elink3.c revision 1.41 1 /* $NetBSD: elink3.c,v 1.41 1998/08/12 18:51:53 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
42 * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 * must display the following acknowledgement:
55 * This product includes software developed by Herb Peyerl.
56 * 4. The name of Herb Peyerl may not be used to endorse or promote products
57 * derived from this software without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
60 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
61 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
63 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
64 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
65 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
66 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
67 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
68 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 #include "opt_inet.h"
72 #include "opt_ns.h"
73 #include "bpfilter.h"
74 #include "rnd.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/mbuf.h>
80 #include <sys/socket.h>
81 #include <sys/ioctl.h>
82 #include <sys/errno.h>
83 #include <sys/syslog.h>
84 #include <sys/select.h>
85 #include <sys/device.h>
86 #if NRND > 0
87 #include <sys/rnd.h>
88 #endif
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_ether.h>
93 #include <net/if_media.h>
94
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/in_var.h>
99 #include <netinet/ip.h>
100 #include <netinet/if_inarp.h>
101 #endif
102
103 #ifdef NS
104 #include <netns/ns.h>
105 #include <netns/ns_if.h>
106 #endif
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #include <net/bpfdesc.h>
111 #endif
112
113 #include <machine/cpu.h>
114 #include <machine/bus.h>
115 #include <machine/intr.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119
120 #include <dev/ic/elink3var.h>
121 #include <dev/ic/elink3reg.h>
122
123 #define ETHER_MIN_LEN 64
124 #define ETHER_MAX_LEN 1518
125 #define ETHER_ADDR_LEN 6
126
127 #ifdef DEBUG
128 int epdebug = 0;
129 #endif
130
131 /*
132 * Structure to map media-present bits in boards to ifmedia codes and
133 * printable media names. Used for table-driven ifmedia initialization.
134 */
135 struct ep_media {
136 int epm_mpbit; /* media present bit */
137 const char *epm_name; /* name of medium */
138 int epm_ifmedia; /* ifmedia word for medium */
139 int epm_epmedia; /* EPMEDIA_* constant */
140 };
141
142 /*
143 * Media table for the Demon/Vortex/Boomerang chipsets.
144 *
145 * Note that MII on the Demon and Vortex (3c59x) indicates an external
146 * MII connector (for connecting an external PHY) ... I think. Treat
147 * it as `manual' on these chips.
148 *
149 * Any Boomerang (3c90x) chips with MII really do have an internal
150 * MII and real PHYs attached; no `native' media.
151 */
152 struct ep_media ep_vortex_media[] = {
153 { EP_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
154 EPMEDIA_10BASE_T },
155 { EP_PCI_AUI, "10base5/AUI", IFM_ETHER|IFM_10_5,
156 EPMEDIA_AUI },
157 { EP_PCI_BNC, "10base2/BNC", IFM_ETHER|IFM_10_2,
158 EPMEDIA_10BASE_2 },
159 { EP_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
160 EPMEDIA_100BASE_TX },
161 { EP_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
162 EPMEDIA_100BASE_FX },
163 { EP_PCI_100BASE_MII, "manual", IFM_ETHER|IFM_MANUAL,
164 EPMEDIA_MII },
165 { EP_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
166 EPMEDIA_100BASE_T4 },
167 { 0, NULL, 0,
168 0 },
169 };
170
171 /*
172 * Media table for the older 3Com Etherlink III chipset, used
173 * in the 3c509, 3c579, and 3c589.
174 */
175 struct ep_media ep_509_media[] = {
176 { EP_W0_CC_UTP, "10baseT", IFM_ETHER|IFM_10_T,
177 EPMEDIA_10BASE_T },
178 { EP_W0_CC_AUI, "10base5/AUI", IFM_ETHER|IFM_10_5,
179 EPMEDIA_AUI },
180 { EP_W0_CC_BNC, "10base2/BNC", IFM_ETHER|IFM_10_2,
181 EPMEDIA_10BASE_2 },
182 { 0, NULL, 0,
183 0 },
184 };
185
186 void ep_internalconfig __P((struct ep_softc *sc));
187 void ep_vortex_probemedia __P((struct ep_softc *sc));
188 void ep_509_probemedia __P((struct ep_softc *sc));
189
190 static void eptxstat __P((struct ep_softc *));
191 static int epstatus __P((struct ep_softc *));
192 void epinit __P((struct ep_softc *));
193 int epioctl __P((struct ifnet *, u_long, caddr_t));
194 void epstart __P((struct ifnet *));
195 void epwatchdog __P((struct ifnet *));
196 void epreset __P((struct ep_softc *));
197 static void epshutdown __P((void *));
198 void epread __P((struct ep_softc *));
199 struct mbuf *epget __P((struct ep_softc *, int));
200 void epmbuffill __P((void *));
201 void epmbufempty __P((struct ep_softc *));
202 void epsetfilter __P((struct ep_softc *));
203 void epsetmedia __P((struct ep_softc *));
204
205 int epenable __P((struct ep_softc *));
206 void epdisable __P((struct ep_softc *));
207
208 /* ifmedia callbacks */
209 int ep_media_change __P((struct ifnet *ifp));
210 void ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
211
212 /* MII callbacks */
213 int ep_mii_readreg __P((struct device *, int, int));
214 void ep_mii_writereg __P((struct device *, int, int, int));
215 void ep_statchg __P((struct device *));
216
217 void ep_tick __P((void *));
218
219 void ep_mii_setbit __P((struct ep_softc *, u_int16_t));
220 void ep_mii_clrbit __P((struct ep_softc *, u_int16_t));
221 u_int16_t ep_mii_readbit __P((struct ep_softc *, u_int16_t));
222 void ep_mii_sync __P((struct ep_softc *));
223 void ep_mii_sendbits __P((struct ep_softc *, u_int32_t, int));
224
225 static int epbusyeeprom __P((struct ep_softc *));
226 static inline void ep_complete_cmd __P((struct ep_softc *sc,
227 u_int cmd, u_int arg));
228
229
230 /*
231 * Issue a (reset) command, and be sure it has completed.
232 * Used for commands that reset part or all of the board.
233 * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
234 * but older hardware doesn't implement it and we must delay.
235 * It's easiest to just delay always.
236 */
237 static inline void
238 ep_complete_cmd(sc, cmd, arg)
239 struct ep_softc *sc;
240 u_int cmd, arg;
241 {
242 register bus_space_tag_t iot = sc->sc_iot;
243 register bus_space_handle_t ioh = sc->sc_ioh;
244
245 bus_space_write_2(iot, ioh, cmd, arg);
246
247 #ifdef notyet
248 /* if this adapter family has S_COMMAND_IN_PROGRESS, use it */
249 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
250 ;
251 else
252 #else
253 DELAY(100000); /* need at least 1 ms, but be generous. */
254 #endif
255 }
256
257 /*
258 * Back-end attach and configure.
259 */
260 void
261 epconfig(sc, chipset, enaddr)
262 struct ep_softc *sc;
263 u_short chipset;
264 u_int8_t *enaddr;
265 {
266 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
267 bus_space_tag_t iot = sc->sc_iot;
268 bus_space_handle_t ioh = sc->sc_ioh;
269 u_int16_t i;
270 u_int8_t myla[6];
271
272 sc->ep_chipset = chipset;
273
274 /*
275 * We could have been groveling around in other register
276 * windows in the front-end; make sure we're in window 0
277 * to read the EEPROM.
278 */
279 GO_WINDOW(0);
280
281 if (enaddr == NULL) {
282 /*
283 * Read the station address from the eeprom
284 */
285 for (i = 0; i < 3; i++) {
286 u_int16_t x;
287 if (epbusyeeprom(sc))
288 return; /* XXX why is eeprom busy? */
289 bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
290 READ_EEPROM | i);
291 if (epbusyeeprom(sc))
292 return; /* XXX why is eeprom busy? */
293 x = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA);
294 myla[(i << 1)] = x >> 8;
295 myla[(i << 1) + 1] = x;
296 }
297 enaddr = myla;
298 }
299
300 /*
301 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
302 * allow FDDI-sized (4500) byte packets. Commands only take an
303 * 11-bit parameter, and 11 bits isn't enough to hold a full-size
304 * packet length.
305 * Commands to these cards implicitly upshift a packet size
306 * or threshold by 2 bits.
307 * To detect cards with large-packet support, we probe by setting
308 * the transmit threshold register, then change windows and
309 * read back the threshold register directly, and see if the
310 * threshold value was shifted or not.
311 */
312 bus_space_write_2(iot, ioh, EP_COMMAND,
313 SET_TX_AVAIL_THRESH | EP_LARGEWIN_PROBE );
314 GO_WINDOW(5);
315 i = bus_space_read_2(iot, ioh, EP_W5_TX_AVAIL_THRESH);
316 GO_WINDOW(1);
317 switch (i) {
318 case EP_LARGEWIN_PROBE:
319 case (EP_LARGEWIN_PROBE & EP_LARGEWIN_MASK):
320 sc->ep_pktlenshift = 0;
321 break;
322
323 case (EP_LARGEWIN_PROBE << 2):
324 sc->ep_pktlenshift = 2;
325 break;
326
327 default:
328 printf("%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
329 "Interface disabled\n",
330 sc->sc_dev.dv_xname, EP_LARGEWIN_PROBE, (int) i);
331 return;
332 }
333
334 /*
335 * Ensure Tx-available interrupts are enabled for
336 * start the interface.
337 * XXX should be in epinit()?
338 */
339 bus_space_write_2(iot, ioh, EP_COMMAND,
340 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
341
342 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
343 ifp->if_softc = sc;
344 ifp->if_start = epstart;
345 ifp->if_ioctl = epioctl;
346 ifp->if_watchdog = epwatchdog;
347 ifp->if_flags =
348 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
349
350 if_attach(ifp);
351 ether_ifattach(ifp, enaddr);
352
353 /*
354 * Finish configuration:
355 * determine chipset if the front-end couldn't do so,
356 * show board details, set media.
357 */
358
359 /*
360 * Print RAM size. We also print the Ethernet address in here.
361 * It's extracted from the ifp, so we have to make sure it's
362 * been attached first.
363 */
364 ep_internalconfig(sc);
365 GO_WINDOW(0);
366
367 /*
368 * Initialize our media structures and MII info. We'll
369 * probe the MII if we discover that we have one.
370 */
371 sc->sc_mii.mii_ifp = ifp;
372 sc->sc_mii.mii_readreg = ep_mii_readreg;
373 sc->sc_mii.mii_writereg = ep_mii_writereg;
374 sc->sc_mii.mii_statchg = ep_statchg;
375 ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
376 ep_media_status);
377
378 /*
379 * Now, determine which media we have.
380 */
381 switch (sc->ep_chipset) {
382 case EP_CHIPSET_BOOMERANG:
383 /*
384 * If the device has MII, probe it. We won't be using
385 * any `native' media in this case, only PHYs. If
386 * we don't, just treat the Boomerang like the Vortex.
387 */
388 if (sc->ep_flags & EP_FLAGS_MII) {
389 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
390 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
391 ifmedia_add(&sc->sc_mii.mii_media,
392 IFM_ETHER|IFM_NONE, 0, NULL);
393 ifmedia_set(&sc->sc_mii.mii_media,
394 IFM_ETHER|IFM_NONE);
395 } else {
396 ifmedia_set(&sc->sc_mii.mii_media,
397 IFM_ETHER|IFM_AUTO);
398 }
399 break;
400 }
401 /* FALLTHROUGH */
402
403 case EP_CHIPSET_VORTEX:
404 ep_vortex_probemedia(sc);
405 break;
406
407 default:
408 ep_509_probemedia(sc);
409 break;
410 }
411
412 GO_WINDOW(1); /* Window 1 is operating window */
413
414 #if NBPFILTER > 0
415 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
416 sizeof(struct ether_header));
417 #endif
418
419 #if NRND > 0
420 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, RND_TYPE_NET);
421 #endif
422
423 sc->tx_start_thresh = 20; /* probably a good starting point. */
424
425 /* Establish callback to reset card when we reboot. */
426 shutdownhook_establish(epshutdown, sc);
427
428 ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
429 ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
430 }
431
432
433 /*
434 * Show interface-model-independent info from window 3
435 * internal-configuration register.
436 */
437 void
438 ep_internalconfig(sc)
439 struct ep_softc *sc;
440 {
441 bus_space_tag_t iot = sc->sc_iot;
442 bus_space_handle_t ioh = sc->sc_ioh;
443
444 u_int config0;
445 u_int config1;
446
447 int ram_size, ram_width, ram_speed, rom_size, ram_split;
448 /*
449 * NVRAM buffer Rx:Tx config names for busmastering cards
450 * (Demon, Vortex, and later).
451 */
452 const char *onboard_ram_config[] = {
453 "5:3", "3:1", "1:1", "3:5" };
454
455 GO_WINDOW(3);
456 config0 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG);
457 config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
458 GO_WINDOW(0);
459
460 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
461 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
462 ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
463 rom_size = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
464
465 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
466
467 printf("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
468 sc->sc_dev.dv_xname,
469 ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
470 8 << ram_size,
471 (ram_width) ? "word" : "byte",
472 onboard_ram_config[ram_split]);
473 }
474
475
476 /*
477 * Find supported media on 3c509-generation hardware that doesn't have
478 * a "reset_options" register in window 3.
479 * Use the config_cntrl register in window 0 instead.
480 * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
481 * that implement CONFIG_CTRL. We don't have a good way to set the
482 * default active mediuim; punt to ifconfig instead.
483 */
484 void
485 ep_509_probemedia(sc)
486 struct ep_softc *sc;
487 {
488 bus_space_tag_t iot = sc->sc_iot;
489 bus_space_handle_t ioh = sc->sc_ioh;
490 struct ifmedia *ifm = &sc->sc_mii.mii_media;
491 u_int16_t ep_w0_config, port;
492 struct ep_media *epm;
493 const char *sep = "", *defmedianame = NULL;
494 int defmedia = 0;
495
496 GO_WINDOW(0);
497 ep_w0_config = bus_space_read_2(iot, ioh, EP_W0_CONFIG_CTRL);
498
499 printf("%s: ", sc->sc_dev.dv_xname);
500
501 /* Sanity check that there are any media! */
502 if ((ep_w0_config & EP_W0_CC_MEDIAMASK) == 0) {
503 printf("no media present!\n");
504 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
505 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
506 return;
507 }
508
509 /*
510 * Get the default media from the EEPROM.
511 */
512 if (epbusyeeprom(sc))
513 return; /* XXX why is eeprom busy? */
514 bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
515 READ_EEPROM | EEPROM_ADDR_CFG);
516 if (epbusyeeprom(sc))
517 return; /* XXX why is eeprom busy? */
518 port = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA) >> 14;
519
520 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
521
522 for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
523 if (ep_w0_config & epm->epm_mpbit) {
524 if (epm->epm_epmedia == port || defmedia == 0) {
525 defmedia = epm->epm_ifmedia;
526 defmedianame = epm->epm_name;
527 }
528 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
529 NULL);
530 PRINT(epm->epm_name);
531 }
532 }
533
534 #undef PRINT
535
536 #ifdef DIAGNOSTIC
537 if (defmedia == 0)
538 panic("ep_509_probemedia: impossible");
539 #endif
540
541 printf(" (default %s)\n", defmedianame);
542 ifmedia_set(ifm, defmedia);
543 }
544
545 /*
546 * Find media present on large-packet-capable elink3 devices.
547 * Show onboard configuration of large-packet-capable elink3 devices
548 * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
549 * Use media and card-version info in window 3 instead.
550 */
551 void
552 ep_vortex_probemedia(sc)
553 struct ep_softc *sc;
554 {
555 bus_space_tag_t iot = sc->sc_iot;
556 bus_space_handle_t ioh = sc->sc_ioh;
557 struct ifmedia *ifm = &sc->sc_mii.mii_media;
558 struct ep_media *epm;
559 u_int config1;
560 int reset_options;
561 int default_media; /* 3-bit encoding of default (EEPROM) media */
562 int defmedia = 0;
563 const char *sep = "", *defmedianame = NULL;
564
565 GO_WINDOW(3);
566 config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
567 reset_options = (int)bus_space_read_1(iot, ioh, EP_W3_RESET_OPTIONS);
568 GO_WINDOW(0);
569
570 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
571
572 printf("%s: ", sc->sc_dev.dv_xname);
573
574 /* Sanity check that there are any media! */
575 if ((reset_options & EP_PCI_MEDIAMASK) == 0) {
576 printf("no media present!\n");
577 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
578 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
579 return;
580 }
581
582 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
583
584 for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
585 if (reset_options & epm->epm_mpbit) {
586 if (epm->epm_epmedia == default_media ||
587 defmedia == 0) {
588 defmedia = epm->epm_ifmedia;
589 defmedianame = epm->epm_name;
590 }
591 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
592 NULL);
593 PRINT(epm->epm_name);
594 }
595 }
596
597 #undef PRINT
598
599 #ifdef DIAGNOSTIC
600 if (defmedia == 0)
601 panic("ep_vortex_probemedia: impossible");
602 #endif
603
604 printf(" (default %s)\n", defmedianame);
605 ifmedia_set(ifm, defmedia);
606 }
607
608 /*
609 * One second timer, used to tick the MII.
610 */
611 void
612 ep_tick(arg)
613 void *arg;
614 {
615 struct ep_softc *sc = arg;
616 int s;
617
618 #ifdef DIAGNOSTIC
619 if ((sc->ep_flags & EP_FLAGS_MII) == 0)
620 panic("ep_tick");
621 #endif
622
623 s = splnet();
624 mii_tick(&sc->sc_mii);
625 splx(s);
626
627 timeout(ep_tick, sc, hz);
628 }
629
630 /*
631 * Bring device up.
632 *
633 * The order in here seems important. Otherwise we may not receive
634 * interrupts. ?!
635 */
636 void
637 epinit(sc)
638 register struct ep_softc *sc;
639 {
640 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
641 bus_space_tag_t iot = sc->sc_iot;
642 bus_space_handle_t ioh = sc->sc_ioh;
643 int i;
644
645 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
646 ;
647
648 if (sc->bustype != EP_BUS_PCI) {
649 GO_WINDOW(0);
650 bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, 0);
651 bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
652 }
653
654 if (sc->bustype == EP_BUS_PCMCIA) {
655 bus_space_write_2(iot, ioh, EP_W0_RESOURCE_CFG, 0x3f00);
656 }
657
658 GO_WINDOW(2);
659 for (i = 0; i < 6; i++) /* Reload the ether_addr. */
660 bus_space_write_1(iot, ioh, EP_W2_ADDR_0 + i,
661 LLADDR(ifp->if_sadl)[i]);
662
663 /*
664 * Reset the station-address receive filter.
665 * A bug workaround for busmastering (Vortex, Demon) cards.
666 */
667 for (i = 0; i < 6; i++)
668 bus_space_write_1(iot, ioh, EP_W2_RECVMASK_0 + i, 0);
669
670 ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
671 ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
672
673 GO_WINDOW(1); /* Window 1 is operating window */
674 for (i = 0; i < 31; i++)
675 bus_space_read_1(iot, ioh, EP_W1_TX_STATUS);
676
677 /* Set threshhold for for Tx-space avaiable interrupt. */
678 bus_space_write_2(iot, ioh, EP_COMMAND,
679 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
680
681 /* Enable interrupts. */
682 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK | S_CARD_FAILURE |
683 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
684 bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK | S_CARD_FAILURE |
685 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
686
687 /*
688 * Attempt to get rid of any stray interrupts that occured during
689 * configuration. On the i386 this isn't possible because one may
690 * already be queued. However, a single stray interrupt is
691 * unimportant.
692 */
693 bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | 0xff);
694
695 epsetfilter(sc);
696 epsetmedia(sc);
697
698 bus_space_write_2(iot, ioh, EP_COMMAND, RX_ENABLE);
699 bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
700
701 epmbuffill(sc);
702
703 /* Interface is now `running', with no output active. */
704 ifp->if_flags |= IFF_RUNNING;
705 ifp->if_flags &= ~IFF_OACTIVE;
706
707 if (sc->ep_flags & EP_FLAGS_MII) {
708 /* Start the one second clock. */
709 timeout(ep_tick, sc, hz);
710 }
711
712 /* Attempt to start output, if any. */
713 epstart(ifp);
714 }
715
716
717 /*
718 * Set multicast receive filter.
719 * elink3 hardware has no selective multicast filter in hardware.
720 * Enable reception of all multicasts and filter in software.
721 */
722 void
723 epsetfilter(sc)
724 register struct ep_softc *sc;
725 {
726 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
727
728 GO_WINDOW(1); /* Window 1 is operating window */
729 bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_COMMAND, SET_RX_FILTER |
730 FIL_INDIVIDUAL | FIL_BRDCST |
731 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
732 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
733 }
734
735 int
736 ep_media_change(ifp)
737 struct ifnet *ifp;
738 {
739 register struct ep_softc *sc = ifp->if_softc;
740
741 if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
742 epreset(sc);
743
744 return (0);
745 }
746
747 /*
748 * Set the card to use the specified media.
749 */
750 void
751 epsetmedia(sc)
752 struct ep_softc *sc;
753 {
754 bus_space_tag_t iot = sc->sc_iot;
755 bus_space_handle_t ioh = sc->sc_ioh;
756
757 /* Turn everything off. First turn off linkbeat and UTP. */
758 GO_WINDOW(4);
759 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, 0x0);
760
761 /* Turn off coax */
762 bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
763 delay(1000);
764
765 /*
766 * If the device has MII, select it, and then tell the
767 * PHY which media to use.
768 */
769 if (sc->ep_flags & EP_FLAGS_MII) {
770 int config0, config1;
771
772 GO_WINDOW(3);
773 config0 = (u_int)bus_space_read_2(iot, ioh,
774 EP_W3_INTERNAL_CONFIG);
775 config1 = (u_int)bus_space_read_2(iot, ioh,
776 EP_W3_INTERNAL_CONFIG + 2);
777
778 config1 = config1 & ~CONFIG_MEDIAMASK;
779 config1 |= (EPMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
780
781 bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0);
782 bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1);
783 GO_WINDOW(1); /* back to operating window */
784
785 mii_mediachg(&sc->sc_mii);
786 return;
787 }
788
789 /*
790 * Now turn on the selected media/transceiver.
791 */
792 GO_WINDOW(4);
793 switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
794 case IFM_10_T:
795 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
796 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
797 break;
798
799 case IFM_10_2:
800 bus_space_write_2(iot, ioh, EP_COMMAND, START_TRANSCEIVER);
801 DELAY(1000); /* 50ms not enmough? */
802 break;
803
804 case IFM_100_TX:
805 case IFM_100_FX:
806 case IFM_100_T4: /* XXX check documentation */
807 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
808 LINKBEAT_ENABLE);
809 DELAY(1000); /* not strictly necessary? */
810 break;
811
812 case IFM_10_5:
813 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
814 SQE_ENABLE);
815 DELAY(1000); /* not strictly necessary? */
816 break;
817
818 case IFM_MANUAL:
819 /*
820 * Nothing to do here; we are actually enabling the
821 * external PHY on the MII port.
822 */
823 break;
824
825 case IFM_NONE:
826 printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
827 return;
828
829 default:
830 panic("epsetmedia: impossible");
831 }
832
833 /*
834 * Tell the chip which port to use.
835 */
836 switch (sc->ep_chipset) {
837 case EP_CHIPSET_VORTEX:
838 case EP_CHIPSET_BOOMERANG:
839 {
840 int config0, config1;
841
842 GO_WINDOW(3);
843 config0 = (u_int)bus_space_read_2(iot, ioh,
844 EP_W3_INTERNAL_CONFIG);
845 config1 = (u_int)bus_space_read_2(iot, ioh,
846 EP_W3_INTERNAL_CONFIG + 2);
847
848 config1 = config1 & ~CONFIG_MEDIAMASK;
849 config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
850 CONFIG_MEDIAMASK_SHIFT);
851
852 bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0);
853 bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1);
854 break;
855 }
856 default:
857 {
858 int w0_addr_cfg;
859
860 GO_WINDOW(0);
861 w0_addr_cfg = bus_space_read_2(iot, ioh, EP_W0_ADDRESS_CFG);
862 w0_addr_cfg &= 0x3fff;
863 bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG, w0_addr_cfg |
864 (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
865 DELAY(1000);
866 break;
867 }
868 }
869
870 GO_WINDOW(1); /* Window 1 is operating window */
871 }
872
873 /*
874 * Get currently-selected media from card.
875 * (if_media callback, may be called before interface is brought up).
876 */
877 void
878 ep_media_status(ifp, req)
879 struct ifnet *ifp;
880 struct ifmediareq *req;
881 {
882 register struct ep_softc *sc = ifp->if_softc;
883 bus_space_tag_t iot = sc->sc_iot;
884 bus_space_handle_t ioh = sc->sc_ioh;
885
886 if (sc->enabled == 0) {
887 req->ifm_active = IFM_ETHER|IFM_NONE;
888 req->ifm_status = 0;
889 return;
890 }
891
892 /*
893 * If we have MII, go ask the PHY what's going on.
894 */
895 if (sc->ep_flags & EP_FLAGS_MII) {
896 mii_pollstat(&sc->sc_mii);
897 req->ifm_active = sc->sc_mii.mii_media_active;
898 req->ifm_status = sc->sc_mii.mii_media_status;
899 return;
900 }
901
902 /*
903 * Ok, at this point we claim that our active media is
904 * the currently selected media. We'll update our status
905 * if our chipset allows us to detect link.
906 */
907 req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
908 req->ifm_status = 0;
909
910 switch (sc->ep_chipset) {
911 case EP_CHIPSET_VORTEX:
912 case EP_CHIPSET_BOOMERANG:
913 GO_WINDOW(4);
914 req->ifm_status = IFM_AVALID;
915 if (bus_space_read_2(iot, ioh, EP_W4_MEDIA_TYPE) &
916 LINKBEAT_DETECT)
917 req->ifm_status |= IFM_ACTIVE;
918 GO_WINDOW(1); /* back to operating window */
919 break;
920 }
921 }
922
923
924
925 /*
926 * Start outputting on the interface.
927 * Always called as splnet().
928 */
929 void
930 epstart(ifp)
931 struct ifnet *ifp;
932 {
933 register struct ep_softc *sc = ifp->if_softc;
934 bus_space_tag_t iot = sc->sc_iot;
935 bus_space_handle_t ioh = sc->sc_ioh;
936 struct mbuf *m, *m0;
937 int sh, len, pad;
938
939 /* Don't transmit if interface is busy or not running */
940 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
941 return;
942
943 startagain:
944 /* Sneak a peek at the next packet */
945 m0 = ifp->if_snd.ifq_head;
946 if (m0 == 0)
947 return;
948
949 /* We need to use m->m_pkthdr.len, so require the header */
950 if ((m0->m_flags & M_PKTHDR) == 0)
951 panic("epstart: no header mbuf");
952 len = m0->m_pkthdr.len;
953
954 pad = (4 - len) & 3;
955
956 /*
957 * The 3c509 automatically pads short packets to minimum ethernet
958 * length, but we drop packets that are too large. Perhaps we should
959 * truncate them instead?
960 */
961 if (len + pad > ETHER_MAX_LEN) {
962 /* packet is obviously too large: toss it */
963 ++ifp->if_oerrors;
964 IF_DEQUEUE(&ifp->if_snd, m0);
965 m_freem(m0);
966 goto readcheck;
967 }
968
969 if (bus_space_read_2(iot, ioh, EP_W1_FREE_TX) < len + pad + 4) {
970 bus_space_write_2(iot, ioh, EP_COMMAND,
971 SET_TX_AVAIL_THRESH |
972 ((len + pad + 4) >> sc->ep_pktlenshift));
973 /* not enough room in FIFO */
974 ifp->if_flags |= IFF_OACTIVE;
975 return;
976 } else {
977 bus_space_write_2(iot, ioh, EP_COMMAND,
978 SET_TX_AVAIL_THRESH | EP_THRESH_DISABLE );
979 }
980
981 IF_DEQUEUE(&ifp->if_snd, m0);
982 if (m0 == 0) /* not really needed */
983 return;
984
985 bus_space_write_2(iot, ioh, EP_COMMAND, SET_TX_START_THRESH |
986 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/) );
987
988 #if NBPFILTER > 0
989 if (ifp->if_bpf)
990 bpf_mtap(ifp->if_bpf, m0);
991 #endif
992
993 /*
994 * Do the output at splhigh() so that an interrupt from another device
995 * won't cause a FIFO underrun.
996 */
997 sh = splhigh();
998
999 bus_space_write_2(iot, ioh, EP_W1_TX_PIO_WR_1, len);
1000 bus_space_write_2(iot, ioh, EP_W1_TX_PIO_WR_1,
1001 0xffff); /* Second dword meaningless */
1002 if (EP_IS_BUS_32(sc->bustype)) {
1003 for (m = m0; m; ) {
1004 if (m->m_len > 3) {
1005 /* align our reads from core */
1006 if (mtod(m, u_long) & 3) {
1007 u_long count =
1008 4 - (mtod(m, u_long) & 3);
1009 bus_space_write_multi_1(iot, ioh,
1010 EP_W1_TX_PIO_WR_1,
1011 mtod(m, u_int8_t *), count);
1012 m->m_data =
1013 (void *)(mtod(m, u_long) + count);
1014 m->m_len -= count;
1015 }
1016 bus_space_write_multi_4(iot, ioh,
1017 EP_W1_TX_PIO_WR_1,
1018 mtod(m, u_int32_t *), m->m_len >> 2);
1019 m->m_data = (void *)(mtod(m, u_long) +
1020 (u_long)(m->m_len & ~3));
1021 m->m_len -= m->m_len & ~3;
1022 }
1023 if (m->m_len) {
1024 bus_space_write_multi_1(iot, ioh,
1025 EP_W1_TX_PIO_WR_1,
1026 mtod(m, u_int8_t *), m->m_len);
1027 }
1028 MFREE(m, m0);
1029 m = m0;
1030 }
1031 } else {
1032 for (m = m0; m; ) {
1033 if (m->m_len > 1) {
1034 if (mtod(m, u_long) & 1) {
1035 bus_space_write_1(iot, ioh,
1036 EP_W1_TX_PIO_WR_1,
1037 *(mtod(m, u_int8_t *)));
1038 m->m_data =
1039 (void *)(mtod(m, u_long) + 1);
1040 m->m_len -= 1;
1041 }
1042 bus_space_write_multi_2(iot, ioh,
1043 EP_W1_TX_PIO_WR_1, mtod(m, u_int16_t *),
1044 m->m_len >> 1);
1045 }
1046 if (m->m_len & 1) {
1047 bus_space_write_1(iot, ioh, EP_W1_TX_PIO_WR_1,
1048 *(mtod(m, u_int8_t *) + m->m_len - 1));
1049 }
1050 MFREE(m, m0);
1051 m = m0;
1052 }
1053 }
1054 while (pad--)
1055 bus_space_write_1(iot, ioh, EP_W1_TX_PIO_WR_1, 0);
1056
1057 splx(sh);
1058
1059 ++ifp->if_opackets;
1060
1061 readcheck:
1062 if ((bus_space_read_2(iot, ioh, EP_W1_RX_STATUS) & ERR_INCOMPLETE) == 0) {
1063 /* We received a complete packet. */
1064 u_int16_t status = bus_space_read_2(iot, ioh, EP_STATUS);
1065
1066 if ((status & S_INTR_LATCH) == 0) {
1067 /*
1068 * No interrupt, read the packet and continue
1069 * Is this supposed to happen? Is my motherboard
1070 * completely busted?
1071 */
1072 epread(sc);
1073 } else {
1074 /* Got an interrupt, return so that it gets serviced. */
1075 return;
1076 }
1077 } else {
1078 /* Check if we are stuck and reset [see XXX comment] */
1079 if (epstatus(sc)) {
1080 if (ifp->if_flags & IFF_DEBUG)
1081 printf("%s: adapter reset\n",
1082 sc->sc_dev.dv_xname);
1083 epreset(sc);
1084 }
1085 }
1086
1087 goto startagain;
1088 }
1089
1090
1091 /*
1092 * XXX: The 3c509 card can get in a mode where both the fifo status bit
1093 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1094 * We detect this situation and we reset the adapter.
1095 * It happens at times when there is a lot of broadcast traffic
1096 * on the cable (once in a blue moon).
1097 */
1098 static int
1099 epstatus(sc)
1100 register struct ep_softc *sc;
1101 {
1102 bus_space_tag_t iot = sc->sc_iot;
1103 bus_space_handle_t ioh = sc->sc_ioh;
1104 u_int16_t fifost;
1105
1106 /*
1107 * Check the FIFO status and act accordingly
1108 */
1109 GO_WINDOW(4);
1110 fifost = bus_space_read_2(iot, ioh, EP_W4_FIFO_DIAG);
1111 GO_WINDOW(1);
1112
1113 if (fifost & FIFOS_RX_UNDERRUN) {
1114 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1115 printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
1116 epreset(sc);
1117 return 0;
1118 }
1119
1120 if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1121 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1122 printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
1123 return 1;
1124 }
1125
1126 if (fifost & FIFOS_RX_OVERRUN) {
1127 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1128 printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
1129 return 1;
1130 }
1131
1132 if (fifost & FIFOS_TX_OVERRUN) {
1133 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1134 printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
1135 epreset(sc);
1136 return 0;
1137 }
1138
1139 return 0;
1140 }
1141
1142
1143 static void
1144 eptxstat(sc)
1145 register struct ep_softc *sc;
1146 {
1147 bus_space_tag_t iot = sc->sc_iot;
1148 bus_space_handle_t ioh = sc->sc_ioh;
1149 int i;
1150
1151 /*
1152 * We need to read+write TX_STATUS until we get a 0 status
1153 * in order to turn off the interrupt flag.
1154 */
1155 while ((i = bus_space_read_1(iot, ioh, EP_W1_TX_STATUS)) & TXS_COMPLETE) {
1156 bus_space_write_1(iot, ioh, EP_W1_TX_STATUS, 0x0);
1157
1158 if (i & TXS_JABBER) {
1159 ++sc->sc_ethercom.ec_if.if_oerrors;
1160 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1161 printf("%s: jabber (%x)\n",
1162 sc->sc_dev.dv_xname, i);
1163 epreset(sc);
1164 } else if (i & TXS_UNDERRUN) {
1165 ++sc->sc_ethercom.ec_if.if_oerrors;
1166 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1167 printf("%s: fifo underrun (%x) @%d\n",
1168 sc->sc_dev.dv_xname, i,
1169 sc->tx_start_thresh);
1170 if (sc->tx_succ_ok < 100)
1171 sc->tx_start_thresh = min(ETHER_MAX_LEN,
1172 sc->tx_start_thresh + 20);
1173 sc->tx_succ_ok = 0;
1174 epreset(sc);
1175 } else if (i & TXS_MAX_COLLISION) {
1176 ++sc->sc_ethercom.ec_if.if_collisions;
1177 bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
1178 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1179 } else
1180 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1181 }
1182 }
1183
1184 int
1185 epintr(arg)
1186 void *arg;
1187 {
1188 register struct ep_softc *sc = arg;
1189 bus_space_tag_t iot = sc->sc_iot;
1190 bus_space_handle_t ioh = sc->sc_ioh;
1191 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1192 u_int16_t status;
1193 int ret = 0;
1194 int addrandom = 0;
1195
1196 if (sc->enabled == 0)
1197 return (0);
1198
1199 for (;;) {
1200 bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
1201
1202 status = bus_space_read_2(iot, ioh, EP_STATUS);
1203
1204 if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
1205 S_RX_COMPLETE | S_CARD_FAILURE)) == 0) {
1206 if ((status & S_INTR_LATCH) == 0) {
1207 #if 0
1208 printf("%s: intr latch cleared\n",
1209 sc->sc_dev.dv_xname);
1210 #endif
1211 break;
1212 }
1213 }
1214
1215 ret = 1;
1216
1217 /*
1218 * Acknowledge any interrupts. It's important that we do this
1219 * first, since there would otherwise be a race condition.
1220 * Due to the i386 interrupt queueing, we may get spurious
1221 * interrupts occasionally.
1222 */
1223 bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR |
1224 (status & (C_INTR_LATCH |
1225 C_CARD_FAILURE |
1226 C_TX_COMPLETE |
1227 C_TX_AVAIL |
1228 C_RX_COMPLETE |
1229 C_RX_EARLY |
1230 C_INT_RQD |
1231 C_UPD_STATS)));
1232
1233 #if 0
1234 status = bus_space_read_2(iot, ioh, EP_STATUS);
1235
1236 printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
1237 (status & S_RX_COMPLETE)?" RX_COMPLETE":"",
1238 (status & S_TX_COMPLETE)?" TX_COMPLETE":"",
1239 (status & S_TX_AVAIL)?" TX_AVAIL":"",
1240 (status & S_CARD_FAILURE)?" CARD_FAILURE":"");
1241 #endif
1242
1243 if (status & S_RX_COMPLETE) {
1244 epread(sc);
1245 addrandom = 1;
1246 }
1247 if (status & S_TX_AVAIL) {
1248 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1249 epstart(&sc->sc_ethercom.ec_if);
1250 addrandom = 1;
1251 }
1252 if (status & S_CARD_FAILURE) {
1253 printf("%s: adapter failure (%x)\n",
1254 sc->sc_dev.dv_xname, status);
1255 epreset(sc);
1256 return (1);
1257 }
1258 if (status & S_TX_COMPLETE) {
1259 eptxstat(sc);
1260 epstart(ifp);
1261 addrandom = 1;
1262 }
1263
1264 #if NRND > 0
1265 if (status)
1266 rnd_add_uint32(&sc->rnd_source, status);
1267 #endif
1268 }
1269
1270 /* no more interrupts */
1271 return (ret);
1272 }
1273
1274 void
1275 epread(sc)
1276 register struct ep_softc *sc;
1277 {
1278 bus_space_tag_t iot = sc->sc_iot;
1279 bus_space_handle_t ioh = sc->sc_ioh;
1280 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1281 struct mbuf *m;
1282 struct ether_header *eh;
1283 int len;
1284
1285 len = bus_space_read_2(iot, ioh, EP_W1_RX_STATUS);
1286
1287 again:
1288 if (ifp->if_flags & IFF_DEBUG) {
1289 int err = len & ERR_MASK;
1290 char *s = NULL;
1291
1292 if (len & ERR_INCOMPLETE)
1293 s = "incomplete packet";
1294 else if (err == ERR_OVERRUN)
1295 s = "packet overrun";
1296 else if (err == ERR_RUNT)
1297 s = "runt packet";
1298 else if (err == ERR_ALIGNMENT)
1299 s = "bad alignment";
1300 else if (err == ERR_CRC)
1301 s = "bad crc";
1302 else if (err == ERR_OVERSIZE)
1303 s = "oversized packet";
1304 else if (err == ERR_DRIBBLE)
1305 s = "dribble bits";
1306
1307 if (s)
1308 printf("%s: %s\n", sc->sc_dev.dv_xname, s);
1309 }
1310
1311 if (len & ERR_INCOMPLETE)
1312 return;
1313
1314 if (len & ERR_RX) {
1315 ++ifp->if_ierrors;
1316 goto abort;
1317 }
1318
1319 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
1320
1321 /* Pull packet off interface. */
1322 m = epget(sc, len);
1323 if (m == 0) {
1324 ifp->if_ierrors++;
1325 goto abort;
1326 }
1327
1328 ++ifp->if_ipackets;
1329
1330 /* We assume the header fit entirely in one mbuf. */
1331 eh = mtod(m, struct ether_header *);
1332
1333 #if NBPFILTER > 0
1334 /*
1335 * Check if there's a BPF listener on this interface.
1336 * If so, hand off the raw packet to BPF.
1337 */
1338 if (ifp->if_bpf) {
1339 bpf_mtap(ifp->if_bpf, m);
1340
1341 /*
1342 * Note that the interface cannot be in promiscuous mode if
1343 * there are no BPF listeners. And if we are in promiscuous
1344 * mode, we have to check if this packet is really ours.
1345 */
1346 if ((ifp->if_flags & IFF_PROMISC) &&
1347 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
1348 bcmp(eh->ether_dhost, LLADDR(sc->sc_ethercom.ec_if.if_sadl),
1349 sizeof(eh->ether_dhost)) != 0) {
1350 m_freem(m);
1351 return;
1352 }
1353 }
1354 #endif
1355
1356 /* We assume the header fit entirely in one mbuf. */
1357 m_adj(m, sizeof(struct ether_header));
1358 ether_input(ifp, eh, m);
1359
1360 /*
1361 * In periods of high traffic we can actually receive enough
1362 * packets so that the fifo overrun bit will be set at this point,
1363 * even though we just read a packet. In this case we
1364 * are not going to receive any more interrupts. We check for
1365 * this condition and read again until the fifo is not full.
1366 * We could simplify this test by not using epstatus(), but
1367 * rechecking the RX_STATUS register directly. This test could
1368 * result in unnecessary looping in cases where there is a new
1369 * packet but the fifo is not full, but it will not fix the
1370 * stuck behavior.
1371 *
1372 * Even with this improvement, we still get packet overrun errors
1373 * which are hurting performance. Maybe when I get some more time
1374 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1375 */
1376 if (epstatus(sc)) {
1377 len = bus_space_read_2(iot, ioh, EP_W1_RX_STATUS);
1378 /* Check if we are stuck and reset [see XXX comment] */
1379 if (len & ERR_INCOMPLETE) {
1380 if (ifp->if_flags & IFF_DEBUG)
1381 printf("%s: adapter reset\n",
1382 sc->sc_dev.dv_xname);
1383 epreset(sc);
1384 return;
1385 }
1386 goto again;
1387 }
1388
1389 return;
1390
1391 abort:
1392 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
1393 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
1394 ;
1395 }
1396
1397 struct mbuf *
1398 epget(sc, totlen)
1399 struct ep_softc *sc;
1400 int totlen;
1401 {
1402 bus_space_tag_t iot = sc->sc_iot;
1403 bus_space_handle_t ioh = sc->sc_ioh;
1404 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1405 struct mbuf *top, **mp, *m;
1406 int len, remaining;
1407 int sh;
1408
1409 m = sc->mb[sc->next_mb];
1410 sc->mb[sc->next_mb] = 0;
1411 if (m == 0) {
1412 MGETHDR(m, M_DONTWAIT, MT_DATA);
1413 if (m == 0)
1414 return 0;
1415 } else {
1416 /* If the queue is no longer full, refill. */
1417 if (sc->last_mb == sc->next_mb)
1418 timeout(epmbuffill, sc, 1);
1419 /* Convert one of our saved mbuf's. */
1420 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1421 m->m_data = m->m_pktdat;
1422 m->m_flags = M_PKTHDR;
1423 }
1424 m->m_pkthdr.rcvif = ifp;
1425 m->m_pkthdr.len = totlen;
1426 len = MHLEN;
1427 top = 0;
1428 mp = ⊤
1429
1430 /*
1431 * We read the packet at splhigh() so that an interrupt from another
1432 * device doesn't cause the card's buffer to overflow while we're
1433 * reading it. We may still lose packets at other times.
1434 */
1435 sh = splhigh();
1436
1437 while (totlen > 0) {
1438 if (top) {
1439 m = sc->mb[sc->next_mb];
1440 sc->mb[sc->next_mb] = 0;
1441 if (m == 0) {
1442 MGET(m, M_DONTWAIT, MT_DATA);
1443 if (m == 0) {
1444 splx(sh);
1445 m_freem(top);
1446 return 0;
1447 }
1448 } else {
1449 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1450 }
1451 len = MLEN;
1452 }
1453 if (totlen >= MINCLSIZE) {
1454 MCLGET(m, M_DONTWAIT);
1455 if ((m->m_flags & M_EXT) == 0) {
1456 splx(sh);
1457 m_free(m);
1458 m_freem(top);
1459 return 0;
1460 }
1461 len = MCLBYTES;
1462 }
1463 if (top == 0) {
1464 /* align the struct ip header */
1465 caddr_t newdata = (caddr_t)
1466 ALIGN(m->m_data + sizeof(struct ether_header))
1467 - sizeof(struct ether_header);
1468 len -= newdata - m->m_data;
1469 m->m_data = newdata;
1470 }
1471 remaining = len = min(totlen, len);
1472 if (EP_IS_BUS_32(sc->bustype)) {
1473 u_long offset = mtod(m, u_long);
1474 /*
1475 * Read bytes up to the point where we are aligned.
1476 * (We can align to 4 bytes, rather than ALIGNBYTES,
1477 * here because we're later reading 4-byte chunks.)
1478 */
1479 if ((remaining > 3) && (offset & 3)) {
1480 int count = (4 - (offset & 3));
1481 bus_space_read_multi_1(iot, ioh,
1482 EP_W1_RX_PIO_RD_1,
1483 (u_int8_t *) offset, count);
1484 offset += count;
1485 remaining -= count;
1486 }
1487 if (remaining > 3) {
1488 bus_space_read_multi_4(iot, ioh,
1489 EP_W1_RX_PIO_RD_1,
1490 (u_int32_t *) offset, remaining >> 2);
1491 offset += remaining & ~3;
1492 remaining &= 3;
1493 }
1494 if (remaining) {
1495 bus_space_read_multi_1(iot, ioh,
1496 EP_W1_RX_PIO_RD_1,
1497 (u_int8_t *) offset, remaining);
1498 }
1499 } else {
1500 u_long offset = mtod(m, u_long);
1501 if ((remaining > 1) && (offset & 1)) {
1502 bus_space_read_multi_1(iot, ioh,
1503 EP_W1_RX_PIO_RD_1,
1504 (u_int8_t *) offset, 1);
1505 remaining -= 1;
1506 offset += 1;
1507 }
1508 if (remaining > 1) {
1509 bus_space_read_multi_2(iot, ioh,
1510 EP_W1_RX_PIO_RD_1,
1511 (u_int16_t *) offset, remaining >> 1);
1512 offset += remaining & ~1;
1513 }
1514 if (remaining & 1) {
1515 bus_space_read_multi_1(iot, ioh,
1516 EP_W1_RX_PIO_RD_1,
1517 (u_int8_t *) offset, remaining & 1);
1518 }
1519 }
1520 m->m_len = len;
1521 totlen -= len;
1522 *mp = m;
1523 mp = &m->m_next;
1524 }
1525
1526 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
1527 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
1528 ;
1529
1530 splx(sh);
1531
1532 return top;
1533 }
1534
1535 int
1536 epioctl(ifp, cmd, data)
1537 register struct ifnet *ifp;
1538 u_long cmd;
1539 caddr_t data;
1540 {
1541 struct ep_softc *sc = ifp->if_softc;
1542 struct ifaddr *ifa = (struct ifaddr *)data;
1543 struct ifreq *ifr = (struct ifreq *)data;
1544 int s, error = 0;
1545
1546 s = splnet();
1547
1548 switch (cmd) {
1549
1550 case SIOCSIFADDR:
1551 if ((error = epenable(sc)) != 0)
1552 break;
1553 /* epinit is called just below */
1554 ifp->if_flags |= IFF_UP;
1555 switch (ifa->ifa_addr->sa_family) {
1556 #ifdef INET
1557 case AF_INET:
1558 epinit(sc);
1559 arp_ifinit(&sc->sc_ethercom.ec_if, ifa);
1560 break;
1561 #endif
1562 #ifdef NS
1563 case AF_NS:
1564 {
1565 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1566
1567 if (ns_nullhost(*ina))
1568 ina->x_host = *(union ns_host *)
1569 LLADDR(ifp->if_sadl);
1570 else
1571 bcopy(ina->x_host.c_host,
1572 LLADDR(ifp->if_sadl),
1573 ifp->if_addrlen);
1574 /* Set new address. */
1575 epinit(sc);
1576 break;
1577 }
1578 #endif
1579 default:
1580 epinit(sc);
1581 break;
1582 }
1583 break;
1584
1585 case SIOCSIFMEDIA:
1586 case SIOCGIFMEDIA:
1587 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1588 break;
1589
1590 case SIOCSIFFLAGS:
1591 if ((ifp->if_flags & IFF_UP) == 0 &&
1592 (ifp->if_flags & IFF_RUNNING) != 0) {
1593 /*
1594 * If interface is marked down and it is running, then
1595 * stop it.
1596 */
1597 epstop(sc);
1598 ifp->if_flags &= ~IFF_RUNNING;
1599 epdisable(sc);
1600 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1601 (ifp->if_flags & IFF_RUNNING) == 0) {
1602 /*
1603 * If interface is marked up and it is stopped, then
1604 * start it.
1605 */
1606 if ((error = epenable(sc)) != 0)
1607 break;
1608 epinit(sc);
1609 } else if (sc->enabled) {
1610 /*
1611 * deal with flags changes:
1612 * IFF_MULTICAST, IFF_PROMISC.
1613 */
1614 epsetfilter(sc);
1615 }
1616 break;
1617
1618 case SIOCADDMULTI:
1619 case SIOCDELMULTI:
1620 if (sc->enabled == 0) {
1621 error = EIO;
1622 break;
1623 }
1624
1625 error = (cmd == SIOCADDMULTI) ?
1626 ether_addmulti(ifr, &sc->sc_ethercom) :
1627 ether_delmulti(ifr, &sc->sc_ethercom);
1628
1629 if (error == ENETRESET) {
1630 /*
1631 * Multicast list has changed; set the hardware filter
1632 * accordingly.
1633 */
1634 epreset(sc);
1635 error = 0;
1636 }
1637 break;
1638
1639 default:
1640 error = EINVAL;
1641 break;
1642 }
1643
1644 splx(s);
1645 return (error);
1646 }
1647
1648 void
1649 epreset(sc)
1650 struct ep_softc *sc;
1651 {
1652 int s;
1653
1654 s = splnet();
1655 epstop(sc);
1656 epinit(sc);
1657 splx(s);
1658 }
1659
1660 void
1661 epwatchdog(ifp)
1662 struct ifnet *ifp;
1663 {
1664 struct ep_softc *sc = ifp->if_softc;
1665
1666 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1667 ++sc->sc_ethercom.ec_if.if_oerrors;
1668
1669 epreset(sc);
1670 }
1671
1672 void
1673 epstop(sc)
1674 register struct ep_softc *sc;
1675 {
1676 bus_space_tag_t iot = sc->sc_iot;
1677 bus_space_handle_t ioh = sc->sc_ioh;
1678
1679 if (sc->ep_flags & EP_FLAGS_MII) {
1680 /* Stop the one second clock. */
1681 untimeout(ep_tick, sc);
1682 }
1683
1684 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISABLE);
1685 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
1686 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
1687 ;
1688 bus_space_write_2(iot, ioh, EP_COMMAND, TX_DISABLE);
1689 bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
1690
1691 ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
1692 ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
1693
1694 bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
1695 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK);
1696 bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK);
1697 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RX_FILTER);
1698
1699 epmbufempty(sc);
1700 }
1701
1702
1703 /*
1704 * Before reboots, reset card completely.
1705 */
1706 static void
1707 epshutdown(arg)
1708 void *arg;
1709 {
1710 register struct ep_softc *sc = arg;
1711
1712 if (sc->enabled) {
1713 epstop(sc);
1714 ep_complete_cmd(sc, EP_COMMAND, GLOBAL_RESET);
1715 }
1716 }
1717
1718 /*
1719 * We get eeprom data from the id_port given an offset into the
1720 * eeprom. Basically; after the ID_sequence is sent to all of
1721 * the cards; they enter the ID_CMD state where they will accept
1722 * command requests. 0x80-0xbf loads the eeprom data. We then
1723 * read the port 16 times and with every read; the cards check
1724 * for contention (ie: if one card writes a 0 bit and another
1725 * writes a 1 bit then the host sees a 0. At the end of the cycle;
1726 * each card compares the data on the bus; if there is a difference
1727 * then that card goes into ID_WAIT state again). In the meantime;
1728 * one bit of data is returned in the AX register which is conveniently
1729 * returned to us by bus_space_read_1(). Hence; we read 16 times getting one
1730 * bit of data with each read.
1731 *
1732 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1733 */
1734 u_int16_t
1735 epreadeeprom(iot, ioh, offset)
1736 bus_space_tag_t iot;
1737 bus_space_handle_t ioh;
1738 int offset;
1739 {
1740 u_int16_t data = 0;
1741 int i;
1742
1743 bus_space_write_1(iot, ioh, 0, 0x80 + offset);
1744 delay(1000);
1745 for (i = 0; i < 16; i++)
1746 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1747 return (data);
1748 }
1749
1750 static int
1751 epbusyeeprom(sc)
1752 struct ep_softc *sc;
1753 {
1754 bus_space_tag_t iot = sc->sc_iot;
1755 bus_space_handle_t ioh = sc->sc_ioh;
1756 int i = 100, j;
1757
1758 if (sc->bustype == EP_BUS_PCMCIA) {
1759 delay(1000);
1760 return 0;
1761 }
1762
1763 j = 0; /* bad GCC flow analysis */
1764 while (i--) {
1765 j = bus_space_read_2(iot, ioh, EP_W0_EEPROM_COMMAND);
1766 if (j & EEPROM_BUSY)
1767 delay(100);
1768 else
1769 break;
1770 }
1771 if (!i) {
1772 printf("\n%s: eeprom failed to come ready\n",
1773 sc->sc_dev.dv_xname);
1774 return (1);
1775 }
1776 if (j & EEPROM_TST_MODE) {
1777 /* XXX PnP mode? */
1778 printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
1779 return (1);
1780 }
1781 return (0);
1782 }
1783
1784 void
1785 epmbuffill(v)
1786 void *v;
1787 {
1788 struct ep_softc *sc = v;
1789 int s, i;
1790
1791 s = splnet();
1792 i = sc->last_mb;
1793 do {
1794 if (sc->mb[i] == NULL)
1795 MGET(sc->mb[i], M_DONTWAIT, MT_DATA);
1796 if (sc->mb[i] == NULL)
1797 break;
1798 i = (i + 1) % MAX_MBS;
1799 } while (i != sc->next_mb);
1800 sc->last_mb = i;
1801 /* If the queue was not filled, try again. */
1802 if (sc->last_mb != sc->next_mb)
1803 timeout(epmbuffill, sc, 1);
1804 splx(s);
1805 }
1806
1807 void
1808 epmbufempty(sc)
1809 struct ep_softc *sc;
1810 {
1811 int s, i;
1812
1813 s = splnet();
1814 for (i = 0; i<MAX_MBS; i++) {
1815 if (sc->mb[i]) {
1816 m_freem(sc->mb[i]);
1817 sc->mb[i] = NULL;
1818 }
1819 }
1820 sc->last_mb = sc->next_mb = 0;
1821 untimeout(epmbuffill, sc);
1822 splx(s);
1823 }
1824
1825 int
1826 epenable(sc)
1827 struct ep_softc *sc;
1828 {
1829
1830 if (sc->enabled == 0 && sc->enable != NULL) {
1831 if ((*sc->enable)(sc) != 0) {
1832 printf("%s: device enable failed\n",
1833 sc->sc_dev.dv_xname);
1834 return (EIO);
1835 }
1836 }
1837
1838 sc->enabled = 1;
1839 return (0);
1840 }
1841
1842 void
1843 epdisable(sc)
1844 struct ep_softc *sc;
1845 {
1846
1847 if (sc->enabled != 0 && sc->disable != NULL) {
1848 (*sc->disable)(sc);
1849 sc->enabled = 0;
1850 }
1851 }
1852
1853 void
1854 ep_mii_setbit(sc, bit)
1855 struct ep_softc *sc;
1856 u_int16_t bit;
1857 {
1858 u_int16_t val;
1859
1860 /* We assume we're already in Window 4 */
1861 val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT);
1862 bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT,
1863 val | bit);
1864 }
1865
1866 void
1867 ep_mii_clrbit(sc, bit)
1868 struct ep_softc *sc;
1869 u_int16_t bit;
1870 {
1871 u_int16_t val;
1872
1873 /* We assume we're already in Window 4 */
1874 val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT);
1875 bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT,
1876 val & ~bit);
1877 }
1878
1879 u_int16_t
1880 ep_mii_readbit(sc, bit)
1881 struct ep_softc *sc;
1882 u_int16_t bit;
1883 {
1884
1885 /* We assume we're already in Window 4 */
1886 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT) &
1887 bit);
1888 }
1889
1890 void
1891 ep_mii_sync(sc)
1892 struct ep_softc *sc;
1893 {
1894 int i;
1895
1896 /* We assume we're already in Window 4 */
1897 ep_mii_clrbit(sc, PHYSMGMT_DIR);
1898 for (i = 0; i < 32; i++) {
1899 ep_mii_clrbit(sc, PHYSMGMT_CLK);
1900 ep_mii_setbit(sc, PHYSMGMT_CLK);
1901 }
1902 }
1903
1904 void
1905 ep_mii_sendbits(sc, data, nbits)
1906 struct ep_softc *sc;
1907 u_int32_t data;
1908 int nbits;
1909 {
1910 int i;
1911
1912 /* We assume we're already in Window 4 */
1913 ep_mii_setbit(sc, PHYSMGMT_DIR);
1914 for (i = 1 << (nbits - 1); i; i = i >> 1) {
1915 ep_mii_clrbit(sc, PHYSMGMT_CLK);
1916 ep_mii_readbit(sc, PHYSMGMT_CLK);
1917 if (data & i)
1918 ep_mii_setbit(sc, PHYSMGMT_DATA);
1919 else
1920 ep_mii_clrbit(sc, PHYSMGMT_DATA);
1921 ep_mii_setbit(sc, PHYSMGMT_CLK);
1922 ep_mii_readbit(sc, PHYSMGMT_CLK);
1923 }
1924 }
1925
1926 int
1927 ep_mii_readreg(self, phy, reg)
1928 struct device *self;
1929 int phy, reg;
1930 {
1931 struct ep_softc *sc = (struct ep_softc *)self;
1932 int val = 0, i, err;
1933
1934 /*
1935 * Read the PHY register by manually driving the MII control lines.
1936 */
1937
1938 GO_WINDOW(4);
1939
1940 bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT, 0);
1941
1942 ep_mii_sync(sc);
1943 ep_mii_sendbits(sc, MII_COMMAND_START, 2);
1944 ep_mii_sendbits(sc, MII_COMMAND_READ, 2);
1945 ep_mii_sendbits(sc, phy, 5);
1946 ep_mii_sendbits(sc, reg, 5);
1947
1948 ep_mii_clrbit(sc, PHYSMGMT_DIR);
1949 ep_mii_clrbit(sc, PHYSMGMT_CLK);
1950 ep_mii_setbit(sc, PHYSMGMT_CLK);
1951 ep_mii_clrbit(sc, PHYSMGMT_CLK);
1952
1953 err = ep_mii_readbit(sc, PHYSMGMT_DATA);
1954 ep_mii_setbit(sc, PHYSMGMT_CLK);
1955
1956 /* Even if an error occurs, must still clock out the cycle. */
1957 for (i = 0; i < 16; i++) {
1958 val <<= 1;
1959 ep_mii_clrbit(sc, PHYSMGMT_CLK);
1960 if (err == 0 && ep_mii_readbit(sc, PHYSMGMT_DATA))
1961 val |= 1;
1962 ep_mii_setbit(sc, PHYSMGMT_CLK);
1963 }
1964 ep_mii_clrbit(sc, PHYSMGMT_CLK);
1965 ep_mii_setbit(sc, PHYSMGMT_CLK);
1966
1967 GO_WINDOW(1); /* back to operating window */
1968
1969 return (err ? 0 : val);
1970 }
1971
1972 void
1973 ep_mii_writereg(self, phy, reg, val)
1974 struct device *self;
1975 int phy, reg, val;
1976 {
1977 struct ep_softc *sc = (struct ep_softc *)self;
1978
1979 /*
1980 * Write the PHY register by manually driving the MII control lines.
1981 */
1982
1983 GO_WINDOW(4);
1984
1985 ep_mii_sync(sc);
1986 ep_mii_sendbits(sc, MII_COMMAND_START, 2);
1987 ep_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
1988 ep_mii_sendbits(sc, phy, 5);
1989 ep_mii_sendbits(sc, reg, 5);
1990 ep_mii_sendbits(sc, MII_COMMAND_ACK, 2);
1991 ep_mii_sendbits(sc, val, 16);
1992
1993 ep_mii_clrbit(sc, PHYSMGMT_CLK);
1994 ep_mii_setbit(sc, PHYSMGMT_CLK);
1995
1996 GO_WINDOW(1); /* back to operating window */
1997 }
1998
1999 void
2000 ep_statchg(self)
2001 struct device *self;
2002 {
2003
2004 /* XXX Update ifp->if_baudrate */
2005 /* XXX Full-duplex control in MAC? */
2006 }
2007