Home | History | Annotate | Line # | Download | only in ic
elink3.c revision 1.44
      1 /*	$NetBSD: elink3.c,v 1.44 1998/08/17 23:20:39 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
     42  * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
     43  * All rights reserved.
     44  *
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice, this list of conditions and the following disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  * 3. All advertising materials mentioning features or use of this software
     54  *    must display the following acknowledgement:
     55  *      This product includes software developed by Herb Peyerl.
     56  * 4. The name of Herb Peyerl may not be used to endorse or promote products
     57  *    derived from this software without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     60  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     61  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     63  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     64  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     65  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     66  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     67  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     68  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     69  */
     70 
     71 #include "opt_inet.h"
     72 #include "opt_ns.h"
     73 #include "bpfilter.h"
     74 #include "rnd.h"
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/mbuf.h>
     80 #include <sys/socket.h>
     81 #include <sys/ioctl.h>
     82 #include <sys/errno.h>
     83 #include <sys/syslog.h>
     84 #include <sys/select.h>
     85 #include <sys/device.h>
     86 #if NRND > 0
     87 #include <sys/rnd.h>
     88 #endif
     89 
     90 #include <net/if.h>
     91 #include <net/if_dl.h>
     92 #include <net/if_ether.h>
     93 #include <net/if_media.h>
     94 
     95 #ifdef INET
     96 #include <netinet/in.h>
     97 #include <netinet/in_systm.h>
     98 #include <netinet/in_var.h>
     99 #include <netinet/ip.h>
    100 #include <netinet/if_inarp.h>
    101 #endif
    102 
    103 #ifdef NS
    104 #include <netns/ns.h>
    105 #include <netns/ns_if.h>
    106 #endif
    107 
    108 #if NBPFILTER > 0
    109 #include <net/bpf.h>
    110 #include <net/bpfdesc.h>
    111 #endif
    112 
    113 #include <machine/cpu.h>
    114 #include <machine/bus.h>
    115 #include <machine/intr.h>
    116 
    117 #include <dev/mii/mii.h>
    118 #include <dev/mii/miivar.h>
    119 
    120 #include <dev/ic/elink3var.h>
    121 #include <dev/ic/elink3reg.h>
    122 
    123 #define ETHER_MIN_LEN	64
    124 #define ETHER_MAX_LEN   1518
    125 #define ETHER_ADDR_LEN  6
    126 
    127 #ifdef DEBUG
    128 int epdebug = 0;
    129 #endif
    130 
    131 /*
    132  * Structure to map media-present bits in boards to ifmedia codes and
    133  * printable media names. Used for table-driven ifmedia initialization.
    134  */
    135 struct ep_media {
    136 	int	epm_mpbit;		/* media present bit */
    137 	const char *epm_name;		/* name of medium */
    138 	int	epm_ifmedia;		/* ifmedia word for medium */
    139 	int	epm_epmedia;		/* EPMEDIA_* constant */
    140 };
    141 
    142 /*
    143  * Media table for the Demon/Vortex/Boomerang chipsets.
    144  *
    145  * Note that MII on the Demon and Vortex (3c59x) indicates an external
    146  * MII connector (for connecting an external PHY) ... I think.  Treat
    147  * it as `manual' on these chips.
    148  *
    149  * Any Boomerang (3c90x) chips with MII really do have an internal
    150  * MII and real PHYs attached; no `native' media.
    151  */
    152 struct ep_media ep_vortex_media[] = {
    153 	{ EP_PCI_10BASE_T,	"10baseT",	IFM_ETHER|IFM_10_T,
    154 	  EPMEDIA_10BASE_T },
    155 	{ EP_PCI_AUI,		"10base5/AUI",	IFM_ETHER|IFM_10_5,
    156 	  EPMEDIA_AUI },
    157 	{ EP_PCI_BNC,		"10base2/BNC",	IFM_ETHER|IFM_10_2,
    158 	  EPMEDIA_10BASE_2 },
    159 	{ EP_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER|IFM_100_TX,
    160 	  EPMEDIA_100BASE_TX },
    161 	{ EP_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER|IFM_100_FX,
    162 	  EPMEDIA_100BASE_FX },
    163 	{ EP_PCI_100BASE_MII,	"manual",	IFM_ETHER|IFM_MANUAL,
    164 	  EPMEDIA_MII },
    165 	{ EP_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER|IFM_100_T4,
    166 	  EPMEDIA_100BASE_T4 },
    167 	{ 0,			NULL,		0,
    168 	  0 },
    169 };
    170 
    171 /*
    172  * Media table for the older 3Com Etherlink III chipset, used
    173  * in the 3c509, 3c579, and 3c589.
    174  */
    175 struct ep_media ep_509_media[] = {
    176 	{ EP_W0_CC_UTP,		"10baseT",	IFM_ETHER|IFM_10_T,
    177 	  EPMEDIA_10BASE_T },
    178 	{ EP_W0_CC_AUI,		"10base5/AUI",	IFM_ETHER|IFM_10_5,
    179 	  EPMEDIA_AUI },
    180 	{ EP_W0_CC_BNC,		"10base2/BNC",	IFM_ETHER|IFM_10_2,
    181 	  EPMEDIA_10BASE_2 },
    182 	{ 0,			NULL,		0,
    183 	  0 },
    184 };
    185 
    186 void	ep_internalconfig __P((struct ep_softc *sc));
    187 void	ep_vortex_probemedia __P((struct ep_softc *sc));
    188 void	ep_509_probemedia __P((struct ep_softc *sc));
    189 
    190 static void eptxstat __P((struct ep_softc *));
    191 static int epstatus __P((struct ep_softc *));
    192 void epinit __P((struct ep_softc *));
    193 int epioctl __P((struct ifnet *, u_long, caddr_t));
    194 void epstart __P((struct ifnet *));
    195 void epwatchdog __P((struct ifnet *));
    196 void epreset __P((struct ep_softc *));
    197 static void epshutdown __P((void *));
    198 void	epread __P((struct ep_softc *));
    199 struct mbuf *epget __P((struct ep_softc *, int));
    200 void	epmbuffill __P((void *));
    201 void	epmbufempty __P((struct ep_softc *));
    202 void	epsetfilter __P((struct ep_softc *));
    203 void	epsetmedia __P((struct ep_softc *));
    204 
    205 int	epenable __P((struct ep_softc *));
    206 void	epdisable __P((struct ep_softc *));
    207 
    208 /* ifmedia callbacks */
    209 int	ep_media_change __P((struct ifnet *ifp));
    210 void	ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
    211 
    212 /* MII callbacks */
    213 int	ep_mii_readreg __P((struct device *, int, int));
    214 void	ep_mii_writereg __P((struct device *, int, int, int));
    215 void	ep_statchg __P((struct device *));
    216 
    217 void	ep_tick __P((void *));
    218 
    219 void	ep_mii_setbit __P((struct ep_softc *, u_int16_t));
    220 void	ep_mii_clrbit __P((struct ep_softc *, u_int16_t));
    221 u_int16_t ep_mii_readbit __P((struct ep_softc *, u_int16_t));
    222 void	ep_mii_sync __P((struct ep_softc *));
    223 void	ep_mii_sendbits __P((struct ep_softc *, u_int32_t, int));
    224 
    225 static int epbusyeeprom __P((struct ep_softc *));
    226 static inline void ep_complete_cmd __P((struct ep_softc *sc,
    227 					u_int cmd, u_int arg));
    228 static __inline int ep_w1_reg __P((struct ep_softc *, int));
    229 
    230 /*
    231  * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
    232  * Window 1 registers offset!
    233  */
    234 static __inline int
    235 ep_w1_reg(sc, reg)
    236 	struct ep_softc *sc;
    237 	int reg;
    238 {
    239 
    240 	switch (sc->ep_chipset) {
    241 	case EP_CHIPSET_CORKSCREW:
    242 		return (reg + 0x10);
    243 
    244 	case EP_CHIPSET_ROADRUNNER:
    245 		switch (reg) {
    246 		case EP_W1_FREE_TX:
    247 		case EP_W1_RUNNER_RDCTL:
    248 		case EP_W1_RUNNER_WRCTL:
    249 			return (reg);
    250 		}
    251 		return (reg + 0x10);
    252 	}
    253 
    254 	return (reg);
    255 }
    256 
    257 /*
    258  * Issue a (reset) command, and be sure it has completed.
    259  * Used for commands that reset part or all of the  board.
    260  * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
    261  * but older hardware doesn't implement it and we must delay.
    262  * It's easiest to just delay always.
    263  */
    264 static inline void
    265 ep_complete_cmd(sc, cmd, arg)
    266 	struct ep_softc *sc;
    267 	u_int cmd, arg;
    268 {
    269 	register bus_space_tag_t iot = sc->sc_iot;
    270 	register bus_space_handle_t ioh = sc->sc_ioh;
    271 
    272 	bus_space_write_2(iot, ioh, cmd, arg);
    273 
    274 #ifdef notyet
    275 	/* if this adapter family has S_COMMAND_IN_PROGRESS, use it */
    276 	while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
    277 		;
    278 	else
    279 #else
    280 	DELAY(100000);	/* need at least 1 ms, but be generous. */
    281 #endif
    282 }
    283 
    284 /*
    285  * Back-end attach and configure.
    286  */
    287 void
    288 epconfig(sc, chipset, enaddr)
    289 	struct ep_softc *sc;
    290 	u_short chipset;
    291 	u_int8_t *enaddr;
    292 {
    293 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    294 	bus_space_tag_t iot = sc->sc_iot;
    295 	bus_space_handle_t ioh = sc->sc_ioh;
    296 	u_int16_t i;
    297 	u_int8_t myla[6];
    298 
    299 	sc->ep_chipset = chipset;
    300 
    301 	/*
    302 	 * We could have been groveling around in other register
    303 	 * windows in the front-end; make sure we're in window 0
    304 	 * to read the EEPROM.
    305 	 */
    306 	GO_WINDOW(0);
    307 
    308 	if (enaddr == NULL) {
    309 		/*
    310 		 * Read the station address from the eeprom
    311 		 */
    312 		for (i = 0; i < 3; i++) {
    313 			u_int16_t x;
    314 			if (epbusyeeprom(sc))
    315 				return;		/* XXX why is eeprom busy? */
    316 			bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
    317 					  READ_EEPROM | i);
    318 			if (epbusyeeprom(sc))
    319 				return;		/* XXX why is eeprom busy? */
    320 			x = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA);
    321 			myla[(i << 1)] = x >> 8;
    322 			myla[(i << 1) + 1] = x;
    323 		}
    324 		enaddr = myla;
    325 	}
    326 
    327 	/*
    328 	 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
    329 	 * allow FDDI-sized (4500) byte packets.  Commands only take an
    330 	 * 11-bit parameter, and  11 bits isn't enough to hold a full-size
    331 	 * packet length.
    332 	 * Commands to these cards implicitly upshift a packet size
    333 	 * or threshold by 2 bits.
    334 	 * To detect  cards with large-packet support, we probe by setting
    335 	 * the transmit threshold register, then change windows and
    336 	 * read back the threshold register directly, and see if the
    337 	 * threshold value was shifted or not.
    338 	 */
    339 	bus_space_write_2(iot, ioh, EP_COMMAND,
    340 			  SET_TX_AVAIL_THRESH | EP_LARGEWIN_PROBE );
    341 	GO_WINDOW(5);
    342 	i = bus_space_read_2(iot, ioh, EP_W5_TX_AVAIL_THRESH);
    343 	GO_WINDOW(1);
    344 	switch (i)  {
    345 	case EP_LARGEWIN_PROBE:
    346 	case (EP_LARGEWIN_PROBE & EP_LARGEWIN_MASK):
    347 		sc->ep_pktlenshift = 0;
    348 		break;
    349 
    350 	case (EP_LARGEWIN_PROBE << 2):
    351 		sc->ep_pktlenshift = 2;
    352 		break;
    353 
    354 	default:
    355 		printf("%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
    356 		    "Interface disabled\n",
    357 		    sc->sc_dev.dv_xname, EP_LARGEWIN_PROBE, (int) i);
    358 		return;
    359 	}
    360 
    361 	/*
    362 	 * Ensure Tx-available interrupts are enabled for
    363 	 * start the interface.
    364 	 * XXX should be in epinit()?
    365 	 */
    366 	bus_space_write_2(iot, ioh, EP_COMMAND,
    367 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
    368 
    369 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
    370 	ifp->if_softc = sc;
    371 	ifp->if_start = epstart;
    372 	ifp->if_ioctl = epioctl;
    373 	ifp->if_watchdog = epwatchdog;
    374 	ifp->if_flags =
    375 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    376 
    377 	if_attach(ifp);
    378 	ether_ifattach(ifp, enaddr);
    379 
    380 	/*
    381 	 * Finish configuration:
    382 	 * determine chipset if the front-end couldn't do so,
    383 	 * show board details, set media.
    384 	 */
    385 
    386 	/*
    387 	 * Print RAM size.  We also print the Ethernet address in here.
    388 	 * It's extracted from the ifp, so we have to make sure it's
    389 	 * been attached first.
    390 	 */
    391 	ep_internalconfig(sc);
    392 	GO_WINDOW(0);
    393 
    394 	/*
    395 	 * Display some additional information, if pertinent.
    396 	 */
    397 	if (sc->ep_flags & EP_FLAGS_USEFIFOBUFFER)
    398 		printf("%s: RoadRunner FIFO buffer enabled\n",
    399 		    sc->sc_dev.dv_xname);
    400 
    401 	/*
    402 	 * Initialize our media structures and MII info.  We'll
    403 	 * probe the MII if we discover that we have one.
    404 	 */
    405 	sc->sc_mii.mii_ifp = ifp;
    406 	sc->sc_mii.mii_readreg = ep_mii_readreg;
    407 	sc->sc_mii.mii_writereg = ep_mii_writereg;
    408 	sc->sc_mii.mii_statchg = ep_statchg;
    409 	ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
    410 	    ep_media_status);
    411 
    412 	/*
    413 	 * Now, determine which media we have.
    414 	 */
    415 	switch (sc->ep_chipset) {
    416 	case EP_CHIPSET_BOOMERANG:
    417 	case EP_CHIPSET_ROADRUNNER:
    418 		/*
    419 		 * If the device has MII, probe it.  We won't be using
    420 		 * any `native' media in this case, only PHYs.  If
    421 		 * we don't, just treat the Boomerang like the Vortex.
    422 		 */
    423 		if (sc->ep_flags & EP_FLAGS_MII) {
    424 			mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
    425 			if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    426 				ifmedia_add(&sc->sc_mii.mii_media,
    427 				    IFM_ETHER|IFM_NONE, 0, NULL);
    428 				ifmedia_set(&sc->sc_mii.mii_media,
    429 				    IFM_ETHER|IFM_NONE);
    430 			} else {
    431 				ifmedia_set(&sc->sc_mii.mii_media,
    432 				    IFM_ETHER|IFM_AUTO);
    433 			}
    434 			break;
    435 		}
    436 		/* FALLTHROUGH */
    437 
    438 	case EP_CHIPSET_VORTEX:
    439 		ep_vortex_probemedia(sc);
    440 		break;
    441 
    442 	default:
    443 		ep_509_probemedia(sc);
    444 		break;
    445 	}
    446 
    447 	GO_WINDOW(1);		/* Window 1 is operating window */
    448 
    449 #if NBPFILTER > 0
    450 	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
    451 		  sizeof(struct ether_header));
    452 #endif
    453 
    454 #if NRND > 0
    455 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, RND_TYPE_NET);
    456 #endif
    457 
    458 	sc->tx_start_thresh = 20;	/* probably a good starting point. */
    459 
    460 	/*  Establish callback to reset card when we reboot. */
    461 	shutdownhook_establish(epshutdown, sc);
    462 
    463 	ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
    464 	ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
    465 }
    466 
    467 
    468 /*
    469  * Show interface-model-independent info from window 3
    470  * internal-configuration register.
    471  */
    472 void
    473 ep_internalconfig(sc)
    474 	struct ep_softc *sc;
    475 {
    476 	bus_space_tag_t iot = sc->sc_iot;
    477 	bus_space_handle_t ioh = sc->sc_ioh;
    478 
    479 	u_int config0;
    480 	u_int config1;
    481 
    482 	int  ram_size, ram_width, ram_speed, rom_size, ram_split;
    483 	/*
    484 	 * NVRAM buffer Rx:Tx config names for busmastering cards
    485 	 * (Demon, Vortex, and later).
    486 	 */
    487 	const char *onboard_ram_config[] = {
    488 		"5:3", "3:1", "1:1", "3:5" };
    489 
    490 	GO_WINDOW(3);
    491 	config0 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG);
    492 	config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
    493 	GO_WINDOW(0);
    494 
    495 	ram_size  = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
    496 	ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
    497 	ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
    498 	rom_size  = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
    499 
    500 	ram_split  = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
    501 
    502 	printf("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
    503 	       sc->sc_dev.dv_xname,
    504 	       ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
    505 	       8 << ram_size,
    506 	       (ram_width) ? "word" : "byte",
    507 	       onboard_ram_config[ram_split]);
    508 }
    509 
    510 
    511 /*
    512  * Find supported media on 3c509-generation hardware that doesn't have
    513  * a "reset_options" register in window 3.
    514  * Use the config_cntrl register  in window 0 instead.
    515  * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
    516  * that implement  CONFIG_CTRL.  We don't have a good way to set the
    517  * default active mediuim; punt to ifconfig  instead.
    518  */
    519 void
    520 ep_509_probemedia(sc)
    521 	struct ep_softc *sc;
    522 {
    523 	bus_space_tag_t iot = sc->sc_iot;
    524 	bus_space_handle_t ioh = sc->sc_ioh;
    525 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    526 	u_int16_t ep_w0_config, port;
    527 	struct ep_media *epm;
    528 	const char *sep = "", *defmedianame = NULL;
    529 	int defmedia = 0;
    530 
    531 	GO_WINDOW(0);
    532 	ep_w0_config = bus_space_read_2(iot, ioh, EP_W0_CONFIG_CTRL);
    533 
    534 	printf("%s: ", sc->sc_dev.dv_xname);
    535 
    536 	/* Sanity check that there are any media! */
    537 	if ((ep_w0_config & EP_W0_CC_MEDIAMASK) == 0) {
    538 		printf("no media present!\n");
    539 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
    540 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
    541 		return;
    542 	}
    543 
    544 	/*
    545 	 * Get the default media from the EEPROM.
    546 	 */
    547 	if (epbusyeeprom(sc))
    548 		return;		/* XXX why is eeprom busy? */
    549 	bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
    550 	    READ_EEPROM | EEPROM_ADDR_CFG);
    551 	if (epbusyeeprom(sc))
    552 		return;		/* XXX why is  eeprom busy? */
    553 	port = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA) >> 14;
    554 
    555 #define	PRINT(s)	printf("%s%s", sep, s); sep = ", "
    556 
    557 	for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
    558 		if (ep_w0_config & epm->epm_mpbit) {
    559 			if (epm->epm_epmedia == port || defmedia == 0) {
    560 				defmedia = epm->epm_ifmedia;
    561 				defmedianame = epm->epm_name;
    562 			}
    563 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
    564 			    NULL);
    565 			PRINT(epm->epm_name);
    566 		}
    567 	}
    568 
    569 #undef PRINT
    570 
    571 #ifdef DIAGNOSTIC
    572 	if (defmedia == 0)
    573 		panic("ep_509_probemedia: impossible");
    574 #endif
    575 
    576 	printf(" (default %s)\n", defmedianame);
    577 	ifmedia_set(ifm, defmedia);
    578 }
    579 
    580 /*
    581  * Find media present on large-packet-capable elink3 devices.
    582  * Show onboard configuration of large-packet-capable elink3 devices
    583  * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
    584  * Use media and card-version info in window 3 instead.
    585  */
    586 void
    587 ep_vortex_probemedia(sc)
    588 	struct ep_softc *sc;
    589 {
    590 	bus_space_tag_t iot = sc->sc_iot;
    591 	bus_space_handle_t ioh = sc->sc_ioh;
    592 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    593 	struct ep_media *epm;
    594 	u_int config1;
    595 	int reset_options;
    596 	int default_media;	/* 3-bit encoding of default (EEPROM) media */
    597 	int defmedia = 0;
    598 	const char *sep = "", *defmedianame = NULL;
    599 
    600 	GO_WINDOW(3);
    601 	config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
    602 	reset_options = (int)bus_space_read_1(iot, ioh, EP_W3_RESET_OPTIONS);
    603 	GO_WINDOW(0);
    604 
    605 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
    606 
    607 	printf("%s: ", sc->sc_dev.dv_xname);
    608 
    609 	/* Sanity check that there are any media! */
    610 	if ((reset_options & EP_PCI_MEDIAMASK) == 0) {
    611 		printf("no media present!\n");
    612 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
    613 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
    614 		return;
    615 	}
    616 
    617 #define	PRINT(s)	printf("%s%s", sep, s); sep = ", "
    618 
    619 	for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
    620 		if (reset_options & epm->epm_mpbit) {
    621 			if (epm->epm_epmedia == default_media ||
    622 			    defmedia == 0) {
    623 				defmedia = epm->epm_ifmedia;
    624 				defmedianame = epm->epm_name;
    625 			}
    626 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
    627 			    NULL);
    628 			PRINT(epm->epm_name);
    629 		}
    630 	}
    631 
    632 #undef PRINT
    633 
    634 #ifdef DIAGNOSTIC
    635 	if (defmedia == 0)
    636 		panic("ep_vortex_probemedia: impossible");
    637 #endif
    638 
    639 	printf(" (default %s)\n", defmedianame);
    640 	ifmedia_set(ifm, defmedia);
    641 }
    642 
    643 /*
    644  * One second timer, used to tick the MII.
    645  */
    646 void
    647 ep_tick(arg)
    648 	void *arg;
    649 {
    650 	struct ep_softc *sc = arg;
    651 	int s;
    652 
    653 #ifdef DIAGNOSTIC
    654 	if ((sc->ep_flags & EP_FLAGS_MII) == 0)
    655 		panic("ep_tick");
    656 #endif
    657 
    658 	s = splnet();
    659 	mii_tick(&sc->sc_mii);
    660 	splx(s);
    661 
    662 	timeout(ep_tick, sc, hz);
    663 }
    664 
    665 /*
    666  * Bring device up.
    667  *
    668  * The order in here seems important. Otherwise we may not receive
    669  * interrupts. ?!
    670  */
    671 void
    672 epinit(sc)
    673 	register struct ep_softc *sc;
    674 {
    675 	register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    676 	bus_space_tag_t iot = sc->sc_iot;
    677 	bus_space_handle_t ioh = sc->sc_ioh;
    678 	int i;
    679 
    680 	while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
    681 		;
    682 
    683 	if (sc->bustype != EP_BUS_PCI) {
    684 		GO_WINDOW(0);
    685 		bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, 0);
    686 		bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
    687 	}
    688 
    689 	if (sc->bustype == EP_BUS_PCMCIA) {
    690 		bus_space_write_2(iot, ioh, EP_W0_RESOURCE_CFG, 0x3f00);
    691 	}
    692 
    693 	GO_WINDOW(2);
    694 	for (i = 0; i < 6; i++)	/* Reload the ether_addr. */
    695 		bus_space_write_1(iot, ioh, EP_W2_ADDR_0 + i,
    696 		    LLADDR(ifp->if_sadl)[i]);
    697 
    698 	/*
    699 	 * Reset the station-address receive filter.
    700 	 * A bug workaround for busmastering (Vortex, Demon) cards.
    701 	 */
    702 	for (i = 0; i < 6; i++)
    703 		bus_space_write_1(iot, ioh, EP_W2_RECVMASK_0 + i, 0);
    704 
    705 	ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
    706 	ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
    707 
    708 	GO_WINDOW(1);		/* Window 1 is operating window */
    709 	for (i = 0; i < 31; i++)
    710 		bus_space_read_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS));
    711 
    712 	/* Set threshhold for for Tx-space avaiable interrupt. */
    713 	bus_space_write_2(iot, ioh, EP_COMMAND,
    714 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
    715 
    716 	if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
    717 		/*
    718 		 * Enable options in the PCMCIA LAN COR register, via
    719 		 * RoadRunner Window 1.
    720 		 *
    721 		 * XXX MAGIC CONSTANTS!
    722 		 */
    723 		u_int16_t cor;
    724 
    725 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, (1 << 11));
    726 
    727 		cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
    728 		if (sc->ep_flags & EP_FLAGS_USESHAREDMEM)
    729 			cor |= 0x10;
    730 		if (sc->ep_flags & EP_FLAGS_FORCENOWAIT)
    731 			cor |= 0x20;
    732 		bus_space_write_2(iot, ioh, 0, cor);
    733 
    734 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_WRCTL, 0);
    735 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, 0);
    736 	}
    737 
    738 	/* Enable interrupts. */
    739 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK | S_CARD_FAILURE |
    740 				S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
    741 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK | S_CARD_FAILURE |
    742 				S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
    743 
    744 	/*
    745 	 * Attempt to get rid of any stray interrupts that occured during
    746 	 * configuration.  On the i386 this isn't possible because one may
    747 	 * already be queued.  However, a single stray interrupt is
    748 	 * unimportant.
    749 	 */
    750 	bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | 0xff);
    751 
    752 	epsetfilter(sc);
    753 	epsetmedia(sc);
    754 
    755 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_ENABLE);
    756 	bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
    757 
    758 	epmbuffill(sc);
    759 
    760 	/* Interface is now `running', with no output active. */
    761 	ifp->if_flags |= IFF_RUNNING;
    762 	ifp->if_flags &= ~IFF_OACTIVE;
    763 
    764 	if (sc->ep_flags & EP_FLAGS_MII) {
    765 		/* Start the one second clock. */
    766 		timeout(ep_tick, sc, hz);
    767 	}
    768 
    769 	/* Attempt to start output, if any. */
    770 	epstart(ifp);
    771 }
    772 
    773 
    774 /*
    775  * Set multicast receive filter.
    776  * elink3 hardware has no selective multicast filter in hardware.
    777  * Enable reception of all multicasts and filter in software.
    778  */
    779 void
    780 epsetfilter(sc)
    781 	register struct ep_softc *sc;
    782 {
    783 	register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    784 
    785 	GO_WINDOW(1);		/* Window 1 is operating window */
    786 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_COMMAND, SET_RX_FILTER |
    787 	    FIL_INDIVIDUAL | FIL_BRDCST |
    788 	    ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
    789 	    ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
    790 }
    791 
    792 int
    793 ep_media_change(ifp)
    794 	struct ifnet *ifp;
    795 {
    796 	register struct ep_softc *sc = ifp->if_softc;
    797 
    798 	if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
    799 		epreset(sc);
    800 
    801 	return (0);
    802 }
    803 
    804 /*
    805  * Set the card to use the specified media.
    806  */
    807 void
    808 epsetmedia(sc)
    809 	struct ep_softc *sc;
    810 {
    811 	bus_space_tag_t iot = sc->sc_iot;
    812 	bus_space_handle_t ioh = sc->sc_ioh;
    813 
    814 	/* Turn everything off.  First turn off linkbeat and UTP. */
    815 	GO_WINDOW(4);
    816 	bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, 0x0);
    817 
    818 	/* Turn off coax */
    819 	bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
    820 	delay(1000);
    821 
    822 	/*
    823 	 * If the device has MII, select it, and then tell the
    824 	 * PHY which media to use.
    825 	 */
    826 	if (sc->ep_flags & EP_FLAGS_MII) {
    827 		int config0, config1;
    828 
    829 		GO_WINDOW(3);
    830 
    831 		if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
    832 			int resopt;
    833 
    834 			resopt = bus_space_read_2(iot, ioh,
    835 			    EP_W3_RESET_OPTIONS);
    836 			bus_space_write_2(iot, ioh,
    837 			    EP_W3_RESET_OPTIONS, resopt|EP_RUNNER_ENABLE_MII);
    838 		}
    839 
    840 		config0 = (u_int)bus_space_read_2(iot, ioh,
    841 		    EP_W3_INTERNAL_CONFIG);
    842 		config1 = (u_int)bus_space_read_2(iot, ioh,
    843 		    EP_W3_INTERNAL_CONFIG + 2);
    844 
    845 		config1 = config1 & ~CONFIG_MEDIAMASK;
    846 		config1 |= (EPMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
    847 
    848 		bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0);
    849 		bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1);
    850 		GO_WINDOW(1);	/* back to operating window */
    851 
    852 		mii_mediachg(&sc->sc_mii);
    853 		return;
    854 	}
    855 
    856 	/*
    857 	 * Now turn on the selected media/transceiver.
    858 	 */
    859 	GO_WINDOW(4);
    860 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
    861 	case IFM_10_T:
    862 		bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
    863 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
    864 		break;
    865 
    866 	case IFM_10_2:
    867 		bus_space_write_2(iot, ioh, EP_COMMAND, START_TRANSCEIVER);
    868 		DELAY(1000);	/* 50ms not enmough? */
    869 		break;
    870 
    871 	case IFM_100_TX:
    872 	case IFM_100_FX:
    873 	case IFM_100_T4:		/* XXX check documentation */
    874 		bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
    875 		    LINKBEAT_ENABLE);
    876 		DELAY(1000);	/* not strictly necessary? */
    877 		break;
    878 
    879 	case IFM_10_5:
    880 		bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
    881 		    SQE_ENABLE);
    882 		DELAY(1000);	/* not strictly necessary? */
    883 		break;
    884 
    885 	case IFM_MANUAL:
    886 		/*
    887 		 * Nothing to do here; we are actually enabling the
    888 		 * external PHY on the MII port.
    889 		 */
    890 		break;
    891 
    892 	case IFM_NONE:
    893 		printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
    894 		return;
    895 
    896 	default:
    897 		panic("epsetmedia: impossible");
    898 	}
    899 
    900 	/*
    901 	 * Tell the chip which port to use.
    902 	 */
    903 	switch (sc->ep_chipset) {
    904 	case EP_CHIPSET_VORTEX:
    905 	case EP_CHIPSET_BOOMERANG:
    906 	    {
    907 		int config0, config1;
    908 
    909 		GO_WINDOW(3);
    910 		config0 = (u_int)bus_space_read_2(iot, ioh,
    911 		    EP_W3_INTERNAL_CONFIG);
    912 		config1 = (u_int)bus_space_read_2(iot, ioh,
    913 		    EP_W3_INTERNAL_CONFIG + 2);
    914 
    915 		config1 = config1 & ~CONFIG_MEDIAMASK;
    916 		config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
    917 		    CONFIG_MEDIAMASK_SHIFT);
    918 
    919 		bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0);
    920 		bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1);
    921 		break;
    922 	    }
    923 	default:
    924 	    {
    925 		int w0_addr_cfg;
    926 
    927 		GO_WINDOW(0);
    928 		w0_addr_cfg = bus_space_read_2(iot, ioh, EP_W0_ADDRESS_CFG);
    929 		w0_addr_cfg &= 0x3fff;
    930 		bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG, w0_addr_cfg |
    931 		    (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
    932 		DELAY(1000);
    933 		break;
    934 	    }
    935 	}
    936 
    937 	GO_WINDOW(1);		/* Window 1 is operating window */
    938 }
    939 
    940 /*
    941  * Get currently-selected media from card.
    942  * (if_media callback, may be called before interface is brought up).
    943  */
    944 void
    945 ep_media_status(ifp, req)
    946 	struct ifnet *ifp;
    947 	struct ifmediareq *req;
    948 {
    949 	register struct ep_softc *sc = ifp->if_softc;
    950 	bus_space_tag_t iot = sc->sc_iot;
    951 	bus_space_handle_t ioh = sc->sc_ioh;
    952 
    953 	if (sc->enabled == 0) {
    954 		req->ifm_active = IFM_ETHER|IFM_NONE;
    955 		req->ifm_status = 0;
    956 		return;
    957 	}
    958 
    959 	/*
    960 	 * If we have MII, go ask the PHY what's going on.
    961 	 */
    962 	if (sc->ep_flags & EP_FLAGS_MII) {
    963 		mii_pollstat(&sc->sc_mii);
    964 		req->ifm_active = sc->sc_mii.mii_media_active;
    965 		req->ifm_status = sc->sc_mii.mii_media_status;
    966 		return;
    967 	}
    968 
    969 	/*
    970 	 * Ok, at this point we claim that our active media is
    971 	 * the currently selected media.  We'll update our status
    972 	 * if our chipset allows us to detect link.
    973 	 */
    974 	req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
    975 	req->ifm_status = 0;
    976 
    977 	switch (sc->ep_chipset) {
    978 	case EP_CHIPSET_VORTEX:
    979 	case EP_CHIPSET_BOOMERANG:
    980 		GO_WINDOW(4);
    981 		req->ifm_status = IFM_AVALID;
    982 		if (bus_space_read_2(iot, ioh, EP_W4_MEDIA_TYPE) &
    983 		    LINKBEAT_DETECT)
    984 			req->ifm_status |= IFM_ACTIVE;
    985 		GO_WINDOW(1);	/* back to operating window */
    986 		break;
    987 	}
    988 }
    989 
    990 
    991 
    992 /*
    993  * Start outputting on the interface.
    994  * Always called as splnet().
    995  */
    996 void
    997 epstart(ifp)
    998 	struct ifnet *ifp;
    999 {
   1000 	register struct ep_softc *sc = ifp->if_softc;
   1001 	bus_space_tag_t iot = sc->sc_iot;
   1002 	bus_space_handle_t ioh = sc->sc_ioh;
   1003 	struct mbuf *m, *m0;
   1004 	int sh, len, pad;
   1005 	bus_addr_t txreg;
   1006 
   1007 	/* Don't transmit if interface is busy or not running */
   1008 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1009 		return;
   1010 
   1011 startagain:
   1012 	/* Sneak a peek at the next packet */
   1013 	m0 = ifp->if_snd.ifq_head;
   1014 	if (m0 == 0)
   1015 		return;
   1016 
   1017 	/* We need to use m->m_pkthdr.len, so require the header */
   1018 	if ((m0->m_flags & M_PKTHDR) == 0)
   1019 		panic("epstart: no header mbuf");
   1020 	len = m0->m_pkthdr.len;
   1021 
   1022 	pad = (4 - len) & 3;
   1023 
   1024 	/*
   1025 	 * The 3c509 automatically pads short packets to minimum ethernet
   1026 	 * length, but we drop packets that are too large. Perhaps we should
   1027 	 * truncate them instead?
   1028 	 */
   1029 	if (len + pad > ETHER_MAX_LEN) {
   1030 		/* packet is obviously too large: toss it */
   1031 		++ifp->if_oerrors;
   1032 		IF_DEQUEUE(&ifp->if_snd, m0);
   1033 		m_freem(m0);
   1034 		goto readcheck;
   1035 	}
   1036 
   1037 	if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_FREE_TX)) <
   1038 	    len + pad + 4) {
   1039 		bus_space_write_2(iot, ioh, EP_COMMAND,
   1040 		    SET_TX_AVAIL_THRESH |
   1041 		    ((len + pad + 4) >> sc->ep_pktlenshift));
   1042 		/* not enough room in FIFO */
   1043 		ifp->if_flags |= IFF_OACTIVE;
   1044 		return;
   1045 	} else {
   1046 		bus_space_write_2(iot, ioh, EP_COMMAND,
   1047 		    SET_TX_AVAIL_THRESH | EP_THRESH_DISABLE );
   1048 	}
   1049 
   1050 	IF_DEQUEUE(&ifp->if_snd, m0);
   1051 	if (m0 == 0)		/* not really needed */
   1052 		return;
   1053 
   1054 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_TX_START_THRESH |
   1055 	    ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/) );
   1056 
   1057 #if NBPFILTER > 0
   1058 	if (ifp->if_bpf)
   1059 		bpf_mtap(ifp->if_bpf, m0);
   1060 #endif
   1061 
   1062 	/*
   1063 	 * Do the output at splhigh() so that an interrupt from another device
   1064 	 * won't cause a FIFO underrun.
   1065 	 */
   1066 	sh = splhigh();
   1067 
   1068 	txreg = ep_w1_reg(sc, EP_W1_TX_PIO_WR_1);
   1069 
   1070 	if (sc->ep_flags & EP_FLAGS_USEFIFOBUFFER) {
   1071 		/*
   1072 		 * Prime the FIFO buffer counter (number of 16-bit
   1073 		 * words about to be written to the FIFO).
   1074 		 *
   1075 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
   1076 		 * COUNTER IS NON-ZERO!
   1077 		 */
   1078 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_WRCTL,
   1079 		    (len + pad) >> 1);
   1080 	}
   1081 
   1082 	bus_space_write_2(iot, ioh, txreg, len);
   1083 	bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
   1084 	if (EP_IS_BUS_32(sc->bustype)) {
   1085 		for (m = m0; m; ) {
   1086 			if (m->m_len > 3)  {
   1087 				/* align our reads from core */
   1088 				if (mtod(m, u_long) & 3)  {
   1089 					u_long count =
   1090 					    4 - (mtod(m, u_long) & 3);
   1091 					bus_space_write_multi_1(iot, ioh,
   1092 					    txreg, mtod(m, u_int8_t *), count);
   1093 					m->m_data =
   1094 					    (void *)(mtod(m, u_long) + count);
   1095 					m->m_len -= count;
   1096 				}
   1097 				bus_space_write_multi_4(iot, ioh,
   1098 				    txreg, mtod(m, u_int32_t *), m->m_len >> 2);
   1099 				m->m_data = (void *)(mtod(m, u_long) +
   1100 					(u_long)(m->m_len & ~3));
   1101 				m->m_len -= m->m_len & ~3;
   1102 			}
   1103 			if (m->m_len)  {
   1104 				bus_space_write_multi_1(iot, ioh,
   1105 				    txreg, mtod(m, u_int8_t *), m->m_len);
   1106 			}
   1107 			MFREE(m, m0);
   1108 			m = m0;
   1109 		}
   1110 	} else {
   1111 		for (m = m0; m; ) {
   1112 			if (m->m_len > 1)  {
   1113 				if (mtod(m, u_long) & 1)  {
   1114 					bus_space_write_1(iot, ioh,
   1115 					    txreg, *(mtod(m, u_int8_t *)));
   1116 					m->m_data =
   1117 					    (void *)(mtod(m, u_long) + 1);
   1118 					m->m_len -= 1;
   1119 				}
   1120 				bus_space_write_multi_2(iot, ioh,
   1121 				    txreg, mtod(m, u_int16_t *),
   1122 				    m->m_len >> 1);
   1123 			}
   1124 			if (m->m_len & 1)  {
   1125 				bus_space_write_1(iot, ioh, txreg,
   1126 				     *(mtod(m, u_int8_t *) + m->m_len - 1));
   1127 			}
   1128 			MFREE(m, m0);
   1129 			m = m0;
   1130 		}
   1131 	}
   1132 	while (pad--)
   1133 		bus_space_write_1(iot, ioh, txreg, 0);
   1134 
   1135 	splx(sh);
   1136 
   1137 	++ifp->if_opackets;
   1138 
   1139 readcheck:
   1140 	if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_RX_STATUS)) &
   1141 	    ERR_INCOMPLETE) == 0) {
   1142 		/* We received a complete packet. */
   1143 		u_int16_t status = bus_space_read_2(iot, ioh, EP_STATUS);
   1144 
   1145 		if ((status & S_INTR_LATCH) == 0) {
   1146 			/*
   1147 			 * No interrupt, read the packet and continue
   1148 			 * Is  this supposed to happen? Is my motherboard
   1149 			 * completely busted?
   1150 			 */
   1151 			epread(sc);
   1152 		} else {
   1153 			/* Got an interrupt, return so that it gets serviced. */
   1154 			return;
   1155 		}
   1156 	} else {
   1157 		/* Check if we are stuck and reset [see XXX comment] */
   1158 		if (epstatus(sc)) {
   1159 			if (ifp->if_flags & IFF_DEBUG)
   1160 				printf("%s: adapter reset\n",
   1161 				    sc->sc_dev.dv_xname);
   1162 			epreset(sc);
   1163 		}
   1164 	}
   1165 
   1166 	goto startagain;
   1167 }
   1168 
   1169 
   1170 /*
   1171  * XXX: The 3c509 card can get in a mode where both the fifo status bit
   1172  *	FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
   1173  *	We detect this situation and we reset the adapter.
   1174  *	It happens at times when there is a lot of broadcast traffic
   1175  *	on the cable (once in a blue moon).
   1176  */
   1177 static int
   1178 epstatus(sc)
   1179 	register struct ep_softc *sc;
   1180 {
   1181 	bus_space_tag_t iot = sc->sc_iot;
   1182 	bus_space_handle_t ioh = sc->sc_ioh;
   1183 	u_int16_t fifost;
   1184 
   1185 	/*
   1186 	 * Check the FIFO status and act accordingly
   1187 	 */
   1188 	GO_WINDOW(4);
   1189 	fifost = bus_space_read_2(iot, ioh, EP_W4_FIFO_DIAG);
   1190 	GO_WINDOW(1);
   1191 
   1192 	if (fifost & FIFOS_RX_UNDERRUN) {
   1193 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1194 			printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
   1195 		epreset(sc);
   1196 		return 0;
   1197 	}
   1198 
   1199 	if (fifost & FIFOS_RX_STATUS_OVERRUN) {
   1200 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1201 			printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
   1202 		return 1;
   1203 	}
   1204 
   1205 	if (fifost & FIFOS_RX_OVERRUN) {
   1206 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1207 			printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
   1208 		return 1;
   1209 	}
   1210 
   1211 	if (fifost & FIFOS_TX_OVERRUN) {
   1212 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1213 			printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
   1214 		epreset(sc);
   1215 		return 0;
   1216 	}
   1217 
   1218 	return 0;
   1219 }
   1220 
   1221 
   1222 static void
   1223 eptxstat(sc)
   1224 	register struct ep_softc *sc;
   1225 {
   1226 	bus_space_tag_t iot = sc->sc_iot;
   1227 	bus_space_handle_t ioh = sc->sc_ioh;
   1228 	int i;
   1229 
   1230 	/*
   1231 	 * We need to read+write TX_STATUS until we get a 0 status
   1232 	 * in order to turn off the interrupt flag.
   1233 	 */
   1234 	while ((i = bus_space_read_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS)))
   1235 	    & TXS_COMPLETE) {
   1236 		bus_space_write_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS),
   1237 		    0x0);
   1238 
   1239 		if (i & TXS_JABBER) {
   1240 			++sc->sc_ethercom.ec_if.if_oerrors;
   1241 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1242 				printf("%s: jabber (%x)\n",
   1243 				       sc->sc_dev.dv_xname, i);
   1244 			epreset(sc);
   1245 		} else if (i & TXS_UNDERRUN) {
   1246 			++sc->sc_ethercom.ec_if.if_oerrors;
   1247 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1248 				printf("%s: fifo underrun (%x) @%d\n",
   1249 				       sc->sc_dev.dv_xname, i,
   1250 				       sc->tx_start_thresh);
   1251 			if (sc->tx_succ_ok < 100)
   1252 				    sc->tx_start_thresh = min(ETHER_MAX_LEN,
   1253 					    sc->tx_start_thresh + 20);
   1254 			sc->tx_succ_ok = 0;
   1255 			epreset(sc);
   1256 		} else if (i & TXS_MAX_COLLISION) {
   1257 			++sc->sc_ethercom.ec_if.if_collisions;
   1258 			bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
   1259 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
   1260 		} else
   1261 			sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
   1262 	}
   1263 }
   1264 
   1265 int
   1266 epintr(arg)
   1267 	void *arg;
   1268 {
   1269 	register struct ep_softc *sc = arg;
   1270 	bus_space_tag_t iot = sc->sc_iot;
   1271 	bus_space_handle_t ioh = sc->sc_ioh;
   1272 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1273 	u_int16_t status;
   1274 	int ret = 0;
   1275 	int addrandom = 0;
   1276 
   1277 	if (sc->enabled == 0)
   1278 		return (0);
   1279 
   1280 	for (;;) {
   1281 		bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
   1282 
   1283 		status = bus_space_read_2(iot, ioh, EP_STATUS);
   1284 
   1285 		if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
   1286 			       S_RX_COMPLETE | S_CARD_FAILURE)) == 0) {
   1287 			if ((status & S_INTR_LATCH) == 0) {
   1288 #if 0
   1289 				printf("%s: intr latch cleared\n",
   1290 				       sc->sc_dev.dv_xname);
   1291 #endif
   1292 				break;
   1293 			}
   1294 		}
   1295 
   1296 		ret = 1;
   1297 
   1298 		/*
   1299 		 * Acknowledge any interrupts.  It's important that we do this
   1300 		 * first, since there would otherwise be a race condition.
   1301 		 * Due to the i386 interrupt queueing, we may get spurious
   1302 		 * interrupts occasionally.
   1303 		 */
   1304 		bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR |
   1305 				  (status & (C_INTR_LATCH |
   1306 					     C_CARD_FAILURE |
   1307 					     C_TX_COMPLETE |
   1308 					     C_TX_AVAIL |
   1309 					     C_RX_COMPLETE |
   1310 					     C_RX_EARLY |
   1311 					     C_INT_RQD |
   1312 					     C_UPD_STATS)));
   1313 
   1314 #if 0
   1315 		status = bus_space_read_2(iot, ioh, EP_STATUS);
   1316 
   1317 		printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
   1318 		       (status & S_RX_COMPLETE)?" RX_COMPLETE":"",
   1319 		       (status & S_TX_COMPLETE)?" TX_COMPLETE":"",
   1320 		       (status & S_TX_AVAIL)?" TX_AVAIL":"",
   1321 		       (status & S_CARD_FAILURE)?" CARD_FAILURE":"");
   1322 #endif
   1323 
   1324 		if (status & S_RX_COMPLETE) {
   1325 			epread(sc);
   1326 			addrandom = 1;
   1327 		}
   1328 		if (status & S_TX_AVAIL) {
   1329 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
   1330 			epstart(&sc->sc_ethercom.ec_if);
   1331 			addrandom = 1;
   1332 		}
   1333 		if (status & S_CARD_FAILURE) {
   1334 			printf("%s: adapter failure (%x)\n",
   1335 			    sc->sc_dev.dv_xname, status);
   1336 			epreset(sc);
   1337 			return (1);
   1338 		}
   1339 		if (status & S_TX_COMPLETE) {
   1340 			eptxstat(sc);
   1341 			epstart(ifp);
   1342 			addrandom = 1;
   1343 		}
   1344 
   1345 #if NRND > 0
   1346 		if (status)
   1347 			rnd_add_uint32(&sc->rnd_source, status);
   1348 #endif
   1349 	}
   1350 
   1351 	/* no more interrupts */
   1352 	return (ret);
   1353 }
   1354 
   1355 void
   1356 epread(sc)
   1357 	register struct ep_softc *sc;
   1358 {
   1359 	bus_space_tag_t iot = sc->sc_iot;
   1360 	bus_space_handle_t ioh = sc->sc_ioh;
   1361 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1362 	struct mbuf *m;
   1363 	struct ether_header *eh;
   1364 	int len;
   1365 
   1366 	len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_RX_STATUS));
   1367 
   1368 again:
   1369 	if (ifp->if_flags & IFF_DEBUG) {
   1370 		int err = len & ERR_MASK;
   1371 		char *s = NULL;
   1372 
   1373 		if (len & ERR_INCOMPLETE)
   1374 			s = "incomplete packet";
   1375 		else if (err == ERR_OVERRUN)
   1376 			s = "packet overrun";
   1377 		else if (err == ERR_RUNT)
   1378 			s = "runt packet";
   1379 		else if (err == ERR_ALIGNMENT)
   1380 			s = "bad alignment";
   1381 		else if (err == ERR_CRC)
   1382 			s = "bad crc";
   1383 		else if (err == ERR_OVERSIZE)
   1384 			s = "oversized packet";
   1385 		else if (err == ERR_DRIBBLE)
   1386 			s = "dribble bits";
   1387 
   1388 		if (s)
   1389 			printf("%s: %s\n", sc->sc_dev.dv_xname, s);
   1390 	}
   1391 
   1392 	if (len & ERR_INCOMPLETE)
   1393 		return;
   1394 
   1395 	if (len & ERR_RX) {
   1396 		++ifp->if_ierrors;
   1397 		goto abort;
   1398 	}
   1399 
   1400 	len &= RX_BYTES_MASK;	/* Lower 11 bits = RX bytes. */
   1401 
   1402 	/* Pull packet off interface. */
   1403 	m = epget(sc, len);
   1404 	if (m == 0) {
   1405 		ifp->if_ierrors++;
   1406 		goto abort;
   1407 	}
   1408 
   1409 	++ifp->if_ipackets;
   1410 
   1411 	/* We assume the header fit entirely in one mbuf. */
   1412 	eh = mtod(m, struct ether_header *);
   1413 
   1414 #if NBPFILTER > 0
   1415 	/*
   1416 	 * Check if there's a BPF listener on this interface.
   1417 	 * If so, hand off the raw packet to BPF.
   1418 	 */
   1419 	if (ifp->if_bpf) {
   1420 		bpf_mtap(ifp->if_bpf, m);
   1421 
   1422 		/*
   1423 		 * Note that the interface cannot be in promiscuous mode if
   1424 		 * there are no BPF listeners.  And if we are in promiscuous
   1425 		 * mode, we have to check if this packet is really ours.
   1426 		 */
   1427 		if ((ifp->if_flags & IFF_PROMISC) &&
   1428 		    (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
   1429 		    bcmp(eh->ether_dhost, LLADDR(sc->sc_ethercom.ec_if.if_sadl),
   1430 			    sizeof(eh->ether_dhost)) != 0) {
   1431 			m_freem(m);
   1432 			return;
   1433 		}
   1434 	}
   1435 #endif
   1436 
   1437 	/* We assume the header fit entirely in one mbuf. */
   1438 	m_adj(m, sizeof(struct ether_header));
   1439 	ether_input(ifp, eh, m);
   1440 
   1441 	/*
   1442 	 * In periods of high traffic we can actually receive enough
   1443 	 * packets so that the fifo overrun bit will be set at this point,
   1444 	 * even though we just read a packet. In this case we
   1445 	 * are not going to receive any more interrupts. We check for
   1446 	 * this condition and read again until the fifo is not full.
   1447 	 * We could simplify this test by not using epstatus(), but
   1448 	 * rechecking the RX_STATUS register directly. This test could
   1449 	 * result in unnecessary looping in cases where there is a new
   1450 	 * packet but the fifo is not full, but it will not fix the
   1451 	 * stuck behavior.
   1452 	 *
   1453 	 * Even with this improvement, we still get packet overrun errors
   1454 	 * which are hurting performance. Maybe when I get some more time
   1455 	 * I'll modify epread() so that it can handle RX_EARLY interrupts.
   1456 	 */
   1457 	if (epstatus(sc)) {
   1458 		len = bus_space_read_2(iot, ioh,
   1459 		    ep_w1_reg(sc, EP_W1_RX_STATUS));
   1460 		/* Check if we are stuck and reset [see XXX comment] */
   1461 		if (len & ERR_INCOMPLETE) {
   1462 			if (ifp->if_flags & IFF_DEBUG)
   1463 				printf("%s: adapter reset\n",
   1464 				    sc->sc_dev.dv_xname);
   1465 			epreset(sc);
   1466 			return;
   1467 		}
   1468 		goto again;
   1469 	}
   1470 
   1471 	return;
   1472 
   1473 abort:
   1474 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
   1475 	while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
   1476 		;
   1477 }
   1478 
   1479 struct mbuf *
   1480 epget(sc, totlen)
   1481 	struct ep_softc *sc;
   1482 	int totlen;
   1483 {
   1484 	bus_space_tag_t iot = sc->sc_iot;
   1485 	bus_space_handle_t ioh = sc->sc_ioh;
   1486 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1487 	struct mbuf *top, **mp, *m, *rv = NULL;
   1488 	bus_addr_t rxreg;
   1489 	int len, remaining;
   1490 	int sh;
   1491 
   1492 	m = sc->mb[sc->next_mb];
   1493 	sc->mb[sc->next_mb] = 0;
   1494 	if (m == 0) {
   1495 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1496 		if (m == 0)
   1497 			return 0;
   1498 	} else {
   1499 		/* If the queue is no longer full, refill. */
   1500 		if (sc->last_mb == sc->next_mb)
   1501 			timeout(epmbuffill, sc, 1);
   1502 		/* Convert one of our saved mbuf's. */
   1503 		sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
   1504 		m->m_data = m->m_pktdat;
   1505 		m->m_flags = M_PKTHDR;
   1506 	}
   1507 	m->m_pkthdr.rcvif = ifp;
   1508 	m->m_pkthdr.len = totlen;
   1509 	len = MHLEN;
   1510 	top = 0;
   1511 	mp = &top;
   1512 
   1513 	/*
   1514 	 * We read the packet at splhigh() so that an interrupt from another
   1515 	 * device doesn't cause the card's buffer to overflow while we're
   1516 	 * reading it.  We may still lose packets at other times.
   1517 	 */
   1518 	sh = splhigh();
   1519 
   1520 	rxreg = ep_w1_reg(sc, EP_W1_RX_PIO_RD_1);
   1521 
   1522 	if (sc->ep_flags & EP_FLAGS_USEFIFOBUFFER) {
   1523 		/*
   1524 		 * Prime the FIFO buffer counter (number of 16-bit
   1525 		 * words about to be read from the FIFO).
   1526 		 *
   1527 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
   1528 		 * COUNTER IS NON-ZERO!
   1529 		 */
   1530 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, totlen >> 1);
   1531 	}
   1532 
   1533 	while (totlen > 0) {
   1534 		if (top) {
   1535 			m = sc->mb[sc->next_mb];
   1536 			sc->mb[sc->next_mb] = 0;
   1537 			if (m == 0) {
   1538 				MGET(m, M_DONTWAIT, MT_DATA);
   1539 				if (m == 0) {
   1540 					m_freem(top);
   1541 					goto out;
   1542 				}
   1543 			} else {
   1544 				sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
   1545 			}
   1546 			len = MLEN;
   1547 		}
   1548 		if (totlen >= MINCLSIZE) {
   1549 			MCLGET(m, M_DONTWAIT);
   1550 			if ((m->m_flags & M_EXT) == 0) {
   1551 				m_free(m);
   1552 				m_freem(top);
   1553 				goto out;
   1554 			}
   1555 			len = MCLBYTES;
   1556 		}
   1557 		if (top == 0)  {
   1558 			/* align the struct ip header */
   1559 			caddr_t newdata = (caddr_t)
   1560 			    ALIGN(m->m_data + sizeof(struct ether_header))
   1561 			    - sizeof(struct ether_header);
   1562 			len -= newdata - m->m_data;
   1563 			m->m_data = newdata;
   1564 		}
   1565 		remaining = len = min(totlen, len);
   1566 		if (EP_IS_BUS_32(sc->bustype)) {
   1567 			u_long offset = mtod(m, u_long);
   1568 			/*
   1569 			 * Read bytes up to the point where we are aligned.
   1570 			 * (We can align to 4 bytes, rather than ALIGNBYTES,
   1571 			 * here because we're later reading 4-byte chunks.)
   1572 			 */
   1573 			if ((remaining > 3) && (offset & 3))  {
   1574 				int count = (4 - (offset & 3));
   1575 				bus_space_read_multi_1(iot, ioh,
   1576 				    rxreg, (u_int8_t *) offset, count);
   1577 				offset += count;
   1578 				remaining -= count;
   1579 			}
   1580 			if (remaining > 3) {
   1581 				bus_space_read_multi_4(iot, ioh,
   1582 				    rxreg, (u_int32_t *) offset,
   1583 				    remaining >> 2);
   1584 				offset += remaining & ~3;
   1585 				remaining &= 3;
   1586 			}
   1587 			if (remaining)  {
   1588 				bus_space_read_multi_1(iot, ioh,
   1589 				    rxreg, (u_int8_t *) offset, remaining);
   1590 			}
   1591 		} else {
   1592 			u_long offset = mtod(m, u_long);
   1593 			if ((remaining > 1) && (offset & 1))  {
   1594 				bus_space_read_multi_1(iot, ioh,
   1595 				    rxreg, (u_int8_t *) offset, 1);
   1596 				remaining -= 1;
   1597 				offset += 1;
   1598 			}
   1599 			if (remaining > 1) {
   1600 				bus_space_read_multi_2(iot, ioh,
   1601 				    rxreg, (u_int16_t *) offset,
   1602 				    remaining >> 1);
   1603 				offset += remaining & ~1;
   1604 			}
   1605 			if (remaining & 1)  {
   1606 				bus_space_read_multi_1(iot, ioh,
   1607 				    rxreg, (u_int8_t *) offset, remaining & 1);
   1608 			}
   1609 		}
   1610 		m->m_len = len;
   1611 		totlen -= len;
   1612 		*mp = m;
   1613 		mp = &m->m_next;
   1614 	}
   1615 
   1616 	rv = top;
   1617 
   1618 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
   1619 	while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
   1620 		;
   1621 
   1622  out:
   1623 	if (sc->ep_flags & EP_FLAGS_USEFIFOBUFFER)
   1624 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, 0);
   1625 	splx(sh);
   1626 
   1627 	return rv;
   1628 }
   1629 
   1630 int
   1631 epioctl(ifp, cmd, data)
   1632 	register struct ifnet *ifp;
   1633 	u_long cmd;
   1634 	caddr_t data;
   1635 {
   1636 	struct ep_softc *sc = ifp->if_softc;
   1637 	struct ifaddr *ifa = (struct ifaddr *)data;
   1638 	struct ifreq *ifr = (struct ifreq *)data;
   1639 	int s, error = 0;
   1640 
   1641 	s = splnet();
   1642 
   1643 	switch (cmd) {
   1644 
   1645 	case SIOCSIFADDR:
   1646 		if ((error = epenable(sc)) != 0)
   1647 			break;
   1648 		/* epinit is called just below */
   1649 		ifp->if_flags |= IFF_UP;
   1650 		switch (ifa->ifa_addr->sa_family) {
   1651 #ifdef INET
   1652 		case AF_INET:
   1653 			epinit(sc);
   1654 			arp_ifinit(&sc->sc_ethercom.ec_if, ifa);
   1655 			break;
   1656 #endif
   1657 #ifdef NS
   1658 		case AF_NS:
   1659 		    {
   1660 			register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1661 
   1662 			if (ns_nullhost(*ina))
   1663 				ina->x_host = *(union ns_host *)
   1664 				    LLADDR(ifp->if_sadl);
   1665 			else
   1666 				bcopy(ina->x_host.c_host,
   1667 				    LLADDR(ifp->if_sadl),
   1668 				    ifp->if_addrlen);
   1669 			/* Set new address. */
   1670 			epinit(sc);
   1671 			break;
   1672 		    }
   1673 #endif
   1674 		default:
   1675 			epinit(sc);
   1676 			break;
   1677 		}
   1678 		break;
   1679 
   1680 	case SIOCSIFMEDIA:
   1681 	case SIOCGIFMEDIA:
   1682 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1683 		break;
   1684 
   1685 	case SIOCSIFFLAGS:
   1686 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1687 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1688 			/*
   1689 			 * If interface is marked down and it is running, then
   1690 			 * stop it.
   1691 			 */
   1692 			epstop(sc);
   1693 			ifp->if_flags &= ~IFF_RUNNING;
   1694 			epdisable(sc);
   1695 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1696 			   (ifp->if_flags & IFF_RUNNING) == 0) {
   1697 			/*
   1698 			 * If interface is marked up and it is stopped, then
   1699 			 * start it.
   1700 			 */
   1701 			if ((error = epenable(sc)) != 0)
   1702 				break;
   1703 			epinit(sc);
   1704 		} else if (sc->enabled) {
   1705 			/*
   1706 			 * deal with flags changes:
   1707 			 * IFF_MULTICAST, IFF_PROMISC.
   1708 			 */
   1709 			epsetfilter(sc);
   1710 		}
   1711 		break;
   1712 
   1713 	case SIOCADDMULTI:
   1714 	case SIOCDELMULTI:
   1715 		if (sc->enabled == 0) {
   1716 			error = EIO;
   1717 			break;
   1718 		}
   1719 
   1720 		error = (cmd == SIOCADDMULTI) ?
   1721 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   1722 		    ether_delmulti(ifr, &sc->sc_ethercom);
   1723 
   1724 		if (error == ENETRESET) {
   1725 			/*
   1726 			 * Multicast list has changed; set the hardware filter
   1727 			 * accordingly.
   1728 			 */
   1729 			epreset(sc);
   1730 			error = 0;
   1731 		}
   1732 		break;
   1733 
   1734 	default:
   1735 		error = EINVAL;
   1736 		break;
   1737 	}
   1738 
   1739 	splx(s);
   1740 	return (error);
   1741 }
   1742 
   1743 void
   1744 epreset(sc)
   1745 	struct ep_softc *sc;
   1746 {
   1747 	int s;
   1748 
   1749 	s = splnet();
   1750 	epstop(sc);
   1751 	epinit(sc);
   1752 	splx(s);
   1753 }
   1754 
   1755 void
   1756 epwatchdog(ifp)
   1757 	struct ifnet *ifp;
   1758 {
   1759 	struct ep_softc *sc = ifp->if_softc;
   1760 
   1761 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1762 	++sc->sc_ethercom.ec_if.if_oerrors;
   1763 
   1764 	epreset(sc);
   1765 }
   1766 
   1767 void
   1768 epstop(sc)
   1769 	register struct ep_softc *sc;
   1770 {
   1771 	bus_space_tag_t iot = sc->sc_iot;
   1772 	bus_space_handle_t ioh = sc->sc_ioh;
   1773 
   1774 	if (sc->ep_flags & EP_FLAGS_MII) {
   1775 		/* Stop the one second clock. */
   1776 		untimeout(ep_tick, sc);
   1777 	}
   1778 
   1779 	if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
   1780 		/*
   1781 		 * Clear the FIFO buffer count, thus halting
   1782 		 * any currently-running transactions.
   1783 		 */
   1784 		GO_WINDOW(1);		/* sanity */
   1785 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_WRCTL, 0);
   1786 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, 0);
   1787 	}
   1788 
   1789 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISABLE);
   1790 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
   1791 	while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
   1792 		;
   1793 	bus_space_write_2(iot, ioh, EP_COMMAND, TX_DISABLE);
   1794 	bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
   1795 
   1796 	ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
   1797 	ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
   1798 
   1799 	bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
   1800 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK);
   1801 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK);
   1802 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_RX_FILTER);
   1803 
   1804 	epmbufempty(sc);
   1805 }
   1806 
   1807 
   1808 /*
   1809  * Before reboots, reset card completely.
   1810  */
   1811 static void
   1812 epshutdown(arg)
   1813 	void *arg;
   1814 {
   1815 	register struct ep_softc *sc = arg;
   1816 
   1817 	if (sc->enabled) {
   1818 		epstop(sc);
   1819 		ep_complete_cmd(sc, EP_COMMAND, GLOBAL_RESET);
   1820 	}
   1821 }
   1822 
   1823 /*
   1824  * We get eeprom data from the id_port given an offset into the
   1825  * eeprom.  Basically; after the ID_sequence is sent to all of
   1826  * the cards; they enter the ID_CMD state where they will accept
   1827  * command requests. 0x80-0xbf loads the eeprom data.  We then
   1828  * read the port 16 times and with every read; the cards check
   1829  * for contention (ie: if one card writes a 0 bit and another
   1830  * writes a 1 bit then the host sees a 0. At the end of the cycle;
   1831  * each card compares the data on the bus; if there is a difference
   1832  * then that card goes into ID_WAIT state again). In the meantime;
   1833  * one bit of data is returned in the AX register which is conveniently
   1834  * returned to us by bus_space_read_1().  Hence; we read 16 times getting one
   1835  * bit of data with each read.
   1836  *
   1837  * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
   1838  */
   1839 u_int16_t
   1840 epreadeeprom(iot, ioh, offset)
   1841 	bus_space_tag_t iot;
   1842 	bus_space_handle_t ioh;
   1843 	int offset;
   1844 {
   1845 	u_int16_t data = 0;
   1846 	int i;
   1847 
   1848 	bus_space_write_1(iot, ioh, 0, 0x80 + offset);
   1849 	delay(1000);
   1850 	for (i = 0; i < 16; i++)
   1851 		data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
   1852 	return (data);
   1853 }
   1854 
   1855 static int
   1856 epbusyeeprom(sc)
   1857 	struct ep_softc *sc;
   1858 {
   1859 	bus_space_tag_t iot = sc->sc_iot;
   1860 	bus_space_handle_t ioh = sc->sc_ioh;
   1861 	int i = 100, j;
   1862 
   1863 	if (sc->bustype == EP_BUS_PCMCIA) {
   1864 		delay(1000);
   1865 		return 0;
   1866 	}
   1867 
   1868 	j = 0;		/* bad GCC flow analysis */
   1869 	while (i--) {
   1870 		j = bus_space_read_2(iot, ioh, EP_W0_EEPROM_COMMAND);
   1871 		if (j & EEPROM_BUSY)
   1872 			delay(100);
   1873 		else
   1874 			break;
   1875 	}
   1876 	if (!i) {
   1877 		printf("\n%s: eeprom failed to come ready\n",
   1878 		    sc->sc_dev.dv_xname);
   1879 		return (1);
   1880 	}
   1881 	if (j & EEPROM_TST_MODE) {
   1882 		/* XXX PnP mode? */
   1883 		printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
   1884 		return (1);
   1885 	}
   1886 	return (0);
   1887 }
   1888 
   1889 void
   1890 epmbuffill(v)
   1891 	void *v;
   1892 {
   1893 	struct ep_softc *sc = v;
   1894 	int s, i;
   1895 
   1896 	s = splnet();
   1897 	i = sc->last_mb;
   1898 	do {
   1899 		if (sc->mb[i] == NULL)
   1900 			MGET(sc->mb[i], M_DONTWAIT, MT_DATA);
   1901 		if (sc->mb[i] == NULL)
   1902 			break;
   1903 		i = (i + 1) % MAX_MBS;
   1904 	} while (i != sc->next_mb);
   1905 	sc->last_mb = i;
   1906 	/* If the queue was not filled, try again. */
   1907 	if (sc->last_mb != sc->next_mb)
   1908 		timeout(epmbuffill, sc, 1);
   1909 	splx(s);
   1910 }
   1911 
   1912 void
   1913 epmbufempty(sc)
   1914 	struct ep_softc *sc;
   1915 {
   1916 	int s, i;
   1917 
   1918 	s = splnet();
   1919 	for (i = 0; i<MAX_MBS; i++) {
   1920 		if (sc->mb[i]) {
   1921 			m_freem(sc->mb[i]);
   1922 			sc->mb[i] = NULL;
   1923 		}
   1924 	}
   1925 	sc->last_mb = sc->next_mb = 0;
   1926 	untimeout(epmbuffill, sc);
   1927 	splx(s);
   1928 }
   1929 
   1930 int
   1931 epenable(sc)
   1932 	struct ep_softc *sc;
   1933 {
   1934 
   1935 	if (sc->enabled == 0 && sc->enable != NULL) {
   1936 		if ((*sc->enable)(sc) != 0) {
   1937 			printf("%s: device enable failed\n",
   1938 			    sc->sc_dev.dv_xname);
   1939 			return (EIO);
   1940 		}
   1941 	}
   1942 
   1943 	sc->enabled = 1;
   1944 	return (0);
   1945 }
   1946 
   1947 void
   1948 epdisable(sc)
   1949 	struct ep_softc *sc;
   1950 {
   1951 
   1952 	if (sc->enabled != 0 && sc->disable != NULL) {
   1953 		(*sc->disable)(sc);
   1954 		sc->enabled = 0;
   1955 	}
   1956 }
   1957 
   1958 void
   1959 ep_mii_setbit(sc, bit)
   1960 	struct ep_softc *sc;
   1961 	u_int16_t bit;
   1962 {
   1963 	u_int16_t val;
   1964 
   1965 	/* We assume we're already in Window 4 */
   1966 	val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT);
   1967 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT,
   1968 	    val | bit);
   1969 }
   1970 
   1971 void
   1972 ep_mii_clrbit(sc, bit)
   1973 	struct ep_softc *sc;
   1974 	u_int16_t bit;
   1975 {
   1976 	u_int16_t val;
   1977 
   1978 	/* We assume we're already in Window 4 */
   1979 	val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT);
   1980 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT,
   1981 	    val & ~bit);
   1982 }
   1983 
   1984 u_int16_t
   1985 ep_mii_readbit(sc, bit)
   1986 	struct ep_softc *sc;
   1987 	u_int16_t bit;
   1988 {
   1989 
   1990 	/* We assume we're already in Window 4 */
   1991 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT) &
   1992 	    bit);
   1993 }
   1994 
   1995 void
   1996 ep_mii_sync(sc)
   1997 	struct ep_softc *sc;
   1998 {
   1999 	int i;
   2000 
   2001 	/* We assume we're already in Window 4 */
   2002 	ep_mii_clrbit(sc, PHYSMGMT_DIR);
   2003 	for (i = 0; i < 32; i++) {
   2004 		ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2005 		ep_mii_setbit(sc, PHYSMGMT_CLK);
   2006 	}
   2007 }
   2008 
   2009 void
   2010 ep_mii_sendbits(sc, data, nbits)
   2011 	struct ep_softc *sc;
   2012 	u_int32_t data;
   2013 	int nbits;
   2014 {
   2015 	int i;
   2016 
   2017 	/* We assume we're already in Window 4 */
   2018 	ep_mii_setbit(sc, PHYSMGMT_DIR);
   2019 	for (i = 1 << (nbits - 1); i; i = i >> 1) {
   2020 		ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2021 		ep_mii_readbit(sc, PHYSMGMT_CLK);
   2022 		if (data & i)
   2023 			ep_mii_setbit(sc, PHYSMGMT_DATA);
   2024 		else
   2025 			ep_mii_clrbit(sc, PHYSMGMT_DATA);
   2026 		ep_mii_setbit(sc, PHYSMGMT_CLK);
   2027 		ep_mii_readbit(sc, PHYSMGMT_CLK);
   2028 	}
   2029 }
   2030 
   2031 int
   2032 ep_mii_readreg(self, phy, reg)
   2033 	struct device *self;
   2034 	int phy, reg;
   2035 {
   2036 	struct ep_softc *sc = (struct ep_softc *)self;
   2037 	int val = 0, i, err;
   2038 
   2039 	/*
   2040 	 * Read the PHY register by manually driving the MII control lines.
   2041 	 */
   2042 
   2043 	GO_WINDOW(4);
   2044 
   2045 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT, 0);
   2046 
   2047 	ep_mii_sync(sc);
   2048 	ep_mii_sendbits(sc, MII_COMMAND_START, 2);
   2049 	ep_mii_sendbits(sc, MII_COMMAND_READ, 2);
   2050 	ep_mii_sendbits(sc, phy, 5);
   2051 	ep_mii_sendbits(sc, reg, 5);
   2052 
   2053 	ep_mii_clrbit(sc, PHYSMGMT_DIR);
   2054 	ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2055 	ep_mii_setbit(sc, PHYSMGMT_CLK);
   2056 	ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2057 
   2058 	err = ep_mii_readbit(sc, PHYSMGMT_DATA);
   2059 	ep_mii_setbit(sc, PHYSMGMT_CLK);
   2060 
   2061 	/* Even if an error occurs, must still clock out the cycle. */
   2062 	for (i = 0; i < 16; i++) {
   2063 		val <<= 1;
   2064 		ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2065 		if (err == 0 && ep_mii_readbit(sc, PHYSMGMT_DATA))
   2066 			val |= 1;
   2067 		ep_mii_setbit(sc, PHYSMGMT_CLK);
   2068 	}
   2069 	ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2070 	ep_mii_setbit(sc, PHYSMGMT_CLK);
   2071 
   2072 	GO_WINDOW(1);	/* back to operating window */
   2073 
   2074 	return (err ? 0 : val);
   2075 }
   2076 
   2077 void
   2078 ep_mii_writereg(self, phy, reg, val)
   2079 	struct device *self;
   2080 	int phy, reg, val;
   2081 {
   2082 	struct ep_softc *sc = (struct ep_softc *)self;
   2083 
   2084 	/*
   2085 	 * Write the PHY register by manually driving the MII control lines.
   2086 	 */
   2087 
   2088 	GO_WINDOW(4);
   2089 
   2090 	ep_mii_sync(sc);
   2091 	ep_mii_sendbits(sc, MII_COMMAND_START, 2);
   2092 	ep_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
   2093 	ep_mii_sendbits(sc, phy, 5);
   2094 	ep_mii_sendbits(sc, reg, 5);
   2095 	ep_mii_sendbits(sc, MII_COMMAND_ACK, 2);
   2096 	ep_mii_sendbits(sc, val, 16);
   2097 
   2098 	ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2099 	ep_mii_setbit(sc, PHYSMGMT_CLK);
   2100 
   2101 	GO_WINDOW(1);	/* back to operating window */
   2102 }
   2103 
   2104 void
   2105 ep_statchg(self)
   2106 	struct device *self;
   2107 {
   2108 
   2109 	/* XXX Update ifp->if_baudrate */
   2110 	/* XXX Full-duplex control in MAC? */
   2111 }
   2112