elink3.c revision 1.45 1 /* $NetBSD: elink3.c,v 1.45 1998/08/26 01:32:41 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
42 * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 * must display the following acknowledgement:
55 * This product includes software developed by Herb Peyerl.
56 * 4. The name of Herb Peyerl may not be used to endorse or promote products
57 * derived from this software without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
60 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
61 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
63 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
64 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
65 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
66 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
67 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
68 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 #include "opt_inet.h"
72 #include "opt_ns.h"
73 #include "bpfilter.h"
74 #include "rnd.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/mbuf.h>
80 #include <sys/socket.h>
81 #include <sys/ioctl.h>
82 #include <sys/errno.h>
83 #include <sys/syslog.h>
84 #include <sys/select.h>
85 #include <sys/device.h>
86 #if NRND > 0
87 #include <sys/rnd.h>
88 #endif
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_ether.h>
93 #include <net/if_media.h>
94
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/in_var.h>
99 #include <netinet/ip.h>
100 #include <netinet/if_inarp.h>
101 #endif
102
103 #ifdef NS
104 #include <netns/ns.h>
105 #include <netns/ns_if.h>
106 #endif
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #include <net/bpfdesc.h>
111 #endif
112
113 #include <machine/cpu.h>
114 #include <machine/bus.h>
115 #include <machine/intr.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119
120 #include <dev/ic/elink3var.h>
121 #include <dev/ic/elink3reg.h>
122
123 #define ETHER_MIN_LEN 64
124 #define ETHER_MAX_LEN 1518
125 #define ETHER_ADDR_LEN 6
126
127 #ifdef DEBUG
128 int epdebug = 0;
129 #endif
130
131 /*
132 * Structure to map media-present bits in boards to ifmedia codes and
133 * printable media names. Used for table-driven ifmedia initialization.
134 */
135 struct ep_media {
136 int epm_mpbit; /* media present bit */
137 const char *epm_name; /* name of medium */
138 int epm_ifmedia; /* ifmedia word for medium */
139 int epm_epmedia; /* EPMEDIA_* constant */
140 };
141
142 /*
143 * Media table for the Demon/Vortex/Boomerang chipsets.
144 *
145 * Note that MII on the Demon and Vortex (3c59x) indicates an external
146 * MII connector (for connecting an external PHY) ... I think. Treat
147 * it as `manual' on these chips.
148 *
149 * Any Boomerang (3c90x) chips with MII really do have an internal
150 * MII and real PHYs attached; no `native' media.
151 */
152 struct ep_media ep_vortex_media[] = {
153 { EP_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
154 EPMEDIA_10BASE_T },
155 { EP_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
156 EPMEDIA_10BASE_T },
157 { EP_PCI_AUI, "10base5/AUI", IFM_ETHER|IFM_10_5,
158 EPMEDIA_AUI },
159 { EP_PCI_BNC, "10base2/BNC", IFM_ETHER|IFM_10_2,
160 EPMEDIA_10BASE_2 },
161 { EP_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
162 EPMEDIA_100BASE_TX },
163 { EP_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
164 EPMEDIA_100BASE_TX },
165 { EP_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
166 EPMEDIA_100BASE_FX },
167 { EP_PCI_100BASE_MII, "manual", IFM_ETHER|IFM_MANUAL,
168 EPMEDIA_MII },
169 { EP_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
170 EPMEDIA_100BASE_T4 },
171 { 0, NULL, 0,
172 0 },
173 };
174
175 /*
176 * Media table for the older 3Com Etherlink III chipset, used
177 * in the 3c509, 3c579, and 3c589.
178 */
179 struct ep_media ep_509_media[] = {
180 { EP_W0_CC_UTP, "10baseT", IFM_ETHER|IFM_10_T,
181 EPMEDIA_10BASE_T },
182 { EP_W0_CC_AUI, "10base5/AUI", IFM_ETHER|IFM_10_5,
183 EPMEDIA_AUI },
184 { EP_W0_CC_BNC, "10base2/BNC", IFM_ETHER|IFM_10_2,
185 EPMEDIA_10BASE_2 },
186 { 0, NULL, 0,
187 0 },
188 };
189
190 void ep_internalconfig __P((struct ep_softc *sc));
191 void ep_vortex_probemedia __P((struct ep_softc *sc));
192 void ep_509_probemedia __P((struct ep_softc *sc));
193
194 static void eptxstat __P((struct ep_softc *));
195 static int epstatus __P((struct ep_softc *));
196 void epinit __P((struct ep_softc *));
197 int epioctl __P((struct ifnet *, u_long, caddr_t));
198 void epstart __P((struct ifnet *));
199 void epwatchdog __P((struct ifnet *));
200 void epreset __P((struct ep_softc *));
201 static void epshutdown __P((void *));
202 void epread __P((struct ep_softc *));
203 struct mbuf *epget __P((struct ep_softc *, int));
204 void epmbuffill __P((void *));
205 void epmbufempty __P((struct ep_softc *));
206 void epsetfilter __P((struct ep_softc *));
207 void epsetmedia __P((struct ep_softc *));
208
209 int epenable __P((struct ep_softc *));
210 void epdisable __P((struct ep_softc *));
211
212 /* ifmedia callbacks */
213 int ep_media_change __P((struct ifnet *ifp));
214 void ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
215
216 /* MII callbacks */
217 int ep_mii_readreg __P((struct device *, int, int));
218 void ep_mii_writereg __P((struct device *, int, int, int));
219 void ep_statchg __P((struct device *));
220
221 void ep_tick __P((void *));
222
223 void ep_mii_setbit __P((struct ep_softc *, u_int16_t));
224 void ep_mii_clrbit __P((struct ep_softc *, u_int16_t));
225 u_int16_t ep_mii_readbit __P((struct ep_softc *, u_int16_t));
226 void ep_mii_sync __P((struct ep_softc *));
227 void ep_mii_sendbits __P((struct ep_softc *, u_int32_t, int));
228
229 static int epbusyeeprom __P((struct ep_softc *));
230 static inline void ep_complete_cmd __P((struct ep_softc *sc,
231 u_int cmd, u_int arg));
232 static __inline int ep_w1_reg __P((struct ep_softc *, int));
233
234 /*
235 * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
236 * Window 1 registers offset!
237 */
238 static __inline int
239 ep_w1_reg(sc, reg)
240 struct ep_softc *sc;
241 int reg;
242 {
243
244 switch (sc->ep_chipset) {
245 case EP_CHIPSET_CORKSCREW:
246 return (reg + 0x10);
247
248 case EP_CHIPSET_ROADRUNNER:
249 switch (reg) {
250 case EP_W1_FREE_TX:
251 case EP_W1_RUNNER_RDCTL:
252 case EP_W1_RUNNER_WRCTL:
253 return (reg);
254 }
255 return (reg + 0x10);
256 }
257
258 return (reg);
259 }
260
261 /*
262 * Issue a (reset) command, and be sure it has completed.
263 * Used for commands that reset part or all of the board.
264 * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
265 * but older hardware doesn't implement it and we must delay.
266 * It's easiest to just delay always.
267 */
268 static inline void
269 ep_complete_cmd(sc, cmd, arg)
270 struct ep_softc *sc;
271 u_int cmd, arg;
272 {
273 register bus_space_tag_t iot = sc->sc_iot;
274 register bus_space_handle_t ioh = sc->sc_ioh;
275
276 bus_space_write_2(iot, ioh, cmd, arg);
277
278 #ifdef notyet
279 /* if this adapter family has S_COMMAND_IN_PROGRESS, use it */
280 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
281 ;
282 else
283 #else
284 DELAY(100000); /* need at least 1 ms, but be generous. */
285 #endif
286 }
287
288 /*
289 * Back-end attach and configure.
290 */
291 void
292 epconfig(sc, chipset, enaddr)
293 struct ep_softc *sc;
294 u_short chipset;
295 u_int8_t *enaddr;
296 {
297 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
298 bus_space_tag_t iot = sc->sc_iot;
299 bus_space_handle_t ioh = sc->sc_ioh;
300 u_int16_t i;
301 u_int8_t myla[6];
302
303 sc->ep_chipset = chipset;
304
305 /*
306 * We could have been groveling around in other register
307 * windows in the front-end; make sure we're in window 0
308 * to read the EEPROM.
309 */
310 GO_WINDOW(0);
311
312 if (enaddr == NULL) {
313 /*
314 * Read the station address from the eeprom
315 */
316 for (i = 0; i < 3; i++) {
317 u_int16_t x;
318 if (epbusyeeprom(sc))
319 return; /* XXX why is eeprom busy? */
320 bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
321 READ_EEPROM | i);
322 if (epbusyeeprom(sc))
323 return; /* XXX why is eeprom busy? */
324 x = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA);
325 myla[(i << 1)] = x >> 8;
326 myla[(i << 1) + 1] = x;
327 }
328 enaddr = myla;
329 }
330
331 /*
332 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
333 * allow FDDI-sized (4500) byte packets. Commands only take an
334 * 11-bit parameter, and 11 bits isn't enough to hold a full-size
335 * packet length.
336 * Commands to these cards implicitly upshift a packet size
337 * or threshold by 2 bits.
338 * To detect cards with large-packet support, we probe by setting
339 * the transmit threshold register, then change windows and
340 * read back the threshold register directly, and see if the
341 * threshold value was shifted or not.
342 */
343 bus_space_write_2(iot, ioh, EP_COMMAND,
344 SET_TX_AVAIL_THRESH | EP_LARGEWIN_PROBE );
345 GO_WINDOW(5);
346 i = bus_space_read_2(iot, ioh, EP_W5_TX_AVAIL_THRESH);
347 GO_WINDOW(1);
348 switch (i) {
349 case EP_LARGEWIN_PROBE:
350 case (EP_LARGEWIN_PROBE & EP_LARGEWIN_MASK):
351 sc->ep_pktlenshift = 0;
352 break;
353
354 case (EP_LARGEWIN_PROBE << 2):
355 sc->ep_pktlenshift = 2;
356 break;
357
358 default:
359 printf("%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
360 "Interface disabled\n",
361 sc->sc_dev.dv_xname, EP_LARGEWIN_PROBE, (int) i);
362 return;
363 }
364
365 /*
366 * Ensure Tx-available interrupts are enabled for
367 * start the interface.
368 * XXX should be in epinit()?
369 */
370 bus_space_write_2(iot, ioh, EP_COMMAND,
371 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
372
373 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
374 ifp->if_softc = sc;
375 ifp->if_start = epstart;
376 ifp->if_ioctl = epioctl;
377 ifp->if_watchdog = epwatchdog;
378 ifp->if_flags =
379 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
380
381 if_attach(ifp);
382 ether_ifattach(ifp, enaddr);
383
384 /*
385 * Finish configuration:
386 * determine chipset if the front-end couldn't do so,
387 * show board details, set media.
388 */
389
390 /*
391 * Print RAM size. We also print the Ethernet address in here.
392 * It's extracted from the ifp, so we have to make sure it's
393 * been attached first.
394 */
395 ep_internalconfig(sc);
396 GO_WINDOW(0);
397
398 /*
399 * Display some additional information, if pertinent.
400 */
401 if (sc->ep_flags & EP_FLAGS_USEFIFOBUFFER)
402 printf("%s: RoadRunner FIFO buffer enabled\n",
403 sc->sc_dev.dv_xname);
404
405 /*
406 * Initialize our media structures and MII info. We'll
407 * probe the MII if we discover that we have one.
408 */
409 sc->sc_mii.mii_ifp = ifp;
410 sc->sc_mii.mii_readreg = ep_mii_readreg;
411 sc->sc_mii.mii_writereg = ep_mii_writereg;
412 sc->sc_mii.mii_statchg = ep_statchg;
413 ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
414 ep_media_status);
415
416 /*
417 * Now, determine which media we have.
418 */
419 switch (sc->ep_chipset) {
420 case EP_CHIPSET_BOOMERANG:
421 case EP_CHIPSET_ROADRUNNER:
422 /*
423 * If the device has MII, probe it. We won't be using
424 * any `native' media in this case, only PHYs. If
425 * we don't, just treat the Boomerang like the Vortex.
426 */
427 if (sc->ep_flags & EP_FLAGS_MII) {
428 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
429 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
430 ifmedia_add(&sc->sc_mii.mii_media,
431 IFM_ETHER|IFM_NONE, 0, NULL);
432 ifmedia_set(&sc->sc_mii.mii_media,
433 IFM_ETHER|IFM_NONE);
434 } else {
435 ifmedia_set(&sc->sc_mii.mii_media,
436 IFM_ETHER|IFM_AUTO);
437 }
438 break;
439 }
440 /* FALLTHROUGH */
441
442 case EP_CHIPSET_VORTEX:
443 ep_vortex_probemedia(sc);
444 break;
445
446 default:
447 ep_509_probemedia(sc);
448 break;
449 }
450
451 GO_WINDOW(1); /* Window 1 is operating window */
452
453 #if NBPFILTER > 0
454 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
455 sizeof(struct ether_header));
456 #endif
457
458 #if NRND > 0
459 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, RND_TYPE_NET);
460 #endif
461
462 sc->tx_start_thresh = 20; /* probably a good starting point. */
463
464 /* Establish callback to reset card when we reboot. */
465 shutdownhook_establish(epshutdown, sc);
466
467 ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
468 ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
469 }
470
471
472 /*
473 * Show interface-model-independent info from window 3
474 * internal-configuration register.
475 */
476 void
477 ep_internalconfig(sc)
478 struct ep_softc *sc;
479 {
480 bus_space_tag_t iot = sc->sc_iot;
481 bus_space_handle_t ioh = sc->sc_ioh;
482
483 u_int config0;
484 u_int config1;
485
486 int ram_size, ram_width, ram_speed, rom_size, ram_split;
487 /*
488 * NVRAM buffer Rx:Tx config names for busmastering cards
489 * (Demon, Vortex, and later).
490 */
491 const char *onboard_ram_config[] = {
492 "5:3", "3:1", "1:1", "3:5" };
493
494 GO_WINDOW(3);
495 config0 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG);
496 config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
497 GO_WINDOW(0);
498
499 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
500 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
501 ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
502 rom_size = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
503
504 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
505
506 printf("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
507 sc->sc_dev.dv_xname,
508 ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
509 8 << ram_size,
510 (ram_width) ? "word" : "byte",
511 onboard_ram_config[ram_split]);
512 }
513
514
515 /*
516 * Find supported media on 3c509-generation hardware that doesn't have
517 * a "reset_options" register in window 3.
518 * Use the config_cntrl register in window 0 instead.
519 * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
520 * that implement CONFIG_CTRL. We don't have a good way to set the
521 * default active mediuim; punt to ifconfig instead.
522 */
523 void
524 ep_509_probemedia(sc)
525 struct ep_softc *sc;
526 {
527 bus_space_tag_t iot = sc->sc_iot;
528 bus_space_handle_t ioh = sc->sc_ioh;
529 struct ifmedia *ifm = &sc->sc_mii.mii_media;
530 u_int16_t ep_w0_config, port;
531 struct ep_media *epm;
532 const char *sep = "", *defmedianame = NULL;
533 int defmedia = 0;
534
535 GO_WINDOW(0);
536 ep_w0_config = bus_space_read_2(iot, ioh, EP_W0_CONFIG_CTRL);
537
538 printf("%s: ", sc->sc_dev.dv_xname);
539
540 /* Sanity check that there are any media! */
541 if ((ep_w0_config & EP_W0_CC_MEDIAMASK) == 0) {
542 printf("no media present!\n");
543 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
544 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
545 return;
546 }
547
548 /*
549 * Get the default media from the EEPROM.
550 */
551 if (epbusyeeprom(sc))
552 return; /* XXX why is eeprom busy? */
553 bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
554 READ_EEPROM | EEPROM_ADDR_CFG);
555 if (epbusyeeprom(sc))
556 return; /* XXX why is eeprom busy? */
557 port = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA) >> 14;
558
559 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
560
561 for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
562 if (ep_w0_config & epm->epm_mpbit) {
563 if (epm->epm_epmedia == port || defmedia == 0) {
564 defmedia = epm->epm_ifmedia;
565 defmedianame = epm->epm_name;
566 }
567 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
568 NULL);
569 PRINT(epm->epm_name);
570 }
571 }
572
573 #undef PRINT
574
575 #ifdef DIAGNOSTIC
576 if (defmedia == 0)
577 panic("ep_509_probemedia: impossible");
578 #endif
579
580 printf(" (default %s)\n", defmedianame);
581 ifmedia_set(ifm, defmedia);
582 }
583
584 /*
585 * Find media present on large-packet-capable elink3 devices.
586 * Show onboard configuration of large-packet-capable elink3 devices
587 * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
588 * Use media and card-version info in window 3 instead.
589 */
590 void
591 ep_vortex_probemedia(sc)
592 struct ep_softc *sc;
593 {
594 bus_space_tag_t iot = sc->sc_iot;
595 bus_space_handle_t ioh = sc->sc_ioh;
596 struct ifmedia *ifm = &sc->sc_mii.mii_media;
597 struct ep_media *epm;
598 u_int config1;
599 int reset_options;
600 int default_media; /* 3-bit encoding of default (EEPROM) media */
601 int defmedia = 0;
602 const char *sep = "", *defmedianame = NULL;
603
604 GO_WINDOW(3);
605 config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
606 reset_options = (int)bus_space_read_1(iot, ioh, EP_W3_RESET_OPTIONS);
607 GO_WINDOW(0);
608
609 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
610
611 printf("%s: ", sc->sc_dev.dv_xname);
612
613 /* Sanity check that there are any media! */
614 if ((reset_options & EP_PCI_MEDIAMASK) == 0) {
615 printf("no media present!\n");
616 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
617 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
618 return;
619 }
620
621 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
622
623 for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
624 if (reset_options & epm->epm_mpbit) {
625 if (epm->epm_epmedia == default_media ||
626 defmedia == 0) {
627 defmedia = epm->epm_ifmedia;
628 defmedianame = epm->epm_name;
629 }
630 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
631 NULL);
632 PRINT(epm->epm_name);
633 }
634 }
635
636 #undef PRINT
637
638 #ifdef DIAGNOSTIC
639 if (defmedia == 0)
640 panic("ep_vortex_probemedia: impossible");
641 #endif
642
643 printf(" (default %s)\n", defmedianame);
644 ifmedia_set(ifm, defmedia);
645 }
646
647 /*
648 * One second timer, used to tick the MII.
649 */
650 void
651 ep_tick(arg)
652 void *arg;
653 {
654 struct ep_softc *sc = arg;
655 int s;
656
657 #ifdef DIAGNOSTIC
658 if ((sc->ep_flags & EP_FLAGS_MII) == 0)
659 panic("ep_tick");
660 #endif
661
662 s = splnet();
663 mii_tick(&sc->sc_mii);
664 splx(s);
665
666 timeout(ep_tick, sc, hz);
667 }
668
669 /*
670 * Bring device up.
671 *
672 * The order in here seems important. Otherwise we may not receive
673 * interrupts. ?!
674 */
675 void
676 epinit(sc)
677 register struct ep_softc *sc;
678 {
679 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
680 bus_space_tag_t iot = sc->sc_iot;
681 bus_space_handle_t ioh = sc->sc_ioh;
682 int i;
683
684 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
685 ;
686
687 if (sc->bustype != EP_BUS_PCI) {
688 GO_WINDOW(0);
689 bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, 0);
690 bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
691 }
692
693 if (sc->bustype == EP_BUS_PCMCIA) {
694 bus_space_write_2(iot, ioh, EP_W0_RESOURCE_CFG, 0x3f00);
695 }
696
697 GO_WINDOW(2);
698 for (i = 0; i < 6; i++) /* Reload the ether_addr. */
699 bus_space_write_1(iot, ioh, EP_W2_ADDR_0 + i,
700 LLADDR(ifp->if_sadl)[i]);
701
702 /*
703 * Reset the station-address receive filter.
704 * A bug workaround for busmastering (Vortex, Demon) cards.
705 */
706 for (i = 0; i < 6; i++)
707 bus_space_write_1(iot, ioh, EP_W2_RECVMASK_0 + i, 0);
708
709 ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
710 ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
711
712 GO_WINDOW(1); /* Window 1 is operating window */
713 for (i = 0; i < 31; i++)
714 bus_space_read_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS));
715
716 /* Set threshhold for for Tx-space avaiable interrupt. */
717 bus_space_write_2(iot, ioh, EP_COMMAND,
718 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
719
720 if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
721 /*
722 * Enable options in the PCMCIA LAN COR register, via
723 * RoadRunner Window 1.
724 *
725 * XXX MAGIC CONSTANTS!
726 */
727 u_int16_t cor;
728
729 bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, (1 << 11));
730
731 cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
732 if (sc->ep_flags & EP_FLAGS_USESHAREDMEM)
733 cor |= 0x10;
734 if (sc->ep_flags & EP_FLAGS_FORCENOWAIT)
735 cor |= 0x20;
736 bus_space_write_2(iot, ioh, 0, cor);
737
738 bus_space_write_2(iot, ioh, EP_W1_RUNNER_WRCTL, 0);
739 bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, 0);
740 }
741
742 /* Enable interrupts. */
743 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK | S_CARD_FAILURE |
744 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
745 bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK | S_CARD_FAILURE |
746 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
747
748 /*
749 * Attempt to get rid of any stray interrupts that occured during
750 * configuration. On the i386 this isn't possible because one may
751 * already be queued. However, a single stray interrupt is
752 * unimportant.
753 */
754 bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | 0xff);
755
756 epsetfilter(sc);
757 epsetmedia(sc);
758
759 bus_space_write_2(iot, ioh, EP_COMMAND, RX_ENABLE);
760 bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
761
762 epmbuffill(sc);
763
764 /* Interface is now `running', with no output active. */
765 ifp->if_flags |= IFF_RUNNING;
766 ifp->if_flags &= ~IFF_OACTIVE;
767
768 if (sc->ep_flags & EP_FLAGS_MII) {
769 /* Start the one second clock. */
770 timeout(ep_tick, sc, hz);
771 }
772
773 /* Attempt to start output, if any. */
774 epstart(ifp);
775 }
776
777
778 /*
779 * Set multicast receive filter.
780 * elink3 hardware has no selective multicast filter in hardware.
781 * Enable reception of all multicasts and filter in software.
782 */
783 void
784 epsetfilter(sc)
785 register struct ep_softc *sc;
786 {
787 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
788
789 GO_WINDOW(1); /* Window 1 is operating window */
790 bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_COMMAND, SET_RX_FILTER |
791 FIL_INDIVIDUAL | FIL_BRDCST |
792 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
793 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
794 }
795
796 int
797 ep_media_change(ifp)
798 struct ifnet *ifp;
799 {
800 register struct ep_softc *sc = ifp->if_softc;
801
802 if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
803 epreset(sc);
804
805 return (0);
806 }
807
808 /*
809 * Set the card to use the specified media.
810 */
811 void
812 epsetmedia(sc)
813 struct ep_softc *sc;
814 {
815 bus_space_tag_t iot = sc->sc_iot;
816 bus_space_handle_t ioh = sc->sc_ioh;
817
818 /* Turn everything off. First turn off linkbeat and UTP. */
819 GO_WINDOW(4);
820 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, 0x0);
821
822 /* Turn off coax */
823 bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
824 delay(1000);
825
826 /*
827 * If the device has MII, select it, and then tell the
828 * PHY which media to use.
829 */
830 if (sc->ep_flags & EP_FLAGS_MII) {
831 int config0, config1;
832
833 GO_WINDOW(3);
834
835 if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
836 int resopt;
837
838 resopt = bus_space_read_2(iot, ioh,
839 EP_W3_RESET_OPTIONS);
840 bus_space_write_2(iot, ioh,
841 EP_W3_RESET_OPTIONS, resopt|EP_RUNNER_ENABLE_MII);
842 }
843
844 config0 = (u_int)bus_space_read_2(iot, ioh,
845 EP_W3_INTERNAL_CONFIG);
846 config1 = (u_int)bus_space_read_2(iot, ioh,
847 EP_W3_INTERNAL_CONFIG + 2);
848
849 config1 = config1 & ~CONFIG_MEDIAMASK;
850 config1 |= (EPMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
851
852 bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0);
853 bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1);
854 GO_WINDOW(1); /* back to operating window */
855
856 mii_mediachg(&sc->sc_mii);
857 return;
858 }
859
860 /*
861 * Now turn on the selected media/transceiver.
862 */
863 GO_WINDOW(4);
864 switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
865 case IFM_10_T:
866 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
867 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
868 break;
869
870 case IFM_10_2:
871 bus_space_write_2(iot, ioh, EP_COMMAND, START_TRANSCEIVER);
872 DELAY(1000); /* 50ms not enmough? */
873 break;
874
875 case IFM_100_TX:
876 case IFM_100_FX:
877 case IFM_100_T4: /* XXX check documentation */
878 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
879 LINKBEAT_ENABLE);
880 DELAY(1000); /* not strictly necessary? */
881 break;
882
883 case IFM_10_5:
884 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
885 SQE_ENABLE);
886 DELAY(1000); /* not strictly necessary? */
887 break;
888
889 case IFM_MANUAL:
890 /*
891 * Nothing to do here; we are actually enabling the
892 * external PHY on the MII port.
893 */
894 break;
895
896 case IFM_NONE:
897 printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
898 return;
899
900 default:
901 panic("epsetmedia: impossible");
902 }
903
904 /*
905 * Tell the chip which port to use.
906 */
907 switch (sc->ep_chipset) {
908 case EP_CHIPSET_VORTEX:
909 case EP_CHIPSET_BOOMERANG:
910 {
911 int mctl, config0, config1;
912
913 GO_WINDOW(3);
914 config0 = (u_int)bus_space_read_2(iot, ioh,
915 EP_W3_INTERNAL_CONFIG);
916 config1 = (u_int)bus_space_read_2(iot, ioh,
917 EP_W3_INTERNAL_CONFIG + 2);
918
919 config1 = config1 & ~CONFIG_MEDIAMASK;
920 config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
921 CONFIG_MEDIAMASK_SHIFT);
922
923 bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0);
924 bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1);
925
926 mctl = bus_space_read_2(iot, ioh, EP_W3_MAC_CONTROL);
927 if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
928 mctl |= MAC_CONTROL_FDX;
929 else
930 mctl &= ~MAC_CONTROL_FDX;
931 bus_space_write_2(iot, ioh, EP_W3_MAC_CONTROL, mctl);
932 break;
933 }
934 default:
935 {
936 int w0_addr_cfg;
937
938 GO_WINDOW(0);
939 w0_addr_cfg = bus_space_read_2(iot, ioh, EP_W0_ADDRESS_CFG);
940 w0_addr_cfg &= 0x3fff;
941 bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG, w0_addr_cfg |
942 (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
943 DELAY(1000);
944 break;
945 }
946 }
947
948 GO_WINDOW(1); /* Window 1 is operating window */
949 }
950
951 /*
952 * Get currently-selected media from card.
953 * (if_media callback, may be called before interface is brought up).
954 */
955 void
956 ep_media_status(ifp, req)
957 struct ifnet *ifp;
958 struct ifmediareq *req;
959 {
960 register struct ep_softc *sc = ifp->if_softc;
961 bus_space_tag_t iot = sc->sc_iot;
962 bus_space_handle_t ioh = sc->sc_ioh;
963
964 if (sc->enabled == 0) {
965 req->ifm_active = IFM_ETHER|IFM_NONE;
966 req->ifm_status = 0;
967 return;
968 }
969
970 /*
971 * If we have MII, go ask the PHY what's going on.
972 */
973 if (sc->ep_flags & EP_FLAGS_MII) {
974 mii_pollstat(&sc->sc_mii);
975 req->ifm_active = sc->sc_mii.mii_media_active;
976 req->ifm_status = sc->sc_mii.mii_media_status;
977 return;
978 }
979
980 /*
981 * Ok, at this point we claim that our active media is
982 * the currently selected media. We'll update our status
983 * if our chipset allows us to detect link.
984 */
985 req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
986 req->ifm_status = 0;
987
988 switch (sc->ep_chipset) {
989 case EP_CHIPSET_VORTEX:
990 case EP_CHIPSET_BOOMERANG:
991 GO_WINDOW(4);
992 req->ifm_status = IFM_AVALID;
993 if (bus_space_read_2(iot, ioh, EP_W4_MEDIA_TYPE) &
994 LINKBEAT_DETECT)
995 req->ifm_status |= IFM_ACTIVE;
996 GO_WINDOW(1); /* back to operating window */
997 break;
998 }
999 }
1000
1001
1002
1003 /*
1004 * Start outputting on the interface.
1005 * Always called as splnet().
1006 */
1007 void
1008 epstart(ifp)
1009 struct ifnet *ifp;
1010 {
1011 register struct ep_softc *sc = ifp->if_softc;
1012 bus_space_tag_t iot = sc->sc_iot;
1013 bus_space_handle_t ioh = sc->sc_ioh;
1014 struct mbuf *m, *m0;
1015 int sh, len, pad;
1016 bus_addr_t txreg;
1017
1018 /* Don't transmit if interface is busy or not running */
1019 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1020 return;
1021
1022 startagain:
1023 /* Sneak a peek at the next packet */
1024 m0 = ifp->if_snd.ifq_head;
1025 if (m0 == 0)
1026 return;
1027
1028 /* We need to use m->m_pkthdr.len, so require the header */
1029 if ((m0->m_flags & M_PKTHDR) == 0)
1030 panic("epstart: no header mbuf");
1031 len = m0->m_pkthdr.len;
1032
1033 pad = (4 - len) & 3;
1034
1035 /*
1036 * The 3c509 automatically pads short packets to minimum ethernet
1037 * length, but we drop packets that are too large. Perhaps we should
1038 * truncate them instead?
1039 */
1040 if (len + pad > ETHER_MAX_LEN) {
1041 /* packet is obviously too large: toss it */
1042 ++ifp->if_oerrors;
1043 IF_DEQUEUE(&ifp->if_snd, m0);
1044 m_freem(m0);
1045 goto readcheck;
1046 }
1047
1048 if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_FREE_TX)) <
1049 len + pad + 4) {
1050 bus_space_write_2(iot, ioh, EP_COMMAND,
1051 SET_TX_AVAIL_THRESH |
1052 ((len + pad + 4) >> sc->ep_pktlenshift));
1053 /* not enough room in FIFO */
1054 ifp->if_flags |= IFF_OACTIVE;
1055 return;
1056 } else {
1057 bus_space_write_2(iot, ioh, EP_COMMAND,
1058 SET_TX_AVAIL_THRESH | EP_THRESH_DISABLE );
1059 }
1060
1061 IF_DEQUEUE(&ifp->if_snd, m0);
1062 if (m0 == 0) /* not really needed */
1063 return;
1064
1065 bus_space_write_2(iot, ioh, EP_COMMAND, SET_TX_START_THRESH |
1066 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/) );
1067
1068 #if NBPFILTER > 0
1069 if (ifp->if_bpf)
1070 bpf_mtap(ifp->if_bpf, m0);
1071 #endif
1072
1073 /*
1074 * Do the output at splhigh() so that an interrupt from another device
1075 * won't cause a FIFO underrun.
1076 */
1077 sh = splhigh();
1078
1079 txreg = ep_w1_reg(sc, EP_W1_TX_PIO_WR_1);
1080
1081 if (sc->ep_flags & EP_FLAGS_USEFIFOBUFFER) {
1082 /*
1083 * Prime the FIFO buffer counter (number of 16-bit
1084 * words about to be written to the FIFO).
1085 *
1086 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1087 * COUNTER IS NON-ZERO!
1088 */
1089 bus_space_write_2(iot, ioh, EP_W1_RUNNER_WRCTL,
1090 (len + pad) >> 1);
1091 }
1092
1093 bus_space_write_2(iot, ioh, txreg, len);
1094 bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1095 if (EP_IS_BUS_32(sc->bustype)) {
1096 for (m = m0; m; ) {
1097 if (m->m_len > 3) {
1098 /* align our reads from core */
1099 if (mtod(m, u_long) & 3) {
1100 u_long count =
1101 4 - (mtod(m, u_long) & 3);
1102 bus_space_write_multi_1(iot, ioh,
1103 txreg, mtod(m, u_int8_t *), count);
1104 m->m_data =
1105 (void *)(mtod(m, u_long) + count);
1106 m->m_len -= count;
1107 }
1108 bus_space_write_multi_4(iot, ioh,
1109 txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1110 m->m_data = (void *)(mtod(m, u_long) +
1111 (u_long)(m->m_len & ~3));
1112 m->m_len -= m->m_len & ~3;
1113 }
1114 if (m->m_len) {
1115 bus_space_write_multi_1(iot, ioh,
1116 txreg, mtod(m, u_int8_t *), m->m_len);
1117 }
1118 MFREE(m, m0);
1119 m = m0;
1120 }
1121 } else {
1122 for (m = m0; m; ) {
1123 if (m->m_len > 1) {
1124 if (mtod(m, u_long) & 1) {
1125 bus_space_write_1(iot, ioh,
1126 txreg, *(mtod(m, u_int8_t *)));
1127 m->m_data =
1128 (void *)(mtod(m, u_long) + 1);
1129 m->m_len -= 1;
1130 }
1131 bus_space_write_multi_2(iot, ioh,
1132 txreg, mtod(m, u_int16_t *),
1133 m->m_len >> 1);
1134 }
1135 if (m->m_len & 1) {
1136 bus_space_write_1(iot, ioh, txreg,
1137 *(mtod(m, u_int8_t *) + m->m_len - 1));
1138 }
1139 MFREE(m, m0);
1140 m = m0;
1141 }
1142 }
1143 while (pad--)
1144 bus_space_write_1(iot, ioh, txreg, 0);
1145
1146 splx(sh);
1147
1148 ++ifp->if_opackets;
1149
1150 readcheck:
1151 if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_RX_STATUS)) &
1152 ERR_INCOMPLETE) == 0) {
1153 /* We received a complete packet. */
1154 u_int16_t status = bus_space_read_2(iot, ioh, EP_STATUS);
1155
1156 if ((status & S_INTR_LATCH) == 0) {
1157 /*
1158 * No interrupt, read the packet and continue
1159 * Is this supposed to happen? Is my motherboard
1160 * completely busted?
1161 */
1162 epread(sc);
1163 } else {
1164 /* Got an interrupt, return so that it gets serviced. */
1165 return;
1166 }
1167 } else {
1168 /* Check if we are stuck and reset [see XXX comment] */
1169 if (epstatus(sc)) {
1170 if (ifp->if_flags & IFF_DEBUG)
1171 printf("%s: adapter reset\n",
1172 sc->sc_dev.dv_xname);
1173 epreset(sc);
1174 }
1175 }
1176
1177 goto startagain;
1178 }
1179
1180
1181 /*
1182 * XXX: The 3c509 card can get in a mode where both the fifo status bit
1183 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1184 * We detect this situation and we reset the adapter.
1185 * It happens at times when there is a lot of broadcast traffic
1186 * on the cable (once in a blue moon).
1187 */
1188 static int
1189 epstatus(sc)
1190 register struct ep_softc *sc;
1191 {
1192 bus_space_tag_t iot = sc->sc_iot;
1193 bus_space_handle_t ioh = sc->sc_ioh;
1194 u_int16_t fifost;
1195
1196 /*
1197 * Check the FIFO status and act accordingly
1198 */
1199 GO_WINDOW(4);
1200 fifost = bus_space_read_2(iot, ioh, EP_W4_FIFO_DIAG);
1201 GO_WINDOW(1);
1202
1203 if (fifost & FIFOS_RX_UNDERRUN) {
1204 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1205 printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
1206 epreset(sc);
1207 return 0;
1208 }
1209
1210 if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1211 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1212 printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
1213 return 1;
1214 }
1215
1216 if (fifost & FIFOS_RX_OVERRUN) {
1217 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1218 printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
1219 return 1;
1220 }
1221
1222 if (fifost & FIFOS_TX_OVERRUN) {
1223 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1224 printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
1225 epreset(sc);
1226 return 0;
1227 }
1228
1229 return 0;
1230 }
1231
1232
1233 static void
1234 eptxstat(sc)
1235 register struct ep_softc *sc;
1236 {
1237 bus_space_tag_t iot = sc->sc_iot;
1238 bus_space_handle_t ioh = sc->sc_ioh;
1239 int i;
1240
1241 /*
1242 * We need to read+write TX_STATUS until we get a 0 status
1243 * in order to turn off the interrupt flag.
1244 */
1245 while ((i = bus_space_read_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS)))
1246 & TXS_COMPLETE) {
1247 bus_space_write_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS),
1248 0x0);
1249
1250 if (i & TXS_JABBER) {
1251 ++sc->sc_ethercom.ec_if.if_oerrors;
1252 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1253 printf("%s: jabber (%x)\n",
1254 sc->sc_dev.dv_xname, i);
1255 epreset(sc);
1256 } else if (i & TXS_UNDERRUN) {
1257 ++sc->sc_ethercom.ec_if.if_oerrors;
1258 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1259 printf("%s: fifo underrun (%x) @%d\n",
1260 sc->sc_dev.dv_xname, i,
1261 sc->tx_start_thresh);
1262 if (sc->tx_succ_ok < 100)
1263 sc->tx_start_thresh = min(ETHER_MAX_LEN,
1264 sc->tx_start_thresh + 20);
1265 sc->tx_succ_ok = 0;
1266 epreset(sc);
1267 } else if (i & TXS_MAX_COLLISION) {
1268 ++sc->sc_ethercom.ec_if.if_collisions;
1269 bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
1270 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1271 } else
1272 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1273 }
1274 }
1275
1276 int
1277 epintr(arg)
1278 void *arg;
1279 {
1280 register struct ep_softc *sc = arg;
1281 bus_space_tag_t iot = sc->sc_iot;
1282 bus_space_handle_t ioh = sc->sc_ioh;
1283 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1284 u_int16_t status;
1285 int ret = 0;
1286 int addrandom = 0;
1287
1288 if (sc->enabled == 0)
1289 return (0);
1290
1291 for (;;) {
1292 bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
1293
1294 status = bus_space_read_2(iot, ioh, EP_STATUS);
1295
1296 if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
1297 S_RX_COMPLETE | S_CARD_FAILURE)) == 0) {
1298 if ((status & S_INTR_LATCH) == 0) {
1299 #if 0
1300 printf("%s: intr latch cleared\n",
1301 sc->sc_dev.dv_xname);
1302 #endif
1303 break;
1304 }
1305 }
1306
1307 ret = 1;
1308
1309 /*
1310 * Acknowledge any interrupts. It's important that we do this
1311 * first, since there would otherwise be a race condition.
1312 * Due to the i386 interrupt queueing, we may get spurious
1313 * interrupts occasionally.
1314 */
1315 bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR |
1316 (status & (C_INTR_LATCH |
1317 C_CARD_FAILURE |
1318 C_TX_COMPLETE |
1319 C_TX_AVAIL |
1320 C_RX_COMPLETE |
1321 C_RX_EARLY |
1322 C_INT_RQD |
1323 C_UPD_STATS)));
1324
1325 #if 0
1326 status = bus_space_read_2(iot, ioh, EP_STATUS);
1327
1328 printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
1329 (status & S_RX_COMPLETE)?" RX_COMPLETE":"",
1330 (status & S_TX_COMPLETE)?" TX_COMPLETE":"",
1331 (status & S_TX_AVAIL)?" TX_AVAIL":"",
1332 (status & S_CARD_FAILURE)?" CARD_FAILURE":"");
1333 #endif
1334
1335 if (status & S_RX_COMPLETE) {
1336 epread(sc);
1337 addrandom = 1;
1338 }
1339 if (status & S_TX_AVAIL) {
1340 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1341 epstart(&sc->sc_ethercom.ec_if);
1342 addrandom = 1;
1343 }
1344 if (status & S_CARD_FAILURE) {
1345 printf("%s: adapter failure (%x)\n",
1346 sc->sc_dev.dv_xname, status);
1347 epreset(sc);
1348 return (1);
1349 }
1350 if (status & S_TX_COMPLETE) {
1351 eptxstat(sc);
1352 epstart(ifp);
1353 addrandom = 1;
1354 }
1355
1356 #if NRND > 0
1357 if (status)
1358 rnd_add_uint32(&sc->rnd_source, status);
1359 #endif
1360 }
1361
1362 /* no more interrupts */
1363 return (ret);
1364 }
1365
1366 void
1367 epread(sc)
1368 register struct ep_softc *sc;
1369 {
1370 bus_space_tag_t iot = sc->sc_iot;
1371 bus_space_handle_t ioh = sc->sc_ioh;
1372 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1373 struct mbuf *m;
1374 struct ether_header *eh;
1375 int len;
1376
1377 len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_RX_STATUS));
1378
1379 again:
1380 if (ifp->if_flags & IFF_DEBUG) {
1381 int err = len & ERR_MASK;
1382 char *s = NULL;
1383
1384 if (len & ERR_INCOMPLETE)
1385 s = "incomplete packet";
1386 else if (err == ERR_OVERRUN)
1387 s = "packet overrun";
1388 else if (err == ERR_RUNT)
1389 s = "runt packet";
1390 else if (err == ERR_ALIGNMENT)
1391 s = "bad alignment";
1392 else if (err == ERR_CRC)
1393 s = "bad crc";
1394 else if (err == ERR_OVERSIZE)
1395 s = "oversized packet";
1396 else if (err == ERR_DRIBBLE)
1397 s = "dribble bits";
1398
1399 if (s)
1400 printf("%s: %s\n", sc->sc_dev.dv_xname, s);
1401 }
1402
1403 if (len & ERR_INCOMPLETE)
1404 return;
1405
1406 if (len & ERR_RX) {
1407 ++ifp->if_ierrors;
1408 goto abort;
1409 }
1410
1411 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
1412
1413 /* Pull packet off interface. */
1414 m = epget(sc, len);
1415 if (m == 0) {
1416 ifp->if_ierrors++;
1417 goto abort;
1418 }
1419
1420 ++ifp->if_ipackets;
1421
1422 /* We assume the header fit entirely in one mbuf. */
1423 eh = mtod(m, struct ether_header *);
1424
1425 #if NBPFILTER > 0
1426 /*
1427 * Check if there's a BPF listener on this interface.
1428 * If so, hand off the raw packet to BPF.
1429 */
1430 if (ifp->if_bpf) {
1431 bpf_mtap(ifp->if_bpf, m);
1432
1433 /*
1434 * Note that the interface cannot be in promiscuous mode if
1435 * there are no BPF listeners. And if we are in promiscuous
1436 * mode, we have to check if this packet is really ours.
1437 */
1438 if ((ifp->if_flags & IFF_PROMISC) &&
1439 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
1440 bcmp(eh->ether_dhost, LLADDR(sc->sc_ethercom.ec_if.if_sadl),
1441 sizeof(eh->ether_dhost)) != 0) {
1442 m_freem(m);
1443 return;
1444 }
1445 }
1446 #endif
1447
1448 /* We assume the header fit entirely in one mbuf. */
1449 m_adj(m, sizeof(struct ether_header));
1450 ether_input(ifp, eh, m);
1451
1452 /*
1453 * In periods of high traffic we can actually receive enough
1454 * packets so that the fifo overrun bit will be set at this point,
1455 * even though we just read a packet. In this case we
1456 * are not going to receive any more interrupts. We check for
1457 * this condition and read again until the fifo is not full.
1458 * We could simplify this test by not using epstatus(), but
1459 * rechecking the RX_STATUS register directly. This test could
1460 * result in unnecessary looping in cases where there is a new
1461 * packet but the fifo is not full, but it will not fix the
1462 * stuck behavior.
1463 *
1464 * Even with this improvement, we still get packet overrun errors
1465 * which are hurting performance. Maybe when I get some more time
1466 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1467 */
1468 if (epstatus(sc)) {
1469 len = bus_space_read_2(iot, ioh,
1470 ep_w1_reg(sc, EP_W1_RX_STATUS));
1471 /* Check if we are stuck and reset [see XXX comment] */
1472 if (len & ERR_INCOMPLETE) {
1473 if (ifp->if_flags & IFF_DEBUG)
1474 printf("%s: adapter reset\n",
1475 sc->sc_dev.dv_xname);
1476 epreset(sc);
1477 return;
1478 }
1479 goto again;
1480 }
1481
1482 return;
1483
1484 abort:
1485 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
1486 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
1487 ;
1488 }
1489
1490 struct mbuf *
1491 epget(sc, totlen)
1492 struct ep_softc *sc;
1493 int totlen;
1494 {
1495 bus_space_tag_t iot = sc->sc_iot;
1496 bus_space_handle_t ioh = sc->sc_ioh;
1497 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1498 struct mbuf *top, **mp, *m, *rv = NULL;
1499 bus_addr_t rxreg;
1500 int len, remaining;
1501 int sh;
1502
1503 m = sc->mb[sc->next_mb];
1504 sc->mb[sc->next_mb] = 0;
1505 if (m == 0) {
1506 MGETHDR(m, M_DONTWAIT, MT_DATA);
1507 if (m == 0)
1508 return 0;
1509 } else {
1510 /* If the queue is no longer full, refill. */
1511 if (sc->last_mb == sc->next_mb)
1512 timeout(epmbuffill, sc, 1);
1513 /* Convert one of our saved mbuf's. */
1514 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1515 m->m_data = m->m_pktdat;
1516 m->m_flags = M_PKTHDR;
1517 }
1518 m->m_pkthdr.rcvif = ifp;
1519 m->m_pkthdr.len = totlen;
1520 len = MHLEN;
1521 top = 0;
1522 mp = ⊤
1523
1524 /*
1525 * We read the packet at splhigh() so that an interrupt from another
1526 * device doesn't cause the card's buffer to overflow while we're
1527 * reading it. We may still lose packets at other times.
1528 */
1529 sh = splhigh();
1530
1531 rxreg = ep_w1_reg(sc, EP_W1_RX_PIO_RD_1);
1532
1533 if (sc->ep_flags & EP_FLAGS_USEFIFOBUFFER) {
1534 /*
1535 * Prime the FIFO buffer counter (number of 16-bit
1536 * words about to be read from the FIFO).
1537 *
1538 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1539 * COUNTER IS NON-ZERO!
1540 */
1541 bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, totlen >> 1);
1542 }
1543
1544 while (totlen > 0) {
1545 if (top) {
1546 m = sc->mb[sc->next_mb];
1547 sc->mb[sc->next_mb] = 0;
1548 if (m == 0) {
1549 MGET(m, M_DONTWAIT, MT_DATA);
1550 if (m == 0) {
1551 m_freem(top);
1552 goto out;
1553 }
1554 } else {
1555 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1556 }
1557 len = MLEN;
1558 }
1559 if (totlen >= MINCLSIZE) {
1560 MCLGET(m, M_DONTWAIT);
1561 if ((m->m_flags & M_EXT) == 0) {
1562 m_free(m);
1563 m_freem(top);
1564 goto out;
1565 }
1566 len = MCLBYTES;
1567 }
1568 if (top == 0) {
1569 /* align the struct ip header */
1570 caddr_t newdata = (caddr_t)
1571 ALIGN(m->m_data + sizeof(struct ether_header))
1572 - sizeof(struct ether_header);
1573 len -= newdata - m->m_data;
1574 m->m_data = newdata;
1575 }
1576 remaining = len = min(totlen, len);
1577 if (EP_IS_BUS_32(sc->bustype)) {
1578 u_long offset = mtod(m, u_long);
1579 /*
1580 * Read bytes up to the point where we are aligned.
1581 * (We can align to 4 bytes, rather than ALIGNBYTES,
1582 * here because we're later reading 4-byte chunks.)
1583 */
1584 if ((remaining > 3) && (offset & 3)) {
1585 int count = (4 - (offset & 3));
1586 bus_space_read_multi_1(iot, ioh,
1587 rxreg, (u_int8_t *) offset, count);
1588 offset += count;
1589 remaining -= count;
1590 }
1591 if (remaining > 3) {
1592 bus_space_read_multi_4(iot, ioh,
1593 rxreg, (u_int32_t *) offset,
1594 remaining >> 2);
1595 offset += remaining & ~3;
1596 remaining &= 3;
1597 }
1598 if (remaining) {
1599 bus_space_read_multi_1(iot, ioh,
1600 rxreg, (u_int8_t *) offset, remaining);
1601 }
1602 } else {
1603 u_long offset = mtod(m, u_long);
1604 if ((remaining > 1) && (offset & 1)) {
1605 bus_space_read_multi_1(iot, ioh,
1606 rxreg, (u_int8_t *) offset, 1);
1607 remaining -= 1;
1608 offset += 1;
1609 }
1610 if (remaining > 1) {
1611 bus_space_read_multi_2(iot, ioh,
1612 rxreg, (u_int16_t *) offset,
1613 remaining >> 1);
1614 offset += remaining & ~1;
1615 }
1616 if (remaining & 1) {
1617 bus_space_read_multi_1(iot, ioh,
1618 rxreg, (u_int8_t *) offset, remaining & 1);
1619 }
1620 }
1621 m->m_len = len;
1622 totlen -= len;
1623 *mp = m;
1624 mp = &m->m_next;
1625 }
1626
1627 rv = top;
1628
1629 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
1630 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
1631 ;
1632
1633 out:
1634 if (sc->ep_flags & EP_FLAGS_USEFIFOBUFFER)
1635 bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, 0);
1636 splx(sh);
1637
1638 return rv;
1639 }
1640
1641 int
1642 epioctl(ifp, cmd, data)
1643 register struct ifnet *ifp;
1644 u_long cmd;
1645 caddr_t data;
1646 {
1647 struct ep_softc *sc = ifp->if_softc;
1648 struct ifaddr *ifa = (struct ifaddr *)data;
1649 struct ifreq *ifr = (struct ifreq *)data;
1650 int s, error = 0;
1651
1652 s = splnet();
1653
1654 switch (cmd) {
1655
1656 case SIOCSIFADDR:
1657 if ((error = epenable(sc)) != 0)
1658 break;
1659 /* epinit is called just below */
1660 ifp->if_flags |= IFF_UP;
1661 switch (ifa->ifa_addr->sa_family) {
1662 #ifdef INET
1663 case AF_INET:
1664 epinit(sc);
1665 arp_ifinit(&sc->sc_ethercom.ec_if, ifa);
1666 break;
1667 #endif
1668 #ifdef NS
1669 case AF_NS:
1670 {
1671 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1672
1673 if (ns_nullhost(*ina))
1674 ina->x_host = *(union ns_host *)
1675 LLADDR(ifp->if_sadl);
1676 else
1677 bcopy(ina->x_host.c_host,
1678 LLADDR(ifp->if_sadl),
1679 ifp->if_addrlen);
1680 /* Set new address. */
1681 epinit(sc);
1682 break;
1683 }
1684 #endif
1685 default:
1686 epinit(sc);
1687 break;
1688 }
1689 break;
1690
1691 case SIOCSIFMEDIA:
1692 case SIOCGIFMEDIA:
1693 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1694 break;
1695
1696 case SIOCSIFFLAGS:
1697 if ((ifp->if_flags & IFF_UP) == 0 &&
1698 (ifp->if_flags & IFF_RUNNING) != 0) {
1699 /*
1700 * If interface is marked down and it is running, then
1701 * stop it.
1702 */
1703 epstop(sc);
1704 ifp->if_flags &= ~IFF_RUNNING;
1705 epdisable(sc);
1706 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1707 (ifp->if_flags & IFF_RUNNING) == 0) {
1708 /*
1709 * If interface is marked up and it is stopped, then
1710 * start it.
1711 */
1712 if ((error = epenable(sc)) != 0)
1713 break;
1714 epinit(sc);
1715 } else if (sc->enabled) {
1716 /*
1717 * deal with flags changes:
1718 * IFF_MULTICAST, IFF_PROMISC.
1719 */
1720 epsetfilter(sc);
1721 }
1722 break;
1723
1724 case SIOCADDMULTI:
1725 case SIOCDELMULTI:
1726 if (sc->enabled == 0) {
1727 error = EIO;
1728 break;
1729 }
1730
1731 error = (cmd == SIOCADDMULTI) ?
1732 ether_addmulti(ifr, &sc->sc_ethercom) :
1733 ether_delmulti(ifr, &sc->sc_ethercom);
1734
1735 if (error == ENETRESET) {
1736 /*
1737 * Multicast list has changed; set the hardware filter
1738 * accordingly.
1739 */
1740 epreset(sc);
1741 error = 0;
1742 }
1743 break;
1744
1745 default:
1746 error = EINVAL;
1747 break;
1748 }
1749
1750 splx(s);
1751 return (error);
1752 }
1753
1754 void
1755 epreset(sc)
1756 struct ep_softc *sc;
1757 {
1758 int s;
1759
1760 s = splnet();
1761 epstop(sc);
1762 epinit(sc);
1763 splx(s);
1764 }
1765
1766 void
1767 epwatchdog(ifp)
1768 struct ifnet *ifp;
1769 {
1770 struct ep_softc *sc = ifp->if_softc;
1771
1772 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1773 ++sc->sc_ethercom.ec_if.if_oerrors;
1774
1775 epreset(sc);
1776 }
1777
1778 void
1779 epstop(sc)
1780 register struct ep_softc *sc;
1781 {
1782 bus_space_tag_t iot = sc->sc_iot;
1783 bus_space_handle_t ioh = sc->sc_ioh;
1784
1785 if (sc->ep_flags & EP_FLAGS_MII) {
1786 /* Stop the one second clock. */
1787 untimeout(ep_tick, sc);
1788 }
1789
1790 if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
1791 /*
1792 * Clear the FIFO buffer count, thus halting
1793 * any currently-running transactions.
1794 */
1795 GO_WINDOW(1); /* sanity */
1796 bus_space_write_2(iot, ioh, EP_W1_RUNNER_WRCTL, 0);
1797 bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, 0);
1798 }
1799
1800 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISABLE);
1801 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
1802 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
1803 ;
1804 bus_space_write_2(iot, ioh, EP_COMMAND, TX_DISABLE);
1805 bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
1806
1807 ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
1808 ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
1809
1810 bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
1811 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK);
1812 bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK);
1813 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RX_FILTER);
1814
1815 epmbufempty(sc);
1816 }
1817
1818
1819 /*
1820 * Before reboots, reset card completely.
1821 */
1822 static void
1823 epshutdown(arg)
1824 void *arg;
1825 {
1826 register struct ep_softc *sc = arg;
1827
1828 if (sc->enabled) {
1829 epstop(sc);
1830 ep_complete_cmd(sc, EP_COMMAND, GLOBAL_RESET);
1831 }
1832 }
1833
1834 /*
1835 * We get eeprom data from the id_port given an offset into the
1836 * eeprom. Basically; after the ID_sequence is sent to all of
1837 * the cards; they enter the ID_CMD state where they will accept
1838 * command requests. 0x80-0xbf loads the eeprom data. We then
1839 * read the port 16 times and with every read; the cards check
1840 * for contention (ie: if one card writes a 0 bit and another
1841 * writes a 1 bit then the host sees a 0. At the end of the cycle;
1842 * each card compares the data on the bus; if there is a difference
1843 * then that card goes into ID_WAIT state again). In the meantime;
1844 * one bit of data is returned in the AX register which is conveniently
1845 * returned to us by bus_space_read_1(). Hence; we read 16 times getting one
1846 * bit of data with each read.
1847 *
1848 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1849 */
1850 u_int16_t
1851 epreadeeprom(iot, ioh, offset)
1852 bus_space_tag_t iot;
1853 bus_space_handle_t ioh;
1854 int offset;
1855 {
1856 u_int16_t data = 0;
1857 int i;
1858
1859 bus_space_write_1(iot, ioh, 0, 0x80 + offset);
1860 delay(1000);
1861 for (i = 0; i < 16; i++)
1862 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1863 return (data);
1864 }
1865
1866 static int
1867 epbusyeeprom(sc)
1868 struct ep_softc *sc;
1869 {
1870 bus_space_tag_t iot = sc->sc_iot;
1871 bus_space_handle_t ioh = sc->sc_ioh;
1872 int i = 100, j;
1873
1874 if (sc->bustype == EP_BUS_PCMCIA) {
1875 delay(1000);
1876 return 0;
1877 }
1878
1879 j = 0; /* bad GCC flow analysis */
1880 while (i--) {
1881 j = bus_space_read_2(iot, ioh, EP_W0_EEPROM_COMMAND);
1882 if (j & EEPROM_BUSY)
1883 delay(100);
1884 else
1885 break;
1886 }
1887 if (!i) {
1888 printf("\n%s: eeprom failed to come ready\n",
1889 sc->sc_dev.dv_xname);
1890 return (1);
1891 }
1892 if (j & EEPROM_TST_MODE) {
1893 /* XXX PnP mode? */
1894 printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
1895 return (1);
1896 }
1897 return (0);
1898 }
1899
1900 void
1901 epmbuffill(v)
1902 void *v;
1903 {
1904 struct ep_softc *sc = v;
1905 int s, i;
1906
1907 s = splnet();
1908 i = sc->last_mb;
1909 do {
1910 if (sc->mb[i] == NULL)
1911 MGET(sc->mb[i], M_DONTWAIT, MT_DATA);
1912 if (sc->mb[i] == NULL)
1913 break;
1914 i = (i + 1) % MAX_MBS;
1915 } while (i != sc->next_mb);
1916 sc->last_mb = i;
1917 /* If the queue was not filled, try again. */
1918 if (sc->last_mb != sc->next_mb)
1919 timeout(epmbuffill, sc, 1);
1920 splx(s);
1921 }
1922
1923 void
1924 epmbufempty(sc)
1925 struct ep_softc *sc;
1926 {
1927 int s, i;
1928
1929 s = splnet();
1930 for (i = 0; i<MAX_MBS; i++) {
1931 if (sc->mb[i]) {
1932 m_freem(sc->mb[i]);
1933 sc->mb[i] = NULL;
1934 }
1935 }
1936 sc->last_mb = sc->next_mb = 0;
1937 untimeout(epmbuffill, sc);
1938 splx(s);
1939 }
1940
1941 int
1942 epenable(sc)
1943 struct ep_softc *sc;
1944 {
1945
1946 if (sc->enabled == 0 && sc->enable != NULL) {
1947 if ((*sc->enable)(sc) != 0) {
1948 printf("%s: device enable failed\n",
1949 sc->sc_dev.dv_xname);
1950 return (EIO);
1951 }
1952 }
1953
1954 sc->enabled = 1;
1955 return (0);
1956 }
1957
1958 void
1959 epdisable(sc)
1960 struct ep_softc *sc;
1961 {
1962
1963 if (sc->enabled != 0 && sc->disable != NULL) {
1964 (*sc->disable)(sc);
1965 sc->enabled = 0;
1966 }
1967 }
1968
1969 void
1970 ep_mii_setbit(sc, bit)
1971 struct ep_softc *sc;
1972 u_int16_t bit;
1973 {
1974 u_int16_t val;
1975
1976 /* We assume we're already in Window 4 */
1977 val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT);
1978 bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT,
1979 val | bit);
1980 }
1981
1982 void
1983 ep_mii_clrbit(sc, bit)
1984 struct ep_softc *sc;
1985 u_int16_t bit;
1986 {
1987 u_int16_t val;
1988
1989 /* We assume we're already in Window 4 */
1990 val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT);
1991 bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT,
1992 val & ~bit);
1993 }
1994
1995 u_int16_t
1996 ep_mii_readbit(sc, bit)
1997 struct ep_softc *sc;
1998 u_int16_t bit;
1999 {
2000
2001 /* We assume we're already in Window 4 */
2002 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT) &
2003 bit);
2004 }
2005
2006 void
2007 ep_mii_sync(sc)
2008 struct ep_softc *sc;
2009 {
2010 int i;
2011
2012 /* We assume we're already in Window 4 */
2013 ep_mii_clrbit(sc, PHYSMGMT_DIR);
2014 for (i = 0; i < 32; i++) {
2015 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2016 ep_mii_setbit(sc, PHYSMGMT_CLK);
2017 }
2018 }
2019
2020 void
2021 ep_mii_sendbits(sc, data, nbits)
2022 struct ep_softc *sc;
2023 u_int32_t data;
2024 int nbits;
2025 {
2026 int i;
2027
2028 /* We assume we're already in Window 4 */
2029 ep_mii_setbit(sc, PHYSMGMT_DIR);
2030 for (i = 1 << (nbits - 1); i; i = i >> 1) {
2031 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2032 ep_mii_readbit(sc, PHYSMGMT_CLK);
2033 if (data & i)
2034 ep_mii_setbit(sc, PHYSMGMT_DATA);
2035 else
2036 ep_mii_clrbit(sc, PHYSMGMT_DATA);
2037 ep_mii_setbit(sc, PHYSMGMT_CLK);
2038 ep_mii_readbit(sc, PHYSMGMT_CLK);
2039 }
2040 }
2041
2042 int
2043 ep_mii_readreg(self, phy, reg)
2044 struct device *self;
2045 int phy, reg;
2046 {
2047 struct ep_softc *sc = (struct ep_softc *)self;
2048 int val = 0, i, err;
2049
2050 /*
2051 * Read the PHY register by manually driving the MII control lines.
2052 */
2053
2054 GO_WINDOW(4);
2055
2056 bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT, 0);
2057
2058 ep_mii_sync(sc);
2059 ep_mii_sendbits(sc, MII_COMMAND_START, 2);
2060 ep_mii_sendbits(sc, MII_COMMAND_READ, 2);
2061 ep_mii_sendbits(sc, phy, 5);
2062 ep_mii_sendbits(sc, reg, 5);
2063
2064 ep_mii_clrbit(sc, PHYSMGMT_DIR);
2065 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2066 ep_mii_setbit(sc, PHYSMGMT_CLK);
2067 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2068
2069 err = ep_mii_readbit(sc, PHYSMGMT_DATA);
2070 ep_mii_setbit(sc, PHYSMGMT_CLK);
2071
2072 /* Even if an error occurs, must still clock out the cycle. */
2073 for (i = 0; i < 16; i++) {
2074 val <<= 1;
2075 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2076 if (err == 0 && ep_mii_readbit(sc, PHYSMGMT_DATA))
2077 val |= 1;
2078 ep_mii_setbit(sc, PHYSMGMT_CLK);
2079 }
2080 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2081 ep_mii_setbit(sc, PHYSMGMT_CLK);
2082
2083 GO_WINDOW(1); /* back to operating window */
2084
2085 return (err ? 0 : val);
2086 }
2087
2088 void
2089 ep_mii_writereg(self, phy, reg, val)
2090 struct device *self;
2091 int phy, reg, val;
2092 {
2093 struct ep_softc *sc = (struct ep_softc *)self;
2094
2095 /*
2096 * Write the PHY register by manually driving the MII control lines.
2097 */
2098
2099 GO_WINDOW(4);
2100
2101 ep_mii_sync(sc);
2102 ep_mii_sendbits(sc, MII_COMMAND_START, 2);
2103 ep_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
2104 ep_mii_sendbits(sc, phy, 5);
2105 ep_mii_sendbits(sc, reg, 5);
2106 ep_mii_sendbits(sc, MII_COMMAND_ACK, 2);
2107 ep_mii_sendbits(sc, val, 16);
2108
2109 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2110 ep_mii_setbit(sc, PHYSMGMT_CLK);
2111
2112 GO_WINDOW(1); /* back to operating window */
2113 }
2114
2115 void
2116 ep_statchg(self)
2117 struct device *self;
2118 {
2119 struct ep_softc *sc = (struct ep_softc *)self;
2120 bus_space_tag_t iot = sc->sc_iot;
2121 bus_space_handle_t ioh = sc->sc_ioh;
2122 int mctl;
2123
2124 /* XXX Update ifp->if_baudrate */
2125
2126 GO_WINDOW(3);
2127 mctl = bus_space_read_2(iot, ioh, EP_W3_MAC_CONTROL);
2128 if (sc->sc_mii.mii_media_active & IFM_FDX)
2129 mctl |= MAC_CONTROL_FDX;
2130 else
2131 mctl &= ~MAC_CONTROL_FDX;
2132 bus_space_write_2(iot, ioh, EP_W3_MAC_CONTROL, mctl);
2133 GO_WINDOW(1); /* back to operating window */
2134 }
2135