elink3.c revision 1.43 1 /* $NetBSD: elink3.c,v 1.43 1998/08/16 01:16:57 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
42 * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 * must display the following acknowledgement:
55 * This product includes software developed by Herb Peyerl.
56 * 4. The name of Herb Peyerl may not be used to endorse or promote products
57 * derived from this software without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
60 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
61 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
63 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
64 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
65 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
66 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
67 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
68 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 #include "opt_inet.h"
72 #include "opt_ns.h"
73 #include "bpfilter.h"
74 #include "rnd.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/mbuf.h>
80 #include <sys/socket.h>
81 #include <sys/ioctl.h>
82 #include <sys/errno.h>
83 #include <sys/syslog.h>
84 #include <sys/select.h>
85 #include <sys/device.h>
86 #if NRND > 0
87 #include <sys/rnd.h>
88 #endif
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_ether.h>
93 #include <net/if_media.h>
94
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/in_var.h>
99 #include <netinet/ip.h>
100 #include <netinet/if_inarp.h>
101 #endif
102
103 #ifdef NS
104 #include <netns/ns.h>
105 #include <netns/ns_if.h>
106 #endif
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #include <net/bpfdesc.h>
111 #endif
112
113 #include <machine/cpu.h>
114 #include <machine/bus.h>
115 #include <machine/intr.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119
120 #include <dev/ic/elink3var.h>
121 #include <dev/ic/elink3reg.h>
122
123 #define ETHER_MIN_LEN 64
124 #define ETHER_MAX_LEN 1518
125 #define ETHER_ADDR_LEN 6
126
127 #ifdef DEBUG
128 int epdebug = 0;
129 #endif
130
131 /*
132 * Structure to map media-present bits in boards to ifmedia codes and
133 * printable media names. Used for table-driven ifmedia initialization.
134 */
135 struct ep_media {
136 int epm_mpbit; /* media present bit */
137 const char *epm_name; /* name of medium */
138 int epm_ifmedia; /* ifmedia word for medium */
139 int epm_epmedia; /* EPMEDIA_* constant */
140 };
141
142 /*
143 * Media table for the Demon/Vortex/Boomerang chipsets.
144 *
145 * Note that MII on the Demon and Vortex (3c59x) indicates an external
146 * MII connector (for connecting an external PHY) ... I think. Treat
147 * it as `manual' on these chips.
148 *
149 * Any Boomerang (3c90x) chips with MII really do have an internal
150 * MII and real PHYs attached; no `native' media.
151 */
152 struct ep_media ep_vortex_media[] = {
153 { EP_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
154 EPMEDIA_10BASE_T },
155 { EP_PCI_AUI, "10base5/AUI", IFM_ETHER|IFM_10_5,
156 EPMEDIA_AUI },
157 { EP_PCI_BNC, "10base2/BNC", IFM_ETHER|IFM_10_2,
158 EPMEDIA_10BASE_2 },
159 { EP_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
160 EPMEDIA_100BASE_TX },
161 { EP_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
162 EPMEDIA_100BASE_FX },
163 { EP_PCI_100BASE_MII, "manual", IFM_ETHER|IFM_MANUAL,
164 EPMEDIA_MII },
165 { EP_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
166 EPMEDIA_100BASE_T4 },
167 { 0, NULL, 0,
168 0 },
169 };
170
171 /*
172 * Media table for the older 3Com Etherlink III chipset, used
173 * in the 3c509, 3c579, and 3c589.
174 */
175 struct ep_media ep_509_media[] = {
176 { EP_W0_CC_UTP, "10baseT", IFM_ETHER|IFM_10_T,
177 EPMEDIA_10BASE_T },
178 { EP_W0_CC_AUI, "10base5/AUI", IFM_ETHER|IFM_10_5,
179 EPMEDIA_AUI },
180 { EP_W0_CC_BNC, "10base2/BNC", IFM_ETHER|IFM_10_2,
181 EPMEDIA_10BASE_2 },
182 { 0, NULL, 0,
183 0 },
184 };
185
186 void ep_internalconfig __P((struct ep_softc *sc));
187 void ep_vortex_probemedia __P((struct ep_softc *sc));
188 void ep_509_probemedia __P((struct ep_softc *sc));
189
190 static void eptxstat __P((struct ep_softc *));
191 static int epstatus __P((struct ep_softc *));
192 void epinit __P((struct ep_softc *));
193 int epioctl __P((struct ifnet *, u_long, caddr_t));
194 void epstart __P((struct ifnet *));
195 void epwatchdog __P((struct ifnet *));
196 void epreset __P((struct ep_softc *));
197 static void epshutdown __P((void *));
198 void epread __P((struct ep_softc *));
199 struct mbuf *epget __P((struct ep_softc *, int));
200 void epmbuffill __P((void *));
201 void epmbufempty __P((struct ep_softc *));
202 void epsetfilter __P((struct ep_softc *));
203 void epsetmedia __P((struct ep_softc *));
204
205 int epenable __P((struct ep_softc *));
206 void epdisable __P((struct ep_softc *));
207
208 /* ifmedia callbacks */
209 int ep_media_change __P((struct ifnet *ifp));
210 void ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
211
212 /* MII callbacks */
213 int ep_mii_readreg __P((struct device *, int, int));
214 void ep_mii_writereg __P((struct device *, int, int, int));
215 void ep_statchg __P((struct device *));
216
217 void ep_tick __P((void *));
218
219 void ep_mii_setbit __P((struct ep_softc *, u_int16_t));
220 void ep_mii_clrbit __P((struct ep_softc *, u_int16_t));
221 u_int16_t ep_mii_readbit __P((struct ep_softc *, u_int16_t));
222 void ep_mii_sync __P((struct ep_softc *));
223 void ep_mii_sendbits __P((struct ep_softc *, u_int32_t, int));
224
225 static int epbusyeeprom __P((struct ep_softc *));
226 static inline void ep_complete_cmd __P((struct ep_softc *sc,
227 u_int cmd, u_int arg));
228 static __inline int ep_w1_reg __P((struct ep_softc *, int));
229
230 /*
231 * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
232 * Window 1 registers offset!
233 */
234 static __inline int
235 ep_w1_reg(sc, reg)
236 struct ep_softc *sc;
237 int reg;
238 {
239
240 switch (sc->ep_chipset) {
241 case EP_CHIPSET_CORKSCREW:
242 return (reg + 0x10);
243
244 case EP_CHIPSET_ROADRUNNER:
245 switch (reg) {
246 case EP_W1_FREE_TX:
247 case EP_W1_RUNNER_RDCTL:
248 case EP_W1_RUNNER_WRCTL:
249 return (reg);
250 }
251 return (reg + 0x10);
252 }
253
254 return (reg);
255 }
256
257 /*
258 * Issue a (reset) command, and be sure it has completed.
259 * Used for commands that reset part or all of the board.
260 * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
261 * but older hardware doesn't implement it and we must delay.
262 * It's easiest to just delay always.
263 */
264 static inline void
265 ep_complete_cmd(sc, cmd, arg)
266 struct ep_softc *sc;
267 u_int cmd, arg;
268 {
269 register bus_space_tag_t iot = sc->sc_iot;
270 register bus_space_handle_t ioh = sc->sc_ioh;
271
272 bus_space_write_2(iot, ioh, cmd, arg);
273
274 #ifdef notyet
275 /* if this adapter family has S_COMMAND_IN_PROGRESS, use it */
276 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
277 ;
278 else
279 #else
280 DELAY(100000); /* need at least 1 ms, but be generous. */
281 #endif
282 }
283
284 /*
285 * Back-end attach and configure.
286 */
287 void
288 epconfig(sc, chipset, enaddr)
289 struct ep_softc *sc;
290 u_short chipset;
291 u_int8_t *enaddr;
292 {
293 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
294 bus_space_tag_t iot = sc->sc_iot;
295 bus_space_handle_t ioh = sc->sc_ioh;
296 u_int16_t i;
297 u_int8_t myla[6];
298
299 sc->ep_chipset = chipset;
300
301 /*
302 * We could have been groveling around in other register
303 * windows in the front-end; make sure we're in window 0
304 * to read the EEPROM.
305 */
306 GO_WINDOW(0);
307
308 if (enaddr == NULL) {
309 /*
310 * Read the station address from the eeprom
311 */
312 for (i = 0; i < 3; i++) {
313 u_int16_t x;
314 if (epbusyeeprom(sc))
315 return; /* XXX why is eeprom busy? */
316 bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
317 READ_EEPROM | i);
318 if (epbusyeeprom(sc))
319 return; /* XXX why is eeprom busy? */
320 x = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA);
321 myla[(i << 1)] = x >> 8;
322 myla[(i << 1) + 1] = x;
323 }
324 enaddr = myla;
325 }
326
327 /*
328 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
329 * allow FDDI-sized (4500) byte packets. Commands only take an
330 * 11-bit parameter, and 11 bits isn't enough to hold a full-size
331 * packet length.
332 * Commands to these cards implicitly upshift a packet size
333 * or threshold by 2 bits.
334 * To detect cards with large-packet support, we probe by setting
335 * the transmit threshold register, then change windows and
336 * read back the threshold register directly, and see if the
337 * threshold value was shifted or not.
338 */
339 bus_space_write_2(iot, ioh, EP_COMMAND,
340 SET_TX_AVAIL_THRESH | EP_LARGEWIN_PROBE );
341 GO_WINDOW(5);
342 i = bus_space_read_2(iot, ioh, EP_W5_TX_AVAIL_THRESH);
343 GO_WINDOW(1);
344 switch (i) {
345 case EP_LARGEWIN_PROBE:
346 case (EP_LARGEWIN_PROBE & EP_LARGEWIN_MASK):
347 sc->ep_pktlenshift = 0;
348 break;
349
350 case (EP_LARGEWIN_PROBE << 2):
351 sc->ep_pktlenshift = 2;
352 break;
353
354 default:
355 printf("%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
356 "Interface disabled\n",
357 sc->sc_dev.dv_xname, EP_LARGEWIN_PROBE, (int) i);
358 return;
359 }
360
361 /*
362 * Ensure Tx-available interrupts are enabled for
363 * start the interface.
364 * XXX should be in epinit()?
365 */
366 bus_space_write_2(iot, ioh, EP_COMMAND,
367 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
368
369 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
370 ifp->if_softc = sc;
371 ifp->if_start = epstart;
372 ifp->if_ioctl = epioctl;
373 ifp->if_watchdog = epwatchdog;
374 ifp->if_flags =
375 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
376
377 if_attach(ifp);
378 ether_ifattach(ifp, enaddr);
379
380 /*
381 * Finish configuration:
382 * determine chipset if the front-end couldn't do so,
383 * show board details, set media.
384 */
385
386 /*
387 * Print RAM size. We also print the Ethernet address in here.
388 * It's extracted from the ifp, so we have to make sure it's
389 * been attached first.
390 */
391 ep_internalconfig(sc);
392 GO_WINDOW(0);
393
394 /*
395 * Initialize our media structures and MII info. We'll
396 * probe the MII if we discover that we have one.
397 */
398 sc->sc_mii.mii_ifp = ifp;
399 sc->sc_mii.mii_readreg = ep_mii_readreg;
400 sc->sc_mii.mii_writereg = ep_mii_writereg;
401 sc->sc_mii.mii_statchg = ep_statchg;
402 ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
403 ep_media_status);
404
405 /*
406 * Now, determine which media we have.
407 */
408 switch (sc->ep_chipset) {
409 case EP_CHIPSET_BOOMERANG:
410 case EP_CHIPSET_ROADRUNNER:
411 /*
412 * If the device has MII, probe it. We won't be using
413 * any `native' media in this case, only PHYs. If
414 * we don't, just treat the Boomerang like the Vortex.
415 */
416 if (sc->ep_flags & EP_FLAGS_MII) {
417 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
418 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
419 ifmedia_add(&sc->sc_mii.mii_media,
420 IFM_ETHER|IFM_NONE, 0, NULL);
421 ifmedia_set(&sc->sc_mii.mii_media,
422 IFM_ETHER|IFM_NONE);
423 } else {
424 ifmedia_set(&sc->sc_mii.mii_media,
425 IFM_ETHER|IFM_AUTO);
426 }
427 break;
428 }
429 /* FALLTHROUGH */
430
431 case EP_CHIPSET_VORTEX:
432 ep_vortex_probemedia(sc);
433 break;
434
435 default:
436 ep_509_probemedia(sc);
437 break;
438 }
439
440 GO_WINDOW(1); /* Window 1 is operating window */
441
442 #if NBPFILTER > 0
443 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
444 sizeof(struct ether_header));
445 #endif
446
447 #if NRND > 0
448 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, RND_TYPE_NET);
449 #endif
450
451 sc->tx_start_thresh = 20; /* probably a good starting point. */
452
453 /* Establish callback to reset card when we reboot. */
454 shutdownhook_establish(epshutdown, sc);
455
456 ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
457 ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
458 }
459
460
461 /*
462 * Show interface-model-independent info from window 3
463 * internal-configuration register.
464 */
465 void
466 ep_internalconfig(sc)
467 struct ep_softc *sc;
468 {
469 bus_space_tag_t iot = sc->sc_iot;
470 bus_space_handle_t ioh = sc->sc_ioh;
471
472 u_int config0;
473 u_int config1;
474
475 int ram_size, ram_width, ram_speed, rom_size, ram_split;
476 /*
477 * NVRAM buffer Rx:Tx config names for busmastering cards
478 * (Demon, Vortex, and later).
479 */
480 const char *onboard_ram_config[] = {
481 "5:3", "3:1", "1:1", "3:5" };
482
483 GO_WINDOW(3);
484 config0 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG);
485 config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
486 GO_WINDOW(0);
487
488 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
489 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
490 ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
491 rom_size = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
492
493 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
494
495 printf("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
496 sc->sc_dev.dv_xname,
497 ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
498 8 << ram_size,
499 (ram_width) ? "word" : "byte",
500 onboard_ram_config[ram_split]);
501 }
502
503
504 /*
505 * Find supported media on 3c509-generation hardware that doesn't have
506 * a "reset_options" register in window 3.
507 * Use the config_cntrl register in window 0 instead.
508 * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
509 * that implement CONFIG_CTRL. We don't have a good way to set the
510 * default active mediuim; punt to ifconfig instead.
511 */
512 void
513 ep_509_probemedia(sc)
514 struct ep_softc *sc;
515 {
516 bus_space_tag_t iot = sc->sc_iot;
517 bus_space_handle_t ioh = sc->sc_ioh;
518 struct ifmedia *ifm = &sc->sc_mii.mii_media;
519 u_int16_t ep_w0_config, port;
520 struct ep_media *epm;
521 const char *sep = "", *defmedianame = NULL;
522 int defmedia = 0;
523
524 GO_WINDOW(0);
525 ep_w0_config = bus_space_read_2(iot, ioh, EP_W0_CONFIG_CTRL);
526
527 printf("%s: ", sc->sc_dev.dv_xname);
528
529 /* Sanity check that there are any media! */
530 if ((ep_w0_config & EP_W0_CC_MEDIAMASK) == 0) {
531 printf("no media present!\n");
532 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
533 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
534 return;
535 }
536
537 /*
538 * Get the default media from the EEPROM.
539 */
540 if (epbusyeeprom(sc))
541 return; /* XXX why is eeprom busy? */
542 bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
543 READ_EEPROM | EEPROM_ADDR_CFG);
544 if (epbusyeeprom(sc))
545 return; /* XXX why is eeprom busy? */
546 port = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA) >> 14;
547
548 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
549
550 for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
551 if (ep_w0_config & epm->epm_mpbit) {
552 if (epm->epm_epmedia == port || defmedia == 0) {
553 defmedia = epm->epm_ifmedia;
554 defmedianame = epm->epm_name;
555 }
556 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
557 NULL);
558 PRINT(epm->epm_name);
559 }
560 }
561
562 #undef PRINT
563
564 #ifdef DIAGNOSTIC
565 if (defmedia == 0)
566 panic("ep_509_probemedia: impossible");
567 #endif
568
569 printf(" (default %s)\n", defmedianame);
570 ifmedia_set(ifm, defmedia);
571 }
572
573 /*
574 * Find media present on large-packet-capable elink3 devices.
575 * Show onboard configuration of large-packet-capable elink3 devices
576 * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
577 * Use media and card-version info in window 3 instead.
578 */
579 void
580 ep_vortex_probemedia(sc)
581 struct ep_softc *sc;
582 {
583 bus_space_tag_t iot = sc->sc_iot;
584 bus_space_handle_t ioh = sc->sc_ioh;
585 struct ifmedia *ifm = &sc->sc_mii.mii_media;
586 struct ep_media *epm;
587 u_int config1;
588 int reset_options;
589 int default_media; /* 3-bit encoding of default (EEPROM) media */
590 int defmedia = 0;
591 const char *sep = "", *defmedianame = NULL;
592
593 GO_WINDOW(3);
594 config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
595 reset_options = (int)bus_space_read_1(iot, ioh, EP_W3_RESET_OPTIONS);
596 GO_WINDOW(0);
597
598 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
599
600 printf("%s: ", sc->sc_dev.dv_xname);
601
602 /* Sanity check that there are any media! */
603 if ((reset_options & EP_PCI_MEDIAMASK) == 0) {
604 printf("no media present!\n");
605 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
606 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
607 return;
608 }
609
610 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
611
612 for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
613 if (reset_options & epm->epm_mpbit) {
614 if (epm->epm_epmedia == default_media ||
615 defmedia == 0) {
616 defmedia = epm->epm_ifmedia;
617 defmedianame = epm->epm_name;
618 }
619 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
620 NULL);
621 PRINT(epm->epm_name);
622 }
623 }
624
625 #undef PRINT
626
627 #ifdef DIAGNOSTIC
628 if (defmedia == 0)
629 panic("ep_vortex_probemedia: impossible");
630 #endif
631
632 printf(" (default %s)\n", defmedianame);
633 ifmedia_set(ifm, defmedia);
634 }
635
636 /*
637 * One second timer, used to tick the MII.
638 */
639 void
640 ep_tick(arg)
641 void *arg;
642 {
643 struct ep_softc *sc = arg;
644 int s;
645
646 #ifdef DIAGNOSTIC
647 if ((sc->ep_flags & EP_FLAGS_MII) == 0)
648 panic("ep_tick");
649 #endif
650
651 s = splnet();
652 mii_tick(&sc->sc_mii);
653 splx(s);
654
655 timeout(ep_tick, sc, hz);
656 }
657
658 /*
659 * Bring device up.
660 *
661 * The order in here seems important. Otherwise we may not receive
662 * interrupts. ?!
663 */
664 void
665 epinit(sc)
666 register struct ep_softc *sc;
667 {
668 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
669 bus_space_tag_t iot = sc->sc_iot;
670 bus_space_handle_t ioh = sc->sc_ioh;
671 int i;
672
673 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
674 ;
675
676 if (sc->bustype != EP_BUS_PCI) {
677 GO_WINDOW(0);
678 bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, 0);
679 bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
680 }
681
682 if (sc->bustype == EP_BUS_PCMCIA) {
683 bus_space_write_2(iot, ioh, EP_W0_RESOURCE_CFG, 0x3f00);
684 }
685
686 GO_WINDOW(2);
687 for (i = 0; i < 6; i++) /* Reload the ether_addr. */
688 bus_space_write_1(iot, ioh, EP_W2_ADDR_0 + i,
689 LLADDR(ifp->if_sadl)[i]);
690
691 /*
692 * Reset the station-address receive filter.
693 * A bug workaround for busmastering (Vortex, Demon) cards.
694 */
695 for (i = 0; i < 6; i++)
696 bus_space_write_1(iot, ioh, EP_W2_RECVMASK_0 + i, 0);
697
698 ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
699 ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
700
701 GO_WINDOW(1); /* Window 1 is operating window */
702 for (i = 0; i < 31; i++)
703 bus_space_read_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS));
704
705 /* Set threshhold for for Tx-space avaiable interrupt. */
706 bus_space_write_2(iot, ioh, EP_COMMAND,
707 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
708
709 /* Enable interrupts. */
710 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK | S_CARD_FAILURE |
711 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
712 bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK | S_CARD_FAILURE |
713 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
714
715 /*
716 * Attempt to get rid of any stray interrupts that occured during
717 * configuration. On the i386 this isn't possible because one may
718 * already be queued. However, a single stray interrupt is
719 * unimportant.
720 */
721 bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | 0xff);
722
723 epsetfilter(sc);
724 epsetmedia(sc);
725
726 bus_space_write_2(iot, ioh, EP_COMMAND, RX_ENABLE);
727 bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
728
729 epmbuffill(sc);
730
731 /* Interface is now `running', with no output active. */
732 ifp->if_flags |= IFF_RUNNING;
733 ifp->if_flags &= ~IFF_OACTIVE;
734
735 if (sc->ep_flags & EP_FLAGS_MII) {
736 /* Start the one second clock. */
737 timeout(ep_tick, sc, hz);
738 }
739
740 /* Attempt to start output, if any. */
741 epstart(ifp);
742 }
743
744
745 /*
746 * Set multicast receive filter.
747 * elink3 hardware has no selective multicast filter in hardware.
748 * Enable reception of all multicasts and filter in software.
749 */
750 void
751 epsetfilter(sc)
752 register struct ep_softc *sc;
753 {
754 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
755
756 GO_WINDOW(1); /* Window 1 is operating window */
757 bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_COMMAND, SET_RX_FILTER |
758 FIL_INDIVIDUAL | FIL_BRDCST |
759 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
760 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
761 }
762
763 int
764 ep_media_change(ifp)
765 struct ifnet *ifp;
766 {
767 register struct ep_softc *sc = ifp->if_softc;
768
769 if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
770 epreset(sc);
771
772 return (0);
773 }
774
775 /*
776 * Set the card to use the specified media.
777 */
778 void
779 epsetmedia(sc)
780 struct ep_softc *sc;
781 {
782 bus_space_tag_t iot = sc->sc_iot;
783 bus_space_handle_t ioh = sc->sc_ioh;
784
785 /* Turn everything off. First turn off linkbeat and UTP. */
786 GO_WINDOW(4);
787 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, 0x0);
788
789 /* Turn off coax */
790 bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
791 delay(1000);
792
793 /*
794 * If the device has MII, select it, and then tell the
795 * PHY which media to use.
796 */
797 if (sc->ep_flags & EP_FLAGS_MII) {
798 int config0, config1;
799
800 GO_WINDOW(3);
801 config0 = (u_int)bus_space_read_2(iot, ioh,
802 EP_W3_INTERNAL_CONFIG);
803 config1 = (u_int)bus_space_read_2(iot, ioh,
804 EP_W3_INTERNAL_CONFIG + 2);
805
806 config1 = config1 & ~CONFIG_MEDIAMASK;
807 config1 |= (EPMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
808
809 bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0);
810 bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1);
811 GO_WINDOW(1); /* back to operating window */
812
813 mii_mediachg(&sc->sc_mii);
814 return;
815 }
816
817 /*
818 * Now turn on the selected media/transceiver.
819 */
820 GO_WINDOW(4);
821 switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
822 case IFM_10_T:
823 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
824 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
825 break;
826
827 case IFM_10_2:
828 bus_space_write_2(iot, ioh, EP_COMMAND, START_TRANSCEIVER);
829 DELAY(1000); /* 50ms not enmough? */
830 break;
831
832 case IFM_100_TX:
833 case IFM_100_FX:
834 case IFM_100_T4: /* XXX check documentation */
835 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
836 LINKBEAT_ENABLE);
837 DELAY(1000); /* not strictly necessary? */
838 break;
839
840 case IFM_10_5:
841 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
842 SQE_ENABLE);
843 DELAY(1000); /* not strictly necessary? */
844 break;
845
846 case IFM_MANUAL:
847 /*
848 * Nothing to do here; we are actually enabling the
849 * external PHY on the MII port.
850 */
851 break;
852
853 case IFM_NONE:
854 printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
855 return;
856
857 default:
858 panic("epsetmedia: impossible");
859 }
860
861 /*
862 * Tell the chip which port to use.
863 */
864 switch (sc->ep_chipset) {
865 case EP_CHIPSET_VORTEX:
866 case EP_CHIPSET_BOOMERANG:
867 {
868 int config0, config1;
869
870 GO_WINDOW(3);
871 config0 = (u_int)bus_space_read_2(iot, ioh,
872 EP_W3_INTERNAL_CONFIG);
873 config1 = (u_int)bus_space_read_2(iot, ioh,
874 EP_W3_INTERNAL_CONFIG + 2);
875
876 config1 = config1 & ~CONFIG_MEDIAMASK;
877 config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
878 CONFIG_MEDIAMASK_SHIFT);
879
880 bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0);
881 bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1);
882 break;
883 }
884 default:
885 {
886 int w0_addr_cfg;
887
888 GO_WINDOW(0);
889 w0_addr_cfg = bus_space_read_2(iot, ioh, EP_W0_ADDRESS_CFG);
890 w0_addr_cfg &= 0x3fff;
891 bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG, w0_addr_cfg |
892 (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
893 DELAY(1000);
894 break;
895 }
896 }
897
898 GO_WINDOW(1); /* Window 1 is operating window */
899 }
900
901 /*
902 * Get currently-selected media from card.
903 * (if_media callback, may be called before interface is brought up).
904 */
905 void
906 ep_media_status(ifp, req)
907 struct ifnet *ifp;
908 struct ifmediareq *req;
909 {
910 register struct ep_softc *sc = ifp->if_softc;
911 bus_space_tag_t iot = sc->sc_iot;
912 bus_space_handle_t ioh = sc->sc_ioh;
913
914 if (sc->enabled == 0) {
915 req->ifm_active = IFM_ETHER|IFM_NONE;
916 req->ifm_status = 0;
917 return;
918 }
919
920 /*
921 * If we have MII, go ask the PHY what's going on.
922 */
923 if (sc->ep_flags & EP_FLAGS_MII) {
924 mii_pollstat(&sc->sc_mii);
925 req->ifm_active = sc->sc_mii.mii_media_active;
926 req->ifm_status = sc->sc_mii.mii_media_status;
927 return;
928 }
929
930 /*
931 * Ok, at this point we claim that our active media is
932 * the currently selected media. We'll update our status
933 * if our chipset allows us to detect link.
934 */
935 req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
936 req->ifm_status = 0;
937
938 switch (sc->ep_chipset) {
939 case EP_CHIPSET_VORTEX:
940 case EP_CHIPSET_BOOMERANG:
941 GO_WINDOW(4);
942 req->ifm_status = IFM_AVALID;
943 if (bus_space_read_2(iot, ioh, EP_W4_MEDIA_TYPE) &
944 LINKBEAT_DETECT)
945 req->ifm_status |= IFM_ACTIVE;
946 GO_WINDOW(1); /* back to operating window */
947 break;
948 }
949 }
950
951
952
953 /*
954 * Start outputting on the interface.
955 * Always called as splnet().
956 */
957 void
958 epstart(ifp)
959 struct ifnet *ifp;
960 {
961 register struct ep_softc *sc = ifp->if_softc;
962 bus_space_tag_t iot = sc->sc_iot;
963 bus_space_handle_t ioh = sc->sc_ioh;
964 struct mbuf *m, *m0;
965 int sh, len, pad;
966 bus_addr_t txreg;
967
968 /* Don't transmit if interface is busy or not running */
969 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
970 return;
971
972 startagain:
973 /* Sneak a peek at the next packet */
974 m0 = ifp->if_snd.ifq_head;
975 if (m0 == 0)
976 return;
977
978 /* We need to use m->m_pkthdr.len, so require the header */
979 if ((m0->m_flags & M_PKTHDR) == 0)
980 panic("epstart: no header mbuf");
981 len = m0->m_pkthdr.len;
982
983 pad = (4 - len) & 3;
984
985 /*
986 * The 3c509 automatically pads short packets to minimum ethernet
987 * length, but we drop packets that are too large. Perhaps we should
988 * truncate them instead?
989 */
990 if (len + pad > ETHER_MAX_LEN) {
991 /* packet is obviously too large: toss it */
992 ++ifp->if_oerrors;
993 IF_DEQUEUE(&ifp->if_snd, m0);
994 m_freem(m0);
995 goto readcheck;
996 }
997
998 if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_FREE_TX)) <
999 len + pad + 4) {
1000 bus_space_write_2(iot, ioh, EP_COMMAND,
1001 SET_TX_AVAIL_THRESH |
1002 ((len + pad + 4) >> sc->ep_pktlenshift));
1003 /* not enough room in FIFO */
1004 ifp->if_flags |= IFF_OACTIVE;
1005 return;
1006 } else {
1007 bus_space_write_2(iot, ioh, EP_COMMAND,
1008 SET_TX_AVAIL_THRESH | EP_THRESH_DISABLE );
1009 }
1010
1011 IF_DEQUEUE(&ifp->if_snd, m0);
1012 if (m0 == 0) /* not really needed */
1013 return;
1014
1015 bus_space_write_2(iot, ioh, EP_COMMAND, SET_TX_START_THRESH |
1016 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/) );
1017
1018 #if NBPFILTER > 0
1019 if (ifp->if_bpf)
1020 bpf_mtap(ifp->if_bpf, m0);
1021 #endif
1022
1023 /*
1024 * Do the output at splhigh() so that an interrupt from another device
1025 * won't cause a FIFO underrun.
1026 */
1027 sh = splhigh();
1028
1029 txreg = ep_w1_reg(sc, EP_W1_TX_PIO_WR_1);
1030
1031 bus_space_write_2(iot, ioh, txreg, len);
1032 bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1033 if (EP_IS_BUS_32(sc->bustype)) {
1034 for (m = m0; m; ) {
1035 if (m->m_len > 3) {
1036 /* align our reads from core */
1037 if (mtod(m, u_long) & 3) {
1038 u_long count =
1039 4 - (mtod(m, u_long) & 3);
1040 bus_space_write_multi_1(iot, ioh,
1041 txreg, mtod(m, u_int8_t *), count);
1042 m->m_data =
1043 (void *)(mtod(m, u_long) + count);
1044 m->m_len -= count;
1045 }
1046 bus_space_write_multi_4(iot, ioh,
1047 txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1048 m->m_data = (void *)(mtod(m, u_long) +
1049 (u_long)(m->m_len & ~3));
1050 m->m_len -= m->m_len & ~3;
1051 }
1052 if (m->m_len) {
1053 bus_space_write_multi_1(iot, ioh,
1054 txreg, mtod(m, u_int8_t *), m->m_len);
1055 }
1056 MFREE(m, m0);
1057 m = m0;
1058 }
1059 } else {
1060 for (m = m0; m; ) {
1061 if (m->m_len > 1) {
1062 if (mtod(m, u_long) & 1) {
1063 bus_space_write_1(iot, ioh,
1064 txreg, *(mtod(m, u_int8_t *)));
1065 m->m_data =
1066 (void *)(mtod(m, u_long) + 1);
1067 m->m_len -= 1;
1068 }
1069 bus_space_write_multi_2(iot, ioh,
1070 txreg, mtod(m, u_int16_t *),
1071 m->m_len >> 1);
1072 }
1073 if (m->m_len & 1) {
1074 bus_space_write_1(iot, ioh, txreg,
1075 *(mtod(m, u_int8_t *) + m->m_len - 1));
1076 }
1077 MFREE(m, m0);
1078 m = m0;
1079 }
1080 }
1081 while (pad--)
1082 bus_space_write_1(iot, ioh, txreg, 0);
1083
1084 splx(sh);
1085
1086 ++ifp->if_opackets;
1087
1088 readcheck:
1089 if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_RX_STATUS)) &
1090 ERR_INCOMPLETE) == 0) {
1091 /* We received a complete packet. */
1092 u_int16_t status = bus_space_read_2(iot, ioh, EP_STATUS);
1093
1094 if ((status & S_INTR_LATCH) == 0) {
1095 /*
1096 * No interrupt, read the packet and continue
1097 * Is this supposed to happen? Is my motherboard
1098 * completely busted?
1099 */
1100 epread(sc);
1101 } else {
1102 /* Got an interrupt, return so that it gets serviced. */
1103 return;
1104 }
1105 } else {
1106 /* Check if we are stuck and reset [see XXX comment] */
1107 if (epstatus(sc)) {
1108 if (ifp->if_flags & IFF_DEBUG)
1109 printf("%s: adapter reset\n",
1110 sc->sc_dev.dv_xname);
1111 epreset(sc);
1112 }
1113 }
1114
1115 goto startagain;
1116 }
1117
1118
1119 /*
1120 * XXX: The 3c509 card can get in a mode where both the fifo status bit
1121 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1122 * We detect this situation and we reset the adapter.
1123 * It happens at times when there is a lot of broadcast traffic
1124 * on the cable (once in a blue moon).
1125 */
1126 static int
1127 epstatus(sc)
1128 register struct ep_softc *sc;
1129 {
1130 bus_space_tag_t iot = sc->sc_iot;
1131 bus_space_handle_t ioh = sc->sc_ioh;
1132 u_int16_t fifost;
1133
1134 /*
1135 * Check the FIFO status and act accordingly
1136 */
1137 GO_WINDOW(4);
1138 fifost = bus_space_read_2(iot, ioh, EP_W4_FIFO_DIAG);
1139 GO_WINDOW(1);
1140
1141 if (fifost & FIFOS_RX_UNDERRUN) {
1142 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1143 printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
1144 epreset(sc);
1145 return 0;
1146 }
1147
1148 if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1149 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1150 printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
1151 return 1;
1152 }
1153
1154 if (fifost & FIFOS_RX_OVERRUN) {
1155 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1156 printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
1157 return 1;
1158 }
1159
1160 if (fifost & FIFOS_TX_OVERRUN) {
1161 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1162 printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
1163 epreset(sc);
1164 return 0;
1165 }
1166
1167 return 0;
1168 }
1169
1170
1171 static void
1172 eptxstat(sc)
1173 register struct ep_softc *sc;
1174 {
1175 bus_space_tag_t iot = sc->sc_iot;
1176 bus_space_handle_t ioh = sc->sc_ioh;
1177 int i;
1178
1179 /*
1180 * We need to read+write TX_STATUS until we get a 0 status
1181 * in order to turn off the interrupt flag.
1182 */
1183 while ((i = bus_space_read_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS)))
1184 & TXS_COMPLETE) {
1185 bus_space_write_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS),
1186 0x0);
1187
1188 if (i & TXS_JABBER) {
1189 ++sc->sc_ethercom.ec_if.if_oerrors;
1190 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1191 printf("%s: jabber (%x)\n",
1192 sc->sc_dev.dv_xname, i);
1193 epreset(sc);
1194 } else if (i & TXS_UNDERRUN) {
1195 ++sc->sc_ethercom.ec_if.if_oerrors;
1196 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1197 printf("%s: fifo underrun (%x) @%d\n",
1198 sc->sc_dev.dv_xname, i,
1199 sc->tx_start_thresh);
1200 if (sc->tx_succ_ok < 100)
1201 sc->tx_start_thresh = min(ETHER_MAX_LEN,
1202 sc->tx_start_thresh + 20);
1203 sc->tx_succ_ok = 0;
1204 epreset(sc);
1205 } else if (i & TXS_MAX_COLLISION) {
1206 ++sc->sc_ethercom.ec_if.if_collisions;
1207 bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
1208 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1209 } else
1210 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1211 }
1212 }
1213
1214 int
1215 epintr(arg)
1216 void *arg;
1217 {
1218 register struct ep_softc *sc = arg;
1219 bus_space_tag_t iot = sc->sc_iot;
1220 bus_space_handle_t ioh = sc->sc_ioh;
1221 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1222 u_int16_t status;
1223 int ret = 0;
1224 int addrandom = 0;
1225
1226 if (sc->enabled == 0)
1227 return (0);
1228
1229 for (;;) {
1230 bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
1231
1232 status = bus_space_read_2(iot, ioh, EP_STATUS);
1233
1234 if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
1235 S_RX_COMPLETE | S_CARD_FAILURE)) == 0) {
1236 if ((status & S_INTR_LATCH) == 0) {
1237 #if 0
1238 printf("%s: intr latch cleared\n",
1239 sc->sc_dev.dv_xname);
1240 #endif
1241 break;
1242 }
1243 }
1244
1245 ret = 1;
1246
1247 /*
1248 * Acknowledge any interrupts. It's important that we do this
1249 * first, since there would otherwise be a race condition.
1250 * Due to the i386 interrupt queueing, we may get spurious
1251 * interrupts occasionally.
1252 */
1253 bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR |
1254 (status & (C_INTR_LATCH |
1255 C_CARD_FAILURE |
1256 C_TX_COMPLETE |
1257 C_TX_AVAIL |
1258 C_RX_COMPLETE |
1259 C_RX_EARLY |
1260 C_INT_RQD |
1261 C_UPD_STATS)));
1262
1263 #if 0
1264 status = bus_space_read_2(iot, ioh, EP_STATUS);
1265
1266 printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
1267 (status & S_RX_COMPLETE)?" RX_COMPLETE":"",
1268 (status & S_TX_COMPLETE)?" TX_COMPLETE":"",
1269 (status & S_TX_AVAIL)?" TX_AVAIL":"",
1270 (status & S_CARD_FAILURE)?" CARD_FAILURE":"");
1271 #endif
1272
1273 if (status & S_RX_COMPLETE) {
1274 epread(sc);
1275 addrandom = 1;
1276 }
1277 if (status & S_TX_AVAIL) {
1278 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1279 epstart(&sc->sc_ethercom.ec_if);
1280 addrandom = 1;
1281 }
1282 if (status & S_CARD_FAILURE) {
1283 printf("%s: adapter failure (%x)\n",
1284 sc->sc_dev.dv_xname, status);
1285 epreset(sc);
1286 return (1);
1287 }
1288 if (status & S_TX_COMPLETE) {
1289 eptxstat(sc);
1290 epstart(ifp);
1291 addrandom = 1;
1292 }
1293
1294 #if NRND > 0
1295 if (status)
1296 rnd_add_uint32(&sc->rnd_source, status);
1297 #endif
1298 }
1299
1300 /* no more interrupts */
1301 return (ret);
1302 }
1303
1304 void
1305 epread(sc)
1306 register struct ep_softc *sc;
1307 {
1308 bus_space_tag_t iot = sc->sc_iot;
1309 bus_space_handle_t ioh = sc->sc_ioh;
1310 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1311 struct mbuf *m;
1312 struct ether_header *eh;
1313 int len;
1314
1315 len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_RX_STATUS));
1316
1317 again:
1318 if (ifp->if_flags & IFF_DEBUG) {
1319 int err = len & ERR_MASK;
1320 char *s = NULL;
1321
1322 if (len & ERR_INCOMPLETE)
1323 s = "incomplete packet";
1324 else if (err == ERR_OVERRUN)
1325 s = "packet overrun";
1326 else if (err == ERR_RUNT)
1327 s = "runt packet";
1328 else if (err == ERR_ALIGNMENT)
1329 s = "bad alignment";
1330 else if (err == ERR_CRC)
1331 s = "bad crc";
1332 else if (err == ERR_OVERSIZE)
1333 s = "oversized packet";
1334 else if (err == ERR_DRIBBLE)
1335 s = "dribble bits";
1336
1337 if (s)
1338 printf("%s: %s\n", sc->sc_dev.dv_xname, s);
1339 }
1340
1341 if (len & ERR_INCOMPLETE)
1342 return;
1343
1344 if (len & ERR_RX) {
1345 ++ifp->if_ierrors;
1346 goto abort;
1347 }
1348
1349 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
1350
1351 /* Pull packet off interface. */
1352 m = epget(sc, len);
1353 if (m == 0) {
1354 ifp->if_ierrors++;
1355 goto abort;
1356 }
1357
1358 ++ifp->if_ipackets;
1359
1360 /* We assume the header fit entirely in one mbuf. */
1361 eh = mtod(m, struct ether_header *);
1362
1363 #if NBPFILTER > 0
1364 /*
1365 * Check if there's a BPF listener on this interface.
1366 * If so, hand off the raw packet to BPF.
1367 */
1368 if (ifp->if_bpf) {
1369 bpf_mtap(ifp->if_bpf, m);
1370
1371 /*
1372 * Note that the interface cannot be in promiscuous mode if
1373 * there are no BPF listeners. And if we are in promiscuous
1374 * mode, we have to check if this packet is really ours.
1375 */
1376 if ((ifp->if_flags & IFF_PROMISC) &&
1377 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
1378 bcmp(eh->ether_dhost, LLADDR(sc->sc_ethercom.ec_if.if_sadl),
1379 sizeof(eh->ether_dhost)) != 0) {
1380 m_freem(m);
1381 return;
1382 }
1383 }
1384 #endif
1385
1386 /* We assume the header fit entirely in one mbuf. */
1387 m_adj(m, sizeof(struct ether_header));
1388 ether_input(ifp, eh, m);
1389
1390 /*
1391 * In periods of high traffic we can actually receive enough
1392 * packets so that the fifo overrun bit will be set at this point,
1393 * even though we just read a packet. In this case we
1394 * are not going to receive any more interrupts. We check for
1395 * this condition and read again until the fifo is not full.
1396 * We could simplify this test by not using epstatus(), but
1397 * rechecking the RX_STATUS register directly. This test could
1398 * result in unnecessary looping in cases where there is a new
1399 * packet but the fifo is not full, but it will not fix the
1400 * stuck behavior.
1401 *
1402 * Even with this improvement, we still get packet overrun errors
1403 * which are hurting performance. Maybe when I get some more time
1404 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1405 */
1406 if (epstatus(sc)) {
1407 len = bus_space_read_2(iot, ioh,
1408 ep_w1_reg(sc, EP_W1_RX_STATUS));
1409 /* Check if we are stuck and reset [see XXX comment] */
1410 if (len & ERR_INCOMPLETE) {
1411 if (ifp->if_flags & IFF_DEBUG)
1412 printf("%s: adapter reset\n",
1413 sc->sc_dev.dv_xname);
1414 epreset(sc);
1415 return;
1416 }
1417 goto again;
1418 }
1419
1420 return;
1421
1422 abort:
1423 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
1424 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
1425 ;
1426 }
1427
1428 struct mbuf *
1429 epget(sc, totlen)
1430 struct ep_softc *sc;
1431 int totlen;
1432 {
1433 bus_space_tag_t iot = sc->sc_iot;
1434 bus_space_handle_t ioh = sc->sc_ioh;
1435 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1436 struct mbuf *top, **mp, *m;
1437 bus_addr_t rxreg;
1438 int len, remaining;
1439 int sh;
1440
1441 m = sc->mb[sc->next_mb];
1442 sc->mb[sc->next_mb] = 0;
1443 if (m == 0) {
1444 MGETHDR(m, M_DONTWAIT, MT_DATA);
1445 if (m == 0)
1446 return 0;
1447 } else {
1448 /* If the queue is no longer full, refill. */
1449 if (sc->last_mb == sc->next_mb)
1450 timeout(epmbuffill, sc, 1);
1451 /* Convert one of our saved mbuf's. */
1452 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1453 m->m_data = m->m_pktdat;
1454 m->m_flags = M_PKTHDR;
1455 }
1456 m->m_pkthdr.rcvif = ifp;
1457 m->m_pkthdr.len = totlen;
1458 len = MHLEN;
1459 top = 0;
1460 mp = ⊤
1461
1462 /*
1463 * We read the packet at splhigh() so that an interrupt from another
1464 * device doesn't cause the card's buffer to overflow while we're
1465 * reading it. We may still lose packets at other times.
1466 */
1467 sh = splhigh();
1468
1469 rxreg = ep_w1_reg(sc, EP_W1_RX_PIO_RD_1);
1470
1471 while (totlen > 0) {
1472 if (top) {
1473 m = sc->mb[sc->next_mb];
1474 sc->mb[sc->next_mb] = 0;
1475 if (m == 0) {
1476 MGET(m, M_DONTWAIT, MT_DATA);
1477 if (m == 0) {
1478 splx(sh);
1479 m_freem(top);
1480 return 0;
1481 }
1482 } else {
1483 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1484 }
1485 len = MLEN;
1486 }
1487 if (totlen >= MINCLSIZE) {
1488 MCLGET(m, M_DONTWAIT);
1489 if ((m->m_flags & M_EXT) == 0) {
1490 splx(sh);
1491 m_free(m);
1492 m_freem(top);
1493 return 0;
1494 }
1495 len = MCLBYTES;
1496 }
1497 if (top == 0) {
1498 /* align the struct ip header */
1499 caddr_t newdata = (caddr_t)
1500 ALIGN(m->m_data + sizeof(struct ether_header))
1501 - sizeof(struct ether_header);
1502 len -= newdata - m->m_data;
1503 m->m_data = newdata;
1504 }
1505 remaining = len = min(totlen, len);
1506 if (EP_IS_BUS_32(sc->bustype)) {
1507 u_long offset = mtod(m, u_long);
1508 /*
1509 * Read bytes up to the point where we are aligned.
1510 * (We can align to 4 bytes, rather than ALIGNBYTES,
1511 * here because we're later reading 4-byte chunks.)
1512 */
1513 if ((remaining > 3) && (offset & 3)) {
1514 int count = (4 - (offset & 3));
1515 bus_space_read_multi_1(iot, ioh,
1516 rxreg, (u_int8_t *) offset, count);
1517 offset += count;
1518 remaining -= count;
1519 }
1520 if (remaining > 3) {
1521 bus_space_read_multi_4(iot, ioh,
1522 rxreg, (u_int32_t *) offset,
1523 remaining >> 2);
1524 offset += remaining & ~3;
1525 remaining &= 3;
1526 }
1527 if (remaining) {
1528 bus_space_read_multi_1(iot, ioh,
1529 rxreg, (u_int8_t *) offset, remaining);
1530 }
1531 } else {
1532 u_long offset = mtod(m, u_long);
1533 if ((remaining > 1) && (offset & 1)) {
1534 bus_space_read_multi_1(iot, ioh,
1535 rxreg, (u_int8_t *) offset, 1);
1536 remaining -= 1;
1537 offset += 1;
1538 }
1539 if (remaining > 1) {
1540 bus_space_read_multi_2(iot, ioh,
1541 rxreg, (u_int16_t *) offset,
1542 remaining >> 1);
1543 offset += remaining & ~1;
1544 }
1545 if (remaining & 1) {
1546 bus_space_read_multi_1(iot, ioh,
1547 rxreg, (u_int8_t *) offset, remaining & 1);
1548 }
1549 }
1550 m->m_len = len;
1551 totlen -= len;
1552 *mp = m;
1553 mp = &m->m_next;
1554 }
1555
1556 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
1557 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
1558 ;
1559
1560 splx(sh);
1561
1562 return top;
1563 }
1564
1565 int
1566 epioctl(ifp, cmd, data)
1567 register struct ifnet *ifp;
1568 u_long cmd;
1569 caddr_t data;
1570 {
1571 struct ep_softc *sc = ifp->if_softc;
1572 struct ifaddr *ifa = (struct ifaddr *)data;
1573 struct ifreq *ifr = (struct ifreq *)data;
1574 int s, error = 0;
1575
1576 s = splnet();
1577
1578 switch (cmd) {
1579
1580 case SIOCSIFADDR:
1581 if ((error = epenable(sc)) != 0)
1582 break;
1583 /* epinit is called just below */
1584 ifp->if_flags |= IFF_UP;
1585 switch (ifa->ifa_addr->sa_family) {
1586 #ifdef INET
1587 case AF_INET:
1588 epinit(sc);
1589 arp_ifinit(&sc->sc_ethercom.ec_if, ifa);
1590 break;
1591 #endif
1592 #ifdef NS
1593 case AF_NS:
1594 {
1595 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1596
1597 if (ns_nullhost(*ina))
1598 ina->x_host = *(union ns_host *)
1599 LLADDR(ifp->if_sadl);
1600 else
1601 bcopy(ina->x_host.c_host,
1602 LLADDR(ifp->if_sadl),
1603 ifp->if_addrlen);
1604 /* Set new address. */
1605 epinit(sc);
1606 break;
1607 }
1608 #endif
1609 default:
1610 epinit(sc);
1611 break;
1612 }
1613 break;
1614
1615 case SIOCSIFMEDIA:
1616 case SIOCGIFMEDIA:
1617 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1618 break;
1619
1620 case SIOCSIFFLAGS:
1621 if ((ifp->if_flags & IFF_UP) == 0 &&
1622 (ifp->if_flags & IFF_RUNNING) != 0) {
1623 /*
1624 * If interface is marked down and it is running, then
1625 * stop it.
1626 */
1627 epstop(sc);
1628 ifp->if_flags &= ~IFF_RUNNING;
1629 epdisable(sc);
1630 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1631 (ifp->if_flags & IFF_RUNNING) == 0) {
1632 /*
1633 * If interface is marked up and it is stopped, then
1634 * start it.
1635 */
1636 if ((error = epenable(sc)) != 0)
1637 break;
1638 epinit(sc);
1639 } else if (sc->enabled) {
1640 /*
1641 * deal with flags changes:
1642 * IFF_MULTICAST, IFF_PROMISC.
1643 */
1644 epsetfilter(sc);
1645 }
1646 break;
1647
1648 case SIOCADDMULTI:
1649 case SIOCDELMULTI:
1650 if (sc->enabled == 0) {
1651 error = EIO;
1652 break;
1653 }
1654
1655 error = (cmd == SIOCADDMULTI) ?
1656 ether_addmulti(ifr, &sc->sc_ethercom) :
1657 ether_delmulti(ifr, &sc->sc_ethercom);
1658
1659 if (error == ENETRESET) {
1660 /*
1661 * Multicast list has changed; set the hardware filter
1662 * accordingly.
1663 */
1664 epreset(sc);
1665 error = 0;
1666 }
1667 break;
1668
1669 default:
1670 error = EINVAL;
1671 break;
1672 }
1673
1674 splx(s);
1675 return (error);
1676 }
1677
1678 void
1679 epreset(sc)
1680 struct ep_softc *sc;
1681 {
1682 int s;
1683
1684 s = splnet();
1685 epstop(sc);
1686 epinit(sc);
1687 splx(s);
1688 }
1689
1690 void
1691 epwatchdog(ifp)
1692 struct ifnet *ifp;
1693 {
1694 struct ep_softc *sc = ifp->if_softc;
1695
1696 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1697 ++sc->sc_ethercom.ec_if.if_oerrors;
1698
1699 epreset(sc);
1700 }
1701
1702 void
1703 epstop(sc)
1704 register struct ep_softc *sc;
1705 {
1706 bus_space_tag_t iot = sc->sc_iot;
1707 bus_space_handle_t ioh = sc->sc_ioh;
1708
1709 if (sc->ep_flags & EP_FLAGS_MII) {
1710 /* Stop the one second clock. */
1711 untimeout(ep_tick, sc);
1712 }
1713
1714 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISABLE);
1715 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
1716 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
1717 ;
1718 bus_space_write_2(iot, ioh, EP_COMMAND, TX_DISABLE);
1719 bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
1720
1721 ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
1722 ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
1723
1724 bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
1725 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK);
1726 bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK);
1727 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RX_FILTER);
1728
1729 epmbufempty(sc);
1730 }
1731
1732
1733 /*
1734 * Before reboots, reset card completely.
1735 */
1736 static void
1737 epshutdown(arg)
1738 void *arg;
1739 {
1740 register struct ep_softc *sc = arg;
1741
1742 if (sc->enabled) {
1743 epstop(sc);
1744 ep_complete_cmd(sc, EP_COMMAND, GLOBAL_RESET);
1745 }
1746 }
1747
1748 /*
1749 * We get eeprom data from the id_port given an offset into the
1750 * eeprom. Basically; after the ID_sequence is sent to all of
1751 * the cards; they enter the ID_CMD state where they will accept
1752 * command requests. 0x80-0xbf loads the eeprom data. We then
1753 * read the port 16 times and with every read; the cards check
1754 * for contention (ie: if one card writes a 0 bit and another
1755 * writes a 1 bit then the host sees a 0. At the end of the cycle;
1756 * each card compares the data on the bus; if there is a difference
1757 * then that card goes into ID_WAIT state again). In the meantime;
1758 * one bit of data is returned in the AX register which is conveniently
1759 * returned to us by bus_space_read_1(). Hence; we read 16 times getting one
1760 * bit of data with each read.
1761 *
1762 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1763 */
1764 u_int16_t
1765 epreadeeprom(iot, ioh, offset)
1766 bus_space_tag_t iot;
1767 bus_space_handle_t ioh;
1768 int offset;
1769 {
1770 u_int16_t data = 0;
1771 int i;
1772
1773 bus_space_write_1(iot, ioh, 0, 0x80 + offset);
1774 delay(1000);
1775 for (i = 0; i < 16; i++)
1776 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1777 return (data);
1778 }
1779
1780 static int
1781 epbusyeeprom(sc)
1782 struct ep_softc *sc;
1783 {
1784 bus_space_tag_t iot = sc->sc_iot;
1785 bus_space_handle_t ioh = sc->sc_ioh;
1786 int i = 100, j;
1787
1788 if (sc->bustype == EP_BUS_PCMCIA) {
1789 delay(1000);
1790 return 0;
1791 }
1792
1793 j = 0; /* bad GCC flow analysis */
1794 while (i--) {
1795 j = bus_space_read_2(iot, ioh, EP_W0_EEPROM_COMMAND);
1796 if (j & EEPROM_BUSY)
1797 delay(100);
1798 else
1799 break;
1800 }
1801 if (!i) {
1802 printf("\n%s: eeprom failed to come ready\n",
1803 sc->sc_dev.dv_xname);
1804 return (1);
1805 }
1806 if (j & EEPROM_TST_MODE) {
1807 /* XXX PnP mode? */
1808 printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
1809 return (1);
1810 }
1811 return (0);
1812 }
1813
1814 void
1815 epmbuffill(v)
1816 void *v;
1817 {
1818 struct ep_softc *sc = v;
1819 int s, i;
1820
1821 s = splnet();
1822 i = sc->last_mb;
1823 do {
1824 if (sc->mb[i] == NULL)
1825 MGET(sc->mb[i], M_DONTWAIT, MT_DATA);
1826 if (sc->mb[i] == NULL)
1827 break;
1828 i = (i + 1) % MAX_MBS;
1829 } while (i != sc->next_mb);
1830 sc->last_mb = i;
1831 /* If the queue was not filled, try again. */
1832 if (sc->last_mb != sc->next_mb)
1833 timeout(epmbuffill, sc, 1);
1834 splx(s);
1835 }
1836
1837 void
1838 epmbufempty(sc)
1839 struct ep_softc *sc;
1840 {
1841 int s, i;
1842
1843 s = splnet();
1844 for (i = 0; i<MAX_MBS; i++) {
1845 if (sc->mb[i]) {
1846 m_freem(sc->mb[i]);
1847 sc->mb[i] = NULL;
1848 }
1849 }
1850 sc->last_mb = sc->next_mb = 0;
1851 untimeout(epmbuffill, sc);
1852 splx(s);
1853 }
1854
1855 int
1856 epenable(sc)
1857 struct ep_softc *sc;
1858 {
1859
1860 if (sc->enabled == 0 && sc->enable != NULL) {
1861 if ((*sc->enable)(sc) != 0) {
1862 printf("%s: device enable failed\n",
1863 sc->sc_dev.dv_xname);
1864 return (EIO);
1865 }
1866 }
1867
1868 sc->enabled = 1;
1869 return (0);
1870 }
1871
1872 void
1873 epdisable(sc)
1874 struct ep_softc *sc;
1875 {
1876
1877 if (sc->enabled != 0 && sc->disable != NULL) {
1878 (*sc->disable)(sc);
1879 sc->enabled = 0;
1880 }
1881 }
1882
1883 void
1884 ep_mii_setbit(sc, bit)
1885 struct ep_softc *sc;
1886 u_int16_t bit;
1887 {
1888 u_int16_t val;
1889
1890 /* We assume we're already in Window 4 */
1891 val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT);
1892 bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT,
1893 val | bit);
1894 }
1895
1896 void
1897 ep_mii_clrbit(sc, bit)
1898 struct ep_softc *sc;
1899 u_int16_t bit;
1900 {
1901 u_int16_t val;
1902
1903 /* We assume we're already in Window 4 */
1904 val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT);
1905 bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT,
1906 val & ~bit);
1907 }
1908
1909 u_int16_t
1910 ep_mii_readbit(sc, bit)
1911 struct ep_softc *sc;
1912 u_int16_t bit;
1913 {
1914
1915 /* We assume we're already in Window 4 */
1916 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT) &
1917 bit);
1918 }
1919
1920 void
1921 ep_mii_sync(sc)
1922 struct ep_softc *sc;
1923 {
1924 int i;
1925
1926 /* We assume we're already in Window 4 */
1927 ep_mii_clrbit(sc, PHYSMGMT_DIR);
1928 for (i = 0; i < 32; i++) {
1929 ep_mii_clrbit(sc, PHYSMGMT_CLK);
1930 ep_mii_setbit(sc, PHYSMGMT_CLK);
1931 }
1932 }
1933
1934 void
1935 ep_mii_sendbits(sc, data, nbits)
1936 struct ep_softc *sc;
1937 u_int32_t data;
1938 int nbits;
1939 {
1940 int i;
1941
1942 /* We assume we're already in Window 4 */
1943 ep_mii_setbit(sc, PHYSMGMT_DIR);
1944 for (i = 1 << (nbits - 1); i; i = i >> 1) {
1945 ep_mii_clrbit(sc, PHYSMGMT_CLK);
1946 ep_mii_readbit(sc, PHYSMGMT_CLK);
1947 if (data & i)
1948 ep_mii_setbit(sc, PHYSMGMT_DATA);
1949 else
1950 ep_mii_clrbit(sc, PHYSMGMT_DATA);
1951 ep_mii_setbit(sc, PHYSMGMT_CLK);
1952 ep_mii_readbit(sc, PHYSMGMT_CLK);
1953 }
1954 }
1955
1956 int
1957 ep_mii_readreg(self, phy, reg)
1958 struct device *self;
1959 int phy, reg;
1960 {
1961 struct ep_softc *sc = (struct ep_softc *)self;
1962 int val = 0, i, err;
1963
1964 /*
1965 * Read the PHY register by manually driving the MII control lines.
1966 */
1967
1968 GO_WINDOW(4);
1969
1970 bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT, 0);
1971
1972 ep_mii_sync(sc);
1973 ep_mii_sendbits(sc, MII_COMMAND_START, 2);
1974 ep_mii_sendbits(sc, MII_COMMAND_READ, 2);
1975 ep_mii_sendbits(sc, phy, 5);
1976 ep_mii_sendbits(sc, reg, 5);
1977
1978 ep_mii_clrbit(sc, PHYSMGMT_DIR);
1979 ep_mii_clrbit(sc, PHYSMGMT_CLK);
1980 ep_mii_setbit(sc, PHYSMGMT_CLK);
1981 ep_mii_clrbit(sc, PHYSMGMT_CLK);
1982
1983 err = ep_mii_readbit(sc, PHYSMGMT_DATA);
1984 ep_mii_setbit(sc, PHYSMGMT_CLK);
1985
1986 /* Even if an error occurs, must still clock out the cycle. */
1987 for (i = 0; i < 16; i++) {
1988 val <<= 1;
1989 ep_mii_clrbit(sc, PHYSMGMT_CLK);
1990 if (err == 0 && ep_mii_readbit(sc, PHYSMGMT_DATA))
1991 val |= 1;
1992 ep_mii_setbit(sc, PHYSMGMT_CLK);
1993 }
1994 ep_mii_clrbit(sc, PHYSMGMT_CLK);
1995 ep_mii_setbit(sc, PHYSMGMT_CLK);
1996
1997 GO_WINDOW(1); /* back to operating window */
1998
1999 return (err ? 0 : val);
2000 }
2001
2002 void
2003 ep_mii_writereg(self, phy, reg, val)
2004 struct device *self;
2005 int phy, reg, val;
2006 {
2007 struct ep_softc *sc = (struct ep_softc *)self;
2008
2009 /*
2010 * Write the PHY register by manually driving the MII control lines.
2011 */
2012
2013 GO_WINDOW(4);
2014
2015 ep_mii_sync(sc);
2016 ep_mii_sendbits(sc, MII_COMMAND_START, 2);
2017 ep_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
2018 ep_mii_sendbits(sc, phy, 5);
2019 ep_mii_sendbits(sc, reg, 5);
2020 ep_mii_sendbits(sc, MII_COMMAND_ACK, 2);
2021 ep_mii_sendbits(sc, val, 16);
2022
2023 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2024 ep_mii_setbit(sc, PHYSMGMT_CLK);
2025
2026 GO_WINDOW(1); /* back to operating window */
2027 }
2028
2029 void
2030 ep_statchg(self)
2031 struct device *self;
2032 {
2033
2034 /* XXX Update ifp->if_baudrate */
2035 /* XXX Full-duplex control in MAC? */
2036 }
2037