Home | History | Annotate | Line # | Download | only in ic
elink3.c revision 1.46
      1 /*	$NetBSD: elink3.c,v 1.46 1998/08/28 18:16:02 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
     42  * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
     43  * All rights reserved.
     44  *
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice, this list of conditions and the following disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  * 3. All advertising materials mentioning features or use of this software
     54  *    must display the following acknowledgement:
     55  *      This product includes software developed by Herb Peyerl.
     56  * 4. The name of Herb Peyerl may not be used to endorse or promote products
     57  *    derived from this software without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     60  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     61  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     63  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     64  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     65  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     66  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     67  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     68  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     69  */
     70 
     71 #include "opt_inet.h"
     72 #include "opt_ns.h"
     73 #include "bpfilter.h"
     74 #include "rnd.h"
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/mbuf.h>
     80 #include <sys/socket.h>
     81 #include <sys/ioctl.h>
     82 #include <sys/errno.h>
     83 #include <sys/syslog.h>
     84 #include <sys/select.h>
     85 #include <sys/device.h>
     86 #if NRND > 0
     87 #include <sys/rnd.h>
     88 #endif
     89 
     90 #include <net/if.h>
     91 #include <net/if_dl.h>
     92 #include <net/if_ether.h>
     93 #include <net/if_media.h>
     94 
     95 #ifdef INET
     96 #include <netinet/in.h>
     97 #include <netinet/in_systm.h>
     98 #include <netinet/in_var.h>
     99 #include <netinet/ip.h>
    100 #include <netinet/if_inarp.h>
    101 #endif
    102 
    103 #ifdef NS
    104 #include <netns/ns.h>
    105 #include <netns/ns_if.h>
    106 #endif
    107 
    108 #if NBPFILTER > 0
    109 #include <net/bpf.h>
    110 #include <net/bpfdesc.h>
    111 #endif
    112 
    113 #include <machine/cpu.h>
    114 #include <machine/bus.h>
    115 #include <machine/intr.h>
    116 
    117 #include <dev/mii/mii.h>
    118 #include <dev/mii/miivar.h>
    119 
    120 #include <dev/ic/elink3var.h>
    121 #include <dev/ic/elink3reg.h>
    122 
    123 #define ETHER_MIN_LEN	64
    124 #define ETHER_MAX_LEN   1518
    125 #define ETHER_ADDR_LEN  6
    126 
    127 #ifdef DEBUG
    128 int epdebug = 0;
    129 #endif
    130 
    131 /*
    132  * Structure to map media-present bits in boards to ifmedia codes and
    133  * printable media names. Used for table-driven ifmedia initialization.
    134  */
    135 struct ep_media {
    136 	int	epm_mpbit;		/* media present bit */
    137 	const char *epm_name;		/* name of medium */
    138 	int	epm_ifmedia;		/* ifmedia word for medium */
    139 	int	epm_epmedia;		/* EPMEDIA_* constant */
    140 };
    141 
    142 /*
    143  * Media table for the Demon/Vortex/Boomerang chipsets.
    144  *
    145  * Note that MII on the Demon and Vortex (3c59x) indicates an external
    146  * MII connector (for connecting an external PHY) ... I think.  Treat
    147  * it as `manual' on these chips.
    148  *
    149  * Any Boomerang (3c90x) chips with MII really do have an internal
    150  * MII and real PHYs attached; no `native' media.
    151  */
    152 struct ep_media ep_vortex_media[] = {
    153 	{ EP_PCI_10BASE_T,	"10baseT",	IFM_ETHER|IFM_10_T,
    154 	  EPMEDIA_10BASE_T },
    155 	{ EP_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER|IFM_10_T|IFM_FDX,
    156 	  EPMEDIA_10BASE_T },
    157 	{ EP_PCI_AUI,		"10base5/AUI",	IFM_ETHER|IFM_10_5,
    158 	  EPMEDIA_AUI },
    159 	{ EP_PCI_BNC,		"10base2/BNC",	IFM_ETHER|IFM_10_2,
    160 	  EPMEDIA_10BASE_2 },
    161 	{ EP_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER|IFM_100_TX,
    162 	  EPMEDIA_100BASE_TX },
    163 	{ EP_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
    164 	  EPMEDIA_100BASE_TX },
    165 	{ EP_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER|IFM_100_FX,
    166 	  EPMEDIA_100BASE_FX },
    167 	{ EP_PCI_100BASE_MII,	"manual",	IFM_ETHER|IFM_MANUAL,
    168 	  EPMEDIA_MII },
    169 	{ EP_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER|IFM_100_T4,
    170 	  EPMEDIA_100BASE_T4 },
    171 	{ 0,			NULL,		0,
    172 	  0 },
    173 };
    174 
    175 /*
    176  * Media table for the older 3Com Etherlink III chipset, used
    177  * in the 3c509, 3c579, and 3c589.
    178  */
    179 struct ep_media ep_509_media[] = {
    180 	{ EP_W0_CC_UTP,		"10baseT",	IFM_ETHER|IFM_10_T,
    181 	  EPMEDIA_10BASE_T },
    182 	{ EP_W0_CC_AUI,		"10base5/AUI",	IFM_ETHER|IFM_10_5,
    183 	  EPMEDIA_AUI },
    184 	{ EP_W0_CC_BNC,		"10base2/BNC",	IFM_ETHER|IFM_10_2,
    185 	  EPMEDIA_10BASE_2 },
    186 	{ 0,			NULL,		0,
    187 	  0 },
    188 };
    189 
    190 void	ep_internalconfig __P((struct ep_softc *sc));
    191 void	ep_vortex_probemedia __P((struct ep_softc *sc));
    192 void	ep_509_probemedia __P((struct ep_softc *sc));
    193 
    194 static void eptxstat __P((struct ep_softc *));
    195 static int epstatus __P((struct ep_softc *));
    196 void epinit __P((struct ep_softc *));
    197 int epioctl __P((struct ifnet *, u_long, caddr_t));
    198 void epstart __P((struct ifnet *));
    199 void epwatchdog __P((struct ifnet *));
    200 void epreset __P((struct ep_softc *));
    201 static void epshutdown __P((void *));
    202 void	epread __P((struct ep_softc *));
    203 struct mbuf *epget __P((struct ep_softc *, int));
    204 void	epmbuffill __P((void *));
    205 void	epmbufempty __P((struct ep_softc *));
    206 void	epsetfilter __P((struct ep_softc *));
    207 void	epsetmedia __P((struct ep_softc *));
    208 
    209 int	epenable __P((struct ep_softc *));
    210 void	epdisable __P((struct ep_softc *));
    211 
    212 /* ifmedia callbacks */
    213 int	ep_media_change __P((struct ifnet *ifp));
    214 void	ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
    215 
    216 /* MII callbacks */
    217 int	ep_mii_readreg __P((struct device *, int, int));
    218 void	ep_mii_writereg __P((struct device *, int, int, int));
    219 void	ep_statchg __P((struct device *));
    220 
    221 void	ep_tick __P((void *));
    222 
    223 void	ep_mii_setbit __P((struct ep_softc *, u_int16_t));
    224 void	ep_mii_clrbit __P((struct ep_softc *, u_int16_t));
    225 u_int16_t ep_mii_readbit __P((struct ep_softc *, u_int16_t));
    226 void	ep_mii_sync __P((struct ep_softc *));
    227 void	ep_mii_sendbits __P((struct ep_softc *, u_int32_t, int));
    228 
    229 static int epbusyeeprom __P((struct ep_softc *));
    230 static inline void ep_complete_cmd __P((struct ep_softc *sc,
    231 					u_int cmd, u_int arg));
    232 static __inline int ep_w1_reg __P((struct ep_softc *, int));
    233 
    234 /*
    235  * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
    236  * Window 1 registers offset!
    237  */
    238 static __inline int
    239 ep_w1_reg(sc, reg)
    240 	struct ep_softc *sc;
    241 	int reg;
    242 {
    243 
    244 	switch (sc->ep_chipset) {
    245 	case EP_CHIPSET_CORKSCREW:
    246 		return (reg + 0x10);
    247 
    248 	case EP_CHIPSET_ROADRUNNER:
    249 		switch (reg) {
    250 		case EP_W1_FREE_TX:
    251 		case EP_W1_RUNNER_RDCTL:
    252 		case EP_W1_RUNNER_WRCTL:
    253 			return (reg);
    254 		}
    255 		return (reg + 0x10);
    256 	}
    257 
    258 	return (reg);
    259 }
    260 
    261 /*
    262  * Issue a (reset) command, and be sure it has completed.
    263  * Used for commands that reset part or all of the  board.
    264  * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
    265  * but older hardware doesn't implement it and we must delay.
    266  * It's easiest to just delay always.
    267  */
    268 static inline void
    269 ep_complete_cmd(sc, cmd, arg)
    270 	struct ep_softc *sc;
    271 	u_int cmd, arg;
    272 {
    273 	register bus_space_tag_t iot = sc->sc_iot;
    274 	register bus_space_handle_t ioh = sc->sc_ioh;
    275 
    276 	bus_space_write_2(iot, ioh, cmd, arg);
    277 
    278 #ifdef notyet
    279 	/* if this adapter family has S_COMMAND_IN_PROGRESS, use it */
    280 	while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
    281 		;
    282 	else
    283 #else
    284 	DELAY(100000);	/* need at least 1 ms, but be generous. */
    285 #endif
    286 }
    287 
    288 /*
    289  * Back-end attach and configure.
    290  */
    291 void
    292 epconfig(sc, chipset, enaddr)
    293 	struct ep_softc *sc;
    294 	u_short chipset;
    295 	u_int8_t *enaddr;
    296 {
    297 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    298 	bus_space_tag_t iot = sc->sc_iot;
    299 	bus_space_handle_t ioh = sc->sc_ioh;
    300 	u_int16_t i;
    301 	u_int8_t myla[6];
    302 
    303 	sc->ep_chipset = chipset;
    304 
    305 	/*
    306 	 * We could have been groveling around in other register
    307 	 * windows in the front-end; make sure we're in window 0
    308 	 * to read the EEPROM.
    309 	 */
    310 	GO_WINDOW(0);
    311 
    312 	if (enaddr == NULL) {
    313 		/*
    314 		 * Read the station address from the eeprom
    315 		 */
    316 		for (i = 0; i < 3; i++) {
    317 			u_int16_t x;
    318 			if (epbusyeeprom(sc))
    319 				return;		/* XXX why is eeprom busy? */
    320 			bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
    321 					  READ_EEPROM | i);
    322 			if (epbusyeeprom(sc))
    323 				return;		/* XXX why is eeprom busy? */
    324 			x = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA);
    325 			myla[(i << 1)] = x >> 8;
    326 			myla[(i << 1) + 1] = x;
    327 		}
    328 		enaddr = myla;
    329 	}
    330 
    331 	/*
    332 	 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
    333 	 * allow FDDI-sized (4500) byte packets.  Commands only take an
    334 	 * 11-bit parameter, and  11 bits isn't enough to hold a full-size
    335 	 * packet length.
    336 	 * Commands to these cards implicitly upshift a packet size
    337 	 * or threshold by 2 bits.
    338 	 * To detect  cards with large-packet support, we probe by setting
    339 	 * the transmit threshold register, then change windows and
    340 	 * read back the threshold register directly, and see if the
    341 	 * threshold value was shifted or not.
    342 	 */
    343 	bus_space_write_2(iot, ioh, EP_COMMAND,
    344 			  SET_TX_AVAIL_THRESH | EP_LARGEWIN_PROBE );
    345 	GO_WINDOW(5);
    346 	i = bus_space_read_2(iot, ioh, EP_W5_TX_AVAIL_THRESH);
    347 	GO_WINDOW(1);
    348 	switch (i)  {
    349 	case EP_LARGEWIN_PROBE:
    350 	case (EP_LARGEWIN_PROBE & EP_LARGEWIN_MASK):
    351 		sc->ep_pktlenshift = 0;
    352 		break;
    353 
    354 	case (EP_LARGEWIN_PROBE << 2):
    355 		sc->ep_pktlenshift = 2;
    356 		break;
    357 
    358 	default:
    359 		printf("%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
    360 		    "Interface disabled\n",
    361 		    sc->sc_dev.dv_xname, EP_LARGEWIN_PROBE, (int) i);
    362 		return;
    363 	}
    364 
    365 	/*
    366 	 * Ensure Tx-available interrupts are enabled for
    367 	 * start the interface.
    368 	 * XXX should be in epinit()?
    369 	 */
    370 	bus_space_write_2(iot, ioh, EP_COMMAND,
    371 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
    372 
    373 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
    374 	ifp->if_softc = sc;
    375 	ifp->if_start = epstart;
    376 	ifp->if_ioctl = epioctl;
    377 	ifp->if_watchdog = epwatchdog;
    378 	ifp->if_flags =
    379 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    380 
    381 	if_attach(ifp);
    382 	ether_ifattach(ifp, enaddr);
    383 
    384 	/*
    385 	 * Finish configuration:
    386 	 * determine chipset if the front-end couldn't do so,
    387 	 * show board details, set media.
    388 	 */
    389 
    390 	/*
    391 	 * Print RAM size.  We also print the Ethernet address in here.
    392 	 * It's extracted from the ifp, so we have to make sure it's
    393 	 * been attached first.
    394 	 */
    395 	ep_internalconfig(sc);
    396 	GO_WINDOW(0);
    397 
    398 	/*
    399 	 * Display some additional information, if pertinent.
    400 	 */
    401 	if (sc->ep_flags & EP_FLAGS_USEFIFOBUFFER)
    402 		printf("%s: RoadRunner FIFO buffer enabled\n",
    403 		    sc->sc_dev.dv_xname);
    404 
    405 	/*
    406 	 * Initialize our media structures and MII info.  We'll
    407 	 * probe the MII if we discover that we have one.
    408 	 */
    409 	sc->sc_mii.mii_ifp = ifp;
    410 	sc->sc_mii.mii_readreg = ep_mii_readreg;
    411 	sc->sc_mii.mii_writereg = ep_mii_writereg;
    412 	sc->sc_mii.mii_statchg = ep_statchg;
    413 	ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
    414 	    ep_media_status);
    415 
    416 	/*
    417 	 * Now, determine which media we have.
    418 	 */
    419 	switch (sc->ep_chipset) {
    420 	case EP_CHIPSET_BOOMERANG:
    421 	case EP_CHIPSET_ROADRUNNER:
    422 		/*
    423 		 * If the device has MII, probe it.  We won't be using
    424 		 * any `native' media in this case, only PHYs.  If
    425 		 * we don't, just treat the Boomerang like the Vortex.
    426 		 */
    427 		if (sc->ep_flags & EP_FLAGS_MII) {
    428 			mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
    429 			if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    430 				ifmedia_add(&sc->sc_mii.mii_media,
    431 				    IFM_ETHER|IFM_NONE, 0, NULL);
    432 				ifmedia_set(&sc->sc_mii.mii_media,
    433 				    IFM_ETHER|IFM_NONE);
    434 			} else {
    435 				ifmedia_set(&sc->sc_mii.mii_media,
    436 				    IFM_ETHER|IFM_AUTO);
    437 			}
    438 			break;
    439 		}
    440 		/* FALLTHROUGH */
    441 
    442 	case EP_CHIPSET_VORTEX:
    443 		ep_vortex_probemedia(sc);
    444 		break;
    445 
    446 	default:
    447 		ep_509_probemedia(sc);
    448 		break;
    449 	}
    450 
    451 	GO_WINDOW(1);		/* Window 1 is operating window */
    452 
    453 #if NBPFILTER > 0
    454 	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
    455 		  sizeof(struct ether_header));
    456 #endif
    457 
    458 #if NRND > 0
    459 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, RND_TYPE_NET);
    460 #endif
    461 
    462 	sc->tx_start_thresh = 20;	/* probably a good starting point. */
    463 
    464 	/*  Establish callback to reset card when we reboot. */
    465 	shutdownhook_establish(epshutdown, sc);
    466 
    467 	ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
    468 	ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
    469 }
    470 
    471 
    472 /*
    473  * Show interface-model-independent info from window 3
    474  * internal-configuration register.
    475  */
    476 void
    477 ep_internalconfig(sc)
    478 	struct ep_softc *sc;
    479 {
    480 	bus_space_tag_t iot = sc->sc_iot;
    481 	bus_space_handle_t ioh = sc->sc_ioh;
    482 
    483 	u_int config0;
    484 	u_int config1;
    485 
    486 	int  ram_size, ram_width, ram_speed, rom_size, ram_split;
    487 	/*
    488 	 * NVRAM buffer Rx:Tx config names for busmastering cards
    489 	 * (Demon, Vortex, and later).
    490 	 */
    491 	const char *onboard_ram_config[] = {
    492 		"5:3", "3:1", "1:1", "3:5" };
    493 
    494 	GO_WINDOW(3);
    495 	config0 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG);
    496 	config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
    497 	GO_WINDOW(0);
    498 
    499 	ram_size  = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
    500 	ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
    501 	ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
    502 	rom_size  = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
    503 
    504 	ram_split  = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
    505 
    506 	printf("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
    507 	       sc->sc_dev.dv_xname,
    508 	       ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
    509 	       8 << ram_size,
    510 	       (ram_width) ? "word" : "byte",
    511 	       onboard_ram_config[ram_split]);
    512 }
    513 
    514 
    515 /*
    516  * Find supported media on 3c509-generation hardware that doesn't have
    517  * a "reset_options" register in window 3.
    518  * Use the config_cntrl register  in window 0 instead.
    519  * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
    520  * that implement  CONFIG_CTRL.  We don't have a good way to set the
    521  * default active mediuim; punt to ifconfig  instead.
    522  */
    523 void
    524 ep_509_probemedia(sc)
    525 	struct ep_softc *sc;
    526 {
    527 	bus_space_tag_t iot = sc->sc_iot;
    528 	bus_space_handle_t ioh = sc->sc_ioh;
    529 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    530 	u_int16_t ep_w0_config, port;
    531 	struct ep_media *epm;
    532 	const char *sep = "", *defmedianame = NULL;
    533 	int defmedia = 0;
    534 
    535 	GO_WINDOW(0);
    536 	ep_w0_config = bus_space_read_2(iot, ioh, EP_W0_CONFIG_CTRL);
    537 
    538 	printf("%s: ", sc->sc_dev.dv_xname);
    539 
    540 	/* Sanity check that there are any media! */
    541 	if ((ep_w0_config & EP_W0_CC_MEDIAMASK) == 0) {
    542 		printf("no media present!\n");
    543 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
    544 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
    545 		return;
    546 	}
    547 
    548 	/*
    549 	 * Get the default media from the EEPROM.
    550 	 */
    551 	if (epbusyeeprom(sc))
    552 		return;		/* XXX why is eeprom busy? */
    553 	bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
    554 	    READ_EEPROM | EEPROM_ADDR_CFG);
    555 	if (epbusyeeprom(sc))
    556 		return;		/* XXX why is  eeprom busy? */
    557 	port = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA) >> 14;
    558 
    559 #define	PRINT(s)	printf("%s%s", sep, s); sep = ", "
    560 
    561 	for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
    562 		if (ep_w0_config & epm->epm_mpbit) {
    563 			/*
    564 			 * This simple test works because 509 chipsets
    565 			 * don't do full-duplex.
    566 			 */
    567 			if (epm->epm_epmedia == port || defmedia == 0) {
    568 				defmedia = epm->epm_ifmedia;
    569 				defmedianame = epm->epm_name;
    570 			}
    571 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
    572 			    NULL);
    573 			PRINT(epm->epm_name);
    574 		}
    575 	}
    576 
    577 #undef PRINT
    578 
    579 #ifdef DIAGNOSTIC
    580 	if (defmedia == 0)
    581 		panic("ep_509_probemedia: impossible");
    582 #endif
    583 
    584 	printf(" (default %s)\n", defmedianame);
    585 	ifmedia_set(ifm, defmedia);
    586 }
    587 
    588 /*
    589  * Find media present on large-packet-capable elink3 devices.
    590  * Show onboard configuration of large-packet-capable elink3 devices
    591  * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
    592  * Use media and card-version info in window 3 instead.
    593  */
    594 void
    595 ep_vortex_probemedia(sc)
    596 	struct ep_softc *sc;
    597 {
    598 	bus_space_tag_t iot = sc->sc_iot;
    599 	bus_space_handle_t ioh = sc->sc_ioh;
    600 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    601 	struct ep_media *epm;
    602 	u_int config1;
    603 	int reset_options;
    604 	int default_media;	/* 3-bit encoding of default (EEPROM) media */
    605 	int defmedia = 0;
    606 	const char *sep = "", *defmedianame = NULL;
    607 
    608 	GO_WINDOW(3);
    609 	config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2);
    610 	reset_options = (int)bus_space_read_1(iot, ioh, EP_W3_RESET_OPTIONS);
    611 	GO_WINDOW(0);
    612 
    613 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
    614 
    615 	printf("%s: ", sc->sc_dev.dv_xname);
    616 
    617 	/* Sanity check that there are any media! */
    618 	if ((reset_options & EP_PCI_MEDIAMASK) == 0) {
    619 		printf("no media present!\n");
    620 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
    621 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
    622 		return;
    623 	}
    624 
    625 #define	PRINT(s)	printf("%s%s", sep, s); sep = ", "
    626 
    627 	for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
    628 		if (reset_options & epm->epm_mpbit) {
    629 			/*
    630 			 * Default media is a little more complicated
    631 			 * on the Vortex.  We support full-duplex which
    632 			 * uses the same reset options bit.
    633 			 *
    634 			 * XXX Check EEPROM for default to FDX?
    635 			 */
    636 			if (epm->epm_epmedia == default_media) {
    637 				if ((epm->epm_ifmedia & IFM_FDX) == 0) {
    638 					defmedia = epm->epm_ifmedia;
    639 					defmedianame = epm->epm_name;
    640 				}
    641 			} else if (defmedia == 0) {
    642 				defmedia = epm->epm_ifmedia;
    643 				defmedianame = epm->epm_name;
    644 			}
    645 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
    646 			    NULL);
    647 			PRINT(epm->epm_name);
    648 		}
    649 	}
    650 
    651 #undef PRINT
    652 
    653 #ifdef DIAGNOSTIC
    654 	if (defmedia == 0)
    655 		panic("ep_vortex_probemedia: impossible");
    656 #endif
    657 
    658 	printf(" (default %s)\n", defmedianame);
    659 	ifmedia_set(ifm, defmedia);
    660 }
    661 
    662 /*
    663  * One second timer, used to tick the MII.
    664  */
    665 void
    666 ep_tick(arg)
    667 	void *arg;
    668 {
    669 	struct ep_softc *sc = arg;
    670 	int s;
    671 
    672 #ifdef DIAGNOSTIC
    673 	if ((sc->ep_flags & EP_FLAGS_MII) == 0)
    674 		panic("ep_tick");
    675 #endif
    676 
    677 	s = splnet();
    678 	mii_tick(&sc->sc_mii);
    679 	splx(s);
    680 
    681 	timeout(ep_tick, sc, hz);
    682 }
    683 
    684 /*
    685  * Bring device up.
    686  *
    687  * The order in here seems important. Otherwise we may not receive
    688  * interrupts. ?!
    689  */
    690 void
    691 epinit(sc)
    692 	register struct ep_softc *sc;
    693 {
    694 	register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    695 	bus_space_tag_t iot = sc->sc_iot;
    696 	bus_space_handle_t ioh = sc->sc_ioh;
    697 	int i;
    698 
    699 	while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
    700 		;
    701 
    702 	if (sc->bustype != EP_BUS_PCI) {
    703 		GO_WINDOW(0);
    704 		bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, 0);
    705 		bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
    706 	}
    707 
    708 	if (sc->bustype == EP_BUS_PCMCIA) {
    709 		bus_space_write_2(iot, ioh, EP_W0_RESOURCE_CFG, 0x3f00);
    710 	}
    711 
    712 	GO_WINDOW(2);
    713 	for (i = 0; i < 6; i++)	/* Reload the ether_addr. */
    714 		bus_space_write_1(iot, ioh, EP_W2_ADDR_0 + i,
    715 		    LLADDR(ifp->if_sadl)[i]);
    716 
    717 	/*
    718 	 * Reset the station-address receive filter.
    719 	 * A bug workaround for busmastering (Vortex, Demon) cards.
    720 	 */
    721 	for (i = 0; i < 6; i++)
    722 		bus_space_write_1(iot, ioh, EP_W2_RECVMASK_0 + i, 0);
    723 
    724 	ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
    725 	ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
    726 
    727 	GO_WINDOW(1);		/* Window 1 is operating window */
    728 	for (i = 0; i < 31; i++)
    729 		bus_space_read_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS));
    730 
    731 	/* Set threshhold for for Tx-space avaiable interrupt. */
    732 	bus_space_write_2(iot, ioh, EP_COMMAND,
    733 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
    734 
    735 	if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
    736 		/*
    737 		 * Enable options in the PCMCIA LAN COR register, via
    738 		 * RoadRunner Window 1.
    739 		 *
    740 		 * XXX MAGIC CONSTANTS!
    741 		 */
    742 		u_int16_t cor;
    743 
    744 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, (1 << 11));
    745 
    746 		cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
    747 		if (sc->ep_flags & EP_FLAGS_USESHAREDMEM)
    748 			cor |= 0x10;
    749 		if (sc->ep_flags & EP_FLAGS_FORCENOWAIT)
    750 			cor |= 0x20;
    751 		bus_space_write_2(iot, ioh, 0, cor);
    752 
    753 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_WRCTL, 0);
    754 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, 0);
    755 	}
    756 
    757 	/* Enable interrupts. */
    758 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK | S_CARD_FAILURE |
    759 				S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
    760 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK | S_CARD_FAILURE |
    761 				S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
    762 
    763 	/*
    764 	 * Attempt to get rid of any stray interrupts that occured during
    765 	 * configuration.  On the i386 this isn't possible because one may
    766 	 * already be queued.  However, a single stray interrupt is
    767 	 * unimportant.
    768 	 */
    769 	bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | 0xff);
    770 
    771 	epsetfilter(sc);
    772 	epsetmedia(sc);
    773 
    774 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_ENABLE);
    775 	bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
    776 
    777 	epmbuffill(sc);
    778 
    779 	/* Interface is now `running', with no output active. */
    780 	ifp->if_flags |= IFF_RUNNING;
    781 	ifp->if_flags &= ~IFF_OACTIVE;
    782 
    783 	if (sc->ep_flags & EP_FLAGS_MII) {
    784 		/* Start the one second clock. */
    785 		timeout(ep_tick, sc, hz);
    786 	}
    787 
    788 	/* Attempt to start output, if any. */
    789 	epstart(ifp);
    790 }
    791 
    792 
    793 /*
    794  * Set multicast receive filter.
    795  * elink3 hardware has no selective multicast filter in hardware.
    796  * Enable reception of all multicasts and filter in software.
    797  */
    798 void
    799 epsetfilter(sc)
    800 	register struct ep_softc *sc;
    801 {
    802 	register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    803 
    804 	GO_WINDOW(1);		/* Window 1 is operating window */
    805 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_COMMAND, SET_RX_FILTER |
    806 	    FIL_INDIVIDUAL | FIL_BRDCST |
    807 	    ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
    808 	    ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
    809 }
    810 
    811 int
    812 ep_media_change(ifp)
    813 	struct ifnet *ifp;
    814 {
    815 	register struct ep_softc *sc = ifp->if_softc;
    816 
    817 	if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
    818 		epreset(sc);
    819 
    820 	return (0);
    821 }
    822 
    823 /*
    824  * Set the card to use the specified media.
    825  */
    826 void
    827 epsetmedia(sc)
    828 	struct ep_softc *sc;
    829 {
    830 	bus_space_tag_t iot = sc->sc_iot;
    831 	bus_space_handle_t ioh = sc->sc_ioh;
    832 
    833 	/* Turn everything off.  First turn off linkbeat and UTP. */
    834 	GO_WINDOW(4);
    835 	bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, 0x0);
    836 
    837 	/* Turn off coax */
    838 	bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
    839 	delay(1000);
    840 
    841 	/*
    842 	 * If the device has MII, select it, and then tell the
    843 	 * PHY which media to use.
    844 	 */
    845 	if (sc->ep_flags & EP_FLAGS_MII) {
    846 		int config0, config1;
    847 
    848 		GO_WINDOW(3);
    849 
    850 		if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
    851 			int resopt;
    852 
    853 			resopt = bus_space_read_2(iot, ioh,
    854 			    EP_W3_RESET_OPTIONS);
    855 			bus_space_write_2(iot, ioh,
    856 			    EP_W3_RESET_OPTIONS, resopt|EP_RUNNER_ENABLE_MII);
    857 		}
    858 
    859 		config0 = (u_int)bus_space_read_2(iot, ioh,
    860 		    EP_W3_INTERNAL_CONFIG);
    861 		config1 = (u_int)bus_space_read_2(iot, ioh,
    862 		    EP_W3_INTERNAL_CONFIG + 2);
    863 
    864 		config1 = config1 & ~CONFIG_MEDIAMASK;
    865 		config1 |= (EPMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
    866 
    867 		bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0);
    868 		bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1);
    869 		GO_WINDOW(1);	/* back to operating window */
    870 
    871 		mii_mediachg(&sc->sc_mii);
    872 		return;
    873 	}
    874 
    875 	/*
    876 	 * Now turn on the selected media/transceiver.
    877 	 */
    878 	GO_WINDOW(4);
    879 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
    880 	case IFM_10_T:
    881 		bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
    882 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
    883 		break;
    884 
    885 	case IFM_10_2:
    886 		bus_space_write_2(iot, ioh, EP_COMMAND, START_TRANSCEIVER);
    887 		DELAY(1000);	/* 50ms not enmough? */
    888 		break;
    889 
    890 	case IFM_100_TX:
    891 	case IFM_100_FX:
    892 	case IFM_100_T4:		/* XXX check documentation */
    893 		bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
    894 		    LINKBEAT_ENABLE);
    895 		DELAY(1000);	/* not strictly necessary? */
    896 		break;
    897 
    898 	case IFM_10_5:
    899 		bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE,
    900 		    SQE_ENABLE);
    901 		DELAY(1000);	/* not strictly necessary? */
    902 		break;
    903 
    904 	case IFM_MANUAL:
    905 		/*
    906 		 * Nothing to do here; we are actually enabling the
    907 		 * external PHY on the MII port.
    908 		 */
    909 		break;
    910 
    911 	case IFM_NONE:
    912 		printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
    913 		return;
    914 
    915 	default:
    916 		panic("epsetmedia: impossible");
    917 	}
    918 
    919 	/*
    920 	 * Tell the chip which port to use.
    921 	 */
    922 	switch (sc->ep_chipset) {
    923 	case EP_CHIPSET_VORTEX:
    924 	case EP_CHIPSET_BOOMERANG:
    925 	    {
    926 		int mctl, config0, config1;
    927 
    928 		GO_WINDOW(3);
    929 		config0 = (u_int)bus_space_read_2(iot, ioh,
    930 		    EP_W3_INTERNAL_CONFIG);
    931 		config1 = (u_int)bus_space_read_2(iot, ioh,
    932 		    EP_W3_INTERNAL_CONFIG + 2);
    933 
    934 		config1 = config1 & ~CONFIG_MEDIAMASK;
    935 		config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
    936 		    CONFIG_MEDIAMASK_SHIFT);
    937 
    938 		bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG, config0);
    939 		bus_space_write_2(iot, ioh, EP_W3_INTERNAL_CONFIG + 2, config1);
    940 
    941 		mctl = bus_space_read_2(iot, ioh, EP_W3_MAC_CONTROL);
    942 		if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
    943 			mctl |= MAC_CONTROL_FDX;
    944 		else
    945 			mctl &= ~MAC_CONTROL_FDX;
    946 		bus_space_write_2(iot, ioh, EP_W3_MAC_CONTROL, mctl);
    947 		break;
    948 	    }
    949 	default:
    950 	    {
    951 		int w0_addr_cfg;
    952 
    953 		GO_WINDOW(0);
    954 		w0_addr_cfg = bus_space_read_2(iot, ioh, EP_W0_ADDRESS_CFG);
    955 		w0_addr_cfg &= 0x3fff;
    956 		bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG, w0_addr_cfg |
    957 		    (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
    958 		DELAY(1000);
    959 		break;
    960 	    }
    961 	}
    962 
    963 	GO_WINDOW(1);		/* Window 1 is operating window */
    964 }
    965 
    966 /*
    967  * Get currently-selected media from card.
    968  * (if_media callback, may be called before interface is brought up).
    969  */
    970 void
    971 ep_media_status(ifp, req)
    972 	struct ifnet *ifp;
    973 	struct ifmediareq *req;
    974 {
    975 	register struct ep_softc *sc = ifp->if_softc;
    976 	bus_space_tag_t iot = sc->sc_iot;
    977 	bus_space_handle_t ioh = sc->sc_ioh;
    978 
    979 	if (sc->enabled == 0) {
    980 		req->ifm_active = IFM_ETHER|IFM_NONE;
    981 		req->ifm_status = 0;
    982 		return;
    983 	}
    984 
    985 	/*
    986 	 * If we have MII, go ask the PHY what's going on.
    987 	 */
    988 	if (sc->ep_flags & EP_FLAGS_MII) {
    989 		mii_pollstat(&sc->sc_mii);
    990 		req->ifm_active = sc->sc_mii.mii_media_active;
    991 		req->ifm_status = sc->sc_mii.mii_media_status;
    992 		return;
    993 	}
    994 
    995 	/*
    996 	 * Ok, at this point we claim that our active media is
    997 	 * the currently selected media.  We'll update our status
    998 	 * if our chipset allows us to detect link.
    999 	 */
   1000 	req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   1001 	req->ifm_status = 0;
   1002 
   1003 	switch (sc->ep_chipset) {
   1004 	case EP_CHIPSET_VORTEX:
   1005 	case EP_CHIPSET_BOOMERANG:
   1006 		GO_WINDOW(4);
   1007 		req->ifm_status = IFM_AVALID;
   1008 		if (bus_space_read_2(iot, ioh, EP_W4_MEDIA_TYPE) &
   1009 		    LINKBEAT_DETECT)
   1010 			req->ifm_status |= IFM_ACTIVE;
   1011 		GO_WINDOW(1);	/* back to operating window */
   1012 		break;
   1013 	}
   1014 }
   1015 
   1016 
   1017 
   1018 /*
   1019  * Start outputting on the interface.
   1020  * Always called as splnet().
   1021  */
   1022 void
   1023 epstart(ifp)
   1024 	struct ifnet *ifp;
   1025 {
   1026 	register struct ep_softc *sc = ifp->if_softc;
   1027 	bus_space_tag_t iot = sc->sc_iot;
   1028 	bus_space_handle_t ioh = sc->sc_ioh;
   1029 	struct mbuf *m, *m0;
   1030 	int sh, len, pad;
   1031 	bus_addr_t txreg;
   1032 
   1033 	/* Don't transmit if interface is busy or not running */
   1034 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1035 		return;
   1036 
   1037 startagain:
   1038 	/* Sneak a peek at the next packet */
   1039 	m0 = ifp->if_snd.ifq_head;
   1040 	if (m0 == 0)
   1041 		return;
   1042 
   1043 	/* We need to use m->m_pkthdr.len, so require the header */
   1044 	if ((m0->m_flags & M_PKTHDR) == 0)
   1045 		panic("epstart: no header mbuf");
   1046 	len = m0->m_pkthdr.len;
   1047 
   1048 	pad = (4 - len) & 3;
   1049 
   1050 	/*
   1051 	 * The 3c509 automatically pads short packets to minimum ethernet
   1052 	 * length, but we drop packets that are too large. Perhaps we should
   1053 	 * truncate them instead?
   1054 	 */
   1055 	if (len + pad > ETHER_MAX_LEN) {
   1056 		/* packet is obviously too large: toss it */
   1057 		++ifp->if_oerrors;
   1058 		IF_DEQUEUE(&ifp->if_snd, m0);
   1059 		m_freem(m0);
   1060 		goto readcheck;
   1061 	}
   1062 
   1063 	if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_FREE_TX)) <
   1064 	    len + pad + 4) {
   1065 		bus_space_write_2(iot, ioh, EP_COMMAND,
   1066 		    SET_TX_AVAIL_THRESH |
   1067 		    ((len + pad + 4) >> sc->ep_pktlenshift));
   1068 		/* not enough room in FIFO */
   1069 		ifp->if_flags |= IFF_OACTIVE;
   1070 		return;
   1071 	} else {
   1072 		bus_space_write_2(iot, ioh, EP_COMMAND,
   1073 		    SET_TX_AVAIL_THRESH | EP_THRESH_DISABLE );
   1074 	}
   1075 
   1076 	IF_DEQUEUE(&ifp->if_snd, m0);
   1077 	if (m0 == 0)		/* not really needed */
   1078 		return;
   1079 
   1080 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_TX_START_THRESH |
   1081 	    ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/) );
   1082 
   1083 #if NBPFILTER > 0
   1084 	if (ifp->if_bpf)
   1085 		bpf_mtap(ifp->if_bpf, m0);
   1086 #endif
   1087 
   1088 	/*
   1089 	 * Do the output at splhigh() so that an interrupt from another device
   1090 	 * won't cause a FIFO underrun.
   1091 	 */
   1092 	sh = splhigh();
   1093 
   1094 	txreg = ep_w1_reg(sc, EP_W1_TX_PIO_WR_1);
   1095 
   1096 	if (sc->ep_flags & EP_FLAGS_USEFIFOBUFFER) {
   1097 		/*
   1098 		 * Prime the FIFO buffer counter (number of 16-bit
   1099 		 * words about to be written to the FIFO).
   1100 		 *
   1101 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
   1102 		 * COUNTER IS NON-ZERO!
   1103 		 */
   1104 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_WRCTL,
   1105 		    (len + pad) >> 1);
   1106 	}
   1107 
   1108 	bus_space_write_2(iot, ioh, txreg, len);
   1109 	bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
   1110 	if (EP_IS_BUS_32(sc->bustype)) {
   1111 		for (m = m0; m; ) {
   1112 			if (m->m_len > 3)  {
   1113 				/* align our reads from core */
   1114 				if (mtod(m, u_long) & 3)  {
   1115 					u_long count =
   1116 					    4 - (mtod(m, u_long) & 3);
   1117 					bus_space_write_multi_1(iot, ioh,
   1118 					    txreg, mtod(m, u_int8_t *), count);
   1119 					m->m_data =
   1120 					    (void *)(mtod(m, u_long) + count);
   1121 					m->m_len -= count;
   1122 				}
   1123 				bus_space_write_multi_4(iot, ioh,
   1124 				    txreg, mtod(m, u_int32_t *), m->m_len >> 2);
   1125 				m->m_data = (void *)(mtod(m, u_long) +
   1126 					(u_long)(m->m_len & ~3));
   1127 				m->m_len -= m->m_len & ~3;
   1128 			}
   1129 			if (m->m_len)  {
   1130 				bus_space_write_multi_1(iot, ioh,
   1131 				    txreg, mtod(m, u_int8_t *), m->m_len);
   1132 			}
   1133 			MFREE(m, m0);
   1134 			m = m0;
   1135 		}
   1136 	} else {
   1137 		for (m = m0; m; ) {
   1138 			if (m->m_len > 1)  {
   1139 				if (mtod(m, u_long) & 1)  {
   1140 					bus_space_write_1(iot, ioh,
   1141 					    txreg, *(mtod(m, u_int8_t *)));
   1142 					m->m_data =
   1143 					    (void *)(mtod(m, u_long) + 1);
   1144 					m->m_len -= 1;
   1145 				}
   1146 				bus_space_write_multi_2(iot, ioh,
   1147 				    txreg, mtod(m, u_int16_t *),
   1148 				    m->m_len >> 1);
   1149 			}
   1150 			if (m->m_len & 1)  {
   1151 				bus_space_write_1(iot, ioh, txreg,
   1152 				     *(mtod(m, u_int8_t *) + m->m_len - 1));
   1153 			}
   1154 			MFREE(m, m0);
   1155 			m = m0;
   1156 		}
   1157 	}
   1158 	while (pad--)
   1159 		bus_space_write_1(iot, ioh, txreg, 0);
   1160 
   1161 	splx(sh);
   1162 
   1163 	++ifp->if_opackets;
   1164 
   1165 readcheck:
   1166 	if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_RX_STATUS)) &
   1167 	    ERR_INCOMPLETE) == 0) {
   1168 		/* We received a complete packet. */
   1169 		u_int16_t status = bus_space_read_2(iot, ioh, EP_STATUS);
   1170 
   1171 		if ((status & S_INTR_LATCH) == 0) {
   1172 			/*
   1173 			 * No interrupt, read the packet and continue
   1174 			 * Is  this supposed to happen? Is my motherboard
   1175 			 * completely busted?
   1176 			 */
   1177 			epread(sc);
   1178 		} else {
   1179 			/* Got an interrupt, return so that it gets serviced. */
   1180 			return;
   1181 		}
   1182 	} else {
   1183 		/* Check if we are stuck and reset [see XXX comment] */
   1184 		if (epstatus(sc)) {
   1185 			if (ifp->if_flags & IFF_DEBUG)
   1186 				printf("%s: adapter reset\n",
   1187 				    sc->sc_dev.dv_xname);
   1188 			epreset(sc);
   1189 		}
   1190 	}
   1191 
   1192 	goto startagain;
   1193 }
   1194 
   1195 
   1196 /*
   1197  * XXX: The 3c509 card can get in a mode where both the fifo status bit
   1198  *	FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
   1199  *	We detect this situation and we reset the adapter.
   1200  *	It happens at times when there is a lot of broadcast traffic
   1201  *	on the cable (once in a blue moon).
   1202  */
   1203 static int
   1204 epstatus(sc)
   1205 	register struct ep_softc *sc;
   1206 {
   1207 	bus_space_tag_t iot = sc->sc_iot;
   1208 	bus_space_handle_t ioh = sc->sc_ioh;
   1209 	u_int16_t fifost;
   1210 
   1211 	/*
   1212 	 * Check the FIFO status and act accordingly
   1213 	 */
   1214 	GO_WINDOW(4);
   1215 	fifost = bus_space_read_2(iot, ioh, EP_W4_FIFO_DIAG);
   1216 	GO_WINDOW(1);
   1217 
   1218 	if (fifost & FIFOS_RX_UNDERRUN) {
   1219 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1220 			printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
   1221 		epreset(sc);
   1222 		return 0;
   1223 	}
   1224 
   1225 	if (fifost & FIFOS_RX_STATUS_OVERRUN) {
   1226 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1227 			printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
   1228 		return 1;
   1229 	}
   1230 
   1231 	if (fifost & FIFOS_RX_OVERRUN) {
   1232 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1233 			printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
   1234 		return 1;
   1235 	}
   1236 
   1237 	if (fifost & FIFOS_TX_OVERRUN) {
   1238 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1239 			printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
   1240 		epreset(sc);
   1241 		return 0;
   1242 	}
   1243 
   1244 	return 0;
   1245 }
   1246 
   1247 
   1248 static void
   1249 eptxstat(sc)
   1250 	register struct ep_softc *sc;
   1251 {
   1252 	bus_space_tag_t iot = sc->sc_iot;
   1253 	bus_space_handle_t ioh = sc->sc_ioh;
   1254 	int i;
   1255 
   1256 	/*
   1257 	 * We need to read+write TX_STATUS until we get a 0 status
   1258 	 * in order to turn off the interrupt flag.
   1259 	 */
   1260 	while ((i = bus_space_read_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS)))
   1261 	    & TXS_COMPLETE) {
   1262 		bus_space_write_1(iot, ioh, ep_w1_reg(sc, EP_W1_TX_STATUS),
   1263 		    0x0);
   1264 
   1265 		if (i & TXS_JABBER) {
   1266 			++sc->sc_ethercom.ec_if.if_oerrors;
   1267 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1268 				printf("%s: jabber (%x)\n",
   1269 				       sc->sc_dev.dv_xname, i);
   1270 			epreset(sc);
   1271 		} else if (i & TXS_UNDERRUN) {
   1272 			++sc->sc_ethercom.ec_if.if_oerrors;
   1273 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1274 				printf("%s: fifo underrun (%x) @%d\n",
   1275 				       sc->sc_dev.dv_xname, i,
   1276 				       sc->tx_start_thresh);
   1277 			if (sc->tx_succ_ok < 100)
   1278 				    sc->tx_start_thresh = min(ETHER_MAX_LEN,
   1279 					    sc->tx_start_thresh + 20);
   1280 			sc->tx_succ_ok = 0;
   1281 			epreset(sc);
   1282 		} else if (i & TXS_MAX_COLLISION) {
   1283 			++sc->sc_ethercom.ec_if.if_collisions;
   1284 			bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
   1285 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
   1286 		} else
   1287 			sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
   1288 	}
   1289 }
   1290 
   1291 int
   1292 epintr(arg)
   1293 	void *arg;
   1294 {
   1295 	register struct ep_softc *sc = arg;
   1296 	bus_space_tag_t iot = sc->sc_iot;
   1297 	bus_space_handle_t ioh = sc->sc_ioh;
   1298 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1299 	u_int16_t status;
   1300 	int ret = 0;
   1301 	int addrandom = 0;
   1302 
   1303 	if (sc->enabled == 0)
   1304 		return (0);
   1305 
   1306 	for (;;) {
   1307 		bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
   1308 
   1309 		status = bus_space_read_2(iot, ioh, EP_STATUS);
   1310 
   1311 		if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
   1312 			       S_RX_COMPLETE | S_CARD_FAILURE)) == 0) {
   1313 			if ((status & S_INTR_LATCH) == 0) {
   1314 #if 0
   1315 				printf("%s: intr latch cleared\n",
   1316 				       sc->sc_dev.dv_xname);
   1317 #endif
   1318 				break;
   1319 			}
   1320 		}
   1321 
   1322 		ret = 1;
   1323 
   1324 		/*
   1325 		 * Acknowledge any interrupts.  It's important that we do this
   1326 		 * first, since there would otherwise be a race condition.
   1327 		 * Due to the i386 interrupt queueing, we may get spurious
   1328 		 * interrupts occasionally.
   1329 		 */
   1330 		bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR |
   1331 				  (status & (C_INTR_LATCH |
   1332 					     C_CARD_FAILURE |
   1333 					     C_TX_COMPLETE |
   1334 					     C_TX_AVAIL |
   1335 					     C_RX_COMPLETE |
   1336 					     C_RX_EARLY |
   1337 					     C_INT_RQD |
   1338 					     C_UPD_STATS)));
   1339 
   1340 #if 0
   1341 		status = bus_space_read_2(iot, ioh, EP_STATUS);
   1342 
   1343 		printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
   1344 		       (status & S_RX_COMPLETE)?" RX_COMPLETE":"",
   1345 		       (status & S_TX_COMPLETE)?" TX_COMPLETE":"",
   1346 		       (status & S_TX_AVAIL)?" TX_AVAIL":"",
   1347 		       (status & S_CARD_FAILURE)?" CARD_FAILURE":"");
   1348 #endif
   1349 
   1350 		if (status & S_RX_COMPLETE) {
   1351 			epread(sc);
   1352 			addrandom = 1;
   1353 		}
   1354 		if (status & S_TX_AVAIL) {
   1355 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
   1356 			epstart(&sc->sc_ethercom.ec_if);
   1357 			addrandom = 1;
   1358 		}
   1359 		if (status & S_CARD_FAILURE) {
   1360 			printf("%s: adapter failure (%x)\n",
   1361 			    sc->sc_dev.dv_xname, status);
   1362 			epreset(sc);
   1363 			return (1);
   1364 		}
   1365 		if (status & S_TX_COMPLETE) {
   1366 			eptxstat(sc);
   1367 			epstart(ifp);
   1368 			addrandom = 1;
   1369 		}
   1370 
   1371 #if NRND > 0
   1372 		if (status)
   1373 			rnd_add_uint32(&sc->rnd_source, status);
   1374 #endif
   1375 	}
   1376 
   1377 	/* no more interrupts */
   1378 	return (ret);
   1379 }
   1380 
   1381 void
   1382 epread(sc)
   1383 	register struct ep_softc *sc;
   1384 {
   1385 	bus_space_tag_t iot = sc->sc_iot;
   1386 	bus_space_handle_t ioh = sc->sc_ioh;
   1387 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1388 	struct mbuf *m;
   1389 	struct ether_header *eh;
   1390 	int len;
   1391 
   1392 	len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, EP_W1_RX_STATUS));
   1393 
   1394 again:
   1395 	if (ifp->if_flags & IFF_DEBUG) {
   1396 		int err = len & ERR_MASK;
   1397 		char *s = NULL;
   1398 
   1399 		if (len & ERR_INCOMPLETE)
   1400 			s = "incomplete packet";
   1401 		else if (err == ERR_OVERRUN)
   1402 			s = "packet overrun";
   1403 		else if (err == ERR_RUNT)
   1404 			s = "runt packet";
   1405 		else if (err == ERR_ALIGNMENT)
   1406 			s = "bad alignment";
   1407 		else if (err == ERR_CRC)
   1408 			s = "bad crc";
   1409 		else if (err == ERR_OVERSIZE)
   1410 			s = "oversized packet";
   1411 		else if (err == ERR_DRIBBLE)
   1412 			s = "dribble bits";
   1413 
   1414 		if (s)
   1415 			printf("%s: %s\n", sc->sc_dev.dv_xname, s);
   1416 	}
   1417 
   1418 	if (len & ERR_INCOMPLETE)
   1419 		return;
   1420 
   1421 	if (len & ERR_RX) {
   1422 		++ifp->if_ierrors;
   1423 		goto abort;
   1424 	}
   1425 
   1426 	len &= RX_BYTES_MASK;	/* Lower 11 bits = RX bytes. */
   1427 
   1428 	/* Pull packet off interface. */
   1429 	m = epget(sc, len);
   1430 	if (m == 0) {
   1431 		ifp->if_ierrors++;
   1432 		goto abort;
   1433 	}
   1434 
   1435 	++ifp->if_ipackets;
   1436 
   1437 	/* We assume the header fit entirely in one mbuf. */
   1438 	eh = mtod(m, struct ether_header *);
   1439 
   1440 #if NBPFILTER > 0
   1441 	/*
   1442 	 * Check if there's a BPF listener on this interface.
   1443 	 * If so, hand off the raw packet to BPF.
   1444 	 */
   1445 	if (ifp->if_bpf) {
   1446 		bpf_mtap(ifp->if_bpf, m);
   1447 
   1448 		/*
   1449 		 * Note that the interface cannot be in promiscuous mode if
   1450 		 * there are no BPF listeners.  And if we are in promiscuous
   1451 		 * mode, we have to check if this packet is really ours.
   1452 		 */
   1453 		if ((ifp->if_flags & IFF_PROMISC) &&
   1454 		    (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
   1455 		    bcmp(eh->ether_dhost, LLADDR(sc->sc_ethercom.ec_if.if_sadl),
   1456 			    sizeof(eh->ether_dhost)) != 0) {
   1457 			m_freem(m);
   1458 			return;
   1459 		}
   1460 	}
   1461 #endif
   1462 
   1463 	/* We assume the header fit entirely in one mbuf. */
   1464 	m_adj(m, sizeof(struct ether_header));
   1465 	ether_input(ifp, eh, m);
   1466 
   1467 	/*
   1468 	 * In periods of high traffic we can actually receive enough
   1469 	 * packets so that the fifo overrun bit will be set at this point,
   1470 	 * even though we just read a packet. In this case we
   1471 	 * are not going to receive any more interrupts. We check for
   1472 	 * this condition and read again until the fifo is not full.
   1473 	 * We could simplify this test by not using epstatus(), but
   1474 	 * rechecking the RX_STATUS register directly. This test could
   1475 	 * result in unnecessary looping in cases where there is a new
   1476 	 * packet but the fifo is not full, but it will not fix the
   1477 	 * stuck behavior.
   1478 	 *
   1479 	 * Even with this improvement, we still get packet overrun errors
   1480 	 * which are hurting performance. Maybe when I get some more time
   1481 	 * I'll modify epread() so that it can handle RX_EARLY interrupts.
   1482 	 */
   1483 	if (epstatus(sc)) {
   1484 		len = bus_space_read_2(iot, ioh,
   1485 		    ep_w1_reg(sc, EP_W1_RX_STATUS));
   1486 		/* Check if we are stuck and reset [see XXX comment] */
   1487 		if (len & ERR_INCOMPLETE) {
   1488 			if (ifp->if_flags & IFF_DEBUG)
   1489 				printf("%s: adapter reset\n",
   1490 				    sc->sc_dev.dv_xname);
   1491 			epreset(sc);
   1492 			return;
   1493 		}
   1494 		goto again;
   1495 	}
   1496 
   1497 	return;
   1498 
   1499 abort:
   1500 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
   1501 	while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
   1502 		;
   1503 }
   1504 
   1505 struct mbuf *
   1506 epget(sc, totlen)
   1507 	struct ep_softc *sc;
   1508 	int totlen;
   1509 {
   1510 	bus_space_tag_t iot = sc->sc_iot;
   1511 	bus_space_handle_t ioh = sc->sc_ioh;
   1512 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1513 	struct mbuf *top, **mp, *m, *rv = NULL;
   1514 	bus_addr_t rxreg;
   1515 	int len, remaining;
   1516 	int sh;
   1517 
   1518 	m = sc->mb[sc->next_mb];
   1519 	sc->mb[sc->next_mb] = 0;
   1520 	if (m == 0) {
   1521 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1522 		if (m == 0)
   1523 			return 0;
   1524 	} else {
   1525 		/* If the queue is no longer full, refill. */
   1526 		if (sc->last_mb == sc->next_mb)
   1527 			timeout(epmbuffill, sc, 1);
   1528 		/* Convert one of our saved mbuf's. */
   1529 		sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
   1530 		m->m_data = m->m_pktdat;
   1531 		m->m_flags = M_PKTHDR;
   1532 	}
   1533 	m->m_pkthdr.rcvif = ifp;
   1534 	m->m_pkthdr.len = totlen;
   1535 	len = MHLEN;
   1536 	top = 0;
   1537 	mp = &top;
   1538 
   1539 	/*
   1540 	 * We read the packet at splhigh() so that an interrupt from another
   1541 	 * device doesn't cause the card's buffer to overflow while we're
   1542 	 * reading it.  We may still lose packets at other times.
   1543 	 */
   1544 	sh = splhigh();
   1545 
   1546 	rxreg = ep_w1_reg(sc, EP_W1_RX_PIO_RD_1);
   1547 
   1548 	if (sc->ep_flags & EP_FLAGS_USEFIFOBUFFER) {
   1549 		/*
   1550 		 * Prime the FIFO buffer counter (number of 16-bit
   1551 		 * words about to be read from the FIFO).
   1552 		 *
   1553 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
   1554 		 * COUNTER IS NON-ZERO!
   1555 		 */
   1556 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, totlen >> 1);
   1557 	}
   1558 
   1559 	while (totlen > 0) {
   1560 		if (top) {
   1561 			m = sc->mb[sc->next_mb];
   1562 			sc->mb[sc->next_mb] = 0;
   1563 			if (m == 0) {
   1564 				MGET(m, M_DONTWAIT, MT_DATA);
   1565 				if (m == 0) {
   1566 					m_freem(top);
   1567 					goto out;
   1568 				}
   1569 			} else {
   1570 				sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
   1571 			}
   1572 			len = MLEN;
   1573 		}
   1574 		if (totlen >= MINCLSIZE) {
   1575 			MCLGET(m, M_DONTWAIT);
   1576 			if ((m->m_flags & M_EXT) == 0) {
   1577 				m_free(m);
   1578 				m_freem(top);
   1579 				goto out;
   1580 			}
   1581 			len = MCLBYTES;
   1582 		}
   1583 		if (top == 0)  {
   1584 			/* align the struct ip header */
   1585 			caddr_t newdata = (caddr_t)
   1586 			    ALIGN(m->m_data + sizeof(struct ether_header))
   1587 			    - sizeof(struct ether_header);
   1588 			len -= newdata - m->m_data;
   1589 			m->m_data = newdata;
   1590 		}
   1591 		remaining = len = min(totlen, len);
   1592 		if (EP_IS_BUS_32(sc->bustype)) {
   1593 			u_long offset = mtod(m, u_long);
   1594 			/*
   1595 			 * Read bytes up to the point where we are aligned.
   1596 			 * (We can align to 4 bytes, rather than ALIGNBYTES,
   1597 			 * here because we're later reading 4-byte chunks.)
   1598 			 */
   1599 			if ((remaining > 3) && (offset & 3))  {
   1600 				int count = (4 - (offset & 3));
   1601 				bus_space_read_multi_1(iot, ioh,
   1602 				    rxreg, (u_int8_t *) offset, count);
   1603 				offset += count;
   1604 				remaining -= count;
   1605 			}
   1606 			if (remaining > 3) {
   1607 				bus_space_read_multi_4(iot, ioh,
   1608 				    rxreg, (u_int32_t *) offset,
   1609 				    remaining >> 2);
   1610 				offset += remaining & ~3;
   1611 				remaining &= 3;
   1612 			}
   1613 			if (remaining)  {
   1614 				bus_space_read_multi_1(iot, ioh,
   1615 				    rxreg, (u_int8_t *) offset, remaining);
   1616 			}
   1617 		} else {
   1618 			u_long offset = mtod(m, u_long);
   1619 			if ((remaining > 1) && (offset & 1))  {
   1620 				bus_space_read_multi_1(iot, ioh,
   1621 				    rxreg, (u_int8_t *) offset, 1);
   1622 				remaining -= 1;
   1623 				offset += 1;
   1624 			}
   1625 			if (remaining > 1) {
   1626 				bus_space_read_multi_2(iot, ioh,
   1627 				    rxreg, (u_int16_t *) offset,
   1628 				    remaining >> 1);
   1629 				offset += remaining & ~1;
   1630 			}
   1631 			if (remaining & 1)  {
   1632 				bus_space_read_multi_1(iot, ioh,
   1633 				    rxreg, (u_int8_t *) offset, remaining & 1);
   1634 			}
   1635 		}
   1636 		m->m_len = len;
   1637 		totlen -= len;
   1638 		*mp = m;
   1639 		mp = &m->m_next;
   1640 	}
   1641 
   1642 	rv = top;
   1643 
   1644 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
   1645 	while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
   1646 		;
   1647 
   1648  out:
   1649 	if (sc->ep_flags & EP_FLAGS_USEFIFOBUFFER)
   1650 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, 0);
   1651 	splx(sh);
   1652 
   1653 	return rv;
   1654 }
   1655 
   1656 int
   1657 epioctl(ifp, cmd, data)
   1658 	register struct ifnet *ifp;
   1659 	u_long cmd;
   1660 	caddr_t data;
   1661 {
   1662 	struct ep_softc *sc = ifp->if_softc;
   1663 	struct ifaddr *ifa = (struct ifaddr *)data;
   1664 	struct ifreq *ifr = (struct ifreq *)data;
   1665 	int s, error = 0;
   1666 
   1667 	s = splnet();
   1668 
   1669 	switch (cmd) {
   1670 
   1671 	case SIOCSIFADDR:
   1672 		if ((error = epenable(sc)) != 0)
   1673 			break;
   1674 		/* epinit is called just below */
   1675 		ifp->if_flags |= IFF_UP;
   1676 		switch (ifa->ifa_addr->sa_family) {
   1677 #ifdef INET
   1678 		case AF_INET:
   1679 			epinit(sc);
   1680 			arp_ifinit(&sc->sc_ethercom.ec_if, ifa);
   1681 			break;
   1682 #endif
   1683 #ifdef NS
   1684 		case AF_NS:
   1685 		    {
   1686 			register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1687 
   1688 			if (ns_nullhost(*ina))
   1689 				ina->x_host = *(union ns_host *)
   1690 				    LLADDR(ifp->if_sadl);
   1691 			else
   1692 				bcopy(ina->x_host.c_host,
   1693 				    LLADDR(ifp->if_sadl),
   1694 				    ifp->if_addrlen);
   1695 			/* Set new address. */
   1696 			epinit(sc);
   1697 			break;
   1698 		    }
   1699 #endif
   1700 		default:
   1701 			epinit(sc);
   1702 			break;
   1703 		}
   1704 		break;
   1705 
   1706 	case SIOCSIFMEDIA:
   1707 	case SIOCGIFMEDIA:
   1708 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1709 		break;
   1710 
   1711 	case SIOCSIFFLAGS:
   1712 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1713 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1714 			/*
   1715 			 * If interface is marked down and it is running, then
   1716 			 * stop it.
   1717 			 */
   1718 			epstop(sc);
   1719 			ifp->if_flags &= ~IFF_RUNNING;
   1720 			epdisable(sc);
   1721 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1722 			   (ifp->if_flags & IFF_RUNNING) == 0) {
   1723 			/*
   1724 			 * If interface is marked up and it is stopped, then
   1725 			 * start it.
   1726 			 */
   1727 			if ((error = epenable(sc)) != 0)
   1728 				break;
   1729 			epinit(sc);
   1730 		} else if (sc->enabled) {
   1731 			/*
   1732 			 * deal with flags changes:
   1733 			 * IFF_MULTICAST, IFF_PROMISC.
   1734 			 */
   1735 			epsetfilter(sc);
   1736 		}
   1737 		break;
   1738 
   1739 	case SIOCADDMULTI:
   1740 	case SIOCDELMULTI:
   1741 		if (sc->enabled == 0) {
   1742 			error = EIO;
   1743 			break;
   1744 		}
   1745 
   1746 		error = (cmd == SIOCADDMULTI) ?
   1747 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   1748 		    ether_delmulti(ifr, &sc->sc_ethercom);
   1749 
   1750 		if (error == ENETRESET) {
   1751 			/*
   1752 			 * Multicast list has changed; set the hardware filter
   1753 			 * accordingly.
   1754 			 */
   1755 			epreset(sc);
   1756 			error = 0;
   1757 		}
   1758 		break;
   1759 
   1760 	default:
   1761 		error = EINVAL;
   1762 		break;
   1763 	}
   1764 
   1765 	splx(s);
   1766 	return (error);
   1767 }
   1768 
   1769 void
   1770 epreset(sc)
   1771 	struct ep_softc *sc;
   1772 {
   1773 	int s;
   1774 
   1775 	s = splnet();
   1776 	epstop(sc);
   1777 	epinit(sc);
   1778 	splx(s);
   1779 }
   1780 
   1781 void
   1782 epwatchdog(ifp)
   1783 	struct ifnet *ifp;
   1784 {
   1785 	struct ep_softc *sc = ifp->if_softc;
   1786 
   1787 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1788 	++sc->sc_ethercom.ec_if.if_oerrors;
   1789 
   1790 	epreset(sc);
   1791 }
   1792 
   1793 void
   1794 epstop(sc)
   1795 	register struct ep_softc *sc;
   1796 {
   1797 	bus_space_tag_t iot = sc->sc_iot;
   1798 	bus_space_handle_t ioh = sc->sc_ioh;
   1799 
   1800 	if (sc->ep_flags & EP_FLAGS_MII) {
   1801 		/* Stop the one second clock. */
   1802 		untimeout(ep_tick, sc);
   1803 	}
   1804 
   1805 	if (sc->ep_chipset == EP_CHIPSET_ROADRUNNER) {
   1806 		/*
   1807 		 * Clear the FIFO buffer count, thus halting
   1808 		 * any currently-running transactions.
   1809 		 */
   1810 		GO_WINDOW(1);		/* sanity */
   1811 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_WRCTL, 0);
   1812 		bus_space_write_2(iot, ioh, EP_W1_RUNNER_RDCTL, 0);
   1813 	}
   1814 
   1815 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISABLE);
   1816 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
   1817 	while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
   1818 		;
   1819 	bus_space_write_2(iot, ioh, EP_COMMAND, TX_DISABLE);
   1820 	bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
   1821 
   1822 	ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
   1823 	ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
   1824 
   1825 	bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
   1826 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK);
   1827 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK);
   1828 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_RX_FILTER);
   1829 
   1830 	epmbufempty(sc);
   1831 }
   1832 
   1833 
   1834 /*
   1835  * Before reboots, reset card completely.
   1836  */
   1837 static void
   1838 epshutdown(arg)
   1839 	void *arg;
   1840 {
   1841 	register struct ep_softc *sc = arg;
   1842 
   1843 	if (sc->enabled) {
   1844 		epstop(sc);
   1845 		ep_complete_cmd(sc, EP_COMMAND, GLOBAL_RESET);
   1846 	}
   1847 }
   1848 
   1849 /*
   1850  * We get eeprom data from the id_port given an offset into the
   1851  * eeprom.  Basically; after the ID_sequence is sent to all of
   1852  * the cards; they enter the ID_CMD state where they will accept
   1853  * command requests. 0x80-0xbf loads the eeprom data.  We then
   1854  * read the port 16 times and with every read; the cards check
   1855  * for contention (ie: if one card writes a 0 bit and another
   1856  * writes a 1 bit then the host sees a 0. At the end of the cycle;
   1857  * each card compares the data on the bus; if there is a difference
   1858  * then that card goes into ID_WAIT state again). In the meantime;
   1859  * one bit of data is returned in the AX register which is conveniently
   1860  * returned to us by bus_space_read_1().  Hence; we read 16 times getting one
   1861  * bit of data with each read.
   1862  *
   1863  * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
   1864  */
   1865 u_int16_t
   1866 epreadeeprom(iot, ioh, offset)
   1867 	bus_space_tag_t iot;
   1868 	bus_space_handle_t ioh;
   1869 	int offset;
   1870 {
   1871 	u_int16_t data = 0;
   1872 	int i;
   1873 
   1874 	bus_space_write_1(iot, ioh, 0, 0x80 + offset);
   1875 	delay(1000);
   1876 	for (i = 0; i < 16; i++)
   1877 		data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
   1878 	return (data);
   1879 }
   1880 
   1881 static int
   1882 epbusyeeprom(sc)
   1883 	struct ep_softc *sc;
   1884 {
   1885 	bus_space_tag_t iot = sc->sc_iot;
   1886 	bus_space_handle_t ioh = sc->sc_ioh;
   1887 	int i = 100, j;
   1888 
   1889 	if (sc->bustype == EP_BUS_PCMCIA) {
   1890 		delay(1000);
   1891 		return 0;
   1892 	}
   1893 
   1894 	j = 0;		/* bad GCC flow analysis */
   1895 	while (i--) {
   1896 		j = bus_space_read_2(iot, ioh, EP_W0_EEPROM_COMMAND);
   1897 		if (j & EEPROM_BUSY)
   1898 			delay(100);
   1899 		else
   1900 			break;
   1901 	}
   1902 	if (!i) {
   1903 		printf("\n%s: eeprom failed to come ready\n",
   1904 		    sc->sc_dev.dv_xname);
   1905 		return (1);
   1906 	}
   1907 	if (j & EEPROM_TST_MODE) {
   1908 		/* XXX PnP mode? */
   1909 		printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
   1910 		return (1);
   1911 	}
   1912 	return (0);
   1913 }
   1914 
   1915 void
   1916 epmbuffill(v)
   1917 	void *v;
   1918 {
   1919 	struct ep_softc *sc = v;
   1920 	int s, i;
   1921 
   1922 	s = splnet();
   1923 	i = sc->last_mb;
   1924 	do {
   1925 		if (sc->mb[i] == NULL)
   1926 			MGET(sc->mb[i], M_DONTWAIT, MT_DATA);
   1927 		if (sc->mb[i] == NULL)
   1928 			break;
   1929 		i = (i + 1) % MAX_MBS;
   1930 	} while (i != sc->next_mb);
   1931 	sc->last_mb = i;
   1932 	/* If the queue was not filled, try again. */
   1933 	if (sc->last_mb != sc->next_mb)
   1934 		timeout(epmbuffill, sc, 1);
   1935 	splx(s);
   1936 }
   1937 
   1938 void
   1939 epmbufempty(sc)
   1940 	struct ep_softc *sc;
   1941 {
   1942 	int s, i;
   1943 
   1944 	s = splnet();
   1945 	for (i = 0; i<MAX_MBS; i++) {
   1946 		if (sc->mb[i]) {
   1947 			m_freem(sc->mb[i]);
   1948 			sc->mb[i] = NULL;
   1949 		}
   1950 	}
   1951 	sc->last_mb = sc->next_mb = 0;
   1952 	untimeout(epmbuffill, sc);
   1953 	splx(s);
   1954 }
   1955 
   1956 int
   1957 epenable(sc)
   1958 	struct ep_softc *sc;
   1959 {
   1960 
   1961 	if (sc->enabled == 0 && sc->enable != NULL) {
   1962 		if ((*sc->enable)(sc) != 0) {
   1963 			printf("%s: device enable failed\n",
   1964 			    sc->sc_dev.dv_xname);
   1965 			return (EIO);
   1966 		}
   1967 	}
   1968 
   1969 	sc->enabled = 1;
   1970 	return (0);
   1971 }
   1972 
   1973 void
   1974 epdisable(sc)
   1975 	struct ep_softc *sc;
   1976 {
   1977 
   1978 	if (sc->enabled != 0 && sc->disable != NULL) {
   1979 		(*sc->disable)(sc);
   1980 		sc->enabled = 0;
   1981 	}
   1982 }
   1983 
   1984 void
   1985 ep_mii_setbit(sc, bit)
   1986 	struct ep_softc *sc;
   1987 	u_int16_t bit;
   1988 {
   1989 	u_int16_t val;
   1990 
   1991 	/* We assume we're already in Window 4 */
   1992 	val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT);
   1993 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT,
   1994 	    val | bit);
   1995 }
   1996 
   1997 void
   1998 ep_mii_clrbit(sc, bit)
   1999 	struct ep_softc *sc;
   2000 	u_int16_t bit;
   2001 {
   2002 	u_int16_t val;
   2003 
   2004 	/* We assume we're already in Window 4 */
   2005 	val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT);
   2006 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT,
   2007 	    val & ~bit);
   2008 }
   2009 
   2010 u_int16_t
   2011 ep_mii_readbit(sc, bit)
   2012 	struct ep_softc *sc;
   2013 	u_int16_t bit;
   2014 {
   2015 
   2016 	/* We assume we're already in Window 4 */
   2017 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT) &
   2018 	    bit);
   2019 }
   2020 
   2021 void
   2022 ep_mii_sync(sc)
   2023 	struct ep_softc *sc;
   2024 {
   2025 	int i;
   2026 
   2027 	/* We assume we're already in Window 4 */
   2028 	ep_mii_clrbit(sc, PHYSMGMT_DIR);
   2029 	for (i = 0; i < 32; i++) {
   2030 		ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2031 		ep_mii_setbit(sc, PHYSMGMT_CLK);
   2032 	}
   2033 }
   2034 
   2035 void
   2036 ep_mii_sendbits(sc, data, nbits)
   2037 	struct ep_softc *sc;
   2038 	u_int32_t data;
   2039 	int nbits;
   2040 {
   2041 	int i;
   2042 
   2043 	/* We assume we're already in Window 4 */
   2044 	ep_mii_setbit(sc, PHYSMGMT_DIR);
   2045 	for (i = 1 << (nbits - 1); i; i = i >> 1) {
   2046 		ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2047 		ep_mii_readbit(sc, PHYSMGMT_CLK);
   2048 		if (data & i)
   2049 			ep_mii_setbit(sc, PHYSMGMT_DATA);
   2050 		else
   2051 			ep_mii_clrbit(sc, PHYSMGMT_DATA);
   2052 		ep_mii_setbit(sc, PHYSMGMT_CLK);
   2053 		ep_mii_readbit(sc, PHYSMGMT_CLK);
   2054 	}
   2055 }
   2056 
   2057 int
   2058 ep_mii_readreg(self, phy, reg)
   2059 	struct device *self;
   2060 	int phy, reg;
   2061 {
   2062 	struct ep_softc *sc = (struct ep_softc *)self;
   2063 	int val = 0, i, err;
   2064 
   2065 	/*
   2066 	 * Read the PHY register by manually driving the MII control lines.
   2067 	 */
   2068 
   2069 	GO_WINDOW(4);
   2070 
   2071 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_W4_BOOM_PHYSMGMT, 0);
   2072 
   2073 	ep_mii_sync(sc);
   2074 	ep_mii_sendbits(sc, MII_COMMAND_START, 2);
   2075 	ep_mii_sendbits(sc, MII_COMMAND_READ, 2);
   2076 	ep_mii_sendbits(sc, phy, 5);
   2077 	ep_mii_sendbits(sc, reg, 5);
   2078 
   2079 	ep_mii_clrbit(sc, PHYSMGMT_DIR);
   2080 	ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2081 	ep_mii_setbit(sc, PHYSMGMT_CLK);
   2082 	ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2083 
   2084 	err = ep_mii_readbit(sc, PHYSMGMT_DATA);
   2085 	ep_mii_setbit(sc, PHYSMGMT_CLK);
   2086 
   2087 	/* Even if an error occurs, must still clock out the cycle. */
   2088 	for (i = 0; i < 16; i++) {
   2089 		val <<= 1;
   2090 		ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2091 		if (err == 0 && ep_mii_readbit(sc, PHYSMGMT_DATA))
   2092 			val |= 1;
   2093 		ep_mii_setbit(sc, PHYSMGMT_CLK);
   2094 	}
   2095 	ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2096 	ep_mii_setbit(sc, PHYSMGMT_CLK);
   2097 
   2098 	GO_WINDOW(1);	/* back to operating window */
   2099 
   2100 	return (err ? 0 : val);
   2101 }
   2102 
   2103 void
   2104 ep_mii_writereg(self, phy, reg, val)
   2105 	struct device *self;
   2106 	int phy, reg, val;
   2107 {
   2108 	struct ep_softc *sc = (struct ep_softc *)self;
   2109 
   2110 	/*
   2111 	 * Write the PHY register by manually driving the MII control lines.
   2112 	 */
   2113 
   2114 	GO_WINDOW(4);
   2115 
   2116 	ep_mii_sync(sc);
   2117 	ep_mii_sendbits(sc, MII_COMMAND_START, 2);
   2118 	ep_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
   2119 	ep_mii_sendbits(sc, phy, 5);
   2120 	ep_mii_sendbits(sc, reg, 5);
   2121 	ep_mii_sendbits(sc, MII_COMMAND_ACK, 2);
   2122 	ep_mii_sendbits(sc, val, 16);
   2123 
   2124 	ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2125 	ep_mii_setbit(sc, PHYSMGMT_CLK);
   2126 
   2127 	GO_WINDOW(1);	/* back to operating window */
   2128 }
   2129 
   2130 void
   2131 ep_statchg(self)
   2132 	struct device *self;
   2133 {
   2134 	struct ep_softc *sc = (struct ep_softc *)self;
   2135 	bus_space_tag_t iot = sc->sc_iot;
   2136 	bus_space_handle_t ioh = sc->sc_ioh;
   2137 	int mctl;
   2138 
   2139 	/* XXX Update ifp->if_baudrate */
   2140 
   2141 	GO_WINDOW(3);
   2142 	mctl = bus_space_read_2(iot, ioh, EP_W3_MAC_CONTROL);
   2143 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   2144 		mctl |= MAC_CONTROL_FDX;
   2145 	else
   2146 		mctl &= ~MAC_CONTROL_FDX;
   2147 	bus_space_write_2(iot, ioh, EP_W3_MAC_CONTROL, mctl);
   2148 	GO_WINDOW(1);	/* back to operating window */
   2149 }
   2150