elink3.c revision 1.55 1 /* $NetBSD: elink3.c,v 1.55 1999/04/13 20:23:52 jonathan Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
42 * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 * must display the following acknowledgement:
55 * This product includes software developed by Herb Peyerl.
56 * 4. The name of Herb Peyerl may not be used to endorse or promote products
57 * derived from this software without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
60 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
61 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
63 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
64 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
65 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
66 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
67 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
68 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 #include "opt_inet.h"
72 #include "opt_ns.h"
73 #include "bpfilter.h"
74 #include "rnd.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/mbuf.h>
80 #include <sys/socket.h>
81 #include <sys/ioctl.h>
82 #include <sys/errno.h>
83 #include <sys/syslog.h>
84 #include <sys/select.h>
85 #include <sys/device.h>
86 #if NRND > 0
87 #include <sys/rnd.h>
88 #endif
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_ether.h>
93 #include <net/if_media.h>
94
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/in_var.h>
99 #include <netinet/ip.h>
100 #include <netinet/if_inarp.h>
101 #endif
102
103 #ifdef NS
104 #include <netns/ns.h>
105 #include <netns/ns_if.h>
106 #endif
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #include <net/bpfdesc.h>
111 #endif
112
113 #include <machine/cpu.h>
114 #include <machine/bus.h>
115 #include <machine/intr.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119
120 #include <dev/ic/elink3var.h>
121 #include <dev/ic/elink3reg.h>
122
123 #ifdef DEBUG
124 int epdebug = 0;
125 #endif
126
127 /*
128 * XXX endian workaround for big-endian CPUs with pcmcia:
129 * if stream methods for bus_space_multi are not provided, define them
130 * using non-stream bus_space_{read,write}_multi_.
131 * Assumes host CPU is same endian-ness as bus.
132 */
133 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
134 #define bus_space_read_multi_stream_2 bus_space_read_multi_2
135 #define bus_space_read_multi_stream_4 bus_space_read_multi_4
136 #define bus_space_write_multi_stream_2 bus_space_write_multi_2
137 #define bus_space_write_multi_stream_4 bus_space_write_multi_4
138 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
139
140 /*
141 * Structure to map media-present bits in boards to ifmedia codes and
142 * printable media names. Used for table-driven ifmedia initialization.
143 */
144 struct ep_media {
145 int epm_mpbit; /* media present bit */
146 const char *epm_name; /* name of medium */
147 int epm_ifmedia; /* ifmedia word for medium */
148 int epm_epmedia; /* ELINKMEDIA_* constant */
149 };
150
151 /*
152 * Media table for the Demon/Vortex/Boomerang chipsets.
153 *
154 * Note that MII on the Demon and Vortex (3c59x) indicates an external
155 * MII connector (for connecting an external PHY) ... I think. Treat
156 * it as `manual' on these chips.
157 *
158 * Any Boomerang (3c90x) chips with MII really do have an internal
159 * MII and real PHYs attached; no `native' media.
160 */
161 struct ep_media ep_vortex_media[] = {
162 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
163 ELINKMEDIA_10BASE_T },
164 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
165 ELINKMEDIA_10BASE_T },
166 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
167 ELINKMEDIA_AUI },
168 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
169 ELINKMEDIA_10BASE_2 },
170 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
171 ELINKMEDIA_100BASE_TX },
172 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
173 ELINKMEDIA_100BASE_TX },
174 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
175 ELINKMEDIA_100BASE_FX },
176 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
177 ELINKMEDIA_MII },
178 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
179 ELINKMEDIA_100BASE_T4 },
180 { 0, NULL, 0,
181 0 },
182 };
183
184 /*
185 * Media table for the older 3Com Etherlink III chipset, used
186 * in the 3c509, 3c579, and 3c589.
187 */
188 struct ep_media ep_509_media[] = {
189 { ELINK_W0_CC_UTP, "10baseT", IFM_ETHER|IFM_10_T,
190 ELINKMEDIA_10BASE_T },
191 { ELINK_W0_CC_AUI, "10base5", IFM_ETHER|IFM_10_5,
192 ELINKMEDIA_AUI },
193 { ELINK_W0_CC_BNC, "10base2", IFM_ETHER|IFM_10_2,
194 ELINKMEDIA_10BASE_2 },
195 { 0, NULL, 0,
196 0 },
197 };
198
199 void ep_internalconfig __P((struct ep_softc *sc));
200 void ep_vortex_probemedia __P((struct ep_softc *sc));
201 void ep_509_probemedia __P((struct ep_softc *sc));
202
203 static void eptxstat __P((struct ep_softc *));
204 static int epstatus __P((struct ep_softc *));
205 void epinit __P((struct ep_softc *));
206 int epioctl __P((struct ifnet *, u_long, caddr_t));
207 void epstart __P((struct ifnet *));
208 void epwatchdog __P((struct ifnet *));
209 void epreset __P((struct ep_softc *));
210 static void epshutdown __P((void *));
211 void epread __P((struct ep_softc *));
212 struct mbuf *epget __P((struct ep_softc *, int));
213 void epmbuffill __P((void *));
214 void epmbufempty __P((struct ep_softc *));
215 void epsetfilter __P((struct ep_softc *));
216 void epsetmedia __P((struct ep_softc *));
217
218 /* ifmedia callbacks */
219 int ep_media_change __P((struct ifnet *ifp));
220 void ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
221
222 /* MII callbacks */
223 int ep_mii_readreg __P((struct device *, int, int));
224 void ep_mii_writereg __P((struct device *, int, int, int));
225 void ep_statchg __P((struct device *));
226
227 void ep_tick __P((void *));
228
229 void ep_mii_setbit __P((struct ep_softc *, u_int16_t));
230 void ep_mii_clrbit __P((struct ep_softc *, u_int16_t));
231 u_int16_t ep_mii_readbit __P((struct ep_softc *, u_int16_t));
232 void ep_mii_sync __P((struct ep_softc *));
233 void ep_mii_sendbits __P((struct ep_softc *, u_int32_t, int));
234
235 static int epbusyeeprom __P((struct ep_softc *));
236 static inline void ep_complete_cmd __P((struct ep_softc *sc,
237 u_int cmd, u_int arg));
238 static __inline int ep_w1_reg __P((struct ep_softc *, int));
239
240 /*
241 * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
242 * Window 1 registers offset!
243 */
244 static __inline int
245 ep_w1_reg(sc, reg)
246 struct ep_softc *sc;
247 int reg;
248 {
249
250 switch (sc->ep_chipset) {
251 case ELINK_CHIPSET_CORKSCREW:
252 return (reg + 0x10);
253
254 case ELINK_CHIPSET_ROADRUNNER:
255 switch (reg) {
256 case ELINK_W1_FREE_TX:
257 case ELINK_W1_RUNNER_RDCTL:
258 case ELINK_W1_RUNNER_WRCTL:
259 return (reg);
260 }
261 return (reg + 0x10);
262 }
263
264 return (reg);
265 }
266
267 /*
268 * Issue a (reset) command, and be sure it has completed.
269 * Used for commands that reset part or all of the board.
270 * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
271 * but older hardware doesn't implement it and we must delay.
272 * It's easiest to just delay always.
273 */
274 static inline void
275 ep_complete_cmd(sc, cmd, arg)
276 struct ep_softc *sc;
277 u_int cmd, arg;
278 {
279 register bus_space_tag_t iot = sc->sc_iot;
280 register bus_space_handle_t ioh = sc->sc_ioh;
281
282 bus_space_write_2(iot, ioh, cmd, arg);
283
284 #ifdef notyet
285 /* if this adapter family has S_COMMAND_IN_PROGRESS, use it */
286 while (bus_space_read_2(iot, ioh, ELINK_STATUS) & S_COMMAND_IN_PROGRESS)
287 ;
288 else
289 #else
290 DELAY(100000); /* need at least 1 ms, but be generous. */
291 #endif
292 }
293
294 /*
295 * Back-end attach and configure.
296 */
297 void
298 epconfig(sc, chipset, enaddr)
299 struct ep_softc *sc;
300 u_short chipset;
301 u_int8_t *enaddr;
302 {
303 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
304 bus_space_tag_t iot = sc->sc_iot;
305 bus_space_handle_t ioh = sc->sc_ioh;
306 u_int16_t i;
307 u_int8_t myla[6];
308
309 sc->ep_chipset = chipset;
310
311 /*
312 * We could have been groveling around in other register
313 * windows in the front-end; make sure we're in window 0
314 * to read the EEPROM.
315 */
316 GO_WINDOW(0);
317
318 if (enaddr == NULL) {
319 /*
320 * Read the station address from the eeprom
321 */
322 for (i = 0; i < 3; i++) {
323 u_int16_t x;
324 if (epbusyeeprom(sc))
325 return; /* XXX why is eeprom busy? */
326 bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
327 READ_EEPROM | i);
328 if (epbusyeeprom(sc))
329 return; /* XXX why is eeprom busy? */
330 x = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
331 myla[(i << 1)] = x >> 8;
332 myla[(i << 1) + 1] = x;
333 }
334 enaddr = myla;
335 }
336
337 /*
338 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
339 * allow FDDI-sized (4500) byte packets. Commands only take an
340 * 11-bit parameter, and 11 bits isn't enough to hold a full-size
341 * packet length.
342 * Commands to these cards implicitly upshift a packet size
343 * or threshold by 2 bits.
344 * To detect cards with large-packet support, we probe by setting
345 * the transmit threshold register, then change windows and
346 * read back the threshold register directly, and see if the
347 * threshold value was shifted or not.
348 */
349 bus_space_write_2(iot, ioh, ELINK_COMMAND,
350 SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE );
351 GO_WINDOW(5);
352 i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
353 GO_WINDOW(1);
354 switch (i) {
355 case ELINK_LARGEWIN_PROBE:
356 case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
357 sc->ep_pktlenshift = 0;
358 break;
359
360 case (ELINK_LARGEWIN_PROBE << 2):
361 sc->ep_pktlenshift = 2;
362 break;
363
364 default:
365 printf("%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
366 "Interface disabled\n",
367 sc->sc_dev.dv_xname, ELINK_LARGEWIN_PROBE, (int) i);
368 return;
369 }
370
371 /*
372 * Ensure Tx-available interrupts are enabled for
373 * start the interface.
374 * XXX should be in epinit()?
375 */
376 bus_space_write_2(iot, ioh, ELINK_COMMAND,
377 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
378
379 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
380 ifp->if_softc = sc;
381 ifp->if_start = epstart;
382 ifp->if_ioctl = epioctl;
383 ifp->if_watchdog = epwatchdog;
384 ifp->if_flags =
385 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
386
387 if_attach(ifp);
388 ether_ifattach(ifp, enaddr);
389
390 /*
391 * Finish configuration:
392 * determine chipset if the front-end couldn't do so,
393 * show board details, set media.
394 */
395
396 /*
397 * Print RAM size. We also print the Ethernet address in here.
398 * It's extracted from the ifp, so we have to make sure it's
399 * been attached first.
400 */
401 ep_internalconfig(sc);
402 GO_WINDOW(0);
403
404 /*
405 * Display some additional information, if pertinent.
406 */
407 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
408 printf("%s: RoadRunner FIFO buffer enabled\n",
409 sc->sc_dev.dv_xname);
410
411 /*
412 * Initialize our media structures and MII info. We'll
413 * probe the MII if we discover that we have one.
414 */
415 sc->sc_mii.mii_ifp = ifp;
416 sc->sc_mii.mii_readreg = ep_mii_readreg;
417 sc->sc_mii.mii_writereg = ep_mii_writereg;
418 sc->sc_mii.mii_statchg = ep_statchg;
419 ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
420 ep_media_status);
421
422 /*
423 * Now, determine which media we have.
424 */
425 switch (sc->ep_chipset) {
426 case ELINK_CHIPSET_BOOMERANG:
427 case ELINK_CHIPSET_ROADRUNNER:
428 /*
429 * If the device has MII, probe it. We won't be using
430 * any `native' media in this case, only PHYs. If
431 * we don't, just treat the Boomerang like the Vortex.
432 */
433 if (sc->ep_flags & ELINK_FLAGS_MII) {
434 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
435 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
436 ifmedia_add(&sc->sc_mii.mii_media,
437 IFM_ETHER|IFM_NONE, 0, NULL);
438 ifmedia_set(&sc->sc_mii.mii_media,
439 IFM_ETHER|IFM_NONE);
440 } else {
441 ifmedia_set(&sc->sc_mii.mii_media,
442 IFM_ETHER|IFM_AUTO);
443 }
444 break;
445 }
446 /* FALLTHROUGH */
447
448 case ELINK_CHIPSET_VORTEX:
449 ep_vortex_probemedia(sc);
450 break;
451
452 default:
453 ep_509_probemedia(sc);
454 break;
455 }
456
457 GO_WINDOW(1); /* Window 1 is operating window */
458
459 #if NBPFILTER > 0
460 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
461 sizeof(struct ether_header));
462 #endif
463
464 #if NRND > 0
465 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
466 RND_TYPE_NET, 0);
467 #endif
468
469 sc->tx_start_thresh = 20; /* probably a good starting point. */
470
471 /* Establish callback to reset card when we reboot. */
472 shutdownhook_establish(epshutdown, sc);
473
474 ep_complete_cmd(sc, ELINK_COMMAND, RX_RESET);
475 ep_complete_cmd(sc, ELINK_COMMAND, TX_RESET);
476 }
477
478
479 /*
480 * Show interface-model-independent info from window 3
481 * internal-configuration register.
482 */
483 void
484 ep_internalconfig(sc)
485 struct ep_softc *sc;
486 {
487 bus_space_tag_t iot = sc->sc_iot;
488 bus_space_handle_t ioh = sc->sc_ioh;
489
490 u_int config0;
491 u_int config1;
492
493 int ram_size, ram_width, ram_speed, rom_size, ram_split;
494 /*
495 * NVRAM buffer Rx:Tx config names for busmastering cards
496 * (Demon, Vortex, and later).
497 */
498 const char *onboard_ram_config[] = {
499 "5:3", "3:1", "1:1", "3:5" };
500
501 GO_WINDOW(3);
502 config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
503 config1 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
504 GO_WINDOW(0);
505
506 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
507 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
508 ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
509 rom_size = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
510
511 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
512
513 printf("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
514 sc->sc_dev.dv_xname,
515 ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
516 8 << ram_size,
517 (ram_width) ? "word" : "byte",
518 onboard_ram_config[ram_split]);
519 }
520
521
522 /*
523 * Find supported media on 3c509-generation hardware that doesn't have
524 * a "reset_options" register in window 3.
525 * Use the config_cntrl register in window 0 instead.
526 * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
527 * that implement CONFIG_CTRL. We don't have a good way to set the
528 * default active mediuim; punt to ifconfig instead.
529 */
530 void
531 ep_509_probemedia(sc)
532 struct ep_softc *sc;
533 {
534 bus_space_tag_t iot = sc->sc_iot;
535 bus_space_handle_t ioh = sc->sc_ioh;
536 struct ifmedia *ifm = &sc->sc_mii.mii_media;
537 u_int16_t ep_w0_config, port;
538 struct ep_media *epm;
539 const char *sep = "", *defmedianame = NULL;
540 int defmedia = 0;
541
542 GO_WINDOW(0);
543 ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
544
545 printf("%s: ", sc->sc_dev.dv_xname);
546
547 /* Sanity check that there are any media! */
548 if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
549 printf("no media present!\n");
550 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
551 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
552 return;
553 }
554
555 /*
556 * Get the default media from the EEPROM.
557 */
558 if (epbusyeeprom(sc))
559 return; /* XXX why is eeprom busy? */
560 bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
561 READ_EEPROM | EEPROM_ADDR_CFG);
562 if (epbusyeeprom(sc))
563 return; /* XXX why is eeprom busy? */
564 port = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA) >> 14;
565
566 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
567
568 for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
569 if (ep_w0_config & epm->epm_mpbit) {
570 /*
571 * This simple test works because 509 chipsets
572 * don't do full-duplex.
573 */
574 if (epm->epm_epmedia == port || defmedia == 0) {
575 defmedia = epm->epm_ifmedia;
576 defmedianame = epm->epm_name;
577 }
578 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
579 NULL);
580 PRINT(epm->epm_name);
581 }
582 }
583
584 #undef PRINT
585
586 #ifdef DIAGNOSTIC
587 if (defmedia == 0)
588 panic("ep_509_probemedia: impossible");
589 #endif
590
591 printf(" (default %s)\n", defmedianame);
592 ifmedia_set(ifm, defmedia);
593 }
594
595 /*
596 * Find media present on large-packet-capable elink3 devices.
597 * Show onboard configuration of large-packet-capable elink3 devices
598 * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
599 * Use media and card-version info in window 3 instead.
600 */
601 void
602 ep_vortex_probemedia(sc)
603 struct ep_softc *sc;
604 {
605 bus_space_tag_t iot = sc->sc_iot;
606 bus_space_handle_t ioh = sc->sc_ioh;
607 struct ifmedia *ifm = &sc->sc_mii.mii_media;
608 struct ep_media *epm;
609 u_int config1;
610 int reset_options;
611 int default_media; /* 3-bit encoding of default (EEPROM) media */
612 int defmedia = 0;
613 const char *sep = "", *defmedianame = NULL;
614
615 GO_WINDOW(3);
616 config1 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
617 reset_options = (int)bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
618 GO_WINDOW(0);
619
620 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
621
622 printf("%s: ", sc->sc_dev.dv_xname);
623
624 /* Sanity check that there are any media! */
625 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
626 printf("no media present!\n");
627 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
628 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
629 return;
630 }
631
632 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
633
634 for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
635 if (reset_options & epm->epm_mpbit) {
636 /*
637 * Default media is a little more complicated
638 * on the Vortex. We support full-duplex which
639 * uses the same reset options bit.
640 *
641 * XXX Check EEPROM for default to FDX?
642 */
643 if (epm->epm_epmedia == default_media) {
644 if ((epm->epm_ifmedia & IFM_FDX) == 0) {
645 defmedia = epm->epm_ifmedia;
646 defmedianame = epm->epm_name;
647 }
648 } else if (defmedia == 0) {
649 defmedia = epm->epm_ifmedia;
650 defmedianame = epm->epm_name;
651 }
652 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
653 NULL);
654 PRINT(epm->epm_name);
655 }
656 }
657
658 #undef PRINT
659
660 #ifdef DIAGNOSTIC
661 if (defmedia == 0)
662 panic("ep_vortex_probemedia: impossible");
663 #endif
664
665 printf(" (default %s)\n", defmedianame);
666 ifmedia_set(ifm, defmedia);
667 }
668
669 /*
670 * One second timer, used to tick the MII.
671 */
672 void
673 ep_tick(arg)
674 void *arg;
675 {
676 struct ep_softc *sc = arg;
677 int s;
678
679 #ifdef DIAGNOSTIC
680 if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
681 panic("ep_tick");
682 #endif
683
684 s = splnet();
685 mii_tick(&sc->sc_mii);
686 splx(s);
687
688 timeout(ep_tick, sc, hz);
689 }
690
691 /*
692 * Bring device up.
693 *
694 * The order in here seems important. Otherwise we may not receive
695 * interrupts. ?!
696 */
697 void
698 epinit(sc)
699 register struct ep_softc *sc;
700 {
701 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
702 bus_space_tag_t iot = sc->sc_iot;
703 bus_space_handle_t ioh = sc->sc_ioh;
704 int i;
705
706 while (bus_space_read_2(iot, ioh, ELINK_STATUS) & S_COMMAND_IN_PROGRESS)
707 ;
708
709 if (sc->bustype != ELINK_BUS_PCI) {
710 GO_WINDOW(0);
711 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
712 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
713 }
714
715 if (sc->bustype == ELINK_BUS_PCMCIA) {
716 bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
717 }
718
719 GO_WINDOW(2);
720 for (i = 0; i < 6; i++) /* Reload the ether_addr. */
721 bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
722 LLADDR(ifp->if_sadl)[i]);
723
724 /*
725 * Reset the station-address receive filter.
726 * A bug workaround for busmastering (Vortex, Demon) cards.
727 */
728 for (i = 0; i < 6; i++)
729 bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
730
731 ep_complete_cmd(sc, ELINK_COMMAND, RX_RESET);
732 ep_complete_cmd(sc, ELINK_COMMAND, TX_RESET);
733
734 GO_WINDOW(1); /* Window 1 is operating window */
735 for (i = 0; i < 31; i++)
736 bus_space_read_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS));
737
738 /* Set threshhold for for Tx-space avaiable interrupt. */
739 bus_space_write_2(iot, ioh, ELINK_COMMAND,
740 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
741
742 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
743 /*
744 * Enable options in the PCMCIA LAN COR register, via
745 * RoadRunner Window 1.
746 *
747 * XXX MAGIC CONSTANTS!
748 */
749 u_int16_t cor;
750
751 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
752
753 cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
754 if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
755 cor |= 0x10;
756 if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
757 cor |= 0x20;
758 bus_space_write_2(iot, ioh, 0, cor);
759
760 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
761 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
762 }
763
764 /* Enable interrupts. */
765 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK | S_CARD_FAILURE |
766 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
767 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK | S_CARD_FAILURE |
768 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
769
770 /*
771 * Attempt to get rid of any stray interrupts that occured during
772 * configuration. On the i386 this isn't possible because one may
773 * already be queued. However, a single stray interrupt is
774 * unimportant.
775 */
776 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
777
778 epsetfilter(sc);
779 epsetmedia(sc);
780
781 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
782 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
783
784 epmbuffill(sc);
785
786 /* Interface is now `running', with no output active. */
787 ifp->if_flags |= IFF_RUNNING;
788 ifp->if_flags &= ~IFF_OACTIVE;
789
790 if (sc->ep_flags & ELINK_FLAGS_MII) {
791 /* Start the one second clock. */
792 timeout(ep_tick, sc, hz);
793 }
794
795 /* Attempt to start output, if any. */
796 epstart(ifp);
797 }
798
799
800 /*
801 * Set multicast receive filter.
802 * elink3 hardware has no selective multicast filter in hardware.
803 * Enable reception of all multicasts and filter in software.
804 */
805 void
806 epsetfilter(sc)
807 register struct ep_softc *sc;
808 {
809 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
810
811 GO_WINDOW(1); /* Window 1 is operating window */
812 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, SET_RX_FILTER |
813 FIL_INDIVIDUAL | FIL_BRDCST |
814 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
815 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
816 }
817
818 int
819 ep_media_change(ifp)
820 struct ifnet *ifp;
821 {
822 register struct ep_softc *sc = ifp->if_softc;
823
824 if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
825 epreset(sc);
826
827 return (0);
828 }
829
830 /*
831 * Set the card to use the specified media.
832 */
833 void
834 epsetmedia(sc)
835 struct ep_softc *sc;
836 {
837 bus_space_tag_t iot = sc->sc_iot;
838 bus_space_handle_t ioh = sc->sc_ioh;
839
840 /* Turn everything off. First turn off linkbeat and UTP. */
841 GO_WINDOW(4);
842 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
843
844 /* Turn off coax */
845 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
846 delay(1000);
847
848 /*
849 * If the device has MII, select it, and then tell the
850 * PHY which media to use.
851 */
852 if (sc->ep_flags & ELINK_FLAGS_MII) {
853 int config0, config1;
854
855 GO_WINDOW(3);
856
857 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
858 int resopt;
859
860 resopt = bus_space_read_2(iot, ioh,
861 ELINK_W3_RESET_OPTIONS);
862 bus_space_write_2(iot, ioh,
863 ELINK_W3_RESET_OPTIONS, resopt|ELINK_RUNNER_ENABLE_MII);
864 }
865
866 config0 = (u_int)bus_space_read_2(iot, ioh,
867 ELINK_W3_INTERNAL_CONFIG);
868 config1 = (u_int)bus_space_read_2(iot, ioh,
869 ELINK_W3_INTERNAL_CONFIG + 2);
870
871 config1 = config1 & ~CONFIG_MEDIAMASK;
872 config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
873
874 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
875 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2, config1);
876 GO_WINDOW(1); /* back to operating window */
877
878 mii_mediachg(&sc->sc_mii);
879 return;
880 }
881
882 /*
883 * Now turn on the selected media/transceiver.
884 */
885 GO_WINDOW(4);
886 switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
887 case IFM_10_T:
888 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
889 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
890 break;
891
892 case IFM_10_2:
893 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
894 DELAY(1000); /* 50ms not enmough? */
895 break;
896
897 case IFM_100_TX:
898 case IFM_100_FX:
899 case IFM_100_T4: /* XXX check documentation */
900 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
901 LINKBEAT_ENABLE);
902 DELAY(1000); /* not strictly necessary? */
903 break;
904
905 case IFM_10_5:
906 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
907 SQE_ENABLE);
908 DELAY(1000); /* not strictly necessary? */
909 break;
910
911 case IFM_MANUAL:
912 /*
913 * Nothing to do here; we are actually enabling the
914 * external PHY on the MII port.
915 */
916 break;
917
918 case IFM_NONE:
919 printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
920 return;
921
922 default:
923 panic("epsetmedia: impossible");
924 }
925
926 /*
927 * Tell the chip which port to use.
928 */
929 switch (sc->ep_chipset) {
930 case ELINK_CHIPSET_VORTEX:
931 case ELINK_CHIPSET_BOOMERANG:
932 {
933 int mctl, config0, config1;
934
935 GO_WINDOW(3);
936 config0 = (u_int)bus_space_read_2(iot, ioh,
937 ELINK_W3_INTERNAL_CONFIG);
938 config1 = (u_int)bus_space_read_2(iot, ioh,
939 ELINK_W3_INTERNAL_CONFIG + 2);
940
941 config1 = config1 & ~CONFIG_MEDIAMASK;
942 config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
943 CONFIG_MEDIAMASK_SHIFT);
944
945 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
946 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
947 config1);
948
949 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
950 if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
951 mctl |= MAC_CONTROL_FDX;
952 else
953 mctl &= ~MAC_CONTROL_FDX;
954 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
955 break;
956 }
957 default:
958 {
959 int w0_addr_cfg;
960
961 GO_WINDOW(0);
962 w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
963 w0_addr_cfg &= 0x3fff;
964 bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
965 (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
966 DELAY(1000);
967 break;
968 }
969 }
970
971 GO_WINDOW(1); /* Window 1 is operating window */
972 }
973
974 /*
975 * Get currently-selected media from card.
976 * (if_media callback, may be called before interface is brought up).
977 */
978 void
979 ep_media_status(ifp, req)
980 struct ifnet *ifp;
981 struct ifmediareq *req;
982 {
983 register struct ep_softc *sc = ifp->if_softc;
984 bus_space_tag_t iot = sc->sc_iot;
985 bus_space_handle_t ioh = sc->sc_ioh;
986
987 if (sc->enabled == 0) {
988 req->ifm_active = IFM_ETHER|IFM_NONE;
989 req->ifm_status = 0;
990 return;
991 }
992
993 /*
994 * If we have MII, go ask the PHY what's going on.
995 */
996 if (sc->ep_flags & ELINK_FLAGS_MII) {
997 mii_pollstat(&sc->sc_mii);
998 req->ifm_active = sc->sc_mii.mii_media_active;
999 req->ifm_status = sc->sc_mii.mii_media_status;
1000 return;
1001 }
1002
1003 /*
1004 * Ok, at this point we claim that our active media is
1005 * the currently selected media. We'll update our status
1006 * if our chipset allows us to detect link.
1007 */
1008 req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1009 req->ifm_status = 0;
1010
1011 switch (sc->ep_chipset) {
1012 case ELINK_CHIPSET_VORTEX:
1013 case ELINK_CHIPSET_BOOMERANG:
1014 GO_WINDOW(4);
1015 req->ifm_status = IFM_AVALID;
1016 if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
1017 LINKBEAT_DETECT)
1018 req->ifm_status |= IFM_ACTIVE;
1019 GO_WINDOW(1); /* back to operating window */
1020 break;
1021 }
1022 }
1023
1024
1025
1026 /*
1027 * Start outputting on the interface.
1028 * Always called as splnet().
1029 */
1030 void
1031 epstart(ifp)
1032 struct ifnet *ifp;
1033 {
1034 register struct ep_softc *sc = ifp->if_softc;
1035 bus_space_tag_t iot = sc->sc_iot;
1036 bus_space_handle_t ioh = sc->sc_ioh;
1037 struct mbuf *m, *m0;
1038 int sh, len, pad;
1039 bus_addr_t txreg;
1040
1041 /* Don't transmit if interface is busy or not running */
1042 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1043 return;
1044
1045 startagain:
1046 /* Sneak a peek at the next packet */
1047 m0 = ifp->if_snd.ifq_head;
1048 if (m0 == 0)
1049 return;
1050
1051 /* We need to use m->m_pkthdr.len, so require the header */
1052 if ((m0->m_flags & M_PKTHDR) == 0)
1053 panic("epstart: no header mbuf");
1054 len = m0->m_pkthdr.len;
1055
1056 pad = (4 - len) & 3;
1057
1058 /*
1059 * The 3c509 automatically pads short packets to minimum ethernet
1060 * length, but we drop packets that are too large. Perhaps we should
1061 * truncate them instead?
1062 */
1063 if (len + pad > ETHER_MAX_LEN) {
1064 /* packet is obviously too large: toss it */
1065 ++ifp->if_oerrors;
1066 IF_DEQUEUE(&ifp->if_snd, m0);
1067 m_freem(m0);
1068 goto readcheck;
1069 }
1070
1071 if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
1072 len + pad + 4) {
1073 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1074 SET_TX_AVAIL_THRESH |
1075 ((len + pad + 4) >> sc->ep_pktlenshift));
1076 /* not enough room in FIFO */
1077 ifp->if_flags |= IFF_OACTIVE;
1078 return;
1079 } else {
1080 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1081 SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE );
1082 }
1083
1084 IF_DEQUEUE(&ifp->if_snd, m0);
1085 if (m0 == 0) /* not really needed */
1086 return;
1087
1088 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
1089 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/) );
1090
1091 #if NBPFILTER > 0
1092 if (ifp->if_bpf)
1093 bpf_mtap(ifp->if_bpf, m0);
1094 #endif
1095
1096 /*
1097 * Do the output at splhigh() so that an interrupt from another device
1098 * won't cause a FIFO underrun.
1099 */
1100 sh = splhigh();
1101
1102 txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
1103
1104 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1105 /*
1106 * Prime the FIFO buffer counter (number of 16-bit
1107 * words about to be written to the FIFO).
1108 *
1109 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1110 * COUNTER IS NON-ZERO!
1111 */
1112 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
1113 (len + pad) >> 1);
1114 }
1115
1116 bus_space_write_2(iot, ioh, txreg, len);
1117 bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1118 if (ELINK_IS_BUS_32(sc->bustype)) {
1119 for (m = m0; m; ) {
1120 if (m->m_len > 3) {
1121 /* align our reads from core */
1122 if (mtod(m, u_long) & 3) {
1123 u_long count =
1124 4 - (mtod(m, u_long) & 3);
1125 bus_space_write_multi_1(iot, ioh,
1126 txreg, mtod(m, u_int8_t *), count);
1127 m->m_data =
1128 (void *)(mtod(m, u_long) + count);
1129 m->m_len -= count;
1130 }
1131 bus_space_write_multi_stream_4(iot, ioh,
1132 txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1133 m->m_data = (void *)(mtod(m, u_long) +
1134 (u_long)(m->m_len & ~3));
1135 m->m_len -= m->m_len & ~3;
1136 }
1137 if (m->m_len) {
1138 bus_space_write_multi_1(iot, ioh,
1139 txreg, mtod(m, u_int8_t *), m->m_len);
1140 }
1141 MFREE(m, m0);
1142 m = m0;
1143 }
1144 } else {
1145 for (m = m0; m; ) {
1146 if (m->m_len > 1) {
1147 if (mtod(m, u_long) & 1) {
1148 bus_space_write_1(iot, ioh,
1149 txreg, *(mtod(m, u_int8_t *)));
1150 m->m_data =
1151 (void *)(mtod(m, u_long) + 1);
1152 m->m_len -= 1;
1153 }
1154 bus_space_write_multi_stream_2(iot, ioh,
1155 txreg, mtod(m, u_int16_t *),
1156 m->m_len >> 1);
1157 }
1158 if (m->m_len & 1) {
1159 bus_space_write_1(iot, ioh, txreg,
1160 *(mtod(m, u_int8_t *) + m->m_len - 1));
1161 }
1162 MFREE(m, m0);
1163 m = m0;
1164 }
1165 }
1166 while (pad--)
1167 bus_space_write_1(iot, ioh, txreg, 0);
1168
1169 splx(sh);
1170
1171 ++ifp->if_opackets;
1172
1173 readcheck:
1174 if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
1175 ERR_INCOMPLETE) == 0) {
1176 /* We received a complete packet. */
1177 u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1178
1179 if ((status & S_INTR_LATCH) == 0) {
1180 /*
1181 * No interrupt, read the packet and continue
1182 * Is this supposed to happen? Is my motherboard
1183 * completely busted?
1184 */
1185 epread(sc);
1186 } else {
1187 /* Got an interrupt, return so that it gets serviced. */
1188 return;
1189 }
1190 } else {
1191 /* Check if we are stuck and reset [see XXX comment] */
1192 if (epstatus(sc)) {
1193 if (ifp->if_flags & IFF_DEBUG)
1194 printf("%s: adapter reset\n",
1195 sc->sc_dev.dv_xname);
1196 epreset(sc);
1197 }
1198 }
1199
1200 goto startagain;
1201 }
1202
1203
1204 /*
1205 * XXX: The 3c509 card can get in a mode where both the fifo status bit
1206 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1207 * We detect this situation and we reset the adapter.
1208 * It happens at times when there is a lot of broadcast traffic
1209 * on the cable (once in a blue moon).
1210 */
1211 static int
1212 epstatus(sc)
1213 register struct ep_softc *sc;
1214 {
1215 bus_space_tag_t iot = sc->sc_iot;
1216 bus_space_handle_t ioh = sc->sc_ioh;
1217 u_int16_t fifost;
1218
1219 /*
1220 * Check the FIFO status and act accordingly
1221 */
1222 GO_WINDOW(4);
1223 fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
1224 GO_WINDOW(1);
1225
1226 if (fifost & FIFOS_RX_UNDERRUN) {
1227 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1228 printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
1229 epreset(sc);
1230 return 0;
1231 }
1232
1233 if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1234 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1235 printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
1236 return 1;
1237 }
1238
1239 if (fifost & FIFOS_RX_OVERRUN) {
1240 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1241 printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
1242 return 1;
1243 }
1244
1245 if (fifost & FIFOS_TX_OVERRUN) {
1246 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1247 printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
1248 epreset(sc);
1249 return 0;
1250 }
1251
1252 return 0;
1253 }
1254
1255
1256 static void
1257 eptxstat(sc)
1258 register struct ep_softc *sc;
1259 {
1260 bus_space_tag_t iot = sc->sc_iot;
1261 bus_space_handle_t ioh = sc->sc_ioh;
1262 int i;
1263
1264 /*
1265 * We need to read+write TX_STATUS until we get a 0 status
1266 * in order to turn off the interrupt flag.
1267 */
1268 while ((i = bus_space_read_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS)))
1269 & TXS_COMPLETE) {
1270 bus_space_write_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
1271 0x0);
1272
1273 if (i & TXS_JABBER) {
1274 ++sc->sc_ethercom.ec_if.if_oerrors;
1275 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1276 printf("%s: jabber (%x)\n",
1277 sc->sc_dev.dv_xname, i);
1278 epreset(sc);
1279 } else if (i & TXS_UNDERRUN) {
1280 ++sc->sc_ethercom.ec_if.if_oerrors;
1281 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1282 printf("%s: fifo underrun (%x) @%d\n",
1283 sc->sc_dev.dv_xname, i,
1284 sc->tx_start_thresh);
1285 if (sc->tx_succ_ok < 100)
1286 sc->tx_start_thresh = min(ETHER_MAX_LEN,
1287 sc->tx_start_thresh + 20);
1288 sc->tx_succ_ok = 0;
1289 epreset(sc);
1290 } else if (i & TXS_MAX_COLLISION) {
1291 ++sc->sc_ethercom.ec_if.if_collisions;
1292 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
1293 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1294 } else
1295 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1296 }
1297 }
1298
1299 int
1300 epintr(arg)
1301 void *arg;
1302 {
1303 register struct ep_softc *sc = arg;
1304 bus_space_tag_t iot = sc->sc_iot;
1305 bus_space_handle_t ioh = sc->sc_ioh;
1306 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1307 u_int16_t status;
1308 int ret = 0;
1309 int addrandom = 0;
1310
1311 if (sc->enabled == 0)
1312 return (0);
1313
1314 for (;;) {
1315 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1316
1317 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1318
1319 if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
1320 S_RX_COMPLETE | S_CARD_FAILURE)) == 0) {
1321 if ((status & S_INTR_LATCH) == 0) {
1322 #if 0
1323 printf("%s: intr latch cleared\n",
1324 sc->sc_dev.dv_xname);
1325 #endif
1326 break;
1327 }
1328 }
1329
1330 ret = 1;
1331
1332 /*
1333 * Acknowledge any interrupts. It's important that we do this
1334 * first, since there would otherwise be a race condition.
1335 * Due to the i386 interrupt queueing, we may get spurious
1336 * interrupts occasionally.
1337 */
1338 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1339 (status & (C_INTR_LATCH |
1340 C_CARD_FAILURE |
1341 C_TX_COMPLETE |
1342 C_TX_AVAIL |
1343 C_RX_COMPLETE |
1344 C_RX_EARLY |
1345 C_INT_RQD |
1346 C_UPD_STATS)));
1347
1348 #if 0
1349 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1350
1351 printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
1352 (status & S_RX_COMPLETE)?" RX_COMPLETE":"",
1353 (status & S_TX_COMPLETE)?" TX_COMPLETE":"",
1354 (status & S_TX_AVAIL)?" TX_AVAIL":"",
1355 (status & S_CARD_FAILURE)?" CARD_FAILURE":"");
1356 #endif
1357
1358 if (status & S_RX_COMPLETE) {
1359 epread(sc);
1360 addrandom = 1;
1361 }
1362 if (status & S_TX_AVAIL) {
1363 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1364 epstart(&sc->sc_ethercom.ec_if);
1365 addrandom = 1;
1366 }
1367 if (status & S_CARD_FAILURE) {
1368 printf("%s: adapter failure (%x)\n",
1369 sc->sc_dev.dv_xname, status);
1370 epreset(sc);
1371 return (1);
1372 }
1373 if (status & S_TX_COMPLETE) {
1374 eptxstat(sc);
1375 epstart(ifp);
1376 addrandom = 1;
1377 }
1378
1379 #if NRND > 0
1380 if (status)
1381 rnd_add_uint32(&sc->rnd_source, status);
1382 #endif
1383 }
1384
1385 /* no more interrupts */
1386 return (ret);
1387 }
1388
1389 void
1390 epread(sc)
1391 register struct ep_softc *sc;
1392 {
1393 bus_space_tag_t iot = sc->sc_iot;
1394 bus_space_handle_t ioh = sc->sc_ioh;
1395 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1396 struct mbuf *m;
1397 struct ether_header *eh;
1398 int len;
1399
1400 len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1401
1402 again:
1403 if (ifp->if_flags & IFF_DEBUG) {
1404 int err = len & ERR_MASK;
1405 char *s = NULL;
1406
1407 if (len & ERR_INCOMPLETE)
1408 s = "incomplete packet";
1409 else if (err == ERR_OVERRUN)
1410 s = "packet overrun";
1411 else if (err == ERR_RUNT)
1412 s = "runt packet";
1413 else if (err == ERR_ALIGNMENT)
1414 s = "bad alignment";
1415 else if (err == ERR_CRC)
1416 s = "bad crc";
1417 else if (err == ERR_OVERSIZE)
1418 s = "oversized packet";
1419 else if (err == ERR_DRIBBLE)
1420 s = "dribble bits";
1421
1422 if (s)
1423 printf("%s: %s\n", sc->sc_dev.dv_xname, s);
1424 }
1425
1426 if (len & ERR_INCOMPLETE)
1427 return;
1428
1429 if (len & ERR_RX) {
1430 ++ifp->if_ierrors;
1431 goto abort;
1432 }
1433
1434 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
1435
1436 /* Pull packet off interface. */
1437 m = epget(sc, len);
1438 if (m == 0) {
1439 ifp->if_ierrors++;
1440 goto abort;
1441 }
1442
1443 ++ifp->if_ipackets;
1444
1445 /* We assume the header fit entirely in one mbuf. */
1446 eh = mtod(m, struct ether_header *);
1447
1448 #if NBPFILTER > 0
1449 /*
1450 * Check if there's a BPF listener on this interface.
1451 * If so, hand off the raw packet to BPF.
1452 */
1453 if (ifp->if_bpf) {
1454 bpf_mtap(ifp->if_bpf, m);
1455
1456 /*
1457 * Note that the interface cannot be in promiscuous mode if
1458 * there are no BPF listeners. And if we are in promiscuous
1459 * mode, we have to check if this packet is really ours.
1460 */
1461 if ((ifp->if_flags & IFF_PROMISC) &&
1462 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
1463 bcmp(eh->ether_dhost, LLADDR(sc->sc_ethercom.ec_if.if_sadl),
1464 sizeof(eh->ether_dhost)) != 0) {
1465 m_freem(m);
1466 return;
1467 }
1468 }
1469 #endif
1470
1471 /* We assume the header fit entirely in one mbuf. */
1472 m_adj(m, sizeof(struct ether_header));
1473 ether_input(ifp, eh, m);
1474
1475 /*
1476 * In periods of high traffic we can actually receive enough
1477 * packets so that the fifo overrun bit will be set at this point,
1478 * even though we just read a packet. In this case we
1479 * are not going to receive any more interrupts. We check for
1480 * this condition and read again until the fifo is not full.
1481 * We could simplify this test by not using epstatus(), but
1482 * rechecking the RX_STATUS register directly. This test could
1483 * result in unnecessary looping in cases where there is a new
1484 * packet but the fifo is not full, but it will not fix the
1485 * stuck behavior.
1486 *
1487 * Even with this improvement, we still get packet overrun errors
1488 * which are hurting performance. Maybe when I get some more time
1489 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1490 */
1491 if (epstatus(sc)) {
1492 len = bus_space_read_2(iot, ioh,
1493 ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1494 /* Check if we are stuck and reset [see XXX comment] */
1495 if (len & ERR_INCOMPLETE) {
1496 if (ifp->if_flags & IFF_DEBUG)
1497 printf("%s: adapter reset\n",
1498 sc->sc_dev.dv_xname);
1499 epreset(sc);
1500 return;
1501 }
1502 goto again;
1503 }
1504
1505 return;
1506
1507 abort:
1508 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
1509 while (bus_space_read_2(iot, ioh, ELINK_STATUS) & S_COMMAND_IN_PROGRESS)
1510 ;
1511 }
1512
1513 struct mbuf *
1514 epget(sc, totlen)
1515 struct ep_softc *sc;
1516 int totlen;
1517 {
1518 bus_space_tag_t iot = sc->sc_iot;
1519 bus_space_handle_t ioh = sc->sc_ioh;
1520 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1521 struct mbuf *top, **mp, *m, *rv = NULL;
1522 bus_addr_t rxreg;
1523 int len, remaining;
1524 int sh;
1525
1526 m = sc->mb[sc->next_mb];
1527 sc->mb[sc->next_mb] = 0;
1528 if (m == 0) {
1529 MGETHDR(m, M_DONTWAIT, MT_DATA);
1530 if (m == 0)
1531 return 0;
1532 } else {
1533 /* If the queue is no longer full, refill. */
1534 if (sc->last_mb == sc->next_mb)
1535 timeout(epmbuffill, sc, 1);
1536 /* Convert one of our saved mbuf's. */
1537 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1538 m->m_data = m->m_pktdat;
1539 m->m_flags = M_PKTHDR;
1540 }
1541 m->m_pkthdr.rcvif = ifp;
1542 m->m_pkthdr.len = totlen;
1543 len = MHLEN;
1544 top = 0;
1545 mp = ⊤
1546
1547 /*
1548 * We read the packet at splhigh() so that an interrupt from another
1549 * device doesn't cause the card's buffer to overflow while we're
1550 * reading it. We may still lose packets at other times.
1551 */
1552 sh = splhigh();
1553
1554 rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
1555
1556 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1557 /*
1558 * Prime the FIFO buffer counter (number of 16-bit
1559 * words about to be read from the FIFO).
1560 *
1561 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1562 * COUNTER IS NON-ZERO!
1563 */
1564 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
1565 }
1566
1567 while (totlen > 0) {
1568 if (top) {
1569 m = sc->mb[sc->next_mb];
1570 sc->mb[sc->next_mb] = 0;
1571 if (m == 0) {
1572 MGET(m, M_DONTWAIT, MT_DATA);
1573 if (m == 0) {
1574 m_freem(top);
1575 goto out;
1576 }
1577 } else {
1578 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1579 }
1580 len = MLEN;
1581 }
1582 if (totlen >= MINCLSIZE) {
1583 MCLGET(m, M_DONTWAIT);
1584 if ((m->m_flags & M_EXT) == 0) {
1585 m_free(m);
1586 m_freem(top);
1587 goto out;
1588 }
1589 len = MCLBYTES;
1590 }
1591 if (top == 0) {
1592 /* align the struct ip header */
1593 caddr_t newdata = (caddr_t)
1594 ALIGN(m->m_data + sizeof(struct ether_header))
1595 - sizeof(struct ether_header);
1596 len -= newdata - m->m_data;
1597 m->m_data = newdata;
1598 }
1599 remaining = len = min(totlen, len);
1600 if (ELINK_IS_BUS_32(sc->bustype)) {
1601 u_long offset = mtod(m, u_long);
1602 /*
1603 * Read bytes up to the point where we are aligned.
1604 * (We can align to 4 bytes, rather than ALIGNBYTES,
1605 * here because we're later reading 4-byte chunks.)
1606 */
1607 if ((remaining > 3) && (offset & 3)) {
1608 int count = (4 - (offset & 3));
1609 bus_space_read_multi_1(iot, ioh,
1610 rxreg, (u_int8_t *) offset, count);
1611 offset += count;
1612 remaining -= count;
1613 }
1614 if (remaining > 3) {
1615 bus_space_read_multi_stream_4(iot, ioh,
1616 rxreg, (u_int32_t *) offset,
1617 remaining >> 2);
1618 offset += remaining & ~3;
1619 remaining &= 3;
1620 }
1621 if (remaining) {
1622 bus_space_read_multi_1(iot, ioh,
1623 rxreg, (u_int8_t *) offset, remaining);
1624 }
1625 } else {
1626 u_long offset = mtod(m, u_long);
1627 if ((remaining > 1) && (offset & 1)) {
1628 bus_space_read_multi_1(iot, ioh,
1629 rxreg, (u_int8_t *) offset, 1);
1630 remaining -= 1;
1631 offset += 1;
1632 }
1633 if (remaining > 1) {
1634 bus_space_read_multi_stream_2(iot, ioh,
1635 rxreg, (u_int16_t *) offset,
1636 remaining >> 1);
1637 offset += remaining & ~1;
1638 }
1639 if (remaining & 1) {
1640 bus_space_read_multi_1(iot, ioh,
1641 rxreg, (u_int8_t *) offset, remaining & 1);
1642 }
1643 }
1644 m->m_len = len;
1645 totlen -= len;
1646 *mp = m;
1647 mp = &m->m_next;
1648 }
1649
1650 rv = top;
1651
1652 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
1653 while (bus_space_read_2(iot, ioh, ELINK_STATUS) & S_COMMAND_IN_PROGRESS)
1654 ;
1655
1656 out:
1657 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
1658 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1659 splx(sh);
1660
1661 return rv;
1662 }
1663
1664 int
1665 epioctl(ifp, cmd, data)
1666 register struct ifnet *ifp;
1667 u_long cmd;
1668 caddr_t data;
1669 {
1670 struct ep_softc *sc = ifp->if_softc;
1671 struct ifaddr *ifa = (struct ifaddr *)data;
1672 struct ifreq *ifr = (struct ifreq *)data;
1673 int s, error = 0;
1674
1675 s = splnet();
1676
1677 switch (cmd) {
1678
1679 case SIOCSIFADDR:
1680 if ((error = epenable(sc)) != 0)
1681 break;
1682 /* epinit is called just below */
1683 ifp->if_flags |= IFF_UP;
1684 switch (ifa->ifa_addr->sa_family) {
1685 #ifdef INET
1686 case AF_INET:
1687 epinit(sc);
1688 arp_ifinit(&sc->sc_ethercom.ec_if, ifa);
1689 break;
1690 #endif
1691 #ifdef NS
1692 case AF_NS:
1693 {
1694 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1695
1696 if (ns_nullhost(*ina))
1697 ina->x_host = *(union ns_host *)
1698 LLADDR(ifp->if_sadl);
1699 else
1700 bcopy(ina->x_host.c_host,
1701 LLADDR(ifp->if_sadl),
1702 ifp->if_addrlen);
1703 /* Set new address. */
1704 epinit(sc);
1705 break;
1706 }
1707 #endif
1708 default:
1709 epinit(sc);
1710 break;
1711 }
1712 break;
1713
1714 case SIOCSIFMEDIA:
1715 case SIOCGIFMEDIA:
1716 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1717 break;
1718
1719 case SIOCSIFFLAGS:
1720 if ((ifp->if_flags & IFF_UP) == 0 &&
1721 (ifp->if_flags & IFF_RUNNING) != 0) {
1722 /*
1723 * If interface is marked down and it is running, then
1724 * stop it.
1725 */
1726 epstop(sc);
1727 ifp->if_flags &= ~IFF_RUNNING;
1728 epdisable(sc);
1729 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1730 (ifp->if_flags & IFF_RUNNING) == 0) {
1731 /*
1732 * If interface is marked up and it is stopped, then
1733 * start it.
1734 */
1735 if ((error = epenable(sc)) != 0)
1736 break;
1737 epinit(sc);
1738 } else if ((ifp->if_flags & IFF_UP) != 0) {
1739 /*
1740 * deal with flags changes:
1741 * IFF_MULTICAST, IFF_PROMISC.
1742 */
1743 epsetfilter(sc);
1744 }
1745 break;
1746
1747 case SIOCADDMULTI:
1748 case SIOCDELMULTI:
1749 if (sc->enabled == 0) {
1750 error = EIO;
1751 break;
1752 }
1753
1754 error = (cmd == SIOCADDMULTI) ?
1755 ether_addmulti(ifr, &sc->sc_ethercom) :
1756 ether_delmulti(ifr, &sc->sc_ethercom);
1757
1758 if (error == ENETRESET) {
1759 /*
1760 * Multicast list has changed; set the hardware filter
1761 * accordingly.
1762 */
1763 epreset(sc);
1764 error = 0;
1765 }
1766 break;
1767
1768 default:
1769 error = EINVAL;
1770 break;
1771 }
1772
1773 splx(s);
1774 return (error);
1775 }
1776
1777 void
1778 epreset(sc)
1779 struct ep_softc *sc;
1780 {
1781 int s;
1782
1783 s = splnet();
1784 epstop(sc);
1785 epinit(sc);
1786 splx(s);
1787 }
1788
1789 void
1790 epwatchdog(ifp)
1791 struct ifnet *ifp;
1792 {
1793 struct ep_softc *sc = ifp->if_softc;
1794
1795 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1796 ++sc->sc_ethercom.ec_if.if_oerrors;
1797
1798 epreset(sc);
1799 }
1800
1801 void
1802 epstop(sc)
1803 register struct ep_softc *sc;
1804 {
1805 bus_space_tag_t iot = sc->sc_iot;
1806 bus_space_handle_t ioh = sc->sc_ioh;
1807
1808 if (sc->ep_flags & ELINK_FLAGS_MII) {
1809 /* Stop the one second clock. */
1810 untimeout(ep_tick, sc);
1811 }
1812
1813 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
1814 /*
1815 * Clear the FIFO buffer count, thus halting
1816 * any currently-running transactions.
1817 */
1818 GO_WINDOW(1); /* sanity */
1819 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
1820 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1821 }
1822
1823 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1824 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
1825 while (bus_space_read_2(iot, ioh, ELINK_STATUS) & S_COMMAND_IN_PROGRESS)
1826 ;
1827 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1828 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1829
1830 ep_complete_cmd(sc, ELINK_COMMAND, RX_RESET);
1831 ep_complete_cmd(sc, ELINK_COMMAND, TX_RESET);
1832
1833 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1834 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
1835 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
1836 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
1837
1838 epmbufempty(sc);
1839 }
1840
1841
1842 /*
1843 * Before reboots, reset card completely.
1844 */
1845 static void
1846 epshutdown(arg)
1847 void *arg;
1848 {
1849 register struct ep_softc *sc = arg;
1850
1851 if (sc->enabled) {
1852 epstop(sc);
1853 ep_complete_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
1854 }
1855 }
1856
1857 /*
1858 * We get eeprom data from the id_port given an offset into the
1859 * eeprom. Basically; after the ID_sequence is sent to all of
1860 * the cards; they enter the ID_CMD state where they will accept
1861 * command requests. 0x80-0xbf loads the eeprom data. We then
1862 * read the port 16 times and with every read; the cards check
1863 * for contention (ie: if one card writes a 0 bit and another
1864 * writes a 1 bit then the host sees a 0. At the end of the cycle;
1865 * each card compares the data on the bus; if there is a difference
1866 * then that card goes into ID_WAIT state again). In the meantime;
1867 * one bit of data is returned in the AX register which is conveniently
1868 * returned to us by bus_space_read_1(). Hence; we read 16 times getting one
1869 * bit of data with each read.
1870 *
1871 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1872 */
1873 u_int16_t
1874 epreadeeprom(iot, ioh, offset)
1875 bus_space_tag_t iot;
1876 bus_space_handle_t ioh;
1877 int offset;
1878 {
1879 u_int16_t data = 0;
1880 int i;
1881
1882 bus_space_write_1(iot, ioh, 0, 0x80 + offset);
1883 delay(1000);
1884 for (i = 0; i < 16; i++)
1885 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1886 return (data);
1887 }
1888
1889 static int
1890 epbusyeeprom(sc)
1891 struct ep_softc *sc;
1892 {
1893 bus_space_tag_t iot = sc->sc_iot;
1894 bus_space_handle_t ioh = sc->sc_ioh;
1895 int i = 100, j;
1896
1897 if (sc->bustype == ELINK_BUS_PCMCIA) {
1898 delay(1000);
1899 return 0;
1900 }
1901
1902 j = 0; /* bad GCC flow analysis */
1903 while (i--) {
1904 j = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND);
1905 if (j & EEPROM_BUSY)
1906 delay(100);
1907 else
1908 break;
1909 }
1910 if (!i) {
1911 printf("\n%s: eeprom failed to come ready\n",
1912 sc->sc_dev.dv_xname);
1913 return (1);
1914 }
1915 if (j & EEPROM_TST_MODE) {
1916 /* XXX PnP mode? */
1917 printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
1918 return (1);
1919 }
1920 return (0);
1921 }
1922
1923 void
1924 epmbuffill(v)
1925 void *v;
1926 {
1927 struct ep_softc *sc = v;
1928 struct mbuf *m;
1929 int s, i;
1930
1931 s = splnet();
1932 i = sc->last_mb;
1933 do {
1934 if (sc->mb[i] == 0) {
1935 MGET(m, M_DONTWAIT, MT_DATA);
1936 if (m == 0)
1937 break;
1938 sc->mb[i] = m;
1939 }
1940 i = (i + 1) % MAX_MBS;
1941 } while (i != sc->next_mb);
1942 sc->last_mb = i;
1943 /* If the queue was not filled, try again. */
1944 if (sc->last_mb != sc->next_mb)
1945 timeout(epmbuffill, sc, 1);
1946 splx(s);
1947 }
1948
1949 void
1950 epmbufempty(sc)
1951 struct ep_softc *sc;
1952 {
1953 int s, i;
1954
1955 s = splnet();
1956 for (i = 0; i<MAX_MBS; i++) {
1957 if (sc->mb[i]) {
1958 m_freem(sc->mb[i]);
1959 sc->mb[i] = NULL;
1960 }
1961 }
1962 sc->last_mb = sc->next_mb = 0;
1963 untimeout(epmbuffill, sc);
1964 splx(s);
1965 }
1966
1967 int
1968 epenable(sc)
1969 struct ep_softc *sc;
1970 {
1971
1972 if (sc->enabled == 0 && sc->enable != NULL) {
1973 if ((*sc->enable)(sc) != 0) {
1974 printf("%s: device enable failed\n",
1975 sc->sc_dev.dv_xname);
1976 return (EIO);
1977 }
1978 }
1979
1980 sc->enabled = 1;
1981 return (0);
1982 }
1983
1984 void
1985 epdisable(sc)
1986 struct ep_softc *sc;
1987 {
1988
1989 if (sc->enabled != 0 && sc->disable != NULL) {
1990 (*sc->disable)(sc);
1991 sc->enabled = 0;
1992 }
1993 }
1994
1995 int
1996 ep_activate(self, act)
1997 struct device *self;
1998 enum devact act;
1999 {
2000 struct ep_softc *sc = (struct ep_softc *)self;
2001 int rv = 0, s;
2002
2003 s = splnet();
2004 switch (act) {
2005 case DVACT_ACTIVATE:
2006 rv = EOPNOTSUPP;
2007 break;
2008
2009 case DVACT_DEACTIVATE:
2010 #ifdef notyet
2011 /* First, kill off the interface. */
2012 if_detach(sc->sc_ethercom.ec_if);
2013 #endif
2014
2015 /* Now disable the interface. */
2016 epdisable(sc);
2017 break;
2018 }
2019 splx(s);
2020 return (rv);
2021 }
2022
2023 void
2024 ep_mii_setbit(sc, bit)
2025 struct ep_softc *sc;
2026 u_int16_t bit;
2027 {
2028 u_int16_t val;
2029
2030 /* We assume we're already in Window 4 */
2031 val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT);
2032 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT,
2033 val | bit);
2034 }
2035
2036 void
2037 ep_mii_clrbit(sc, bit)
2038 struct ep_softc *sc;
2039 u_int16_t bit;
2040 {
2041 u_int16_t val;
2042
2043 /* We assume we're already in Window 4 */
2044 val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT);
2045 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT,
2046 val & ~bit);
2047 }
2048
2049 u_int16_t
2050 ep_mii_readbit(sc, bit)
2051 struct ep_softc *sc;
2052 u_int16_t bit;
2053 {
2054
2055 /* We assume we're already in Window 4 */
2056 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT) &
2057 bit);
2058 }
2059
2060 void
2061 ep_mii_sync(sc)
2062 struct ep_softc *sc;
2063 {
2064 int i;
2065
2066 /* We assume we're already in Window 4 */
2067 ep_mii_clrbit(sc, PHYSMGMT_DIR);
2068 for (i = 0; i < 32; i++) {
2069 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2070 ep_mii_setbit(sc, PHYSMGMT_CLK);
2071 }
2072 }
2073
2074 void
2075 ep_mii_sendbits(sc, data, nbits)
2076 struct ep_softc *sc;
2077 u_int32_t data;
2078 int nbits;
2079 {
2080 int i;
2081
2082 /* We assume we're already in Window 4 */
2083 ep_mii_setbit(sc, PHYSMGMT_DIR);
2084 for (i = 1 << (nbits - 1); i; i = i >> 1) {
2085 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2086 ep_mii_readbit(sc, PHYSMGMT_CLK);
2087 if (data & i)
2088 ep_mii_setbit(sc, PHYSMGMT_DATA);
2089 else
2090 ep_mii_clrbit(sc, PHYSMGMT_DATA);
2091 ep_mii_setbit(sc, PHYSMGMT_CLK);
2092 ep_mii_readbit(sc, PHYSMGMT_CLK);
2093 }
2094 }
2095
2096 int
2097 ep_mii_readreg(self, phy, reg)
2098 struct device *self;
2099 int phy, reg;
2100 {
2101 struct ep_softc *sc = (struct ep_softc *)self;
2102 int val = 0, i, err;
2103
2104 /*
2105 * Read the PHY register by manually driving the MII control lines.
2106 */
2107
2108 GO_WINDOW(4);
2109
2110 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT, 0);
2111
2112 ep_mii_sync(sc);
2113 ep_mii_sendbits(sc, MII_COMMAND_START, 2);
2114 ep_mii_sendbits(sc, MII_COMMAND_READ, 2);
2115 ep_mii_sendbits(sc, phy, 5);
2116 ep_mii_sendbits(sc, reg, 5);
2117
2118 ep_mii_clrbit(sc, PHYSMGMT_DIR);
2119 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2120 ep_mii_setbit(sc, PHYSMGMT_CLK);
2121 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2122
2123 err = ep_mii_readbit(sc, PHYSMGMT_DATA);
2124 ep_mii_setbit(sc, PHYSMGMT_CLK);
2125
2126 /* Even if an error occurs, must still clock out the cycle. */
2127 for (i = 0; i < 16; i++) {
2128 val <<= 1;
2129 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2130 if (err == 0 && ep_mii_readbit(sc, PHYSMGMT_DATA))
2131 val |= 1;
2132 ep_mii_setbit(sc, PHYSMGMT_CLK);
2133 }
2134 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2135 ep_mii_setbit(sc, PHYSMGMT_CLK);
2136
2137 GO_WINDOW(1); /* back to operating window */
2138
2139 return (err ? 0 : val);
2140 }
2141
2142 void
2143 ep_mii_writereg(self, phy, reg, val)
2144 struct device *self;
2145 int phy, reg, val;
2146 {
2147 struct ep_softc *sc = (struct ep_softc *)self;
2148
2149 /*
2150 * Write the PHY register by manually driving the MII control lines.
2151 */
2152
2153 GO_WINDOW(4);
2154
2155 ep_mii_sync(sc);
2156 ep_mii_sendbits(sc, MII_COMMAND_START, 2);
2157 ep_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
2158 ep_mii_sendbits(sc, phy, 5);
2159 ep_mii_sendbits(sc, reg, 5);
2160 ep_mii_sendbits(sc, MII_COMMAND_ACK, 2);
2161 ep_mii_sendbits(sc, val, 16);
2162
2163 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2164 ep_mii_setbit(sc, PHYSMGMT_CLK);
2165
2166 GO_WINDOW(1); /* back to operating window */
2167 }
2168
2169 void
2170 ep_statchg(self)
2171 struct device *self;
2172 {
2173 struct ep_softc *sc = (struct ep_softc *)self;
2174 bus_space_tag_t iot = sc->sc_iot;
2175 bus_space_handle_t ioh = sc->sc_ioh;
2176 int mctl;
2177
2178 /* XXX Update ifp->if_baudrate */
2179
2180 GO_WINDOW(3);
2181 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
2182 if (sc->sc_mii.mii_media_active & IFM_FDX)
2183 mctl |= MAC_CONTROL_FDX;
2184 else
2185 mctl &= ~MAC_CONTROL_FDX;
2186 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
2187 GO_WINDOW(1); /* back to operating window */
2188 }
2189