3<<14);
541 GO_WINDOW(1);
542 }
543 bus_space_write_2(iot, ioh, EP_COMMAND, START_TRANSCEIVER);
544 delay(1000);
545 }
546 if (ifp->if_flags & IFF_LINK0) {
547 bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
548 delay(1000);
549 if ((ifp->if_flags & IFF_LINK1) && (sc->ep_connectors & UTP)) {
550 if (sc->bustype == EP_BUS_PCMCIA) {
551 GO_WINDOW(0);
552 bus_space_write_2(iot, ioh,
553 EP_W0_ADDRESS_CFG,0<<14);
554 GO_WINDOW(4);
555 }
556 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, ENABLE_UTP);
557 }
558 }
559 GO_WINDOW(1);
560 }
561
562 /*
563 * Start outputting on the interface.
564 * Always called as splnet().
565 */
566 void
567 epstart(ifp)
568 struct ifnet *ifp;
569 {
570 register struct ep_softc *sc = ifp->if_softc;
571 bus_space_tag_t iot = sc->sc_iot;
572 bus_space_handle_t ioh = sc->sc_ioh;
573 struct mbuf *m, *m0;
574 int sh, len, pad;
575
576 /* Don't transmit if interface is busy or not running */
577 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
578 return;
579
580 startagain:
581 /* Sneak a peek at the next packet */
582 m0 = ifp->if_snd.ifq_head;
583 if (m0 == 0)
584 return;
585
586 /* We need to use m->m_pkthdr.len, so require the header */
587 if ((m0->m_flags & M_PKTHDR) == 0)
588 panic("epstart: no header mbuf");
589 len = m0->m_pkthdr.len;
590
591 pad = (4 - len) & 3;
592
593 /*
594 * The 3c509 automatically pads short packets to minimum ethernet
595 * length, but we drop packets that are too large. Perhaps we should
596 * truncate them instead?
597 */
598 if (len + pad > ETHER_MAX_LEN) {
599 /* packet is obviously too large: toss it */
600 ++ifp->if_oerrors;
601 IF_DEQUEUE(&ifp->if_snd, m0);
602 m_freem(m0);
603 goto readcheck;
604 }
605
606 if (bus_space_read_2(iot, ioh, EP_W1_FREE_TX) < len + pad + 4) {
607 bus_space_write_2(iot, ioh, EP_COMMAND,
608 SET_TX_AVAIL_THRESH |
609 ((len + pad + 4) >> sc->ep_pktlenshift));
610 /* not enough room in FIFO */
611 ifp->if_flags |= IFF_OACTIVE;
612 return;
613 } else {
614 bus_space_write_2(iot, ioh, EP_COMMAND,
615 SET_TX_AVAIL_THRESH | EP_THRESH_DISABLE );
616 }
617
618 IF_DEQUEUE(&ifp->if_snd, m0);
619 if (m0 == 0) /* not really needed */
620 return;
621
622 bus_space_write_2(iot, ioh, EP_COMMAND, SET_TX_START_THRESH |
623 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/) );
624
625 #if NBPFILTER > 0
626 if (ifp->if_bpf)
627 bpf_mtap(ifp->if_bpf, m0);
628 #endif
629
630 /*
631 * Do the output at splhigh() so that an interrupt from another device
632 * won't cause a FIFO underrun.
633 */
634 sh = splhigh();
635
636 bus_space_write_2(iot, ioh, EP_W1_TX_PIO_WR_1, len);
637 bus_space_write_2(iot, ioh, EP_W1_TX_PIO_WR_1,
638 0xffff); /* Second dword meaningless */
639 if (EP_IS_BUS_32(sc->bustype)) {
640 for (m = m0; m; ) {
641 if (m->m_len > 3) {
642 /* align our reads from core */
643 if (mtod(m, u_long) & 3) {
644 u_long count =
645 4 - (mtod(m, u_long) & 3);
646 bus_space_write_multi_1(iot, ioh,
647 EP_W1_TX_PIO_WR_1,
648 mtod(m, u_int8_t *), count);
649 m->m_data =
650 (void *)(mtod(m, u_long) + count);
651 m->m_len -= count;
652 }
653 bus_space_write_multi_4(iot, ioh,
654 EP_W1_TX_PIO_WR_1,
655 mtod(m, u_int32_t *), m->m_len >> 2);
656 m->m_data = (void *)(mtod(m, u_long) +
657 (u_long)(m->m_len & ~3));
658 m->m_len -= m->m_len & ~3;
659 }
660 if (m->m_len) {
661 bus_space_write_multi_1(iot, ioh,
662 EP_W1_TX_PIO_WR_1,
663 mtod(m, u_int8_t *), m->m_len);
664 }
665 MFREE(m, m0);
666 m = m0;
667 }
668 } else {
669 for (m = m0; m; ) {
670 if (m->m_len > 1) {
671 if (mtod(m, u_long) & 1) {
672 bus_space_write_1(iot, ioh,
673 EP_W1_TX_PIO_WR_1,
674 *(mtod(m, u_int8_t *)));
675 m->m_data =
676 (void *)(mtod(m, u_long) + 1);
677 m->m_len -= 1;
678 }
679 bus_space_write_multi_2(iot, ioh,
680 EP_W1_TX_PIO_WR_1, mtod(m, u_int16_t *),
681 m->m_len >> 1);
682 }
683 if (m->m_len & 1) {
684 bus_space_write_1(iot, ioh, EP_W1_TX_PIO_WR_1,
685 *(mtod(m, u_int8_t *) + m->m_len - 1));
686 }
687 MFREE(m, m0);
688 m = m0;
689 }
690 }
691 while (pad--)
692 bus_space_write_1(iot, ioh, EP_W1_TX_PIO_WR_1, 0);
693
694 splx(sh);
695
696 ++ifp->if_opackets;
697
698 readcheck:
699 if ((bus_space_read_2(iot, ioh, EP_W1_RX_STATUS) & ERR_INCOMPLETE) == 0) {
700 /* We received a complete packet. */
701 u_int16_t status = bus_space_read_2(iot, ioh, EP_STATUS);
702
703 if ((status & S_INTR_LATCH) == 0) {
704 /*
705 * No interrupt, read the packet and continue
706 * Is this supposed to happen? Is my motherboard
707 * completely busted?
708 */
709 epread(sc);
710 }
711 else
712 /* Got an interrupt, return so that it gets serviced. */
713 return;
714 }
715 else {
716 /* Check if we are stuck and reset [see XXX comment] */
717 if (epstatus(sc)) {
718 if (ifp->if_flags & IFF_DEBUG)
719 printf("%s: adapter reset\n",
720 sc->sc_dev.dv_xname);
721 epreset(sc);
722 }
723 }
724
725 goto startagain;
726 }
727
728
729 /*
730 * XXX: The 3c509 card can get in a mode where both the fifo status bit
731 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
732 * We detect this situation and we reset the adapter.
733 * It happens at times when there is a lot of broadcast traffic
734 * on the cable (once in a blue moon).
735 */
736 static int
737 epstatus(sc)
738 register struct ep_softc *sc;
739 {
740 bus_space_tag_t iot = sc->sc_iot;
741 bus_space_handle_t ioh = sc->sc_ioh;
742 u_int16_t fifost;
743
744 /*
745 * Check the FIFO status and act accordingly
746 */
747 GO_WINDOW(4);
748 fifost = bus_space_read_2(iot, ioh, EP_W4_FIFO_DIAG);
749 GO_WINDOW(1);
750
751 if (fifost & FIFOS_RX_UNDERRUN) {
752 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
753 printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
754 epreset(sc);
755 return 0;
756 }
757
758 if (fifost & FIFOS_RX_STATUS_OVERRUN) {
759 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
760 printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
761 return 1;
762 }
763
764 if (fifost & FIFOS_RX_OVERRUN) {
765 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
766 printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
767 return 1;
768 }
769
770 if (fifost & FIFOS_TX_OVERRUN) {
771 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
772 printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
773 epreset(sc);
774 return 0;
775 }
776
777 return 0;
778 }
779
780
781 static void
782 eptxstat(sc)
783 register struct ep_softc *sc;
784 {
785 bus_space_tag_t iot = sc->sc_iot;
786 bus_space_handle_t ioh = sc->sc_ioh;
787 int i;
788
789 /*
790 * We need to read+write TX_STATUS until we get a 0 status
791 * in order to turn off the interrupt flag.
792 */
793 while ((i = bus_space_read_1(iot, ioh, EP_W1_TX_STATUS)) & TXS_COMPLETE) {
794 bus_space_write_1(iot, ioh, EP_W1_TX_STATUS, 0x0);
795
796 if (i & TXS_JABBER) {
797 ++sc->sc_ethercom.ec_if.if_oerrors;
798 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
799 printf("%s: jabber (%x)\n",
800 sc->sc_dev.dv_xname, i);
801 epreset(sc);
802 } else if (i & TXS_UNDERRUN) {
803 ++sc->sc_ethercom.ec_if.if_oerrors;
804 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
805 printf("%s: fifo underrun (%x) @%d\n",
806 sc->sc_dev.dv_xname, i,
807 sc->tx_start_thresh);
808 if (sc->tx_succ_ok < 100)
809 sc->tx_start_thresh = min(ETHER_MAX_LEN,
810 sc->tx_start_thresh + 20);
811 sc->tx_succ_ok = 0;
812 epreset(sc);
813 } else if (i & TXS_MAX_COLLISION) {
814 ++sc->sc_ethercom.ec_if.if_collisions;
815 bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
816 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
817 } else
818 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
819 }
820 }
821
822 int
823 epintr(arg)
824 void *arg;
825 {
826 register struct ep_softc *sc = arg;
827 bus_space_tag_t iot = sc->sc_iot;
828 bus_space_handle_t ioh = sc->sc_ioh;
829 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
830 u_int16_t status;
831 int ret = 0;
832
833 for (;;) {
834 bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
835
836 status = bus_space_read_2(iot, ioh, EP_STATUS);
837
838 if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
839 S_RX_COMPLETE | S_CARD_FAILURE)) == 0)
840 break;
841
842 ret = 1;
843
844 /*
845 * Acknowledge any interrupts. It's important that we do this
846 * first, since there would otherwise be a race condition.
847 * Due to the i386 interrupt queueing, we may get spurious
848 * interrupts occasionally.
849 */
850 bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | status);
851
852 if (status & S_RX_COMPLETE)
853 epread(sc);
854 if (status & S_TX_AVAIL) {
855 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
856 epstart(&sc->sc_ethercom.ec_if);
857 }
858 if (status & S_CARD_FAILURE) {
859 printf("%s: adapter failure (%x)\n",
860 sc->sc_dev.dv_xname, status);
861 epreset(sc);
862 return (1);
863 }
864 if (status & S_TX_COMPLETE) {
865 eptxstat(sc);
866 epstart(ifp);
867 }
868 }
869
870 /* no more interrupts */
871 return (ret);
872 }
873
874 void
875 epread(sc)
876 register struct ep_softc *sc;
877 {
878 bus_space_tag_t iot = sc->sc_iot;
879 bus_space_handle_t ioh = sc->sc_ioh;
880 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
881 struct mbuf *m;
882 struct ether_header *eh;
883 int len;
884
885 len = bus_space_read_2(iot, ioh, EP_W1_RX_STATUS);
886
887 again:
888 if (ifp->if_flags & IFF_DEBUG) {
889 int err = len & ERR_MASK;
890 char *s = NULL;
891
892 if (len & ERR_INCOMPLETE)
893 s = "incomplete packet";
894 else if (err == ERR_OVERRUN)
895 s = "packet overrun";
896 else if (err == ERR_RUNT)
897 s = "runt packet";
898 else if (err == ERR_ALIGNMENT)
899 s = "bad alignment";
900 else if (err == ERR_CRC)
901 s = "bad crc";
902 else if (err == ERR_OVERSIZE)
903 s = "oversized packet";
904 else if (err == ERR_DRIBBLE)
905 s = "dribble bits";
906
907 if (s)
908 printf("%s: %s\n", sc->sc_dev.dv_xname, s);
909 }
910
911 if (len & ERR_INCOMPLETE)
912 return;
913
914 if (len & ERR_RX) {
915 ++ifp->if_ierrors;
916 goto abort;
917 }
918
919 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
920
921 /* Pull packet off interface. */
922 m = epget(sc, len);
923 if (m == 0) {
924 ifp->if_ierrors++;
925 goto abort;
926 }
927
928 ++ifp->if_ipackets;
929
930 /* We assume the header fit entirely in one mbuf. */
931 eh = mtod(m, struct ether_header *);
932
933 #if NBPFILTER > 0
934 /*
935 * Check if there's a BPF listener on this interface.
936 * If so, hand off the raw packet to BPF.
937 */
938 if (ifp->if_bpf) {
939 bpf_mtap(ifp->if_bpf, m);
940
941 /*
942 * Note that the interface cannot be in promiscuous mode if
943 * there are no BPF listeners. And if we are in promiscuous
944 * mode, we have to check if this packet is really ours.
945 */
946 if ((ifp->if_flags & IFF_PROMISC) &&
947 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
948 bcmp(eh->ether_dhost, LLADDR(sc->sc_ethercom.ec_if.if_sadl),
949 sizeof(eh->ether_dhost)) != 0) {
950 m_freem(m);
951 return;
952 }
953 }
954 #endif
955
956 /* We assume the header fit entirely in one mbuf. */
957 m_adj(m, sizeof(struct ether_header));
958 ether_input(ifp, eh, m);
959
960 /*
961 * In periods of high traffic we can actually receive enough
962 * packets so that the fifo overrun bit will be set at this point,
963 * even though we just read a packet. In this case we
964 * are not going to receive any more interrupts. We check for
965 * this condition and read again until the fifo is not full.
966 * We could simplify this test by not using epstatus(), but
967 * rechecking the RX_STATUS register directly. This test could
968 * result in unnecessary looping in cases where there is a new
969 * packet but the fifo is not full, but it will not fix the
970 * stuck behavior.
971 *
972 * Even with this improvement, we still get packet overrun errors
973 * which are hurting performance. Maybe when I get some more time
974 * I'll modify epread() so that it can handle RX_EARLY interrupts.
975 */
976 if (epstatus(sc)) {
977 len = bus_space_read_2(iot, ioh, EP_W1_RX_STATUS);
978 /* Check if we are stuck and reset [see XXX comment] */
979 if (len & ERR_INCOMPLETE) {
980 if (ifp->if_flags & IFF_DEBUG)
981 printf("%s: adapter reset\n",
982 sc->sc_dev.dv_xname);
983 epreset(sc);
984 return;
985 }
986 goto again;
987 }
988
989 return;
990
991 abort:
992 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
993 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
994 ;
995 }
996
997 struct mbuf *
998 epget(sc, totlen)
999 struct ep_softc *sc;
1000 int totlen;
1001 {
1002 bus_space_tag_t iot = sc->sc_iot;
1003 bus_space_handle_t ioh = sc->sc_ioh;
1004 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1005 struct mbuf *top, **mp, *m;
1006 int len, remaining;
1007 int sh;
1008
1009 m = sc->mb[sc->next_mb];
1010 sc->mb[sc->next_mb] = 0;
1011 if (m == 0) {
1012 MGETHDR(m, M_DONTWAIT, MT_DATA);
1013 if (m == 0)
1014 return 0;
1015 } else {
1016 /* If the queue is no longer full, refill. */
1017 if (sc->last_mb == sc->next_mb)
1018 timeout(epmbuffill, sc, 1);
1019 /* Convert one of our saved mbuf's. */
1020 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1021 m->m_data = m->m_pktdat;
1022 m->m_flags = M_PKTHDR;
1023 }
1024 m->m_pkthdr.rcvif = ifp;
1025 m->m_pkthdr.len = totlen;
1026 len = MHLEN;
1027 top = 0;
1028 mp = ⊤
1029
1030 /*
1031 * We read the packet at splhigh() so that an interrupt from another
1032 * device doesn't cause the card's buffer to overflow while we're
1033 * reading it. We may still lose packets at other times.
1034 */
1035 sh = splhigh();
1036
1037 while (totlen > 0) {
1038 if (top) {
1039 m = sc->mb[sc->next_mb];
1040 sc->mb[sc->next_mb] = 0;
1041 if (m == 0) {
1042 MGET(m, M_DONTWAIT, MT_DATA);
1043 if (m == 0) {
1044 splx(sh);
1045 m_freem(top);
1046 return 0;
1047 }
1048 } else {
1049 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1050 }
1051 len = MLEN;
1052 }
1053 if (totlen >= MINCLSIZE) {
1054 MCLGET(m, M_DONTWAIT);
1055 if (m->m_flags & M_EXT)
1056 len = MCLBYTES;
1057 }
1058 if (EP_IS_BUS_32(sc->bustype) ) {
1059 u_long pad;
1060 if (top == 0) {
1061 /* align the struct ip header */
1062 pad = ALIGN(sizeof(struct ether_header))
1063 - sizeof(struct ether_header);
1064 } else {
1065 /* XXX do we really need this? */
1066 pad = ALIGN(m->m_data) - (u_long) m->m_data;
1067 }
1068 m->m_data += pad;
1069 len -= pad;
1070 }
1071 remaining = len = min(totlen, len);
1072 if (EP_IS_BUS_32(sc->bustype)) {
1073 u_long offset = mtod(m, u_long);
1074 /*
1075 * Read bytes up to the point where we are aligned.
1076 * (We can align to 4 bytes, rather than ALIGNBYTES,
1077 * here because we're later reading 4-byte chunks.)
1078 */
1079 if ((remaining > 3) && (offset & 3)) {
1080 int count = (4 - (offset & 3));
1081 bus_space_read_multi_1(iot, ioh,
1082 EP_W1_RX_PIO_RD_1,
1083 (u_int8_t *) offset, count);
1084 offset += count;
1085 remaining -= count;
1086 }
1087 if (remaining > 3) {
1088 bus_space_read_multi_4(iot, ioh,
1089 EP_W1_RX_PIO_RD_1,
1090 (u_int32_t *) offset, remaining >> 2);
1091 offset += remaining & ~3;
1092 remaining &= 3;
1093 }
1094 if (remaining) {
1095 bus_space_read_multi_1(iot, ioh,
1096 EP_W1_RX_PIO_RD_1,
1097 (u_int8_t *) offset, remaining);
1098 }
1099 } else {
1100 u_long offset = mtod(m, u_long);
1101 if ((remaining > 1) && (offset & 1)) {
1102 bus_space_read_multi_1(iot, ioh,
1103 EP_W1_RX_PIO_RD_1,
1104 (u_int8_t *) offset, 1);
1105 remaining -= 1;
1106 offset += 1;
1107 }
1108 if (remaining > 1) {
1109 bus_space_read_multi_2(iot, ioh,
1110 EP_W1_RX_PIO_RD_1,
1111 (u_int16_t *) offset, remaining >> 1);
1112 offset += remaining & ~1;
1113 }
1114 if (remaining & 1) {
1115 bus_space_read_multi_1(iot, ioh,
1116 EP_W1_RX_PIO_RD_1,
1117 (u_int8_t *) offset, remaining & 1);
1118 }
1119 }
1120 m->m_len = len;
1121 totlen -= len;
1122 *mp = m;
1123 mp = &m->m_next;
1124 }
1125
1126 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
1127 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
1128 ;
1129
1130 splx(sh);
1131
1132 return top;
1133 }
1134
1135 int
1136 epioctl(ifp, cmd, data)
1137 register struct ifnet *ifp;
1138 u_long cmd;
1139 caddr_t data;
1140 {
1141 struct ep_softc *sc = ifp->if_softc;
1142 struct ifaddr *ifa = (struct ifaddr *)data;
1143 struct ifreq *ifr = (struct ifreq *)data;
1144 int s, error = 0;
1145
1146 s = splnet();
1147
1148 switch (cmd) {
1149
1150 case SIOCSIFADDR:
1151 ifp->if_flags |= IFF_UP;
1152
1153 switch (ifa->ifa_addr->sa_family) {
1154 #ifdef INET
1155 case AF_INET:
1156 epinit(sc);
1157 arp_ifinit(&sc->sc_ethercom.ec_if, ifa);
1158 break;
1159 #endif
1160 #ifdef NS
1161 case AF_NS:
1162 {
1163 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1164
1165 if (ns_nullhost(*ina))
1166 ina->x_host = *(union ns_host *)
1167 LLADDR(ifp->if_sadl);
1168 else
1169 bcopy(ina->x_host.c_host,
1170 LLADDR(ifp->if_sadl),
1171 ifp->if_addrlen);
1172 /* Set new address. */
1173 epinit(sc);
1174 break;
1175 }
1176 #endif
1177 default:
1178 epinit(sc);
1179 break;
1180 }
1181 break;
1182
1183 case SIOCSIFFLAGS:
1184 if ((ifp->if_flags & IFF_UP) == 0 &&
1185 (ifp->if_flags & IFF_RUNNING) != 0) {
1186 /*
1187 * If interface is marked down and it is running, then
1188 * stop it.
1189 */
1190 epstop(sc);
1191 ifp->if_flags &= ~IFF_RUNNING;
1192 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1193 (ifp->if_flags & IFF_RUNNING) == 0) {
1194 /*
1195 * If interface is marked up and it is stopped, then
1196 * start it.
1197 */
1198 epinit(sc);
1199 } else {
1200 /*
1201 * deal with flags changes:
1202 * IFF_MULTICAST, IFF_PROMISC,
1203 * IFF_LINK0, IFF_LINK1,
1204 */
1205 epsetfilter(sc);
1206 epsetlink(sc);
1207 }
1208 break;
1209
1210 case SIOCADDMULTI:
1211 case SIOCDELMULTI:
1212 error = (cmd == SIOCADDMULTI) ?
1213 ether_addmulti(ifr, &sc->sc_ethercom) :
1214 ether_delmulti(ifr, &sc->sc_ethercom);
1215
1216 if (error == ENETRESET) {
1217 /*
1218 * Multicast list has changed; set the hardware filter
1219 * accordingly.
1220 */
1221 epreset(sc);
1222 error = 0;
1223 }
1224 break;
1225
1226 default:
1227 error = EINVAL;
1228 break;
1229 }
1230
1231 splx(s);
1232 return (error);
1233 }
1234
1235 void
1236 epreset(sc)
1237 struct ep_softc *sc;
1238 {
1239 int s;
1240
1241 s = splnet();
1242 epstop(sc);
1243 epinit(sc);
1244 splx(s);
1245 }
1246
1247 void
1248 epwatchdog(ifp)
1249 struct ifnet *ifp;
1250 {
1251 struct ep_softc *sc = ifp->if_softc;
1252
1253 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1254 ++sc->sc_ethercom.ec_if.if_oerrors;
1255
1256 epreset(sc);
1257 }
1258
1259 void
1260 epstop(sc)
1261 register struct ep_softc *sc;
1262 {
1263 bus_space_tag_t iot = sc->sc_iot;
1264 bus_space_handle_t ioh = sc->sc_ioh;
1265
1266 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISABLE);
1267 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
1268 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
1269 ;
1270 bus_space_write_2(iot, ioh, EP_COMMAND, TX_DISABLE);
1271 bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
1272
1273 ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
1274 ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
1275
1276 bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
1277 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK);
1278 bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK);
1279 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RX_FILTER);
1280
1281 epmbufempty(sc);
1282 }
1283
1284
1285 /*
1286 * Before reboots, reset card completely.
1287 */
1288 static void
1289 epshutdown(arg)
1290 void *arg;
1291 {
1292 register struct ep_softc *sc = arg;
1293
1294 epstop(sc);
1295 ep_complete_cmd(sc, EP_COMMAND, GLOBAL_RESET);
1296 }
1297
1298
1299 /*
1300 * We get eeprom data from the id_port given an offset into the
1301 * eeprom. Basically; after the ID_sequence is sent to all of
1302 * the cards; they enter the ID_CMD state where they will accept
1303 * command requests. 0x80-0xbf loads the eeprom data. We then
1304 * read the port 16 times and with every read; the cards check
1305 * for contention (ie: if one card writes a 0 bit and another
1306 * writes a 1 bit then the host sees a 0. At the end of the cycle;
1307 * each card compares the data on the bus; if there is a difference
1308 * then that card goes into ID_WAIT state again). In the meantime;
1309 * one bit of data is returned in the AX register which is conveniently
1310 * returned to us by bus_space_read_1(). Hence; we read 16 times getting one
1311 * bit of data with each read.
1312 *
1313 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1314 */
1315 u_int16_t
1316 epreadeeprom(iot, ioh, offset)
1317 bus_space_tag_t iot;
1318 bus_space_handle_t ioh;
1319 int offset;
1320 {
1321 u_int16_t data = 0;
1322 int i;
1323
1324 bus_space_write_1(iot, ioh, 0, 0x80 + offset);
1325 delay(1000);
1326 for (i = 0; i < 16; i++)
1327 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1328 return (data);
1329 }
1330
1331 static int
1332 epbusyeeprom(sc)
1333 struct ep_softc *sc;
1334 {
1335 bus_space_tag_t iot = sc->sc_iot;
1336 bus_space_handle_t ioh = sc->sc_ioh;
1337 int i = 100, j;
1338
1339 if (sc->bustype == EP_BUS_PCMCIA) {
1340 delay(1000);
1341 return 0;
1342 }
1343
1344 while (i--) {
1345 j = bus_space_read_2(iot, ioh, EP_W0_EEPROM_COMMAND);
1346 if (j & EEPROM_BUSY)
1347 delay(100);
1348 else
1349 break;
1350 }
1351 if (!i) {
1352 printf("\n%s: eeprom failed to come ready\n",
1353 sc->sc_dev.dv_xname);
1354 return (1);
1355 }
1356 if (j & EEPROM_TST_MODE) {
1357 printf("\n%s: erase pencil mark, or disable plug-n-play mode!\n",
1358 sc->sc_dev.dv_xname);
1359 return (1);
1360 }
1361 return (0);
1362 }
1363
1364 void
1365 epmbuffill(v)
1366 void *v;
1367 {
1368 struct ep_softc *sc = v;
1369 int s, i;
1370
1371 s = splnet();
1372 i = sc->last_mb;
1373 do {
1374 if (sc->mb[i] == NULL)
1375 MGET(sc->mb[i], M_DONTWAIT, MT_DATA);
1376 if (sc->mb[i] == NULL)
1377 break;
1378 i = (i + 1) % MAX_MBS;
1379 } while (i != sc->next_mb);
1380 sc->last_mb = i;
1381 /* If the queue was not filled, try again. */
1382 if (sc->last_mb != sc->next_mb)
1383 timeout(epmbuffill, sc, 1);
1384 splx(s);
1385 }
1386
1387 void
1388 epmbufempty(sc)
1389 struct ep_softc *sc;
1390 {
1391 int s, i;
1392
1393 s = splnet();
1394 for (i = 0; i<MAX_MBS; i++) {
1395 if (sc->mb[i]) {
1396 m_freem(sc->mb[i]);
1397 sc->mb[i] = NULL;
1398 }
1399 }
1400 sc->last_mb = sc->next_mb = 0;
1401 untimeout(epmbuffill, sc);
1402 splx(s);
1403 }
1404