elink3.c revision 1.39 1 /* $NetBSD: elink3.c,v 1.39 1998/07/05 00:51:18 jonathan Exp $ */
2
3 /*
4 * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
5 * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Herb Peyerl.
19 * 4. The name of Herb Peyerl may not be used to endorse or promote products
20 * derived from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include "opt_inet.h"
35 #include "bpfilter.h"
36 #include "rnd.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/ioctl.h>
43 #include <sys/errno.h>
44 #include <sys/syslog.h>
45 #include <sys/select.h>
46 #include <sys/device.h>
47 #if NRND > 0
48 #include <sys/rnd.h>
49 #endif
50
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 #include <netinet/if_inarp.h>
62 #endif
63
64 #ifdef NS
65 #include <netns/ns.h>
66 #include <netns/ns_if.h>
67 #endif
68
69 #if NBPFILTER > 0
70 #include <net/bpf.h>
71 #include <net/bpfdesc.h>
72 #endif
73
74 #include <machine/cpu.h>
75 #include <machine/bus.h>
76 #include <machine/intr.h>
77
78 #include <dev/ic/elink3var.h>
79 #include <dev/ic/elink3reg.h>
80
81 #define ETHER_MIN_LEN 64
82 #define ETHER_MAX_LEN 1518
83 #define ETHER_ADDR_LEN 6
84
85 #ifdef DEBUG
86 int epdebug = 0;
87 #endif
88
89 /*
90 * Structure to map media-present bits in boards to
91 * ifmedia codes and printable media names. Used for table-driven
92 * ifmedia initialization.
93 */
94 struct ep_media {
95 int epm_eeprom_data; /* bitmask for eeprom config */
96 int epm_conn; /* sc->ep_connectors code for medium */
97 char* epm_name; /* name of medium */
98 int epm_ifmedia; /* ifmedia word for medium */
99 int epm_ifdata;
100 };
101
102 /*
103 * ep_media table for Vortex/Demon/Boomerang:
104 * map from media-present bits in register RESET_OPTIONS+2
105 * to ifmedia "media words" and printable names.
106 *
107 * XXX indexed directly by INTERNAL_CONFIG default_media field,
108 * (i.e., EPMEDIA_ constants) forcing order of entries.
109 * Note that 3 is reserved.
110 */
111 struct ep_media ep_vortex_media[8] = {
112 { EP_PCI_UTP, EPC_UTP, "utp", IFM_ETHER|IFM_10_T,
113 EPMEDIA_10BASE_T },
114 { EP_PCI_AUI, EPC_AUI, "aui", IFM_ETHER|IFM_10_5,
115 EPMEDIA_AUI },
116 { 0, 0, "reserved", IFM_NONE, EPMEDIA_RESV1 },
117 { EP_PCI_BNC, EPC_BNC, "bnc", IFM_ETHER|IFM_10_2,
118 EPMEDIA_10BASE_2 },
119 { EP_PCI_100BASE_TX, EPC_100TX, "100-TX", IFM_ETHER|IFM_100_TX,
120 EPMEDIA_100BASE_TX },
121 { EP_PCI_100BASE_FX, EPC_100FX, "100-FX", IFM_ETHER|IFM_100_FX,
122 EPMEDIA_100BASE_FX },
123 { EP_PCI_100BASE_MII,EPC_MII, "mii", IFM_ETHER|IFM_100_TX,
124 EPMEDIA_MII },
125 { EP_PCI_100BASE_T4, EPC_100T4, "100-T4", IFM_ETHER|IFM_100_T4,
126 EPMEDIA_100BASE_T4 }
127 };
128
129 /*
130 * ep_media table for 3c509/3c509b/3c579/3c589:
131 * map from media-present bits in register CNFG_CNTRL
132 * (window 0, offset ?) to ifmedia "media words" and printable names.
133 */
134 struct ep_media ep_isa_media[3] = {
135 { EP_W0_CC_UTP, EPC_UTP, "utp", IFM_ETHER|IFM_10_T, EPMEDIA_10BASE_T },
136 { EP_W0_CC_AUI, EPC_AUI, "aui", IFM_ETHER|IFM_10_5, EPMEDIA_AUI },
137 { EP_W0_CC_BNC, EPC_BNC, "bnc", IFM_ETHER|IFM_10_2, EPMEDIA_10BASE_2 },
138 };
139
140 /* Map vortex reset_options bits to if_media codes. */
141 const u_int ep_default_to_media[8] = {
142 IFM_ETHER | IFM_10_T,
143 IFM_ETHER | IFM_10_5,
144 0, /* reserved by 3Com */
145 IFM_ETHER | IFM_10_2,
146 IFM_ETHER | IFM_100_TX,
147 IFM_ETHER | IFM_100_FX,
148 IFM_ETHER | IFM_100_TX, /* XXX really MII: need to talk to PHY */
149 IFM_ETHER | IFM_100_T4,
150 };
151
152 void ep_internalconfig __P((struct ep_softc *sc));
153 void ep_vortex_probemedia __P((struct ep_softc *sc));
154 void ep_isa_probemedia __P((struct ep_softc *sc));
155
156 static void eptxstat __P((struct ep_softc *));
157 static int epstatus __P((struct ep_softc *));
158 void epinit __P((struct ep_softc *));
159 int epioctl __P((struct ifnet *, u_long, caddr_t));
160 void epstart __P((struct ifnet *));
161 void epwatchdog __P((struct ifnet *));
162 void epreset __P((struct ep_softc *));
163 static void epshutdown __P((void *));
164 void epread __P((struct ep_softc *));
165 struct mbuf *epget __P((struct ep_softc *, int));
166 void epmbuffill __P((void *));
167 void epmbufempty __P((struct ep_softc *));
168 void epsetfilter __P((struct ep_softc *));
169 void epsetmedia __P((struct ep_softc *, int epmedium));
170
171 int epenable __P((struct ep_softc *));
172 void epdisable __P((struct ep_softc *));
173
174 /* ifmedia callbacks */
175 int ep_media_change __P((struct ifnet *ifp));
176 void ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
177
178 static int epbusyeeprom __P((struct ep_softc *));
179 static inline void ep_complete_cmd __P((struct ep_softc *sc,
180 u_int cmd, u_int arg));
181
182
183 /*
184 * Issue a (reset) command, and be sure it has completed.
185 * Used for commands that reset part or all of the board.
186 * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
187 * but older hardware doesn't implement it and we must delay.
188 * It's easiest to just delay always.
189 */
190 static inline void
191 ep_complete_cmd(sc, cmd, arg)
192 struct ep_softc *sc;
193 u_int cmd, arg;
194 {
195 register bus_space_tag_t iot = sc->sc_iot;
196 register bus_space_handle_t ioh = sc->sc_ioh;
197
198 bus_space_write_2(iot, ioh, cmd, arg);
199
200 #ifdef notyet
201 /* if this adapter family has S_COMMAND_IN_PROGRESS, use it */
202 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
203 ;
204 else
205 #else
206 DELAY(100000); /* need at least 1 ms, but be generous. */
207 #endif
208 }
209
210 /*
211 * Back-end attach and configure.
212 */
213 void
214 epconfig(sc, chipset, enaddr)
215 struct ep_softc *sc;
216 u_short chipset;
217 u_int8_t *enaddr;
218 {
219 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
220 bus_space_tag_t iot = sc->sc_iot;
221 bus_space_handle_t ioh = sc->sc_ioh;
222 u_int16_t i;
223 u_int8_t myla[6];
224
225 sc->ep_chipset = chipset;
226
227 /*
228 * We could have been groveling around in other register
229 * windows in the front-end; make sure we're in window 0
230 * to read the EEPROM.
231 */
232 GO_WINDOW(0);
233
234 if (enaddr == NULL) {
235 /*
236 * Read the station address from the eeprom
237 */
238 for (i = 0; i < 3; i++) {
239 u_int16_t x;
240 if (epbusyeeprom(sc))
241 return; /* XXX why is eeprom busy? */
242 bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
243 READ_EEPROM | i);
244 if (epbusyeeprom(sc))
245 return; /* XXX why is eeprom busy? */
246 x = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA);
247 myla[(i << 1)] = x >> 8;
248 myla[(i << 1) + 1] = x;
249 }
250 enaddr = myla;
251 }
252
253 printf("%s: MAC address %s\n", sc->sc_dev.dv_xname,
254 ether_sprintf(enaddr));
255
256 /*
257 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900,3c515?) cards
258 * allow FDDI-sized (4500) byte packets. Commands only take an
259 * 11-bit parameter, and 11 bits isn't enough to hold a full-size
260 * packet length.
261 * Commands to these cards implicitly upshift a packet size
262 * or threshold by 2 bits.
263 * To detect cards with large-packet support, we probe by setting
264 * the transmit threshold register, then change windows and
265 * read back the threshold register directly, and see if the
266 * threshold value was shifted or not.
267 */
268 bus_space_write_2(iot, ioh, EP_COMMAND,
269 SET_TX_AVAIL_THRESH | EP_LARGEWIN_PROBE );
270 GO_WINDOW(5);
271 i = bus_space_read_2(iot, ioh, EP_W5_TX_AVAIL_THRESH);
272 GO_WINDOW(1);
273 switch (i) {
274 case EP_LARGEWIN_PROBE:
275 case (EP_LARGEWIN_PROBE & EP_LARGEWIN_MASK):
276 sc->ep_pktlenshift = 0;
277 break;
278
279 case (EP_LARGEWIN_PROBE << 2):
280 sc->ep_pktlenshift = 2;
281 /* XXX does the 3c515 support Vortex-style RESET_OPTIONS? */
282 break;
283
284 default:
285 printf("%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
286 "Interface disabled\n",
287 sc->sc_dev.dv_xname, EP_LARGEWIN_PROBE, (int) i);
288 return;
289 }
290
291 /*
292 * Ensure Tx-available interrupts are enabled for
293 * start the interface.
294 * XXX should be in epinit()?
295 */
296 bus_space_write_2(iot, ioh, EP_COMMAND,
297 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
298
299 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
300 ifp->if_softc = sc;
301 ifp->if_start = epstart;
302 ifp->if_ioctl = epioctl;
303 ifp->if_watchdog = epwatchdog;
304 ifp->if_flags =
305 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
306
307 if_attach(ifp);
308 ether_ifattach(ifp, enaddr);
309
310 /*
311 * Finish configuration:
312 * determine chipset if the front-end couldn't do so,
313 * show board details, set media.
314 */
315
316 /* print RAM size */
317 ep_internalconfig(sc);
318 GO_WINDOW(0);
319
320 ifmedia_init(&sc->sc_media, 0, ep_media_change, ep_media_status);
321
322 /*
323 * If we've got an indirect (ISA) board, the chipset is
324 * unknown. If the board has large-packet support, it's a
325 * Vortex/Boomerang, otherwise it's a 3c509. XXX use eeprom
326 * capability word instead?
327 */
328
329 if (sc->ep_chipset == EP_CHIPSET_UNKNOWN && sc->ep_pktlenshift) {
330 printf("warning: unknown chipset, possibly 3c515?\n");
331 #ifdef notyet
332 sc->sc_chipset = EP_CHIPSET_VORTEX;
333 #endif /* notyet */
334 }
335
336 /*
337 * Ascertain which media types are present and inform ifmedia.
338 */
339 switch (sc->ep_chipset) {
340 /* on a direct bus, the attach routine can tell, but check anyway. */
341 case EP_CHIPSET_VORTEX:
342 case EP_CHIPSET_BOOMERANG2:
343 ep_vortex_probemedia(sc);
344 break;
345
346 /* on ISA we can't yet tell 3c509 from 3c515. Assume the former. */
347 case EP_CHIPSET_3C509:
348 default:
349 ep_isa_probemedia(sc);
350 break;
351 }
352
353 GO_WINDOW(1); /* Window 1 is operating window */
354
355 #if NBPFILTER > 0
356 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
357 sizeof(struct ether_header));
358 #endif
359
360 #if NRND > 0
361 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, RND_TYPE_NET);
362 #endif
363
364 sc->tx_start_thresh = 20; /* probably a good starting point. */
365
366 /* Establish callback to reset card when we reboot. */
367 shutdownhook_establish(epshutdown, sc);
368
369 ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
370 ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
371 }
372
373
374 /*
375 * Show interface-model-independent info from window 3
376 * internal-configuration register.
377 */
378 void
379 ep_internalconfig(sc)
380 struct ep_softc *sc;
381 {
382 bus_space_tag_t iot = sc->sc_iot;
383 bus_space_handle_t ioh = sc->sc_ioh;
384
385 u_int config0;
386 u_int config1;
387
388 int ram_size, ram_width, ram_speed, rom_size, ram_split;
389 /*
390 * NVRAM buffer Rx:Tx config names for busmastering cards
391 * (Demon, Vortex, and later).
392 */
393 const char *onboard_ram_config[] = {
394 "5:3", "3:1", "1:1", "3:5" };
395
396 GO_WINDOW(3);
397 config0 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG);
398 config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
399 GO_WINDOW(0);
400
401 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
402 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
403 ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
404 rom_size = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
405
406 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
407
408 printf("%s: %dKB %s-wide FIFO, %s Rx:Tx split, ",
409 sc->sc_dev.dv_xname,
410 8 << ram_size,
411 (ram_width) ? "word" : "byte",
412 onboard_ram_config[ram_split]);
413 }
414
415
416 /*
417 * Find supported media on 3c509-generation hardware that doesn't have
418 * a "reset_options" register in window 3.
419 * Use the config_cntrl register in window 0 instead.
420 * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
421 * that implement CONFIG_CTRL. We don't have a good way to set the
422 * default active mediuim; punt to ifconfig instead.
423 *
424 * XXX what about 3c515, pcmcia 10/100?
425 */
426 void
427 ep_isa_probemedia(sc)
428 struct ep_softc *sc;
429 {
430 bus_space_tag_t iot = sc->sc_iot;
431 bus_space_handle_t ioh = sc->sc_ioh;
432 struct ifmedia *ifm = &sc->sc_media;
433 int conn, i;
434 u_int16_t ep_w0_config, port;
435
436 conn = 0;
437 GO_WINDOW(0);
438 ep_w0_config = bus_space_read_2(iot, ioh, EP_W0_CONFIG_CTRL);
439 for (i = 0; i < 3; i++) {
440 struct ep_media * epm = ep_isa_media + i;
441
442 if ((ep_w0_config & epm->epm_eeprom_data) != 0) {
443
444 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_ifdata, 0);
445 if (conn)
446 printf("/");
447 printf(epm->epm_name);
448 conn |= epm->epm_conn;
449 }
450 }
451 sc->ep_connectors = conn;
452
453 /* get default medium from EEPROM */
454 if (epbusyeeprom(sc))
455 return; /* XXX why is eeprom busy? */
456 bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
457 READ_EEPROM | EEPROM_ADDR_CFG);
458 if (epbusyeeprom(sc))
459 return; /* XXX why is eeprom busy? */
460 port = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA);
461 port = port >> 14;
462
463 printf(" (default %s)\n", ep_vortex_media[port].epm_name);
464 /* tell ifconfig what currently-active media is. */
465 ifmedia_set(ifm, ep_default_to_media[port]);
466
467 /* XXX autoselect not yet implemented */
468 }
469
470
471 /*
472 * Find media present on large-packet-capable elink3 devices.
473 * Show onboard configuration of large-packet-capable elink3 devices
474 * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
475 * Use media and card-version info in window 3 instead.
476 *
477 * XXX how much of this works with 3c515, pcmcia 10/100?
478 */
479 void
480 ep_vortex_probemedia(sc)
481 struct ep_softc *sc;
482 {
483 bus_space_tag_t iot = sc->sc_iot;
484 bus_space_handle_t ioh = sc->sc_ioh;
485 struct ifmedia *ifm = &sc->sc_media;
486 u_int config1, conn;
487 int reset_options;
488 int default_media; /* 3-bit encoding of default (EEPROM) media */
489 int autoselect; /* boolean: should default to autoselect */
490 const char *medium_name;
491 register int i;
492
493 GO_WINDOW(3);
494 config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
495 reset_options = (int)bus_space_read_1(iot, ioh, EP_W3_RESET_OPTIONS);
496 GO_WINDOW(0);
497
498 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
499 autoselect = (config1 & CONFIG_AUTOSELECT) >> CONFIG_AUTOSELECT_SHIFT;
500
501 /* set available media options */
502 conn = 0;
503 for (i = 0; i < 8; i++) {
504 struct ep_media * epm = ep_vortex_media + i;
505
506 if ((reset_options & epm->epm_eeprom_data) != 0) {
507 if (conn) printf("/");
508 printf(epm->epm_name);
509 conn |= epm->epm_conn;
510 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_ifdata, 0);
511 }
512 }
513
514 sc->ep_connectors = conn;
515
516 /* Show eeprom's idea of default media. */
517 medium_name = (default_media > 8)
518 ? "(unknown/impossible media)"
519 : ep_vortex_media[default_media].epm_name;
520 printf(" default %s%s\n",
521 medium_name, (autoselect)? ", autoselect" : "" );
522
523 #ifdef notyet
524 /*
525 * Set default: either the active interface the card
526 * reads from the EEPROM, or if autoselect is true,
527 * whatever we find is actually connected.
528 *
529 * XXX autoselect not yet implemented.
530 */
531 #endif /* notyet */
532
533 /* tell ifconfig what currently-active media is. */
534 ifmedia_set(ifm, ep_default_to_media[default_media]);
535 }
536
537
538 /*
539 * Bring device up.
540 *
541 * The order in here seems important. Otherwise we may not receive
542 * interrupts. ?!
543 */
544 void
545 epinit(sc)
546 register struct ep_softc *sc;
547 {
548 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
549 bus_space_tag_t iot = sc->sc_iot;
550 bus_space_handle_t ioh = sc->sc_ioh;
551 int i;
552
553 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
554 ;
555
556 if (sc->bustype != EP_BUS_PCI) {
557 GO_WINDOW(0);
558 bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, 0);
559 bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
560 }
561
562 if (sc->bustype == EP_BUS_PCMCIA) {
563 bus_space_write_2(iot, ioh, EP_W0_RESOURCE_CFG, 0x3f00);
564 }
565
566 GO_WINDOW(2);
567 for (i = 0; i < 6; i++) /* Reload the ether_addr. */
568 bus_space_write_1(iot, ioh, EP_W2_ADDR_0 + i,
569 LLADDR(ifp->if_sadl)[i]);
570
571 /*
572 * Reset the station-address receive filter.
573 * A bug workaround for busmastering (Vortex, Demon) cards.
574 */
575 for (i = 0; i < 6; i++)
576 bus_space_write_1(iot, ioh, EP_W2_RECVMASK_0 + i, 0);
577
578 ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
579 ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
580
581 GO_WINDOW(1); /* Window 1 is operating window */
582 for (i = 0; i < 31; i++)
583 bus_space_read_1(iot, ioh, EP_W1_TX_STATUS);
584
585 /* Set threshhold for for Tx-space avaiable interrupt. */
586 bus_space_write_2(iot, ioh, EP_COMMAND,
587 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
588
589 /* Enable interrupts. */
590 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK | S_CARD_FAILURE |
591 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
592 bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK | S_CARD_FAILURE |
593 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
594
595 /*
596 * Attempt to get rid of any stray interrupts that occured during
597 * configuration. On the i386 this isn't possible because one may
598 * already be queued. However, a single stray interrupt is
599 * unimportant.
600 */
601 bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | 0xff);
602
603 epsetfilter(sc);
604 epsetmedia(sc, sc->sc_media.ifm_cur->ifm_data);
605
606 bus_space_write_2(iot, ioh, EP_COMMAND, RX_ENABLE);
607 bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
608
609 epmbuffill(sc);
610
611 /* Interface is now `running', with no output active. */
612 ifp->if_flags |= IFF_RUNNING;
613 ifp->if_flags &= ~IFF_OACTIVE;
614
615 /* Attempt to start output, if any. */
616 epstart(ifp);
617 }
618
619
620 /*
621 * Set multicast receive filter.
622 * elink3 hardware has no selective multicast filter in hardware.
623 * Enable reception of all multicasts and filter in software.
624 */
625 void
626 epsetfilter(sc)
627 register struct ep_softc *sc;
628 {
629 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
630
631 GO_WINDOW(1); /* Window 1 is operating window */
632 bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_COMMAND, SET_RX_FILTER |
633 FIL_INDIVIDUAL | FIL_BRDCST |
634 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
635 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
636 }
637
638
639 int
640 ep_media_change(ifp)
641 struct ifnet *ifp;
642 {
643 register struct ep_softc *sc = ifp->if_softc;
644
645 /*
646 * If the interface is not currently powered on, just return.
647 * When it is enabled later, epinit() will properly set up the
648 * media for us.
649 */
650 if (sc->enabled == 0)
651 return (0);
652
653 epsetmedia(sc, sc->sc_media.ifm_cur->ifm_data);
654 return (0);
655 }
656
657 /*
658 * Set active media to a specific given EPMEDIA_<> value.
659 * For vortex/demon/boomerang cards, update media field in w3_internal_config,
660 * and power on selected transceiver.
661 * For 3c509-generation cards (3c509/3c579/3c589/3c509B),
662 * update media field in w0_address_config, and power on selected xcvr.
663 */
664 void
665 epsetmedia(sc, medium)
666 register struct ep_softc *sc;
667 int medium;
668 {
669 bus_space_tag_t iot = sc->sc_iot;
670 bus_space_handle_t ioh = sc->sc_ioh;
671 int w4_media;
672
673 /*
674 * First, change the media-control bits in EP_W4_MEDIA_TYPE.
675 */
676
677 /* Turn everything off. First turn off linkbeat and UTP. */
678 GO_WINDOW(4);
679 w4_media = bus_space_read_2(iot, ioh, EP_W4_MEDIA_TYPE);
680 w4_media = w4_media & ~(ENABLE_UTP|SQE_ENABLE);
681 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, w4_media);
682
683 /* Turn off coax */
684 bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
685 delay(1000);
686
687 /*
688 * Now turn on the selected media/transceiver.
689 */
690 GO_WINDOW(4);
691 switch (medium) {
692 case EPMEDIA_10BASE_T:
693 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
694 w4_media | ENABLE_UTP);
695 break;
696
697 case EPMEDIA_10BASE_2:
698 bus_space_write_2(iot, ioh, EP_COMMAND, START_TRANSCEIVER);
699 DELAY(1000); /* 50ms not enmough? */
700 break;
701
702 /* XXX following only for new-generation cards */
703 case EPMEDIA_100BASE_TX:
704 case EPMEDIA_100BASE_FX:
705 case EPMEDIA_100BASE_T4: /* XXX check documentation */
706 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
707 w4_media | LINKBEAT_ENABLE);
708 DELAY(1000); /* not strictly necessary? */
709 break;
710
711 case EPMEDIA_AUI:
712 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
713 w4_media | SQE_ENABLE);
714 DELAY(1000); /* not strictly necessary? */
715 break;
716 case EPMEDIA_MII:
717 /* XXX talk to phy? */
718 break;
719 default:
720 #if defined(DEBUG)
721 printf("%s unknown media 0x%x\n", sc->sc_dev.dv_xname, medium);
722 #endif
723 break;
724
725 }
726
727 /*
728 * Tell the chip which PHY [sic] to use.
729 */
730 if (sc->ep_chipset==EP_CHIPSET_VORTEX ||
731 sc->ep_chipset==EP_CHIPSET_BOOMERANG2) {
732 int config0, config1;
733
734 GO_WINDOW(3);
735 config0 = (u_int)bus_space_read_2(iot, ioh,
736 EP_W3_INTERNAL_CONFIG);
737 config1 = (u_int)bus_space_read_2(iot, ioh,
738 EP_W3_INTERNAL_CONFIG + 2);
739
740 #if defined(DEBUG)
741 if (epdebug) {
742 printf("%s: read 0x%x, 0x%x from EP_W3_CONFIG register\n",
743 sc->sc_dev.dv_xname, config0, config1);
744 }
745 #endif
746 config1 = config1 & ~CONFIG_MEDIAMASK;
747 config1 |= (medium << CONFIG_MEDIAMASK_SHIFT);
748
749 #if defined(DEBUG)
750 if (epdebug) {
751 printf("epsetmedia: %s: medium 0x%x, 0x%x to EP_W3_CONFIG\n",
752 sc->sc_dev.dv_xname, medium, config1);
753 }
754 #endif
755 bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0);
756 bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1);
757 }
758 else if (sc->ep_chipset == EP_CHIPSET_3C509) {
759 register int w0_addr_cfg;
760
761 GO_WINDOW(0);
762 w0_addr_cfg = bus_space_read_2(iot, ioh, EP_W0_ADDRESS_CFG);
763 w0_addr_cfg &= 0x3fff;
764 bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,
765 w0_addr_cfg | (medium << 14));
766 DELAY(1000);
767 }
768
769 GO_WINDOW(1); /* Window 1 is operating window */
770 }
771
772 /*
773 * Get currently-selected media from card.
774 * (if_media callback, may be called before interface is brought up).
775 */
776 void
777 ep_media_status(ifp, req)
778 struct ifnet *ifp;
779 struct ifmediareq *req;
780 {
781 register struct ep_softc *sc = ifp->if_softc;
782 bus_space_tag_t iot = sc->sc_iot;
783 bus_space_handle_t ioh = sc->sc_ioh;
784 u_int config1;
785 u_int ep_mediastatus;
786
787 if (sc->enabled == 0) {
788 req->ifm_active = IFM_ETHER|IFM_NONE;
789 req->ifm_status = 0;
790 return;
791 }
792
793 /* XXX read from softc when we start autosensing media */
794 req->ifm_active = sc->sc_media.ifm_cur->ifm_media;
795
796 switch (sc->ep_chipset) {
797 case EP_CHIPSET_VORTEX:
798 case EP_CHIPSET_BOOMERANG:
799 GO_WINDOW(3);
800 delay(5000);
801
802 config1 = bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
803 GO_WINDOW(1);
804
805 config1 =
806 (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
807 req->ifm_active = ep_default_to_media[config1];
808
809 /* XXX check full-duplex bits? */
810
811 GO_WINDOW(4);
812 req->ifm_status = IFM_AVALID; /* XXX */
813 ep_mediastatus = bus_space_read_2(iot, ioh, EP_W4_MEDIA_TYPE);
814 if (ep_mediastatus & LINKBEAT_DETECT)
815 req->ifm_status |= IFM_ACTIVE; /* XXX automedia */
816
817 break;
818
819 case EP_CHIPSET_UNKNOWN:
820 case EP_CHIPSET_3C509:
821 req->ifm_status = 0; /* XXX */
822 break;
823
824 default:
825 printf("%s: media_status on unknown chipset 0x%x\n",
826 ifp->if_xname, sc->ep_chipset);
827 break;
828 }
829
830 /* XXX look for softc heartbeat for other chips or media */
831
832 GO_WINDOW(1);
833 }
834
835
836
837 /*
838 * Start outputting on the interface.
839 * Always called as splnet().
840 */
841 void
842 epstart(ifp)
843 struct ifnet *ifp;
844 {
845 register struct ep_softc *sc = ifp->if_softc;
846 bus_space_tag_t iot = sc->sc_iot;
847 bus_space_handle_t ioh = sc->sc_ioh;
848 struct mbuf *m, *m0;
849 int sh, len, pad;
850
851 /* Don't transmit if interface is busy or not running */
852 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
853 return;
854
855 startagain:
856 /* Sneak a peek at the next packet */
857 m0 = ifp->if_snd.ifq_head;
858 if (m0 == 0)
859 return;
860
861 /* We need to use m->m_pkthdr.len, so require the header */
862 if ((m0->m_flags & M_PKTHDR) == 0)
863 panic("epstart: no header mbuf");
864 len = m0->m_pkthdr.len;
865
866 pad = (4 - len) & 3;
867
868 /*
869 * The 3c509 automatically pads short packets to minimum ethernet
870 * length, but we drop packets that are too large. Perhaps we should
871 * truncate them instead?
872 */
873 if (len + pad > ETHER_MAX_LEN) {
874 /* packet is obviously too large: toss it */
875 ++ifp->if_oerrors;
876 IF_DEQUEUE(&ifp->if_snd, m0);
877 m_freem(m0);
878 goto readcheck;
879 }
880
881 if (bus_space_read_2(iot, ioh, EP_W1_FREE_TX) < len + pad + 4) {
882 bus_space_write_2(iot, ioh, EP_COMMAND,
883 SET_TX_AVAIL_THRESH |
884 ((len + pad + 4) >> sc->ep_pktlenshift));
885 /* not enough room in FIFO */
886 ifp->if_flags |= IFF_OACTIVE;
887 return;
888 } else {
889 bus_space_write_2(iot, ioh, EP_COMMAND,
890 SET_TX_AVAIL_THRESH | EP_THRESH_DISABLE );
891 }
892
893 IF_DEQUEUE(&ifp->if_snd, m0);
894 if (m0 == 0) /* not really needed */
895 return;
896
897 bus_space_write_2(iot, ioh, EP_COMMAND, SET_TX_START_THRESH |
898 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/) );
899
900 #if NBPFILTER > 0
901 if (ifp->if_bpf)
902 bpf_mtap(ifp->if_bpf, m0);
903 #endif
904
905 /*
906 * Do the output at splhigh() so that an interrupt from another device
907 * won't cause a FIFO underrun.
908 */
909 sh = splhigh();
910
911 bus_space_write_2(iot, ioh, EP_W1_TX_PIO_WR_1, len);
912 bus_space_write_2(iot, ioh, EP_W1_TX_PIO_WR_1,
913 0xffff); /* Second dword meaningless */
914 if (EP_IS_BUS_32(sc->bustype)) {
915 for (m = m0; m; ) {
916 if (m->m_len > 3) {
917 /* align our reads from core */
918 if (mtod(m, u_long) & 3) {
919 u_long count =
920 4 - (mtod(m, u_long) & 3);
921 bus_space_write_multi_1(iot, ioh,
922 EP_W1_TX_PIO_WR_1,
923 mtod(m, u_int8_t *), count);
924 m->m_data =
925 (void *)(mtod(m, u_long) + count);
926 m->m_len -= count;
927 }
928 bus_space_write_multi_4(iot, ioh,
929 EP_W1_TX_PIO_WR_1,
930 mtod(m, u_int32_t *), m->m_len >> 2);
931 m->m_data = (void *)(mtod(m, u_long) +
932 (u_long)(m->m_len & ~3));
933 m->m_len -= m->m_len & ~3;
934 }
935 if (m->m_len) {
936 bus_space_write_multi_1(iot, ioh,
937 EP_W1_TX_PIO_WR_1,
938 mtod(m, u_int8_t *), m->m_len);
939 }
940 MFREE(m, m0);
941 m = m0;
942 }
943 } else {
944 for (m = m0; m; ) {
945 if (m->m_len > 1) {
946 if (mtod(m, u_long) & 1) {
947 bus_space_write_1(iot, ioh,
948 EP_W1_TX_PIO_WR_1,
949 *(mtod(m, u_int8_t *)));
950 m->m_data =
951 (void *)(mtod(m, u_long) + 1);
952 m->m_len -= 1;
953 }
954 bus_space_write_multi_2(iot, ioh,
955 EP_W1_TX_PIO_WR_1, mtod(m, u_int16_t *),
956 m->m_len >> 1);
957 }
958 if (m->m_len & 1) {
959 bus_space_write_1(iot, ioh, EP_W1_TX_PIO_WR_1,
960 *(mtod(m, u_int8_t *) + m->m_len - 1));
961 }
962 MFREE(m, m0);
963 m = m0;
964 }
965 }
966 while (pad--)
967 bus_space_write_1(iot, ioh, EP_W1_TX_PIO_WR_1, 0);
968
969 splx(sh);
970
971 ++ifp->if_opackets;
972
973 readcheck:
974 if ((bus_space_read_2(iot, ioh, EP_W1_RX_STATUS) & ERR_INCOMPLETE) == 0) {
975 /* We received a complete packet. */
976 u_int16_t status = bus_space_read_2(iot, ioh, EP_STATUS);
977
978 if ((status & S_INTR_LATCH) == 0) {
979 /*
980 * No interrupt, read the packet and continue
981 * Is this supposed to happen? Is my motherboard
982 * completely busted?
983 */
984 epread(sc);
985 } else {
986 /* Got an interrupt, return so that it gets serviced. */
987 #if 0
988 printf("%s: S_INTR_LATCH %04x mask=%04x ipending=%04x (%04x)\n",
989 sc->sc_dev.dv_xname, status,
990 cpl, ipending, imask[IPL_NET]);
991 #endif
992
993 return;
994 }
995 } else {
996 /* Check if we are stuck and reset [see XXX comment] */
997 if (epstatus(sc)) {
998 if (ifp->if_flags & IFF_DEBUG)
999 printf("%s: adapter reset\n",
1000 sc->sc_dev.dv_xname);
1001 epreset(sc);
1002 }
1003 }
1004
1005 goto startagain;
1006 }
1007
1008
1009 /*
1010 * XXX: The 3c509 card can get in a mode where both the fifo status bit
1011 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1012 * We detect this situation and we reset the adapter.
1013 * It happens at times when there is a lot of broadcast traffic
1014 * on the cable (once in a blue moon).
1015 */
1016 static int
1017 epstatus(sc)
1018 register struct ep_softc *sc;
1019 {
1020 bus_space_tag_t iot = sc->sc_iot;
1021 bus_space_handle_t ioh = sc->sc_ioh;
1022 u_int16_t fifost;
1023
1024 /*
1025 * Check the FIFO status and act accordingly
1026 */
1027 GO_WINDOW(4);
1028 fifost = bus_space_read_2(iot, ioh, EP_W4_FIFO_DIAG);
1029 GO_WINDOW(1);
1030
1031 if (fifost & FIFOS_RX_UNDERRUN) {
1032 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1033 printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
1034 epreset(sc);
1035 return 0;
1036 }
1037
1038 if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1039 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1040 printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
1041 return 1;
1042 }
1043
1044 if (fifost & FIFOS_RX_OVERRUN) {
1045 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1046 printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
1047 return 1;
1048 }
1049
1050 if (fifost & FIFOS_TX_OVERRUN) {
1051 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1052 printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
1053 epreset(sc);
1054 return 0;
1055 }
1056
1057 return 0;
1058 }
1059
1060
1061 static void
1062 eptxstat(sc)
1063 register struct ep_softc *sc;
1064 {
1065 bus_space_tag_t iot = sc->sc_iot;
1066 bus_space_handle_t ioh = sc->sc_ioh;
1067 int i;
1068
1069 /*
1070 * We need to read+write TX_STATUS until we get a 0 status
1071 * in order to turn off the interrupt flag.
1072 */
1073 while ((i = bus_space_read_1(iot, ioh, EP_W1_TX_STATUS)) & TXS_COMPLETE) {
1074 bus_space_write_1(iot, ioh, EP_W1_TX_STATUS, 0x0);
1075
1076 if (i & TXS_JABBER) {
1077 ++sc->sc_ethercom.ec_if.if_oerrors;
1078 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1079 printf("%s: jabber (%x)\n",
1080 sc->sc_dev.dv_xname, i);
1081 epreset(sc);
1082 } else if (i & TXS_UNDERRUN) {
1083 ++sc->sc_ethercom.ec_if.if_oerrors;
1084 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1085 printf("%s: fifo underrun (%x) @%d\n",
1086 sc->sc_dev.dv_xname, i,
1087 sc->tx_start_thresh);
1088 if (sc->tx_succ_ok < 100)
1089 sc->tx_start_thresh = min(ETHER_MAX_LEN,
1090 sc->tx_start_thresh + 20);
1091 sc->tx_succ_ok = 0;
1092 epreset(sc);
1093 } else if (i & TXS_MAX_COLLISION) {
1094 ++sc->sc_ethercom.ec_if.if_collisions;
1095 bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
1096 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1097 } else
1098 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1099 }
1100 }
1101
1102 int
1103 epintr(arg)
1104 void *arg;
1105 {
1106 register struct ep_softc *sc = arg;
1107 bus_space_tag_t iot = sc->sc_iot;
1108 bus_space_handle_t ioh = sc->sc_ioh;
1109 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1110 u_int16_t status;
1111 int ret = 0;
1112 int addrandom = 0;
1113
1114 if (sc->enabled == 0)
1115 return (0);
1116
1117 for (;;) {
1118 bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
1119
1120 status = bus_space_read_2(iot, ioh, EP_STATUS);
1121
1122 if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
1123 S_RX_COMPLETE | S_CARD_FAILURE)) == 0) {
1124 if ((status & S_INTR_LATCH) == 0) {
1125 #if 0
1126 printf("%s: intr latch cleared\n",
1127 sc->sc_dev.dv_xname);
1128 #endif
1129 break;
1130 }
1131 }
1132
1133 ret = 1;
1134
1135 /*
1136 * Acknowledge any interrupts. It's important that we do this
1137 * first, since there would otherwise be a race condition.
1138 * Due to the i386 interrupt queueing, we may get spurious
1139 * interrupts occasionally.
1140 */
1141 bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR |
1142 (status & (C_INTR_LATCH |
1143 C_CARD_FAILURE |
1144 C_TX_COMPLETE |
1145 C_TX_AVAIL |
1146 C_RX_COMPLETE |
1147 C_RX_EARLY |
1148 C_INT_RQD |
1149 C_UPD_STATS)));
1150
1151 #if 0
1152 status = bus_space_read_2(iot, ioh, EP_STATUS);
1153
1154 printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
1155 (status & S_RX_COMPLETE)?" RX_COMPLETE":"",
1156 (status & S_TX_COMPLETE)?" TX_COMPLETE":"",
1157 (status & S_TX_AVAIL)?" TX_AVAIL":"",
1158 (status & S_CARD_FAILURE)?" CARD_FAILURE":"");
1159 #endif
1160
1161 if (status & S_RX_COMPLETE) {
1162 epread(sc);
1163 addrandom = 1;
1164 }
1165 if (status & S_TX_AVAIL) {
1166 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1167 epstart(&sc->sc_ethercom.ec_if);
1168 addrandom = 1;
1169 }
1170 if (status & S_CARD_FAILURE) {
1171 printf("%s: adapter failure (%x)\n",
1172 sc->sc_dev.dv_xname, status);
1173 epreset(sc);
1174 return (1);
1175 }
1176 if (status & S_TX_COMPLETE) {
1177 eptxstat(sc);
1178 epstart(ifp);
1179 addrandom = 1;
1180 }
1181
1182 #if NRND > 0
1183 if (status)
1184 rnd_add_uint32(&sc->rnd_source, status);
1185 #endif
1186 }
1187
1188 /* no more interrupts */
1189 return (ret);
1190 }
1191
1192 void
1193 epread(sc)
1194 register struct ep_softc *sc;
1195 {
1196 bus_space_tag_t iot = sc->sc_iot;
1197 bus_space_handle_t ioh = sc->sc_ioh;
1198 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1199 struct mbuf *m;
1200 struct ether_header *eh;
1201 int len;
1202
1203 len = bus_space_read_2(iot, ioh, EP_W1_RX_STATUS);
1204
1205 again:
1206 if (ifp->if_flags & IFF_DEBUG) {
1207 int err = len & ERR_MASK;
1208 char *s = NULL;
1209
1210 if (len & ERR_INCOMPLETE)
1211 s = "incomplete packet";
1212 else if (err == ERR_OVERRUN)
1213 s = "packet overrun";
1214 else if (err == ERR_RUNT)
1215 s = "runt packet";
1216 else if (err == ERR_ALIGNMENT)
1217 s = "bad alignment";
1218 else if (err == ERR_CRC)
1219 s = "bad crc";
1220 else if (err == ERR_OVERSIZE)
1221 s = "oversized packet";
1222 else if (err == ERR_DRIBBLE)
1223 s = "dribble bits";
1224
1225 if (s)
1226 printf("%s: %s\n", sc->sc_dev.dv_xname, s);
1227 }
1228
1229 if (len & ERR_INCOMPLETE)
1230 return;
1231
1232 if (len & ERR_RX) {
1233 ++ifp->if_ierrors;
1234 goto abort;
1235 }
1236
1237 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
1238
1239 /* Pull packet off interface. */
1240 m = epget(sc, len);
1241 if (m == 0) {
1242 ifp->if_ierrors++;
1243 goto abort;
1244 }
1245
1246 ++ifp->if_ipackets;
1247
1248 /* We assume the header fit entirely in one mbuf. */
1249 eh = mtod(m, struct ether_header *);
1250
1251 #if NBPFILTER > 0
1252 /*
1253 * Check if there's a BPF listener on this interface.
1254 * If so, hand off the raw packet to BPF.
1255 */
1256 if (ifp->if_bpf) {
1257 bpf_mtap(ifp->if_bpf, m);
1258
1259 /*
1260 * Note that the interface cannot be in promiscuous mode if
1261 * there are no BPF listeners. And if we are in promiscuous
1262 * mode, we have to check if this packet is really ours.
1263 */
1264 if ((ifp->if_flags & IFF_PROMISC) &&
1265 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
1266 bcmp(eh->ether_dhost, LLADDR(sc->sc_ethercom.ec_if.if_sadl),
1267 sizeof(eh->ether_dhost)) != 0) {
1268 m_freem(m);
1269 return;
1270 }
1271 }
1272 #endif
1273
1274 /* We assume the header fit entirely in one mbuf. */
1275 m_adj(m, sizeof(struct ether_header));
1276 ether_input(ifp, eh, m);
1277
1278 /*
1279 * In periods of high traffic we can actually receive enough
1280 * packets so that the fifo overrun bit will be set at this point,
1281 * even though we just read a packet. In this case we
1282 * are not going to receive any more interrupts. We check for
1283 * this condition and read again until the fifo is not full.
1284 * We could simplify this test by not using epstatus(), but
1285 * rechecking the RX_STATUS register directly. This test could
1286 * result in unnecessary looping in cases where there is a new
1287 * packet but the fifo is not full, but it will not fix the
1288 * stuck behavior.
1289 *
1290 * Even with this improvement, we still get packet overrun errors
1291 * which are hurting performance. Maybe when I get some more time
1292 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1293 */
1294 if (epstatus(sc)) {
1295 len = bus_space_read_2(iot, ioh, EP_W1_RX_STATUS);
1296 /* Check if we are stuck and reset [see XXX comment] */
1297 if (len & ERR_INCOMPLETE) {
1298 if (ifp->if_flags & IFF_DEBUG)
1299 printf("%s: adapter reset\n",
1300 sc->sc_dev.dv_xname);
1301 epreset(sc);
1302 return;
1303 }
1304 goto again;
1305 }
1306
1307 return;
1308
1309 abort:
1310 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
1311 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
1312 ;
1313 }
1314
1315 struct mbuf *
1316 epget(sc, totlen)
1317 struct ep_softc *sc;
1318 int totlen;
1319 {
1320 bus_space_tag_t iot = sc->sc_iot;
1321 bus_space_handle_t ioh = sc->sc_ioh;
1322 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1323 struct mbuf *top, **mp, *m;
1324 int len, remaining;
1325 int sh;
1326
1327 m = sc->mb[sc->next_mb];
1328 sc->mb[sc->next_mb] = 0;
1329 if (m == 0) {
1330 MGETHDR(m, M_DONTWAIT, MT_DATA);
1331 if (m == 0)
1332 return 0;
1333 } else {
1334 /* If the queue is no longer full, refill. */
1335 if (sc->last_mb == sc->next_mb)
1336 timeout(epmbuffill, sc, 1);
1337 /* Convert one of our saved mbuf's. */
1338 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1339 m->m_data = m->m_pktdat;
1340 m->m_flags = M_PKTHDR;
1341 }
1342 m->m_pkthdr.rcvif = ifp;
1343 m->m_pkthdr.len = totlen;
1344 len = MHLEN;
1345 top = 0;
1346 mp = ⊤
1347
1348 /*
1349 * We read the packet at splhigh() so that an interrupt from another
1350 * device doesn't cause the card's buffer to overflow while we're
1351 * reading it. We may still lose packets at other times.
1352 */
1353 sh = splhigh();
1354
1355 while (totlen > 0) {
1356 if (top) {
1357 m = sc->mb[sc->next_mb];
1358 sc->mb[sc->next_mb] = 0;
1359 if (m == 0) {
1360 MGET(m, M_DONTWAIT, MT_DATA);
1361 if (m == 0) {
1362 splx(sh);
1363 m_freem(top);
1364 return 0;
1365 }
1366 } else {
1367 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1368 }
1369 len = MLEN;
1370 }
1371 if (totlen >= MINCLSIZE) {
1372 MCLGET(m, M_DONTWAIT);
1373 if ((m->m_flags & M_EXT) == 0) {
1374 splx(sh);
1375 m_free(m);
1376 m_freem(top);
1377 return 0;
1378 }
1379 len = MCLBYTES;
1380 }
1381 if (top == 0) {
1382 /* align the struct ip header */
1383 caddr_t newdata = (caddr_t)
1384 ALIGN(m->m_data + sizeof(struct ether_header))
1385 - sizeof(struct ether_header);
1386 len -= newdata - m->m_data;
1387 m->m_data = newdata;
1388 }
1389 remaining = len = min(totlen, len);
1390 if (EP_IS_BUS_32(sc->bustype)) {
1391 u_long offset = mtod(m, u_long);
1392 /*
1393 * Read bytes up to the point where we are aligned.
1394 * (We can align to 4 bytes, rather than ALIGNBYTES,
1395 * here because we're later reading 4-byte chunks.)
1396 */
1397 if ((remaining > 3) && (offset & 3)) {
1398 int count = (4 - (offset & 3));
1399 bus_space_read_multi_1(iot, ioh,
1400 EP_W1_RX_PIO_RD_1,
1401 (u_int8_t *) offset, count);
1402 offset += count;
1403 remaining -= count;
1404 }
1405 if (remaining > 3) {
1406 bus_space_read_multi_4(iot, ioh,
1407 EP_W1_RX_PIO_RD_1,
1408 (u_int32_t *) offset, remaining >> 2);
1409 offset += remaining & ~3;
1410 remaining &= 3;
1411 }
1412 if (remaining) {
1413 bus_space_read_multi_1(iot, ioh,
1414 EP_W1_RX_PIO_RD_1,
1415 (u_int8_t *) offset, remaining);
1416 }
1417 } else {
1418 u_long offset = mtod(m, u_long);
1419 if ((remaining > 1) && (offset & 1)) {
1420 bus_space_read_multi_1(iot, ioh,
1421 EP_W1_RX_PIO_RD_1,
1422 (u_int8_t *) offset, 1);
1423 remaining -= 1;
1424 offset += 1;
1425 }
1426 if (remaining > 1) {
1427 bus_space_read_multi_2(iot, ioh,
1428 EP_W1_RX_PIO_RD_1,
1429 (u_int16_t *) offset, remaining >> 1);
1430 offset += remaining & ~1;
1431 }
1432 if (remaining & 1) {
1433 bus_space_read_multi_1(iot, ioh,
1434 EP_W1_RX_PIO_RD_1,
1435 (u_int8_t *) offset, remaining & 1);
1436 }
1437 }
1438 m->m_len = len;
1439 totlen -= len;
1440 *mp = m;
1441 mp = &m->m_next;
1442 }
1443
1444 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
1445 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
1446 ;
1447
1448 splx(sh);
1449
1450 return top;
1451 }
1452
1453 int
1454 epioctl(ifp, cmd, data)
1455 register struct ifnet *ifp;
1456 u_long cmd;
1457 caddr_t data;
1458 {
1459 struct ep_softc *sc = ifp->if_softc;
1460 struct ifaddr *ifa = (struct ifaddr *)data;
1461 struct ifreq *ifr = (struct ifreq *)data;
1462 int s, error = 0;
1463
1464 s = splnet();
1465
1466 switch (cmd) {
1467
1468 case SIOCSIFADDR:
1469 if ((error = epenable(sc)) != 0)
1470 break;
1471 /* epinit is called just below */
1472 ifp->if_flags |= IFF_UP;
1473 switch (ifa->ifa_addr->sa_family) {
1474 #ifdef INET
1475 case AF_INET:
1476 epinit(sc);
1477 arp_ifinit(&sc->sc_ethercom.ec_if, ifa);
1478 break;
1479 #endif
1480 #ifdef NS
1481 case AF_NS:
1482 {
1483 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1484
1485 if (ns_nullhost(*ina))
1486 ina->x_host = *(union ns_host *)
1487 LLADDR(ifp->if_sadl);
1488 else
1489 bcopy(ina->x_host.c_host,
1490 LLADDR(ifp->if_sadl),
1491 ifp->if_addrlen);
1492 /* Set new address. */
1493 epinit(sc);
1494 break;
1495 }
1496 #endif
1497 default:
1498 epinit(sc);
1499 break;
1500 }
1501 break;
1502
1503 case SIOCSIFMEDIA:
1504 case SIOCGIFMEDIA:
1505 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1506 break;
1507
1508 case SIOCSIFFLAGS:
1509 if ((ifp->if_flags & IFF_UP) == 0 &&
1510 (ifp->if_flags & IFF_RUNNING) != 0) {
1511 /*
1512 * If interface is marked down and it is running, then
1513 * stop it.
1514 */
1515 epstop(sc);
1516 ifp->if_flags &= ~IFF_RUNNING;
1517 epdisable(sc);
1518 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1519 (ifp->if_flags & IFF_RUNNING) == 0) {
1520 /*
1521 * If interface is marked up and it is stopped, then
1522 * start it.
1523 */
1524 if ((error = epenable(sc)) != 0)
1525 break;
1526 epinit(sc);
1527 } else if (sc->enabled) {
1528 /*
1529 * deal with flags changes:
1530 * IFF_MULTICAST, IFF_PROMISC.
1531 */
1532 epsetfilter(sc);
1533 }
1534 break;
1535
1536 case SIOCADDMULTI:
1537 case SIOCDELMULTI:
1538 if (sc->enabled == 0) {
1539 error = EIO;
1540 break;
1541 }
1542
1543 error = (cmd == SIOCADDMULTI) ?
1544 ether_addmulti(ifr, &sc->sc_ethercom) :
1545 ether_delmulti(ifr, &sc->sc_ethercom);
1546
1547 if (error == ENETRESET) {
1548 /*
1549 * Multicast list has changed; set the hardware filter
1550 * accordingly.
1551 */
1552 epreset(sc);
1553 error = 0;
1554 }
1555 break;
1556
1557 default:
1558 error = EINVAL;
1559 break;
1560 }
1561
1562 splx(s);
1563 return (error);
1564 }
1565
1566 void
1567 epreset(sc)
1568 struct ep_softc *sc;
1569 {
1570 int s;
1571
1572 s = splnet();
1573 epstop(sc);
1574 epinit(sc);
1575 splx(s);
1576 }
1577
1578 void
1579 epwatchdog(ifp)
1580 struct ifnet *ifp;
1581 {
1582 struct ep_softc *sc = ifp->if_softc;
1583
1584 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1585 ++sc->sc_ethercom.ec_if.if_oerrors;
1586
1587 epreset(sc);
1588 }
1589
1590 void
1591 epstop(sc)
1592 register struct ep_softc *sc;
1593 {
1594 bus_space_tag_t iot = sc->sc_iot;
1595 bus_space_handle_t ioh = sc->sc_ioh;
1596
1597 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISABLE);
1598 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
1599 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
1600 ;
1601 bus_space_write_2(iot, ioh, EP_COMMAND, TX_DISABLE);
1602 bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
1603
1604 ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
1605 ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
1606
1607 bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
1608 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK);
1609 bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK);
1610 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RX_FILTER);
1611
1612 epmbufempty(sc);
1613 }
1614
1615
1616 /*
1617 * Before reboots, reset card completely.
1618 */
1619 static void
1620 epshutdown(arg)
1621 void *arg;
1622 {
1623 register struct ep_softc *sc = arg;
1624
1625 if (sc->enabled) {
1626 epstop(sc);
1627 ep_complete_cmd(sc, EP_COMMAND, GLOBAL_RESET);
1628 }
1629 }
1630
1631 /*
1632 * We get eeprom data from the id_port given an offset into the
1633 * eeprom. Basically; after the ID_sequence is sent to all of
1634 * the cards; they enter the ID_CMD state where they will accept
1635 * command requests. 0x80-0xbf loads the eeprom data. We then
1636 * read the port 16 times and with every read; the cards check
1637 * for contention (ie: if one card writes a 0 bit and another
1638 * writes a 1 bit then the host sees a 0. At the end of the cycle;
1639 * each card compares the data on the bus; if there is a difference
1640 * then that card goes into ID_WAIT state again). In the meantime;
1641 * one bit of data is returned in the AX register which is conveniently
1642 * returned to us by bus_space_read_1(). Hence; we read 16 times getting one
1643 * bit of data with each read.
1644 *
1645 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1646 */
1647 u_int16_t
1648 epreadeeprom(iot, ioh, offset)
1649 bus_space_tag_t iot;
1650 bus_space_handle_t ioh;
1651 int offset;
1652 {
1653 u_int16_t data = 0;
1654 int i;
1655
1656 bus_space_write_1(iot, ioh, 0, 0x80 + offset);
1657 delay(1000);
1658 for (i = 0; i < 16; i++)
1659 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1660 return (data);
1661 }
1662
1663 static int
1664 epbusyeeprom(sc)
1665 struct ep_softc *sc;
1666 {
1667 bus_space_tag_t iot = sc->sc_iot;
1668 bus_space_handle_t ioh = sc->sc_ioh;
1669 int i = 100, j;
1670
1671 if (sc->bustype == EP_BUS_PCMCIA) {
1672 delay(1000);
1673 return 0;
1674 }
1675
1676 j = 0; /* bad GCC flow analysis */
1677 while (i--) {
1678 j = bus_space_read_2(iot, ioh, EP_W0_EEPROM_COMMAND);
1679 if (j & EEPROM_BUSY)
1680 delay(100);
1681 else
1682 break;
1683 }
1684 if (!i) {
1685 printf("\n%s: eeprom failed to come ready\n",
1686 sc->sc_dev.dv_xname);
1687 return (1);
1688 }
1689 if (j & EEPROM_TST_MODE) {
1690 /* XXX PnP mode? */
1691 printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
1692 return (1);
1693 }
1694 return (0);
1695 }
1696
1697 void
1698 epmbuffill(v)
1699 void *v;
1700 {
1701 struct ep_softc *sc = v;
1702 int s, i;
1703
1704 s = splnet();
1705 i = sc->last_mb;
1706 do {
1707 if (sc->mb[i] == NULL)
1708 MGET(sc->mb[i], M_DONTWAIT, MT_DATA);
1709 if (sc->mb[i] == NULL)
1710 break;
1711 i = (i + 1) % MAX_MBS;
1712 } while (i != sc->next_mb);
1713 sc->last_mb = i;
1714 /* If the queue was not filled, try again. */
1715 if (sc->last_mb != sc->next_mb)
1716 timeout(epmbuffill, sc, 1);
1717 splx(s);
1718 }
1719
1720 void
1721 epmbufempty(sc)
1722 struct ep_softc *sc;
1723 {
1724 int s, i;
1725
1726 s = splnet();
1727 for (i = 0; i<MAX_MBS; i++) {
1728 if (sc->mb[i]) {
1729 m_freem(sc->mb[i]);
1730 sc->mb[i] = NULL;
1731 }
1732 }
1733 sc->last_mb = sc->next_mb = 0;
1734 untimeout(epmbuffill, sc);
1735 splx(s);
1736 }
1737
1738 int
1739 epenable(sc)
1740 struct ep_softc *sc;
1741 {
1742
1743 if (sc->enabled == 0 && sc->enable != NULL) {
1744 if ((*sc->enable)(sc) != 0) {
1745 printf("%s: device enable failed\n",
1746 sc->sc_dev.dv_xname);
1747 return (EIO);
1748 }
1749 }
1750
1751 sc->enabled = 1;
1752 return (0);
1753 }
1754
1755 void
1756 epdisable(sc)
1757 struct ep_softc *sc;
1758 {
1759
1760 if (sc->enabled != 0 && sc->disable != NULL) {
1761 (*sc->disable)(sc);
1762 sc->enabled = 0;
1763 }
1764 }
1765