elink3.c revision 1.52 1 /* $NetBSD: elink3.c,v 1.52 1999/02/17 03:41:00 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
42 * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 * must display the following acknowledgement:
55 * This product includes software developed by Herb Peyerl.
56 * 4. The name of Herb Peyerl may not be used to endorse or promote products
57 * derived from this software without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
60 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
61 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
63 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
64 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
65 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
66 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
67 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
68 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 #include "opt_inet.h"
72 #include "opt_ns.h"
73 #include "bpfilter.h"
74 #include "rnd.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/mbuf.h>
80 #include <sys/socket.h>
81 #include <sys/ioctl.h>
82 #include <sys/errno.h>
83 #include <sys/syslog.h>
84 #include <sys/select.h>
85 #include <sys/device.h>
86 #if NRND > 0
87 #include <sys/rnd.h>
88 #endif
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_ether.h>
93 #include <net/if_media.h>
94
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/in_var.h>
99 #include <netinet/ip.h>
100 #include <netinet/if_inarp.h>
101 #endif
102
103 #ifdef NS
104 #include <netns/ns.h>
105 #include <netns/ns_if.h>
106 #endif
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #include <net/bpfdesc.h>
111 #endif
112
113 #include <machine/cpu.h>
114 #include <machine/bus.h>
115 #include <machine/intr.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119
120 #include <dev/ic/elink3var.h>
121 #include <dev/ic/elink3reg.h>
122
123 #define ETHER_MIN_LEN 64
124 #define ETHER_MAX_LEN 1518
125 #define ETHER_ADDR_LEN 6
126
127 #ifdef DEBUG
128 int epdebug = 0;
129 #endif
130
131 /*
132 * Structure to map media-present bits in boards to ifmedia codes and
133 * printable media names. Used for table-driven ifmedia initialization.
134 */
135 struct ep_media {
136 int epm_mpbit; /* media present bit */
137 const char *epm_name; /* name of medium */
138 int epm_ifmedia; /* ifmedia word for medium */
139 int epm_epmedia; /* ELINKMEDIA_* constant */
140 };
141
142 /*
143 * Media table for the Demon/Vortex/Boomerang chipsets.
144 *
145 * Note that MII on the Demon and Vortex (3c59x) indicates an external
146 * MII connector (for connecting an external PHY) ... I think. Treat
147 * it as `manual' on these chips.
148 *
149 * Any Boomerang (3c90x) chips with MII really do have an internal
150 * MII and real PHYs attached; no `native' media.
151 */
152 struct ep_media ep_vortex_media[] = {
153 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
154 ELINKMEDIA_10BASE_T },
155 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
156 ELINKMEDIA_10BASE_T },
157 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
158 ELINKMEDIA_AUI },
159 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
160 ELINKMEDIA_10BASE_2 },
161 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
162 ELINKMEDIA_100BASE_TX },
163 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
164 ELINKMEDIA_100BASE_TX },
165 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
166 ELINKMEDIA_100BASE_FX },
167 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
168 ELINKMEDIA_MII },
169 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
170 ELINKMEDIA_100BASE_T4 },
171 { 0, NULL, 0,
172 0 },
173 };
174
175 /*
176 * Media table for the older 3Com Etherlink III chipset, used
177 * in the 3c509, 3c579, and 3c589.
178 */
179 struct ep_media ep_509_media[] = {
180 { ELINK_W0_CC_UTP, "10baseT", IFM_ETHER|IFM_10_T,
181 ELINKMEDIA_10BASE_T },
182 { ELINK_W0_CC_AUI, "10base5", IFM_ETHER|IFM_10_5,
183 ELINKMEDIA_AUI },
184 { ELINK_W0_CC_BNC, "10base2", IFM_ETHER|IFM_10_2,
185 ELINKMEDIA_10BASE_2 },
186 { 0, NULL, 0,
187 0 },
188 };
189
190 void ep_internalconfig __P((struct ep_softc *sc));
191 void ep_vortex_probemedia __P((struct ep_softc *sc));
192 void ep_509_probemedia __P((struct ep_softc *sc));
193
194 static void eptxstat __P((struct ep_softc *));
195 static int epstatus __P((struct ep_softc *));
196 void epinit __P((struct ep_softc *));
197 int epioctl __P((struct ifnet *, u_long, caddr_t));
198 void epstart __P((struct ifnet *));
199 void epwatchdog __P((struct ifnet *));
200 void epreset __P((struct ep_softc *));
201 static void epshutdown __P((void *));
202 void epread __P((struct ep_softc *));
203 struct mbuf *epget __P((struct ep_softc *, int));
204 void epmbuffill __P((void *));
205 void epmbufempty __P((struct ep_softc *));
206 void epsetfilter __P((struct ep_softc *));
207 void epsetmedia __P((struct ep_softc *));
208
209 /* ifmedia callbacks */
210 int ep_media_change __P((struct ifnet *ifp));
211 void ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
212
213 /* MII callbacks */
214 int ep_mii_readreg __P((struct device *, int, int));
215 void ep_mii_writereg __P((struct device *, int, int, int));
216 void ep_statchg __P((struct device *));
217
218 void ep_tick __P((void *));
219
220 void ep_mii_setbit __P((struct ep_softc *, u_int16_t));
221 void ep_mii_clrbit __P((struct ep_softc *, u_int16_t));
222 u_int16_t ep_mii_readbit __P((struct ep_softc *, u_int16_t));
223 void ep_mii_sync __P((struct ep_softc *));
224 void ep_mii_sendbits __P((struct ep_softc *, u_int32_t, int));
225
226 static int epbusyeeprom __P((struct ep_softc *));
227 static inline void ep_complete_cmd __P((struct ep_softc *sc,
228 u_int cmd, u_int arg));
229 static __inline int ep_w1_reg __P((struct ep_softc *, int));
230
231 /*
232 * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
233 * Window 1 registers offset!
234 */
235 static __inline int
236 ep_w1_reg(sc, reg)
237 struct ep_softc *sc;
238 int reg;
239 {
240
241 switch (sc->ep_chipset) {
242 case ELINK_CHIPSET_CORKSCREW:
243 return (reg + 0x10);
244
245 case ELINK_CHIPSET_ROADRUNNER:
246 switch (reg) {
247 case ELINK_W1_FREE_TX:
248 case ELINK_W1_RUNNER_RDCTL:
249 case ELINK_W1_RUNNER_WRCTL:
250 return (reg);
251 }
252 return (reg + 0x10);
253 }
254
255 return (reg);
256 }
257
258 /*
259 * Issue a (reset) command, and be sure it has completed.
260 * Used for commands that reset part or all of the board.
261 * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
262 * but older hardware doesn't implement it and we must delay.
263 * It's easiest to just delay always.
264 */
265 static inline void
266 ep_complete_cmd(sc, cmd, arg)
267 struct ep_softc *sc;
268 u_int cmd, arg;
269 {
270 register bus_space_tag_t iot = sc->sc_iot;
271 register bus_space_handle_t ioh = sc->sc_ioh;
272
273 bus_space_write_2(iot, ioh, cmd, arg);
274
275 #ifdef notyet
276 /* if this adapter family has S_COMMAND_IN_PROGRESS, use it */
277 while (bus_space_read_2(iot, ioh, ELINK_STATUS) & S_COMMAND_IN_PROGRESS)
278 ;
279 else
280 #else
281 DELAY(100000); /* need at least 1 ms, but be generous. */
282 #endif
283 }
284
285 /*
286 * Back-end attach and configure.
287 */
288 void
289 epconfig(sc, chipset, enaddr)
290 struct ep_softc *sc;
291 u_short chipset;
292 u_int8_t *enaddr;
293 {
294 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
295 bus_space_tag_t iot = sc->sc_iot;
296 bus_space_handle_t ioh = sc->sc_ioh;
297 u_int16_t i;
298 u_int8_t myla[6];
299
300 sc->ep_chipset = chipset;
301
302 /*
303 * We could have been groveling around in other register
304 * windows in the front-end; make sure we're in window 0
305 * to read the EEPROM.
306 */
307 GO_WINDOW(0);
308
309 if (enaddr == NULL) {
310 /*
311 * Read the station address from the eeprom
312 */
313 for (i = 0; i < 3; i++) {
314 u_int16_t x;
315 if (epbusyeeprom(sc))
316 return; /* XXX why is eeprom busy? */
317 bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
318 READ_EEPROM | i);
319 if (epbusyeeprom(sc))
320 return; /* XXX why is eeprom busy? */
321 x = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
322 myla[(i << 1)] = x >> 8;
323 myla[(i << 1) + 1] = x;
324 }
325 enaddr = myla;
326 }
327
328 /*
329 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
330 * allow FDDI-sized (4500) byte packets. Commands only take an
331 * 11-bit parameter, and 11 bits isn't enough to hold a full-size
332 * packet length.
333 * Commands to these cards implicitly upshift a packet size
334 * or threshold by 2 bits.
335 * To detect cards with large-packet support, we probe by setting
336 * the transmit threshold register, then change windows and
337 * read back the threshold register directly, and see if the
338 * threshold value was shifted or not.
339 */
340 bus_space_write_2(iot, ioh, ELINK_COMMAND,
341 SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE );
342 GO_WINDOW(5);
343 i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
344 GO_WINDOW(1);
345 switch (i) {
346 case ELINK_LARGEWIN_PROBE:
347 case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
348 sc->ep_pktlenshift = 0;
349 break;
350
351 case (ELINK_LARGEWIN_PROBE << 2):
352 sc->ep_pktlenshift = 2;
353 break;
354
355 default:
356 printf("%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
357 "Interface disabled\n",
358 sc->sc_dev.dv_xname, ELINK_LARGEWIN_PROBE, (int) i);
359 return;
360 }
361
362 /*
363 * Ensure Tx-available interrupts are enabled for
364 * start the interface.
365 * XXX should be in epinit()?
366 */
367 bus_space_write_2(iot, ioh, ELINK_COMMAND,
368 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
369
370 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
371 ifp->if_softc = sc;
372 ifp->if_start = epstart;
373 ifp->if_ioctl = epioctl;
374 ifp->if_watchdog = epwatchdog;
375 ifp->if_flags =
376 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
377
378 if_attach(ifp);
379 ether_ifattach(ifp, enaddr);
380
381 /*
382 * Finish configuration:
383 * determine chipset if the front-end couldn't do so,
384 * show board details, set media.
385 */
386
387 /*
388 * Print RAM size. We also print the Ethernet address in here.
389 * It's extracted from the ifp, so we have to make sure it's
390 * been attached first.
391 */
392 ep_internalconfig(sc);
393 GO_WINDOW(0);
394
395 /*
396 * Display some additional information, if pertinent.
397 */
398 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
399 printf("%s: RoadRunner FIFO buffer enabled\n",
400 sc->sc_dev.dv_xname);
401
402 /*
403 * Initialize our media structures and MII info. We'll
404 * probe the MII if we discover that we have one.
405 */
406 sc->sc_mii.mii_ifp = ifp;
407 sc->sc_mii.mii_readreg = ep_mii_readreg;
408 sc->sc_mii.mii_writereg = ep_mii_writereg;
409 sc->sc_mii.mii_statchg = ep_statchg;
410 ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
411 ep_media_status);
412
413 /*
414 * Now, determine which media we have.
415 */
416 switch (sc->ep_chipset) {
417 case ELINK_CHIPSET_BOOMERANG:
418 case ELINK_CHIPSET_ROADRUNNER:
419 /*
420 * If the device has MII, probe it. We won't be using
421 * any `native' media in this case, only PHYs. If
422 * we don't, just treat the Boomerang like the Vortex.
423 */
424 if (sc->ep_flags & ELINK_FLAGS_MII) {
425 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
426 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
427 ifmedia_add(&sc->sc_mii.mii_media,
428 IFM_ETHER|IFM_NONE, 0, NULL);
429 ifmedia_set(&sc->sc_mii.mii_media,
430 IFM_ETHER|IFM_NONE);
431 } else {
432 ifmedia_set(&sc->sc_mii.mii_media,
433 IFM_ETHER|IFM_AUTO);
434 }
435 break;
436 }
437 /* FALLTHROUGH */
438
439 case ELINK_CHIPSET_VORTEX:
440 ep_vortex_probemedia(sc);
441 break;
442
443 default:
444 ep_509_probemedia(sc);
445 break;
446 }
447
448 GO_WINDOW(1); /* Window 1 is operating window */
449
450 #if NBPFILTER > 0
451 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
452 sizeof(struct ether_header));
453 #endif
454
455 #if NRND > 0
456 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, RND_TYPE_NET);
457 #endif
458
459 sc->tx_start_thresh = 20; /* probably a good starting point. */
460
461 /* Establish callback to reset card when we reboot. */
462 shutdownhook_establish(epshutdown, sc);
463
464 ep_complete_cmd(sc, ELINK_COMMAND, RX_RESET);
465 ep_complete_cmd(sc, ELINK_COMMAND, TX_RESET);
466 }
467
468
469 /*
470 * Show interface-model-independent info from window 3
471 * internal-configuration register.
472 */
473 void
474 ep_internalconfig(sc)
475 struct ep_softc *sc;
476 {
477 bus_space_tag_t iot = sc->sc_iot;
478 bus_space_handle_t ioh = sc->sc_ioh;
479
480 u_int config0;
481 u_int config1;
482
483 int ram_size, ram_width, ram_speed, rom_size, ram_split;
484 /*
485 * NVRAM buffer Rx:Tx config names for busmastering cards
486 * (Demon, Vortex, and later).
487 */
488 const char *onboard_ram_config[] = {
489 "5:3", "3:1", "1:1", "3:5" };
490
491 GO_WINDOW(3);
492 config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
493 config1 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
494 GO_WINDOW(0);
495
496 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
497 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
498 ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
499 rom_size = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
500
501 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
502
503 printf("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
504 sc->sc_dev.dv_xname,
505 ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
506 8 << ram_size,
507 (ram_width) ? "word" : "byte",
508 onboard_ram_config[ram_split]);
509 }
510
511
512 /*
513 * Find supported media on 3c509-generation hardware that doesn't have
514 * a "reset_options" register in window 3.
515 * Use the config_cntrl register in window 0 instead.
516 * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
517 * that implement CONFIG_CTRL. We don't have a good way to set the
518 * default active mediuim; punt to ifconfig instead.
519 */
520 void
521 ep_509_probemedia(sc)
522 struct ep_softc *sc;
523 {
524 bus_space_tag_t iot = sc->sc_iot;
525 bus_space_handle_t ioh = sc->sc_ioh;
526 struct ifmedia *ifm = &sc->sc_mii.mii_media;
527 u_int16_t ep_w0_config, port;
528 struct ep_media *epm;
529 const char *sep = "", *defmedianame = NULL;
530 int defmedia = 0;
531
532 GO_WINDOW(0);
533 ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
534
535 printf("%s: ", sc->sc_dev.dv_xname);
536
537 /* Sanity check that there are any media! */
538 if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
539 printf("no media present!\n");
540 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
541 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
542 return;
543 }
544
545 /*
546 * Get the default media from the EEPROM.
547 */
548 if (epbusyeeprom(sc))
549 return; /* XXX why is eeprom busy? */
550 bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
551 READ_EEPROM | EEPROM_ADDR_CFG);
552 if (epbusyeeprom(sc))
553 return; /* XXX why is eeprom busy? */
554 port = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA) >> 14;
555
556 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
557
558 for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
559 if (ep_w0_config & epm->epm_mpbit) {
560 /*
561 * This simple test works because 509 chipsets
562 * don't do full-duplex.
563 */
564 if (epm->epm_epmedia == port || defmedia == 0) {
565 defmedia = epm->epm_ifmedia;
566 defmedianame = epm->epm_name;
567 }
568 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
569 NULL);
570 PRINT(epm->epm_name);
571 }
572 }
573
574 #undef PRINT
575
576 #ifdef DIAGNOSTIC
577 if (defmedia == 0)
578 panic("ep_509_probemedia: impossible");
579 #endif
580
581 printf(" (default %s)\n", defmedianame);
582 ifmedia_set(ifm, defmedia);
583 }
584
585 /*
586 * Find media present on large-packet-capable elink3 devices.
587 * Show onboard configuration of large-packet-capable elink3 devices
588 * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
589 * Use media and card-version info in window 3 instead.
590 */
591 void
592 ep_vortex_probemedia(sc)
593 struct ep_softc *sc;
594 {
595 bus_space_tag_t iot = sc->sc_iot;
596 bus_space_handle_t ioh = sc->sc_ioh;
597 struct ifmedia *ifm = &sc->sc_mii.mii_media;
598 struct ep_media *epm;
599 u_int config1;
600 int reset_options;
601 int default_media; /* 3-bit encoding of default (EEPROM) media */
602 int defmedia = 0;
603 const char *sep = "", *defmedianame = NULL;
604
605 GO_WINDOW(3);
606 config1 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
607 reset_options = (int)bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
608 GO_WINDOW(0);
609
610 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
611
612 printf("%s: ", sc->sc_dev.dv_xname);
613
614 /* Sanity check that there are any media! */
615 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
616 printf("no media present!\n");
617 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
618 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
619 return;
620 }
621
622 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
623
624 for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
625 if (reset_options & epm->epm_mpbit) {
626 /*
627 * Default media is a little more complicated
628 * on the Vortex. We support full-duplex which
629 * uses the same reset options bit.
630 *
631 * XXX Check EEPROM for default to FDX?
632 */
633 if (epm->epm_epmedia == default_media) {
634 if ((epm->epm_ifmedia & IFM_FDX) == 0) {
635 defmedia = epm->epm_ifmedia;
636 defmedianame = epm->epm_name;
637 }
638 } else if (defmedia == 0) {
639 defmedia = epm->epm_ifmedia;
640 defmedianame = epm->epm_name;
641 }
642 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
643 NULL);
644 PRINT(epm->epm_name);
645 }
646 }
647
648 #undef PRINT
649
650 #ifdef DIAGNOSTIC
651 if (defmedia == 0)
652 panic("ep_vortex_probemedia: impossible");
653 #endif
654
655 printf(" (default %s)\n", defmedianame);
656 ifmedia_set(ifm, defmedia);
657 }
658
659 /*
660 * One second timer, used to tick the MII.
661 */
662 void
663 ep_tick(arg)
664 void *arg;
665 {
666 struct ep_softc *sc = arg;
667 int s;
668
669 #ifdef DIAGNOSTIC
670 if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
671 panic("ep_tick");
672 #endif
673
674 s = splnet();
675 mii_tick(&sc->sc_mii);
676 splx(s);
677
678 timeout(ep_tick, sc, hz);
679 }
680
681 /*
682 * Bring device up.
683 *
684 * The order in here seems important. Otherwise we may not receive
685 * interrupts. ?!
686 */
687 void
688 epinit(sc)
689 register struct ep_softc *sc;
690 {
691 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
692 bus_space_tag_t iot = sc->sc_iot;
693 bus_space_handle_t ioh = sc->sc_ioh;
694 int i;
695
696 while (bus_space_read_2(iot, ioh, ELINK_STATUS) & S_COMMAND_IN_PROGRESS)
697 ;
698
699 if (sc->bustype != ELINK_BUS_PCI) {
700 GO_WINDOW(0);
701 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
702 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
703 }
704
705 if (sc->bustype == ELINK_BUS_PCMCIA) {
706 bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
707 }
708
709 GO_WINDOW(2);
710 for (i = 0; i < 6; i++) /* Reload the ether_addr. */
711 bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
712 LLADDR(ifp->if_sadl)[i]);
713
714 /*
715 * Reset the station-address receive filter.
716 * A bug workaround for busmastering (Vortex, Demon) cards.
717 */
718 for (i = 0; i < 6; i++)
719 bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
720
721 ep_complete_cmd(sc, ELINK_COMMAND, RX_RESET);
722 ep_complete_cmd(sc, ELINK_COMMAND, TX_RESET);
723
724 GO_WINDOW(1); /* Window 1 is operating window */
725 for (i = 0; i < 31; i++)
726 bus_space_read_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS));
727
728 /* Set threshhold for for Tx-space avaiable interrupt. */
729 bus_space_write_2(iot, ioh, ELINK_COMMAND,
730 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
731
732 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
733 /*
734 * Enable options in the PCMCIA LAN COR register, via
735 * RoadRunner Window 1.
736 *
737 * XXX MAGIC CONSTANTS!
738 */
739 u_int16_t cor;
740
741 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
742
743 cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
744 if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
745 cor |= 0x10;
746 if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
747 cor |= 0x20;
748 bus_space_write_2(iot, ioh, 0, cor);
749
750 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
751 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
752 }
753
754 /* Enable interrupts. */
755 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK | S_CARD_FAILURE |
756 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
757 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK | S_CARD_FAILURE |
758 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
759
760 /*
761 * Attempt to get rid of any stray interrupts that occured during
762 * configuration. On the i386 this isn't possible because one may
763 * already be queued. However, a single stray interrupt is
764 * unimportant.
765 */
766 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
767
768 epsetfilter(sc);
769 epsetmedia(sc);
770
771 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
772 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
773
774 epmbuffill(sc);
775
776 /* Interface is now `running', with no output active. */
777 ifp->if_flags |= IFF_RUNNING;
778 ifp->if_flags &= ~IFF_OACTIVE;
779
780 if (sc->ep_flags & ELINK_FLAGS_MII) {
781 /* Start the one second clock. */
782 timeout(ep_tick, sc, hz);
783 }
784
785 /* Attempt to start output, if any. */
786 epstart(ifp);
787 }
788
789
790 /*
791 * Set multicast receive filter.
792 * elink3 hardware has no selective multicast filter in hardware.
793 * Enable reception of all multicasts and filter in software.
794 */
795 void
796 epsetfilter(sc)
797 register struct ep_softc *sc;
798 {
799 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
800
801 GO_WINDOW(1); /* Window 1 is operating window */
802 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, SET_RX_FILTER |
803 FIL_INDIVIDUAL | FIL_BRDCST |
804 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
805 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
806 }
807
808 int
809 ep_media_change(ifp)
810 struct ifnet *ifp;
811 {
812 register struct ep_softc *sc = ifp->if_softc;
813
814 if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
815 epreset(sc);
816
817 return (0);
818 }
819
820 /*
821 * Set the card to use the specified media.
822 */
823 void
824 epsetmedia(sc)
825 struct ep_softc *sc;
826 {
827 bus_space_tag_t iot = sc->sc_iot;
828 bus_space_handle_t ioh = sc->sc_ioh;
829
830 /* Turn everything off. First turn off linkbeat and UTP. */
831 GO_WINDOW(4);
832 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
833
834 /* Turn off coax */
835 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
836 delay(1000);
837
838 /*
839 * If the device has MII, select it, and then tell the
840 * PHY which media to use.
841 */
842 if (sc->ep_flags & ELINK_FLAGS_MII) {
843 int config0, config1;
844
845 GO_WINDOW(3);
846
847 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
848 int resopt;
849
850 resopt = bus_space_read_2(iot, ioh,
851 ELINK_W3_RESET_OPTIONS);
852 bus_space_write_2(iot, ioh,
853 ELINK_W3_RESET_OPTIONS, resopt|ELINK_RUNNER_ENABLE_MII);
854 }
855
856 config0 = (u_int)bus_space_read_2(iot, ioh,
857 ELINK_W3_INTERNAL_CONFIG);
858 config1 = (u_int)bus_space_read_2(iot, ioh,
859 ELINK_W3_INTERNAL_CONFIG + 2);
860
861 config1 = config1 & ~CONFIG_MEDIAMASK;
862 config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
863
864 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
865 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2, config1);
866 GO_WINDOW(1); /* back to operating window */
867
868 mii_mediachg(&sc->sc_mii);
869 return;
870 }
871
872 /*
873 * Now turn on the selected media/transceiver.
874 */
875 GO_WINDOW(4);
876 switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
877 case IFM_10_T:
878 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
879 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
880 break;
881
882 case IFM_10_2:
883 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
884 DELAY(1000); /* 50ms not enmough? */
885 break;
886
887 case IFM_100_TX:
888 case IFM_100_FX:
889 case IFM_100_T4: /* XXX check documentation */
890 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
891 LINKBEAT_ENABLE);
892 DELAY(1000); /* not strictly necessary? */
893 break;
894
895 case IFM_10_5:
896 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
897 SQE_ENABLE);
898 DELAY(1000); /* not strictly necessary? */
899 break;
900
901 case IFM_MANUAL:
902 /*
903 * Nothing to do here; we are actually enabling the
904 * external PHY on the MII port.
905 */
906 break;
907
908 case IFM_NONE:
909 printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
910 return;
911
912 default:
913 panic("epsetmedia: impossible");
914 }
915
916 /*
917 * Tell the chip which port to use.
918 */
919 switch (sc->ep_chipset) {
920 case ELINK_CHIPSET_VORTEX:
921 case ELINK_CHIPSET_BOOMERANG:
922 {
923 int mctl, config0, config1;
924
925 GO_WINDOW(3);
926 config0 = (u_int)bus_space_read_2(iot, ioh,
927 ELINK_W3_INTERNAL_CONFIG);
928 config1 = (u_int)bus_space_read_2(iot, ioh,
929 ELINK_W3_INTERNAL_CONFIG + 2);
930
931 config1 = config1 & ~CONFIG_MEDIAMASK;
932 config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
933 CONFIG_MEDIAMASK_SHIFT);
934
935 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
936 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
937 config1);
938
939 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
940 if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
941 mctl |= MAC_CONTROL_FDX;
942 else
943 mctl &= ~MAC_CONTROL_FDX;
944 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
945 break;
946 }
947 default:
948 {
949 int w0_addr_cfg;
950
951 GO_WINDOW(0);
952 w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
953 w0_addr_cfg &= 0x3fff;
954 bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
955 (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
956 DELAY(1000);
957 break;
958 }
959 }
960
961 GO_WINDOW(1); /* Window 1 is operating window */
962 }
963
964 /*
965 * Get currently-selected media from card.
966 * (if_media callback, may be called before interface is brought up).
967 */
968 void
969 ep_media_status(ifp, req)
970 struct ifnet *ifp;
971 struct ifmediareq *req;
972 {
973 register struct ep_softc *sc = ifp->if_softc;
974 bus_space_tag_t iot = sc->sc_iot;
975 bus_space_handle_t ioh = sc->sc_ioh;
976
977 if (sc->enabled == 0) {
978 req->ifm_active = IFM_ETHER|IFM_NONE;
979 req->ifm_status = 0;
980 return;
981 }
982
983 /*
984 * If we have MII, go ask the PHY what's going on.
985 */
986 if (sc->ep_flags & ELINK_FLAGS_MII) {
987 mii_pollstat(&sc->sc_mii);
988 req->ifm_active = sc->sc_mii.mii_media_active;
989 req->ifm_status = sc->sc_mii.mii_media_status;
990 return;
991 }
992
993 /*
994 * Ok, at this point we claim that our active media is
995 * the currently selected media. We'll update our status
996 * if our chipset allows us to detect link.
997 */
998 req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
999 req->ifm_status = 0;
1000
1001 switch (sc->ep_chipset) {
1002 case ELINK_CHIPSET_VORTEX:
1003 case ELINK_CHIPSET_BOOMERANG:
1004 GO_WINDOW(4);
1005 req->ifm_status = IFM_AVALID;
1006 if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
1007 LINKBEAT_DETECT)
1008 req->ifm_status |= IFM_ACTIVE;
1009 GO_WINDOW(1); /* back to operating window */
1010 break;
1011 }
1012 }
1013
1014
1015
1016 /*
1017 * Start outputting on the interface.
1018 * Always called as splnet().
1019 */
1020 void
1021 epstart(ifp)
1022 struct ifnet *ifp;
1023 {
1024 register struct ep_softc *sc = ifp->if_softc;
1025 bus_space_tag_t iot = sc->sc_iot;
1026 bus_space_handle_t ioh = sc->sc_ioh;
1027 struct mbuf *m, *m0;
1028 int sh, len, pad;
1029 bus_addr_t txreg;
1030
1031 /* Don't transmit if interface is busy or not running */
1032 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1033 return;
1034
1035 startagain:
1036 /* Sneak a peek at the next packet */
1037 m0 = ifp->if_snd.ifq_head;
1038 if (m0 == 0)
1039 return;
1040
1041 /* We need to use m->m_pkthdr.len, so require the header */
1042 if ((m0->m_flags & M_PKTHDR) == 0)
1043 panic("epstart: no header mbuf");
1044 len = m0->m_pkthdr.len;
1045
1046 pad = (4 - len) & 3;
1047
1048 /*
1049 * The 3c509 automatically pads short packets to minimum ethernet
1050 * length, but we drop packets that are too large. Perhaps we should
1051 * truncate them instead?
1052 */
1053 if (len + pad > ETHER_MAX_LEN) {
1054 /* packet is obviously too large: toss it */
1055 ++ifp->if_oerrors;
1056 IF_DEQUEUE(&ifp->if_snd, m0);
1057 m_freem(m0);
1058 goto readcheck;
1059 }
1060
1061 if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
1062 len + pad + 4) {
1063 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1064 SET_TX_AVAIL_THRESH |
1065 ((len + pad + 4) >> sc->ep_pktlenshift));
1066 /* not enough room in FIFO */
1067 ifp->if_flags |= IFF_OACTIVE;
1068 return;
1069 } else {
1070 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1071 SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE );
1072 }
1073
1074 IF_DEQUEUE(&ifp->if_snd, m0);
1075 if (m0 == 0) /* not really needed */
1076 return;
1077
1078 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
1079 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/) );
1080
1081 #if NBPFILTER > 0
1082 if (ifp->if_bpf)
1083 bpf_mtap(ifp->if_bpf, m0);
1084 #endif
1085
1086 /*
1087 * Do the output at splhigh() so that an interrupt from another device
1088 * won't cause a FIFO underrun.
1089 */
1090 sh = splhigh();
1091
1092 txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
1093
1094 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1095 /*
1096 * Prime the FIFO buffer counter (number of 16-bit
1097 * words about to be written to the FIFO).
1098 *
1099 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1100 * COUNTER IS NON-ZERO!
1101 */
1102 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
1103 (len + pad) >> 1);
1104 }
1105
1106 bus_space_write_2(iot, ioh, txreg, len);
1107 bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1108 if (ELINK_IS_BUS_32(sc->bustype)) {
1109 for (m = m0; m; ) {
1110 if (m->m_len > 3) {
1111 /* align our reads from core */
1112 if (mtod(m, u_long) & 3) {
1113 u_long count =
1114 4 - (mtod(m, u_long) & 3);
1115 bus_space_write_multi_1(iot, ioh,
1116 txreg, mtod(m, u_int8_t *), count);
1117 m->m_data =
1118 (void *)(mtod(m, u_long) + count);
1119 m->m_len -= count;
1120 }
1121 bus_space_write_multi_4(iot, ioh,
1122 txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1123 m->m_data = (void *)(mtod(m, u_long) +
1124 (u_long)(m->m_len & ~3));
1125 m->m_len -= m->m_len & ~3;
1126 }
1127 if (m->m_len) {
1128 bus_space_write_multi_1(iot, ioh,
1129 txreg, mtod(m, u_int8_t *), m->m_len);
1130 }
1131 MFREE(m, m0);
1132 m = m0;
1133 }
1134 } else {
1135 for (m = m0; m; ) {
1136 if (m->m_len > 1) {
1137 if (mtod(m, u_long) & 1) {
1138 bus_space_write_1(iot, ioh,
1139 txreg, *(mtod(m, u_int8_t *)));
1140 m->m_data =
1141 (void *)(mtod(m, u_long) + 1);
1142 m->m_len -= 1;
1143 }
1144 bus_space_write_multi_2(iot, ioh,
1145 txreg, mtod(m, u_int16_t *),
1146 m->m_len >> 1);
1147 }
1148 if (m->m_len & 1) {
1149 bus_space_write_1(iot, ioh, txreg,
1150 *(mtod(m, u_int8_t *) + m->m_len - 1));
1151 }
1152 MFREE(m, m0);
1153 m = m0;
1154 }
1155 }
1156 while (pad--)
1157 bus_space_write_1(iot, ioh, txreg, 0);
1158
1159 splx(sh);
1160
1161 ++ifp->if_opackets;
1162
1163 readcheck:
1164 if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
1165 ERR_INCOMPLETE) == 0) {
1166 /* We received a complete packet. */
1167 u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1168
1169 if ((status & S_INTR_LATCH) == 0) {
1170 /*
1171 * No interrupt, read the packet and continue
1172 * Is this supposed to happen? Is my motherboard
1173 * completely busted?
1174 */
1175 epread(sc);
1176 } else {
1177 /* Got an interrupt, return so that it gets serviced. */
1178 return;
1179 }
1180 } else {
1181 /* Check if we are stuck and reset [see XXX comment] */
1182 if (epstatus(sc)) {
1183 if (ifp->if_flags & IFF_DEBUG)
1184 printf("%s: adapter reset\n",
1185 sc->sc_dev.dv_xname);
1186 epreset(sc);
1187 }
1188 }
1189
1190 goto startagain;
1191 }
1192
1193
1194 /*
1195 * XXX: The 3c509 card can get in a mode where both the fifo status bit
1196 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1197 * We detect this situation and we reset the adapter.
1198 * It happens at times when there is a lot of broadcast traffic
1199 * on the cable (once in a blue moon).
1200 */
1201 static int
1202 epstatus(sc)
1203 register struct ep_softc *sc;
1204 {
1205 bus_space_tag_t iot = sc->sc_iot;
1206 bus_space_handle_t ioh = sc->sc_ioh;
1207 u_int16_t fifost;
1208
1209 /*
1210 * Check the FIFO status and act accordingly
1211 */
1212 GO_WINDOW(4);
1213 fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
1214 GO_WINDOW(1);
1215
1216 if (fifost & FIFOS_RX_UNDERRUN) {
1217 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1218 printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
1219 epreset(sc);
1220 return 0;
1221 }
1222
1223 if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1224 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1225 printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
1226 return 1;
1227 }
1228
1229 if (fifost & FIFOS_RX_OVERRUN) {
1230 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1231 printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
1232 return 1;
1233 }
1234
1235 if (fifost & FIFOS_TX_OVERRUN) {
1236 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1237 printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
1238 epreset(sc);
1239 return 0;
1240 }
1241
1242 return 0;
1243 }
1244
1245
1246 static void
1247 eptxstat(sc)
1248 register struct ep_softc *sc;
1249 {
1250 bus_space_tag_t iot = sc->sc_iot;
1251 bus_space_handle_t ioh = sc->sc_ioh;
1252 int i;
1253
1254 /*
1255 * We need to read+write TX_STATUS until we get a 0 status
1256 * in order to turn off the interrupt flag.
1257 */
1258 while ((i = bus_space_read_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS)))
1259 & TXS_COMPLETE) {
1260 bus_space_write_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
1261 0x0);
1262
1263 if (i & TXS_JABBER) {
1264 ++sc->sc_ethercom.ec_if.if_oerrors;
1265 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1266 printf("%s: jabber (%x)\n",
1267 sc->sc_dev.dv_xname, i);
1268 epreset(sc);
1269 } else if (i & TXS_UNDERRUN) {
1270 ++sc->sc_ethercom.ec_if.if_oerrors;
1271 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1272 printf("%s: fifo underrun (%x) @%d\n",
1273 sc->sc_dev.dv_xname, i,
1274 sc->tx_start_thresh);
1275 if (sc->tx_succ_ok < 100)
1276 sc->tx_start_thresh = min(ETHER_MAX_LEN,
1277 sc->tx_start_thresh + 20);
1278 sc->tx_succ_ok = 0;
1279 epreset(sc);
1280 } else if (i & TXS_MAX_COLLISION) {
1281 ++sc->sc_ethercom.ec_if.if_collisions;
1282 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
1283 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1284 } else
1285 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1286 }
1287 }
1288
1289 int
1290 epintr(arg)
1291 void *arg;
1292 {
1293 register struct ep_softc *sc = arg;
1294 bus_space_tag_t iot = sc->sc_iot;
1295 bus_space_handle_t ioh = sc->sc_ioh;
1296 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1297 u_int16_t status;
1298 int ret = 0;
1299 int addrandom = 0;
1300
1301 if (sc->enabled == 0)
1302 return (0);
1303
1304 for (;;) {
1305 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1306
1307 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1308
1309 if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
1310 S_RX_COMPLETE | S_CARD_FAILURE)) == 0) {
1311 if ((status & S_INTR_LATCH) == 0) {
1312 #if 0
1313 printf("%s: intr latch cleared\n",
1314 sc->sc_dev.dv_xname);
1315 #endif
1316 break;
1317 }
1318 }
1319
1320 ret = 1;
1321
1322 /*
1323 * Acknowledge any interrupts. It's important that we do this
1324 * first, since there would otherwise be a race condition.
1325 * Due to the i386 interrupt queueing, we may get spurious
1326 * interrupts occasionally.
1327 */
1328 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1329 (status & (C_INTR_LATCH |
1330 C_CARD_FAILURE |
1331 C_TX_COMPLETE |
1332 C_TX_AVAIL |
1333 C_RX_COMPLETE |
1334 C_RX_EARLY |
1335 C_INT_RQD |
1336 C_UPD_STATS)));
1337
1338 #if 0
1339 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1340
1341 printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
1342 (status & S_RX_COMPLETE)?" RX_COMPLETE":"",
1343 (status & S_TX_COMPLETE)?" TX_COMPLETE":"",
1344 (status & S_TX_AVAIL)?" TX_AVAIL":"",
1345 (status & S_CARD_FAILURE)?" CARD_FAILURE":"");
1346 #endif
1347
1348 if (status & S_RX_COMPLETE) {
1349 epread(sc);
1350 addrandom = 1;
1351 }
1352 if (status & S_TX_AVAIL) {
1353 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1354 epstart(&sc->sc_ethercom.ec_if);
1355 addrandom = 1;
1356 }
1357 if (status & S_CARD_FAILURE) {
1358 printf("%s: adapter failure (%x)\n",
1359 sc->sc_dev.dv_xname, status);
1360 epreset(sc);
1361 return (1);
1362 }
1363 if (status & S_TX_COMPLETE) {
1364 eptxstat(sc);
1365 epstart(ifp);
1366 addrandom = 1;
1367 }
1368
1369 #if NRND > 0
1370 if (status)
1371 rnd_add_uint32(&sc->rnd_source, status);
1372 #endif
1373 }
1374
1375 /* no more interrupts */
1376 return (ret);
1377 }
1378
1379 void
1380 epread(sc)
1381 register struct ep_softc *sc;
1382 {
1383 bus_space_tag_t iot = sc->sc_iot;
1384 bus_space_handle_t ioh = sc->sc_ioh;
1385 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1386 struct mbuf *m;
1387 struct ether_header *eh;
1388 int len;
1389
1390 len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1391
1392 again:
1393 if (ifp->if_flags & IFF_DEBUG) {
1394 int err = len & ERR_MASK;
1395 char *s = NULL;
1396
1397 if (len & ERR_INCOMPLETE)
1398 s = "incomplete packet";
1399 else if (err == ERR_OVERRUN)
1400 s = "packet overrun";
1401 else if (err == ERR_RUNT)
1402 s = "runt packet";
1403 else if (err == ERR_ALIGNMENT)
1404 s = "bad alignment";
1405 else if (err == ERR_CRC)
1406 s = "bad crc";
1407 else if (err == ERR_OVERSIZE)
1408 s = "oversized packet";
1409 else if (err == ERR_DRIBBLE)
1410 s = "dribble bits";
1411
1412 if (s)
1413 printf("%s: %s\n", sc->sc_dev.dv_xname, s);
1414 }
1415
1416 if (len & ERR_INCOMPLETE)
1417 return;
1418
1419 if (len & ERR_RX) {
1420 ++ifp->if_ierrors;
1421 goto abort;
1422 }
1423
1424 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
1425
1426 /* Pull packet off interface. */
1427 m = epget(sc, len);
1428 if (m == 0) {
1429 ifp->if_ierrors++;
1430 goto abort;
1431 }
1432
1433 ++ifp->if_ipackets;
1434
1435 /* We assume the header fit entirely in one mbuf. */
1436 eh = mtod(m, struct ether_header *);
1437
1438 #if NBPFILTER > 0
1439 /*
1440 * Check if there's a BPF listener on this interface.
1441 * If so, hand off the raw packet to BPF.
1442 */
1443 if (ifp->if_bpf) {
1444 bpf_mtap(ifp->if_bpf, m);
1445
1446 /*
1447 * Note that the interface cannot be in promiscuous mode if
1448 * there are no BPF listeners. And if we are in promiscuous
1449 * mode, we have to check if this packet is really ours.
1450 */
1451 if ((ifp->if_flags & IFF_PROMISC) &&
1452 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
1453 bcmp(eh->ether_dhost, LLADDR(sc->sc_ethercom.ec_if.if_sadl),
1454 sizeof(eh->ether_dhost)) != 0) {
1455 m_freem(m);
1456 return;
1457 }
1458 }
1459 #endif
1460
1461 /* We assume the header fit entirely in one mbuf. */
1462 m_adj(m, sizeof(struct ether_header));
1463 ether_input(ifp, eh, m);
1464
1465 /*
1466 * In periods of high traffic we can actually receive enough
1467 * packets so that the fifo overrun bit will be set at this point,
1468 * even though we just read a packet. In this case we
1469 * are not going to receive any more interrupts. We check for
1470 * this condition and read again until the fifo is not full.
1471 * We could simplify this test by not using epstatus(), but
1472 * rechecking the RX_STATUS register directly. This test could
1473 * result in unnecessary looping in cases where there is a new
1474 * packet but the fifo is not full, but it will not fix the
1475 * stuck behavior.
1476 *
1477 * Even with this improvement, we still get packet overrun errors
1478 * which are hurting performance. Maybe when I get some more time
1479 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1480 */
1481 if (epstatus(sc)) {
1482 len = bus_space_read_2(iot, ioh,
1483 ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1484 /* Check if we are stuck and reset [see XXX comment] */
1485 if (len & ERR_INCOMPLETE) {
1486 if (ifp->if_flags & IFF_DEBUG)
1487 printf("%s: adapter reset\n",
1488 sc->sc_dev.dv_xname);
1489 epreset(sc);
1490 return;
1491 }
1492 goto again;
1493 }
1494
1495 return;
1496
1497 abort:
1498 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
1499 while (bus_space_read_2(iot, ioh, ELINK_STATUS) & S_COMMAND_IN_PROGRESS)
1500 ;
1501 }
1502
1503 struct mbuf *
1504 epget(sc, totlen)
1505 struct ep_softc *sc;
1506 int totlen;
1507 {
1508 bus_space_tag_t iot = sc->sc_iot;
1509 bus_space_handle_t ioh = sc->sc_ioh;
1510 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1511 struct mbuf *top, **mp, *m, *rv = NULL;
1512 bus_addr_t rxreg;
1513 int len, remaining;
1514 int sh;
1515
1516 m = sc->mb[sc->next_mb];
1517 sc->mb[sc->next_mb] = 0;
1518 if (m == 0) {
1519 MGETHDR(m, M_DONTWAIT, MT_DATA);
1520 if (m == 0)
1521 return 0;
1522 } else {
1523 /* If the queue is no longer full, refill. */
1524 if (sc->last_mb == sc->next_mb)
1525 timeout(epmbuffill, sc, 1);
1526 /* Convert one of our saved mbuf's. */
1527 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1528 m->m_data = m->m_pktdat;
1529 m->m_flags = M_PKTHDR;
1530 }
1531 m->m_pkthdr.rcvif = ifp;
1532 m->m_pkthdr.len = totlen;
1533 len = MHLEN;
1534 top = 0;
1535 mp = ⊤
1536
1537 /*
1538 * We read the packet at splhigh() so that an interrupt from another
1539 * device doesn't cause the card's buffer to overflow while we're
1540 * reading it. We may still lose packets at other times.
1541 */
1542 sh = splhigh();
1543
1544 rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
1545
1546 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1547 /*
1548 * Prime the FIFO buffer counter (number of 16-bit
1549 * words about to be read from the FIFO).
1550 *
1551 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1552 * COUNTER IS NON-ZERO!
1553 */
1554 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
1555 }
1556
1557 while (totlen > 0) {
1558 if (top) {
1559 m = sc->mb[sc->next_mb];
1560 sc->mb[sc->next_mb] = 0;
1561 if (m == 0) {
1562 MGET(m, M_DONTWAIT, MT_DATA);
1563 if (m == 0) {
1564 m_freem(top);
1565 goto out;
1566 }
1567 } else {
1568 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1569 }
1570 len = MLEN;
1571 }
1572 if (totlen >= MINCLSIZE) {
1573 MCLGET(m, M_DONTWAIT);
1574 if ((m->m_flags & M_EXT) == 0) {
1575 m_free(m);
1576 m_freem(top);
1577 goto out;
1578 }
1579 len = MCLBYTES;
1580 }
1581 if (top == 0) {
1582 /* align the struct ip header */
1583 caddr_t newdata = (caddr_t)
1584 ALIGN(m->m_data + sizeof(struct ether_header))
1585 - sizeof(struct ether_header);
1586 len -= newdata - m->m_data;
1587 m->m_data = newdata;
1588 }
1589 remaining = len = min(totlen, len);
1590 if (ELINK_IS_BUS_32(sc->bustype)) {
1591 u_long offset = mtod(m, u_long);
1592 /*
1593 * Read bytes up to the point where we are aligned.
1594 * (We can align to 4 bytes, rather than ALIGNBYTES,
1595 * here because we're later reading 4-byte chunks.)
1596 */
1597 if ((remaining > 3) && (offset & 3)) {
1598 int count = (4 - (offset & 3));
1599 bus_space_read_multi_1(iot, ioh,
1600 rxreg, (u_int8_t *) offset, count);
1601 offset += count;
1602 remaining -= count;
1603 }
1604 if (remaining > 3) {
1605 bus_space_read_multi_4(iot, ioh,
1606 rxreg, (u_int32_t *) offset,
1607 remaining >> 2);
1608 offset += remaining & ~3;
1609 remaining &= 3;
1610 }
1611 if (remaining) {
1612 bus_space_read_multi_1(iot, ioh,
1613 rxreg, (u_int8_t *) offset, remaining);
1614 }
1615 } else {
1616 u_long offset = mtod(m, u_long);
1617 if ((remaining > 1) && (offset & 1)) {
1618 bus_space_read_multi_1(iot, ioh,
1619 rxreg, (u_int8_t *) offset, 1);
1620 remaining -= 1;
1621 offset += 1;
1622 }
1623 if (remaining > 1) {
1624 bus_space_read_multi_2(iot, ioh,
1625 rxreg, (u_int16_t *) offset,
1626 remaining >> 1);
1627 offset += remaining & ~1;
1628 }
1629 if (remaining & 1) {
1630 bus_space_read_multi_1(iot, ioh,
1631 rxreg, (u_int8_t *) offset, remaining & 1);
1632 }
1633 }
1634 m->m_len = len;
1635 totlen -= len;
1636 *mp = m;
1637 mp = &m->m_next;
1638 }
1639
1640 rv = top;
1641
1642 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
1643 while (bus_space_read_2(iot, ioh, ELINK_STATUS) & S_COMMAND_IN_PROGRESS)
1644 ;
1645
1646 out:
1647 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
1648 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1649 splx(sh);
1650
1651 return rv;
1652 }
1653
1654 int
1655 epioctl(ifp, cmd, data)
1656 register struct ifnet *ifp;
1657 u_long cmd;
1658 caddr_t data;
1659 {
1660 struct ep_softc *sc = ifp->if_softc;
1661 struct ifaddr *ifa = (struct ifaddr *)data;
1662 struct ifreq *ifr = (struct ifreq *)data;
1663 int s, error = 0;
1664
1665 s = splnet();
1666
1667 switch (cmd) {
1668
1669 case SIOCSIFADDR:
1670 if ((error = epenable(sc)) != 0)
1671 break;
1672 /* epinit is called just below */
1673 ifp->if_flags |= IFF_UP;
1674 switch (ifa->ifa_addr->sa_family) {
1675 #ifdef INET
1676 case AF_INET:
1677 epinit(sc);
1678 arp_ifinit(&sc->sc_ethercom.ec_if, ifa);
1679 break;
1680 #endif
1681 #ifdef NS
1682 case AF_NS:
1683 {
1684 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1685
1686 if (ns_nullhost(*ina))
1687 ina->x_host = *(union ns_host *)
1688 LLADDR(ifp->if_sadl);
1689 else
1690 bcopy(ina->x_host.c_host,
1691 LLADDR(ifp->if_sadl),
1692 ifp->if_addrlen);
1693 /* Set new address. */
1694 epinit(sc);
1695 break;
1696 }
1697 #endif
1698 default:
1699 epinit(sc);
1700 break;
1701 }
1702 break;
1703
1704 case SIOCSIFMEDIA:
1705 case SIOCGIFMEDIA:
1706 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1707 break;
1708
1709 case SIOCSIFFLAGS:
1710 if ((ifp->if_flags & IFF_UP) == 0 &&
1711 (ifp->if_flags & IFF_RUNNING) != 0) {
1712 /*
1713 * If interface is marked down and it is running, then
1714 * stop it.
1715 */
1716 epstop(sc);
1717 ifp->if_flags &= ~IFF_RUNNING;
1718 epdisable(sc);
1719 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1720 (ifp->if_flags & IFF_RUNNING) == 0) {
1721 /*
1722 * If interface is marked up and it is stopped, then
1723 * start it.
1724 */
1725 if ((error = epenable(sc)) != 0)
1726 break;
1727 epinit(sc);
1728 } else if ((ifp->if_flags & IFF_UP) != 0) {
1729 /*
1730 * deal with flags changes:
1731 * IFF_MULTICAST, IFF_PROMISC.
1732 */
1733 epsetfilter(sc);
1734 }
1735 break;
1736
1737 case SIOCADDMULTI:
1738 case SIOCDELMULTI:
1739 if (sc->enabled == 0) {
1740 error = EIO;
1741 break;
1742 }
1743
1744 error = (cmd == SIOCADDMULTI) ?
1745 ether_addmulti(ifr, &sc->sc_ethercom) :
1746 ether_delmulti(ifr, &sc->sc_ethercom);
1747
1748 if (error == ENETRESET) {
1749 /*
1750 * Multicast list has changed; set the hardware filter
1751 * accordingly.
1752 */
1753 epreset(sc);
1754 error = 0;
1755 }
1756 break;
1757
1758 default:
1759 error = EINVAL;
1760 break;
1761 }
1762
1763 splx(s);
1764 return (error);
1765 }
1766
1767 void
1768 epreset(sc)
1769 struct ep_softc *sc;
1770 {
1771 int s;
1772
1773 s = splnet();
1774 epstop(sc);
1775 epinit(sc);
1776 splx(s);
1777 }
1778
1779 void
1780 epwatchdog(ifp)
1781 struct ifnet *ifp;
1782 {
1783 struct ep_softc *sc = ifp->if_softc;
1784
1785 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1786 ++sc->sc_ethercom.ec_if.if_oerrors;
1787
1788 epreset(sc);
1789 }
1790
1791 void
1792 epstop(sc)
1793 register struct ep_softc *sc;
1794 {
1795 bus_space_tag_t iot = sc->sc_iot;
1796 bus_space_handle_t ioh = sc->sc_ioh;
1797
1798 if (sc->ep_flags & ELINK_FLAGS_MII) {
1799 /* Stop the one second clock. */
1800 untimeout(ep_tick, sc);
1801 }
1802
1803 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
1804 /*
1805 * Clear the FIFO buffer count, thus halting
1806 * any currently-running transactions.
1807 */
1808 GO_WINDOW(1); /* sanity */
1809 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
1810 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1811 }
1812
1813 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1814 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
1815 while (bus_space_read_2(iot, ioh, ELINK_STATUS) & S_COMMAND_IN_PROGRESS)
1816 ;
1817 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1818 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1819
1820 ep_complete_cmd(sc, ELINK_COMMAND, RX_RESET);
1821 ep_complete_cmd(sc, ELINK_COMMAND, TX_RESET);
1822
1823 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1824 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
1825 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
1826 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
1827
1828 epmbufempty(sc);
1829 }
1830
1831
1832 /*
1833 * Before reboots, reset card completely.
1834 */
1835 static void
1836 epshutdown(arg)
1837 void *arg;
1838 {
1839 register struct ep_softc *sc = arg;
1840
1841 if (sc->enabled) {
1842 epstop(sc);
1843 ep_complete_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
1844 }
1845 }
1846
1847 /*
1848 * We get eeprom data from the id_port given an offset into the
1849 * eeprom. Basically; after the ID_sequence is sent to all of
1850 * the cards; they enter the ID_CMD state where they will accept
1851 * command requests. 0x80-0xbf loads the eeprom data. We then
1852 * read the port 16 times and with every read; the cards check
1853 * for contention (ie: if one card writes a 0 bit and another
1854 * writes a 1 bit then the host sees a 0. At the end of the cycle;
1855 * each card compares the data on the bus; if there is a difference
1856 * then that card goes into ID_WAIT state again). In the meantime;
1857 * one bit of data is returned in the AX register which is conveniently
1858 * returned to us by bus_space_read_1(). Hence; we read 16 times getting one
1859 * bit of data with each read.
1860 *
1861 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1862 */
1863 u_int16_t
1864 epreadeeprom(iot, ioh, offset)
1865 bus_space_tag_t iot;
1866 bus_space_handle_t ioh;
1867 int offset;
1868 {
1869 u_int16_t data = 0;
1870 int i;
1871
1872 bus_space_write_1(iot, ioh, 0, 0x80 + offset);
1873 delay(1000);
1874 for (i = 0; i < 16; i++)
1875 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1876 return (data);
1877 }
1878
1879 static int
1880 epbusyeeprom(sc)
1881 struct ep_softc *sc;
1882 {
1883 bus_space_tag_t iot = sc->sc_iot;
1884 bus_space_handle_t ioh = sc->sc_ioh;
1885 int i = 100, j;
1886
1887 if (sc->bustype == ELINK_BUS_PCMCIA) {
1888 delay(1000);
1889 return 0;
1890 }
1891
1892 j = 0; /* bad GCC flow analysis */
1893 while (i--) {
1894 j = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND);
1895 if (j & EEPROM_BUSY)
1896 delay(100);
1897 else
1898 break;
1899 }
1900 if (!i) {
1901 printf("\n%s: eeprom failed to come ready\n",
1902 sc->sc_dev.dv_xname);
1903 return (1);
1904 }
1905 if (j & EEPROM_TST_MODE) {
1906 /* XXX PnP mode? */
1907 printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
1908 return (1);
1909 }
1910 return (0);
1911 }
1912
1913 void
1914 epmbuffill(v)
1915 void *v;
1916 {
1917 struct ep_softc *sc = v;
1918 struct mbuf *m;
1919 int s, i;
1920
1921 s = splnet();
1922 i = sc->last_mb;
1923 do {
1924 if (sc->mb[i] == 0) {
1925 MGET(m, M_DONTWAIT, MT_DATA);
1926 if (m == 0)
1927 break;
1928 sc->mb[i] = m;
1929 }
1930 i = (i + 1) % MAX_MBS;
1931 } while (i != sc->next_mb);
1932 sc->last_mb = i;
1933 /* If the queue was not filled, try again. */
1934 if (sc->last_mb != sc->next_mb)
1935 timeout(epmbuffill, sc, 1);
1936 splx(s);
1937 }
1938
1939 void
1940 epmbufempty(sc)
1941 struct ep_softc *sc;
1942 {
1943 int s, i;
1944
1945 s = splnet();
1946 for (i = 0; i<MAX_MBS; i++) {
1947 if (sc->mb[i]) {
1948 m_freem(sc->mb[i]);
1949 sc->mb[i] = NULL;
1950 }
1951 }
1952 sc->last_mb = sc->next_mb = 0;
1953 untimeout(epmbuffill, sc);
1954 splx(s);
1955 }
1956
1957 int
1958 epenable(sc)
1959 struct ep_softc *sc;
1960 {
1961
1962 if (sc->enabled == 0 && sc->enable != NULL) {
1963 if ((*sc->enable)(sc) != 0) {
1964 printf("%s: device enable failed\n",
1965 sc->sc_dev.dv_xname);
1966 return (EIO);
1967 }
1968 }
1969
1970 sc->enabled = 1;
1971 return (0);
1972 }
1973
1974 void
1975 epdisable(sc)
1976 struct ep_softc *sc;
1977 {
1978
1979 if (sc->enabled != 0 && sc->disable != NULL) {
1980 (*sc->disable)(sc);
1981 sc->enabled = 0;
1982 }
1983 }
1984
1985 int
1986 ep_activate(self, act)
1987 struct device *self;
1988 enum devact act;
1989 {
1990 struct ep_softc *sc = (struct ep_softc *)self;
1991 int rv = 0, s;
1992
1993 s = splnet();
1994 switch (act) {
1995 case DVACT_ACTIVATE:
1996 rv = EOPNOTSUPP;
1997 break;
1998
1999 case DVACT_DEACTIVATE:
2000 #ifdef notyet
2001 /* First, kill off the interface. */
2002 if_detach(sc->sc_ethercom.ec_if);
2003 #endif
2004
2005 /* Now disable the interface. */
2006 epdisable(sc);
2007 break;
2008 }
2009 splx(s);
2010 return (rv);
2011 }
2012
2013 void
2014 ep_mii_setbit(sc, bit)
2015 struct ep_softc *sc;
2016 u_int16_t bit;
2017 {
2018 u_int16_t val;
2019
2020 /* We assume we're already in Window 4 */
2021 val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT);
2022 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT,
2023 val | bit);
2024 }
2025
2026 void
2027 ep_mii_clrbit(sc, bit)
2028 struct ep_softc *sc;
2029 u_int16_t bit;
2030 {
2031 u_int16_t val;
2032
2033 /* We assume we're already in Window 4 */
2034 val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT);
2035 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT,
2036 val & ~bit);
2037 }
2038
2039 u_int16_t
2040 ep_mii_readbit(sc, bit)
2041 struct ep_softc *sc;
2042 u_int16_t bit;
2043 {
2044
2045 /* We assume we're already in Window 4 */
2046 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT) &
2047 bit);
2048 }
2049
2050 void
2051 ep_mii_sync(sc)
2052 struct ep_softc *sc;
2053 {
2054 int i;
2055
2056 /* We assume we're already in Window 4 */
2057 ep_mii_clrbit(sc, PHYSMGMT_DIR);
2058 for (i = 0; i < 32; i++) {
2059 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2060 ep_mii_setbit(sc, PHYSMGMT_CLK);
2061 }
2062 }
2063
2064 void
2065 ep_mii_sendbits(sc, data, nbits)
2066 struct ep_softc *sc;
2067 u_int32_t data;
2068 int nbits;
2069 {
2070 int i;
2071
2072 /* We assume we're already in Window 4 */
2073 ep_mii_setbit(sc, PHYSMGMT_DIR);
2074 for (i = 1 << (nbits - 1); i; i = i >> 1) {
2075 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2076 ep_mii_readbit(sc, PHYSMGMT_CLK);
2077 if (data & i)
2078 ep_mii_setbit(sc, PHYSMGMT_DATA);
2079 else
2080 ep_mii_clrbit(sc, PHYSMGMT_DATA);
2081 ep_mii_setbit(sc, PHYSMGMT_CLK);
2082 ep_mii_readbit(sc, PHYSMGMT_CLK);
2083 }
2084 }
2085
2086 int
2087 ep_mii_readreg(self, phy, reg)
2088 struct device *self;
2089 int phy, reg;
2090 {
2091 struct ep_softc *sc = (struct ep_softc *)self;
2092 int val = 0, i, err;
2093
2094 /*
2095 * Read the PHY register by manually driving the MII control lines.
2096 */
2097
2098 GO_WINDOW(4);
2099
2100 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT, 0);
2101
2102 ep_mii_sync(sc);
2103 ep_mii_sendbits(sc, MII_COMMAND_START, 2);
2104 ep_mii_sendbits(sc, MII_COMMAND_READ, 2);
2105 ep_mii_sendbits(sc, phy, 5);
2106 ep_mii_sendbits(sc, reg, 5);
2107
2108 ep_mii_clrbit(sc, PHYSMGMT_DIR);
2109 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2110 ep_mii_setbit(sc, PHYSMGMT_CLK);
2111 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2112
2113 err = ep_mii_readbit(sc, PHYSMGMT_DATA);
2114 ep_mii_setbit(sc, PHYSMGMT_CLK);
2115
2116 /* Even if an error occurs, must still clock out the cycle. */
2117 for (i = 0; i < 16; i++) {
2118 val <<= 1;
2119 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2120 if (err == 0 && ep_mii_readbit(sc, PHYSMGMT_DATA))
2121 val |= 1;
2122 ep_mii_setbit(sc, PHYSMGMT_CLK);
2123 }
2124 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2125 ep_mii_setbit(sc, PHYSMGMT_CLK);
2126
2127 GO_WINDOW(1); /* back to operating window */
2128
2129 return (err ? 0 : val);
2130 }
2131
2132 void
2133 ep_mii_writereg(self, phy, reg, val)
2134 struct device *self;
2135 int phy, reg, val;
2136 {
2137 struct ep_softc *sc = (struct ep_softc *)self;
2138
2139 /*
2140 * Write the PHY register by manually driving the MII control lines.
2141 */
2142
2143 GO_WINDOW(4);
2144
2145 ep_mii_sync(sc);
2146 ep_mii_sendbits(sc, MII_COMMAND_START, 2);
2147 ep_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
2148 ep_mii_sendbits(sc, phy, 5);
2149 ep_mii_sendbits(sc, reg, 5);
2150 ep_mii_sendbits(sc, MII_COMMAND_ACK, 2);
2151 ep_mii_sendbits(sc, val, 16);
2152
2153 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2154 ep_mii_setbit(sc, PHYSMGMT_CLK);
2155
2156 GO_WINDOW(1); /* back to operating window */
2157 }
2158
2159 void
2160 ep_statchg(self)
2161 struct device *self;
2162 {
2163 struct ep_softc *sc = (struct ep_softc *)self;
2164 bus_space_tag_t iot = sc->sc_iot;
2165 bus_space_handle_t ioh = sc->sc_ioh;
2166 int mctl;
2167
2168 /* XXX Update ifp->if_baudrate */
2169
2170 GO_WINDOW(3);
2171 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
2172 if (sc->sc_mii.mii_media_active & IFM_FDX)
2173 mctl |= MAC_CONTROL_FDX;
2174 else
2175 mctl &= ~MAC_CONTROL_FDX;
2176 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
2177 GO_WINDOW(1); /* back to operating window */
2178 }
2179