elink3.c revision 1.58 1 /* $NetBSD: elink3.c,v 1.58 1999/05/18 23:52:55 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
42 * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 * must display the following acknowledgement:
55 * This product includes software developed by Herb Peyerl.
56 * 4. The name of Herb Peyerl may not be used to endorse or promote products
57 * derived from this software without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
60 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
61 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
63 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
64 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
65 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
66 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
67 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
68 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 #include "opt_inet.h"
72 #include "opt_ns.h"
73 #include "bpfilter.h"
74 #include "rnd.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/mbuf.h>
80 #include <sys/socket.h>
81 #include <sys/ioctl.h>
82 #include <sys/errno.h>
83 #include <sys/syslog.h>
84 #include <sys/select.h>
85 #include <sys/device.h>
86 #if NRND > 0
87 #include <sys/rnd.h>
88 #endif
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_ether.h>
93 #include <net/if_media.h>
94
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/in_var.h>
99 #include <netinet/ip.h>
100 #include <netinet/if_inarp.h>
101 #endif
102
103 #ifdef NS
104 #include <netns/ns.h>
105 #include <netns/ns_if.h>
106 #endif
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #include <net/bpfdesc.h>
111 #endif
112
113 #include <machine/cpu.h>
114 #include <machine/bus.h>
115 #include <machine/intr.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119
120 #include <dev/ic/elink3var.h>
121 #include <dev/ic/elink3reg.h>
122
123 #ifdef DEBUG
124 int epdebug = 0;
125 #endif
126
127 /*
128 * XXX endian workaround for big-endian CPUs with pcmcia:
129 * if stream methods for bus_space_multi are not provided, define them
130 * using non-stream bus_space_{read,write}_multi_.
131 * Assumes host CPU is same endian-ness as bus.
132 */
133 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
134 #define bus_space_read_multi_stream_2 bus_space_read_multi_2
135 #define bus_space_read_multi_stream_4 bus_space_read_multi_4
136 #define bus_space_write_multi_stream_2 bus_space_write_multi_2
137 #define bus_space_write_multi_stream_4 bus_space_write_multi_4
138 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
139
140 /*
141 * Structure to map media-present bits in boards to ifmedia codes and
142 * printable media names. Used for table-driven ifmedia initialization.
143 */
144 struct ep_media {
145 int epm_mpbit; /* media present bit */
146 const char *epm_name; /* name of medium */
147 int epm_ifmedia; /* ifmedia word for medium */
148 int epm_epmedia; /* ELINKMEDIA_* constant */
149 };
150
151 /*
152 * Media table for the Demon/Vortex/Boomerang chipsets.
153 *
154 * Note that MII on the Demon and Vortex (3c59x) indicates an external
155 * MII connector (for connecting an external PHY) ... I think. Treat
156 * it as `manual' on these chips.
157 *
158 * Any Boomerang (3c90x) chips with MII really do have an internal
159 * MII and real PHYs attached; no `native' media.
160 */
161 struct ep_media ep_vortex_media[] = {
162 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
163 ELINKMEDIA_10BASE_T },
164 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
165 ELINKMEDIA_10BASE_T },
166 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
167 ELINKMEDIA_AUI },
168 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
169 ELINKMEDIA_10BASE_2 },
170 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
171 ELINKMEDIA_100BASE_TX },
172 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
173 ELINKMEDIA_100BASE_TX },
174 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
175 ELINKMEDIA_100BASE_FX },
176 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
177 ELINKMEDIA_MII },
178 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
179 ELINKMEDIA_100BASE_T4 },
180 { 0, NULL, 0,
181 0 },
182 };
183
184 /*
185 * Media table for the older 3Com Etherlink III chipset, used
186 * in the 3c509, 3c579, and 3c589.
187 */
188 struct ep_media ep_509_media[] = {
189 { ELINK_W0_CC_UTP, "10baseT", IFM_ETHER|IFM_10_T,
190 ELINKMEDIA_10BASE_T },
191 { ELINK_W0_CC_AUI, "10base5", IFM_ETHER|IFM_10_5,
192 ELINKMEDIA_AUI },
193 { ELINK_W0_CC_BNC, "10base2", IFM_ETHER|IFM_10_2,
194 ELINKMEDIA_10BASE_2 },
195 { 0, NULL, 0,
196 0 },
197 };
198
199 void ep_internalconfig __P((struct ep_softc *sc));
200 void ep_vortex_probemedia __P((struct ep_softc *sc));
201 void ep_509_probemedia __P((struct ep_softc *sc));
202
203 static void eptxstat __P((struct ep_softc *));
204 static int epstatus __P((struct ep_softc *));
205 void epinit __P((struct ep_softc *));
206 int epioctl __P((struct ifnet *, u_long, caddr_t));
207 void epstart __P((struct ifnet *));
208 void epwatchdog __P((struct ifnet *));
209 void epreset __P((struct ep_softc *));
210 static void epshutdown __P((void *));
211 void epread __P((struct ep_softc *));
212 struct mbuf *epget __P((struct ep_softc *, int));
213 void epmbuffill __P((void *));
214 void epmbufempty __P((struct ep_softc *));
215 void epsetfilter __P((struct ep_softc *));
216 void epsetmedia __P((struct ep_softc *));
217
218 /* ifmedia callbacks */
219 int ep_media_change __P((struct ifnet *ifp));
220 void ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
221
222 /* MII callbacks */
223 int ep_mii_readreg __P((struct device *, int, int));
224 void ep_mii_writereg __P((struct device *, int, int, int));
225 void ep_statchg __P((struct device *));
226
227 void ep_tick __P((void *));
228
229 void ep_mii_setbit __P((struct ep_softc *, u_int16_t));
230 void ep_mii_clrbit __P((struct ep_softc *, u_int16_t));
231 u_int16_t ep_mii_readbit __P((struct ep_softc *, u_int16_t));
232 void ep_mii_sync __P((struct ep_softc *));
233 void ep_mii_sendbits __P((struct ep_softc *, u_int32_t, int));
234
235 static int epbusyeeprom __P((struct ep_softc *));
236 static inline void ep_reset_cmd __P((struct ep_softc *sc,
237 u_int cmd, u_int arg));
238 static inline void ep_finish_reset __P((bus_space_tag_t, bus_space_handle_t));
239 static inline void ep_discard_rxtop __P((bus_space_tag_t, bus_space_handle_t));
240 static __inline int ep_w1_reg __P((struct ep_softc *, int));
241
242 /*
243 * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
244 * Window 1 registers offset!
245 */
246 static __inline int
247 ep_w1_reg(sc, reg)
248 struct ep_softc *sc;
249 int reg;
250 {
251
252 switch (sc->ep_chipset) {
253 case ELINK_CHIPSET_CORKSCREW:
254 return (reg + 0x10);
255
256 case ELINK_CHIPSET_ROADRUNNER:
257 switch (reg) {
258 case ELINK_W1_FREE_TX:
259 case ELINK_W1_RUNNER_RDCTL:
260 case ELINK_W1_RUNNER_WRCTL:
261 return (reg);
262 }
263 return (reg + 0x10);
264 }
265
266 return (reg);
267 }
268
269 /*
270 * Wait for any pending reset to complete.
271 * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
272 * but older hardware doesn't implement it and we must delay.
273 */
274 static inline void
275 ep_finish_reset(iot, ioh)
276 bus_space_tag_t iot;
277 bus_space_handle_t ioh;
278
279 {
280 int i;
281
282 for (i = 0; i < 10000; i++) {
283 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) & S_COMMAND_IN_PROGRESS) == 0)
284 break;
285 DELAY(10);
286 }
287 }
288
289 /*
290 * Issue a (reset) command, and be sure it has completed.
291 * Used for global reset, TX_RESET, RX_RESET.
292 */
293 static inline void
294 ep_reset_cmd(sc, cmd, arg)
295 struct ep_softc *sc;
296 u_int cmd, arg;
297 {
298 register bus_space_tag_t iot = sc->sc_iot;
299 register bus_space_handle_t ioh = sc->sc_ioh;
300
301 bus_space_write_2(iot, ioh, cmd, arg);
302 ep_finish_reset(iot, ioh);
303 }
304
305
306 static inline void
307 ep_discard_rxtop(iot, ioh)
308 register bus_space_tag_t iot;
309 register bus_space_handle_t ioh;
310 {
311 int i;
312
313 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
314
315 /*
316 * Spin for about 1 msec, to avoid forcing a DELAY() between
317 * every received packet (adding latency and limiting pkt-recv rate).
318 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
319 * is about right.
320 */
321 for (i = 0; i < 8000; i++) {
322 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) & S_COMMAND_IN_PROGRESS) == 0)
323 return;
324 }
325
326 /* Didn't complete in a hurry. Do DELAY()s. */
327 ep_finish_reset(iot, ioh);
328 }
329
330 /*
331 * Back-end attach and configure.
332 */
333 void
334 epconfig(sc, chipset, enaddr)
335 struct ep_softc *sc;
336 u_short chipset;
337 u_int8_t *enaddr;
338 {
339 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
340 bus_space_tag_t iot = sc->sc_iot;
341 bus_space_handle_t ioh = sc->sc_ioh;
342 u_int16_t i;
343 u_int8_t myla[6];
344
345 sc->ep_chipset = chipset;
346
347 /*
348 * We could have been groveling around in other register
349 * windows in the front-end; make sure we're in window 0
350 * to read the EEPROM.
351 */
352 GO_WINDOW(0);
353
354 if (enaddr == NULL) {
355 /*
356 * Read the station address from the eeprom
357 */
358 for (i = 0; i < 3; i++) {
359 u_int16_t x;
360 if (epbusyeeprom(sc))
361 return; /* XXX why is eeprom busy? */
362 bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
363 READ_EEPROM | i);
364 if (epbusyeeprom(sc))
365 return; /* XXX why is eeprom busy? */
366 x = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
367 myla[(i << 1)] = x >> 8;
368 myla[(i << 1) + 1] = x;
369 }
370 enaddr = myla;
371 }
372
373 /*
374 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
375 * allow FDDI-sized (4500) byte packets. Commands only take an
376 * 11-bit parameter, and 11 bits isn't enough to hold a full-size
377 * packet length.
378 * Commands to these cards implicitly upshift a packet size
379 * or threshold by 2 bits.
380 * To detect cards with large-packet support, we probe by setting
381 * the transmit threshold register, then change windows and
382 * read back the threshold register directly, and see if the
383 * threshold value was shifted or not.
384 */
385 bus_space_write_2(iot, ioh, ELINK_COMMAND,
386 SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE );
387 GO_WINDOW(5);
388 i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
389 GO_WINDOW(1);
390 switch (i) {
391 case ELINK_LARGEWIN_PROBE:
392 case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
393 sc->ep_pktlenshift = 0;
394 break;
395
396 case (ELINK_LARGEWIN_PROBE << 2):
397 sc->ep_pktlenshift = 2;
398 break;
399
400 default:
401 printf("%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
402 "Interface disabled\n",
403 sc->sc_dev.dv_xname, ELINK_LARGEWIN_PROBE, (int) i);
404 return;
405 }
406
407 /*
408 * Ensure Tx-available interrupts are enabled for
409 * start the interface.
410 * XXX should be in epinit()?
411 */
412 bus_space_write_2(iot, ioh, ELINK_COMMAND,
413 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
414
415 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
416 ifp->if_softc = sc;
417 ifp->if_start = epstart;
418 ifp->if_ioctl = epioctl;
419 ifp->if_watchdog = epwatchdog;
420 ifp->if_flags =
421 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
422
423 if_attach(ifp);
424 ether_ifattach(ifp, enaddr);
425
426 /*
427 * Finish configuration:
428 * determine chipset if the front-end couldn't do so,
429 * show board details, set media.
430 */
431
432 /*
433 * Print RAM size. We also print the Ethernet address in here.
434 * It's extracted from the ifp, so we have to make sure it's
435 * been attached first.
436 */
437 ep_internalconfig(sc);
438 GO_WINDOW(0);
439
440 /*
441 * Display some additional information, if pertinent.
442 */
443 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
444 printf("%s: RoadRunner FIFO buffer enabled\n",
445 sc->sc_dev.dv_xname);
446
447 /*
448 * Initialize our media structures and MII info. We'll
449 * probe the MII if we discover that we have one.
450 */
451 sc->sc_mii.mii_ifp = ifp;
452 sc->sc_mii.mii_readreg = ep_mii_readreg;
453 sc->sc_mii.mii_writereg = ep_mii_writereg;
454 sc->sc_mii.mii_statchg = ep_statchg;
455 ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
456 ep_media_status);
457
458 /*
459 * Now, determine which media we have.
460 */
461 switch (sc->ep_chipset) {
462 case ELINK_CHIPSET_BOOMERANG:
463 case ELINK_CHIPSET_ROADRUNNER:
464 /*
465 * If the device has MII, probe it. We won't be using
466 * any `native' media in this case, only PHYs. If
467 * we don't, just treat the Boomerang like the Vortex.
468 */
469 if (sc->ep_flags & ELINK_FLAGS_MII) {
470 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
471 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
472 ifmedia_add(&sc->sc_mii.mii_media,
473 IFM_ETHER|IFM_NONE, 0, NULL);
474 ifmedia_set(&sc->sc_mii.mii_media,
475 IFM_ETHER|IFM_NONE);
476 } else {
477 ifmedia_set(&sc->sc_mii.mii_media,
478 IFM_ETHER|IFM_AUTO);
479 }
480 break;
481 }
482 /* FALLTHROUGH */
483
484 case ELINK_CHIPSET_VORTEX:
485 ep_vortex_probemedia(sc);
486 break;
487
488 default:
489 ep_509_probemedia(sc);
490 break;
491 }
492
493 GO_WINDOW(1); /* Window 1 is operating window */
494
495 #if NBPFILTER > 0
496 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
497 sizeof(struct ether_header));
498 #endif
499
500 #if NRND > 0
501 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
502 RND_TYPE_NET, 0);
503 #endif
504
505 sc->tx_start_thresh = 20; /* probably a good starting point. */
506
507 /* Establish callback to reset card when we reboot. */
508 shutdownhook_establish(epshutdown, sc);
509
510 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
511 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
512 }
513
514
515 /*
516 * Show interface-model-independent info from window 3
517 * internal-configuration register.
518 */
519 void
520 ep_internalconfig(sc)
521 struct ep_softc *sc;
522 {
523 bus_space_tag_t iot = sc->sc_iot;
524 bus_space_handle_t ioh = sc->sc_ioh;
525
526 u_int config0;
527 u_int config1;
528
529 int ram_size, ram_width, ram_speed, rom_size, ram_split;
530 /*
531 * NVRAM buffer Rx:Tx config names for busmastering cards
532 * (Demon, Vortex, and later).
533 */
534 const char *onboard_ram_config[] = {
535 "5:3", "3:1", "1:1", "3:5" };
536
537 GO_WINDOW(3);
538 config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
539 config1 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
540 GO_WINDOW(0);
541
542 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
543 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
544 ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
545 rom_size = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
546
547 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
548
549 printf("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
550 sc->sc_dev.dv_xname,
551 ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
552 8 << ram_size,
553 (ram_width) ? "word" : "byte",
554 onboard_ram_config[ram_split]);
555 }
556
557
558 /*
559 * Find supported media on 3c509-generation hardware that doesn't have
560 * a "reset_options" register in window 3.
561 * Use the config_cntrl register in window 0 instead.
562 * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
563 * that implement CONFIG_CTRL. We don't have a good way to set the
564 * default active mediuim; punt to ifconfig instead.
565 */
566 void
567 ep_509_probemedia(sc)
568 struct ep_softc *sc;
569 {
570 bus_space_tag_t iot = sc->sc_iot;
571 bus_space_handle_t ioh = sc->sc_ioh;
572 struct ifmedia *ifm = &sc->sc_mii.mii_media;
573 u_int16_t ep_w0_config, port;
574 struct ep_media *epm;
575 const char *sep = "", *defmedianame = NULL;
576 int defmedia = 0;
577
578 GO_WINDOW(0);
579 ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
580
581 printf("%s: ", sc->sc_dev.dv_xname);
582
583 /* Sanity check that there are any media! */
584 if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
585 printf("no media present!\n");
586 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
587 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
588 return;
589 }
590
591 /*
592 * Get the default media from the EEPROM.
593 */
594 if (epbusyeeprom(sc))
595 return; /* XXX why is eeprom busy? */
596 bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
597 READ_EEPROM | EEPROM_ADDR_CFG);
598 if (epbusyeeprom(sc))
599 return; /* XXX why is eeprom busy? */
600 port = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA) >> 14;
601
602 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
603
604 for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
605 if (ep_w0_config & epm->epm_mpbit) {
606 /*
607 * This simple test works because 509 chipsets
608 * don't do full-duplex.
609 */
610 if (epm->epm_epmedia == port || defmedia == 0) {
611 defmedia = epm->epm_ifmedia;
612 defmedianame = epm->epm_name;
613 }
614 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
615 NULL);
616 PRINT(epm->epm_name);
617 }
618 }
619
620 #undef PRINT
621
622 #ifdef DIAGNOSTIC
623 if (defmedia == 0)
624 panic("ep_509_probemedia: impossible");
625 #endif
626
627 printf(" (default %s)\n", defmedianame);
628 ifmedia_set(ifm, defmedia);
629 }
630
631 /*
632 * Find media present on large-packet-capable elink3 devices.
633 * Show onboard configuration of large-packet-capable elink3 devices
634 * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
635 * Use media and card-version info in window 3 instead.
636 */
637 void
638 ep_vortex_probemedia(sc)
639 struct ep_softc *sc;
640 {
641 bus_space_tag_t iot = sc->sc_iot;
642 bus_space_handle_t ioh = sc->sc_ioh;
643 struct ifmedia *ifm = &sc->sc_mii.mii_media;
644 struct ep_media *epm;
645 u_int config1;
646 int reset_options;
647 int default_media; /* 3-bit encoding of default (EEPROM) media */
648 int defmedia = 0;
649 const char *sep = "", *defmedianame = NULL;
650
651 GO_WINDOW(3);
652 config1 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
653 reset_options = (int)bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
654 GO_WINDOW(0);
655
656 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
657
658 printf("%s: ", sc->sc_dev.dv_xname);
659
660 /* Sanity check that there are any media! */
661 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
662 printf("no media present!\n");
663 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
664 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
665 return;
666 }
667
668 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
669
670 for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
671 if (reset_options & epm->epm_mpbit) {
672 /*
673 * Default media is a little more complicated
674 * on the Vortex. We support full-duplex which
675 * uses the same reset options bit.
676 *
677 * XXX Check EEPROM for default to FDX?
678 */
679 if (epm->epm_epmedia == default_media) {
680 if ((epm->epm_ifmedia & IFM_FDX) == 0) {
681 defmedia = epm->epm_ifmedia;
682 defmedianame = epm->epm_name;
683 }
684 } else if (defmedia == 0) {
685 defmedia = epm->epm_ifmedia;
686 defmedianame = epm->epm_name;
687 }
688 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
689 NULL);
690 PRINT(epm->epm_name);
691 }
692 }
693
694 #undef PRINT
695
696 #ifdef DIAGNOSTIC
697 if (defmedia == 0)
698 panic("ep_vortex_probemedia: impossible");
699 #endif
700
701 printf(" (default %s)\n", defmedianame);
702 ifmedia_set(ifm, defmedia);
703 }
704
705 /*
706 * One second timer, used to tick the MII.
707 */
708 void
709 ep_tick(arg)
710 void *arg;
711 {
712 struct ep_softc *sc = arg;
713 int s;
714
715 #ifdef DIAGNOSTIC
716 if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
717 panic("ep_tick");
718 #endif
719
720 s = splnet();
721 mii_tick(&sc->sc_mii);
722 splx(s);
723
724 timeout(ep_tick, sc, hz);
725 }
726
727 /*
728 * Bring device up.
729 *
730 * The order in here seems important. Otherwise we may not receive
731 * interrupts. ?!
732 */
733 void
734 epinit(sc)
735 register struct ep_softc *sc;
736 {
737 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
738 bus_space_tag_t iot = sc->sc_iot;
739 bus_space_handle_t ioh = sc->sc_ioh;
740 int i;
741
742 /* Make sure any pending reset has completed before touching board. */
743 ep_finish_reset(iot, ioh);
744
745
746 if (sc->bustype != ELINK_BUS_PCI) {
747 GO_WINDOW(0);
748 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
749 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
750 }
751
752 if (sc->bustype == ELINK_BUS_PCMCIA) {
753 bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
754 }
755
756 GO_WINDOW(2);
757 for (i = 0; i < 6; i++) /* Reload the ether_addr. */
758 bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
759 LLADDR(ifp->if_sadl)[i]);
760
761 /*
762 * Reset the station-address receive filter.
763 * A bug workaround for busmastering (Vortex, Demon) cards.
764 */
765 for (i = 0; i < 6; i++)
766 bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
767
768 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
769 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
770
771 GO_WINDOW(1); /* Window 1 is operating window */
772 for (i = 0; i < 31; i++)
773 bus_space_read_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS));
774
775 /* Set threshhold for for Tx-space avaiable interrupt. */
776 bus_space_write_2(iot, ioh, ELINK_COMMAND,
777 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
778
779 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
780 /*
781 * Enable options in the PCMCIA LAN COR register, via
782 * RoadRunner Window 1.
783 *
784 * XXX MAGIC CONSTANTS!
785 */
786 u_int16_t cor;
787
788 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
789
790 cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
791 if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
792 cor |= 0x10;
793 if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
794 cor |= 0x20;
795 bus_space_write_2(iot, ioh, 0, cor);
796
797 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
798 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
799 }
800
801 /* Enable interrupts. */
802 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK | S_CARD_FAILURE |
803 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
804 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK | S_CARD_FAILURE |
805 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
806
807 /*
808 * Attempt to get rid of any stray interrupts that occured during
809 * configuration. On the i386 this isn't possible because one may
810 * already be queued. However, a single stray interrupt is
811 * unimportant.
812 */
813 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
814
815 epsetfilter(sc);
816 epsetmedia(sc);
817
818 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
819 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
820
821 epmbuffill(sc);
822
823 /* Interface is now `running', with no output active. */
824 ifp->if_flags |= IFF_RUNNING;
825 ifp->if_flags &= ~IFF_OACTIVE;
826
827 if (sc->ep_flags & ELINK_FLAGS_MII) {
828 /* Start the one second clock. */
829 timeout(ep_tick, sc, hz);
830 }
831
832 /* Attempt to start output, if any. */
833 epstart(ifp);
834 }
835
836
837 /*
838 * Set multicast receive filter.
839 * elink3 hardware has no selective multicast filter in hardware.
840 * Enable reception of all multicasts and filter in software.
841 */
842 void
843 epsetfilter(sc)
844 register struct ep_softc *sc;
845 {
846 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
847
848 GO_WINDOW(1); /* Window 1 is operating window */
849 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, SET_RX_FILTER |
850 FIL_INDIVIDUAL | FIL_BRDCST |
851 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
852 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
853 }
854
855 int
856 ep_media_change(ifp)
857 struct ifnet *ifp;
858 {
859 register struct ep_softc *sc = ifp->if_softc;
860
861 if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
862 epreset(sc);
863
864 return (0);
865 }
866
867 /*
868 * Set the card to use the specified media.
869 */
870 void
871 epsetmedia(sc)
872 struct ep_softc *sc;
873 {
874 bus_space_tag_t iot = sc->sc_iot;
875 bus_space_handle_t ioh = sc->sc_ioh;
876
877 /* Turn everything off. First turn off linkbeat and UTP. */
878 GO_WINDOW(4);
879 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
880
881 /* Turn off coax */
882 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
883 delay(1000);
884
885 /*
886 * If the device has MII, select it, and then tell the
887 * PHY which media to use.
888 */
889 if (sc->ep_flags & ELINK_FLAGS_MII) {
890 int config0, config1;
891
892 GO_WINDOW(3);
893
894 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
895 int resopt;
896
897 resopt = bus_space_read_2(iot, ioh,
898 ELINK_W3_RESET_OPTIONS);
899 bus_space_write_2(iot, ioh,
900 ELINK_W3_RESET_OPTIONS, resopt|ELINK_RUNNER_ENABLE_MII);
901 }
902
903 config0 = (u_int)bus_space_read_2(iot, ioh,
904 ELINK_W3_INTERNAL_CONFIG);
905 config1 = (u_int)bus_space_read_2(iot, ioh,
906 ELINK_W3_INTERNAL_CONFIG + 2);
907
908 config1 = config1 & ~CONFIG_MEDIAMASK;
909 config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
910
911 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
912 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2, config1);
913 GO_WINDOW(1); /* back to operating window */
914
915 mii_mediachg(&sc->sc_mii);
916 return;
917 }
918
919 /*
920 * Now turn on the selected media/transceiver.
921 */
922 GO_WINDOW(4);
923 switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
924 case IFM_10_T:
925 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
926 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
927 break;
928
929 case IFM_10_2:
930 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
931 DELAY(1000); /* 50ms not enmough? */
932 break;
933
934 case IFM_100_TX:
935 case IFM_100_FX:
936 case IFM_100_T4: /* XXX check documentation */
937 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
938 LINKBEAT_ENABLE);
939 DELAY(1000); /* not strictly necessary? */
940 break;
941
942 case IFM_10_5:
943 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
944 SQE_ENABLE);
945 DELAY(1000); /* not strictly necessary? */
946 break;
947
948 case IFM_MANUAL:
949 /*
950 * Nothing to do here; we are actually enabling the
951 * external PHY on the MII port.
952 */
953 break;
954
955 case IFM_NONE:
956 printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
957 return;
958
959 default:
960 panic("epsetmedia: impossible");
961 }
962
963 /*
964 * Tell the chip which port to use.
965 */
966 switch (sc->ep_chipset) {
967 case ELINK_CHIPSET_VORTEX:
968 case ELINK_CHIPSET_BOOMERANG:
969 {
970 int mctl, config0, config1;
971
972 GO_WINDOW(3);
973 config0 = (u_int)bus_space_read_2(iot, ioh,
974 ELINK_W3_INTERNAL_CONFIG);
975 config1 = (u_int)bus_space_read_2(iot, ioh,
976 ELINK_W3_INTERNAL_CONFIG + 2);
977
978 config1 = config1 & ~CONFIG_MEDIAMASK;
979 config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
980 CONFIG_MEDIAMASK_SHIFT);
981
982 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
983 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
984 config1);
985
986 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
987 if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
988 mctl |= MAC_CONTROL_FDX;
989 else
990 mctl &= ~MAC_CONTROL_FDX;
991 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
992 break;
993 }
994 default:
995 {
996 int w0_addr_cfg;
997
998 GO_WINDOW(0);
999 w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
1000 w0_addr_cfg &= 0x3fff;
1001 bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
1002 (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
1003 DELAY(1000);
1004 break;
1005 }
1006 }
1007
1008 GO_WINDOW(1); /* Window 1 is operating window */
1009 }
1010
1011 /*
1012 * Get currently-selected media from card.
1013 * (if_media callback, may be called before interface is brought up).
1014 */
1015 void
1016 ep_media_status(ifp, req)
1017 struct ifnet *ifp;
1018 struct ifmediareq *req;
1019 {
1020 register struct ep_softc *sc = ifp->if_softc;
1021 bus_space_tag_t iot = sc->sc_iot;
1022 bus_space_handle_t ioh = sc->sc_ioh;
1023
1024 if (sc->enabled == 0) {
1025 req->ifm_active = IFM_ETHER|IFM_NONE;
1026 req->ifm_status = 0;
1027 return;
1028 }
1029
1030 /*
1031 * If we have MII, go ask the PHY what's going on.
1032 */
1033 if (sc->ep_flags & ELINK_FLAGS_MII) {
1034 mii_pollstat(&sc->sc_mii);
1035 req->ifm_active = sc->sc_mii.mii_media_active;
1036 req->ifm_status = sc->sc_mii.mii_media_status;
1037 return;
1038 }
1039
1040 /*
1041 * Ok, at this point we claim that our active media is
1042 * the currently selected media. We'll update our status
1043 * if our chipset allows us to detect link.
1044 */
1045 req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1046 req->ifm_status = 0;
1047
1048 switch (sc->ep_chipset) {
1049 case ELINK_CHIPSET_VORTEX:
1050 case ELINK_CHIPSET_BOOMERANG:
1051 GO_WINDOW(4);
1052 req->ifm_status = IFM_AVALID;
1053 if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
1054 LINKBEAT_DETECT)
1055 req->ifm_status |= IFM_ACTIVE;
1056 GO_WINDOW(1); /* back to operating window */
1057 break;
1058 }
1059 }
1060
1061
1062
1063 /*
1064 * Start outputting on the interface.
1065 * Always called as splnet().
1066 */
1067 void
1068 epstart(ifp)
1069 struct ifnet *ifp;
1070 {
1071 register struct ep_softc *sc = ifp->if_softc;
1072 bus_space_tag_t iot = sc->sc_iot;
1073 bus_space_handle_t ioh = sc->sc_ioh;
1074 struct mbuf *m, *m0;
1075 int sh, len, pad;
1076 bus_addr_t txreg;
1077
1078 /* Don't transmit if interface is busy or not running */
1079 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1080 return;
1081
1082 startagain:
1083 /* Sneak a peek at the next packet */
1084 m0 = ifp->if_snd.ifq_head;
1085 if (m0 == 0)
1086 return;
1087
1088 /* We need to use m->m_pkthdr.len, so require the header */
1089 if ((m0->m_flags & M_PKTHDR) == 0)
1090 panic("epstart: no header mbuf");
1091 len = m0->m_pkthdr.len;
1092
1093 pad = (4 - len) & 3;
1094
1095 /*
1096 * The 3c509 automatically pads short packets to minimum ethernet
1097 * length, but we drop packets that are too large. Perhaps we should
1098 * truncate them instead?
1099 */
1100 if (len + pad > ETHER_MAX_LEN) {
1101 /* packet is obviously too large: toss it */
1102 ++ifp->if_oerrors;
1103 IF_DEQUEUE(&ifp->if_snd, m0);
1104 m_freem(m0);
1105 goto readcheck;
1106 }
1107
1108 if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
1109 len + pad + 4) {
1110 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1111 SET_TX_AVAIL_THRESH |
1112 ((len + pad + 4) >> sc->ep_pktlenshift));
1113 /* not enough room in FIFO */
1114 ifp->if_flags |= IFF_OACTIVE;
1115 return;
1116 } else {
1117 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1118 SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE );
1119 }
1120
1121 IF_DEQUEUE(&ifp->if_snd, m0);
1122 if (m0 == 0) /* not really needed */
1123 return;
1124
1125 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
1126 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/) );
1127
1128 #if NBPFILTER > 0
1129 if (ifp->if_bpf)
1130 bpf_mtap(ifp->if_bpf, m0);
1131 #endif
1132
1133 /*
1134 * Do the output at splhigh() so that an interrupt from another device
1135 * won't cause a FIFO underrun.
1136 */
1137 sh = splhigh();
1138
1139 txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
1140
1141 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1142 /*
1143 * Prime the FIFO buffer counter (number of 16-bit
1144 * words about to be written to the FIFO).
1145 *
1146 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1147 * COUNTER IS NON-ZERO!
1148 */
1149 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
1150 (len + pad) >> 1);
1151 }
1152
1153 bus_space_write_2(iot, ioh, txreg, len);
1154 bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1155 if (ELINK_IS_BUS_32(sc->bustype)) {
1156 for (m = m0; m; ) {
1157 if (m->m_len > 3) {
1158 /* align our reads from core */
1159 if (mtod(m, u_long) & 3) {
1160 u_long count =
1161 4 - (mtod(m, u_long) & 3);
1162 bus_space_write_multi_1(iot, ioh,
1163 txreg, mtod(m, u_int8_t *), count);
1164 m->m_data =
1165 (void *)(mtod(m, u_long) + count);
1166 m->m_len -= count;
1167 }
1168 bus_space_write_multi_stream_4(iot, ioh,
1169 txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1170 m->m_data = (void *)(mtod(m, u_long) +
1171 (u_long)(m->m_len & ~3));
1172 m->m_len -= m->m_len & ~3;
1173 }
1174 if (m->m_len) {
1175 bus_space_write_multi_1(iot, ioh,
1176 txreg, mtod(m, u_int8_t *), m->m_len);
1177 }
1178 MFREE(m, m0);
1179 m = m0;
1180 }
1181 } else {
1182 for (m = m0; m; ) {
1183 if (m->m_len > 1) {
1184 if (mtod(m, u_long) & 1) {
1185 bus_space_write_1(iot, ioh,
1186 txreg, *(mtod(m, u_int8_t *)));
1187 m->m_data =
1188 (void *)(mtod(m, u_long) + 1);
1189 m->m_len -= 1;
1190 }
1191 bus_space_write_multi_stream_2(iot, ioh,
1192 txreg, mtod(m, u_int16_t *),
1193 m->m_len >> 1);
1194 }
1195 if (m->m_len & 1) {
1196 bus_space_write_1(iot, ioh, txreg,
1197 *(mtod(m, u_int8_t *) + m->m_len - 1));
1198 }
1199 MFREE(m, m0);
1200 m = m0;
1201 }
1202 }
1203 while (pad--)
1204 bus_space_write_1(iot, ioh, txreg, 0);
1205
1206 splx(sh);
1207
1208 ++ifp->if_opackets;
1209
1210 readcheck:
1211 if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
1212 ERR_INCOMPLETE) == 0) {
1213 /* We received a complete packet. */
1214 u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1215
1216 if ((status & S_INTR_LATCH) == 0) {
1217 /*
1218 * No interrupt, read the packet and continue
1219 * Is this supposed to happen? Is my motherboard
1220 * completely busted?
1221 */
1222 epread(sc);
1223 } else {
1224 /* Got an interrupt, return so that it gets serviced. */
1225 return;
1226 }
1227 } else {
1228 /* Check if we are stuck and reset [see XXX comment] */
1229 if (epstatus(sc)) {
1230 if (ifp->if_flags & IFF_DEBUG)
1231 printf("%s: adapter reset\n",
1232 sc->sc_dev.dv_xname);
1233 epreset(sc);
1234 }
1235 }
1236
1237 goto startagain;
1238 }
1239
1240
1241 /*
1242 * XXX: The 3c509 card can get in a mode where both the fifo status bit
1243 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1244 * We detect this situation and we reset the adapter.
1245 * It happens at times when there is a lot of broadcast traffic
1246 * on the cable (once in a blue moon).
1247 */
1248 static int
1249 epstatus(sc)
1250 register struct ep_softc *sc;
1251 {
1252 bus_space_tag_t iot = sc->sc_iot;
1253 bus_space_handle_t ioh = sc->sc_ioh;
1254 u_int16_t fifost;
1255
1256 /*
1257 * Check the FIFO status and act accordingly
1258 */
1259 GO_WINDOW(4);
1260 fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
1261 GO_WINDOW(1);
1262
1263 if (fifost & FIFOS_RX_UNDERRUN) {
1264 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1265 printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
1266 epreset(sc);
1267 return 0;
1268 }
1269
1270 if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1271 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1272 printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
1273 return 1;
1274 }
1275
1276 if (fifost & FIFOS_RX_OVERRUN) {
1277 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1278 printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
1279 return 1;
1280 }
1281
1282 if (fifost & FIFOS_TX_OVERRUN) {
1283 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1284 printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
1285 epreset(sc);
1286 return 0;
1287 }
1288
1289 return 0;
1290 }
1291
1292
1293 static void
1294 eptxstat(sc)
1295 register struct ep_softc *sc;
1296 {
1297 bus_space_tag_t iot = sc->sc_iot;
1298 bus_space_handle_t ioh = sc->sc_ioh;
1299 int i;
1300
1301 /*
1302 * We need to read+write TX_STATUS until we get a 0 status
1303 * in order to turn off the interrupt flag.
1304 */
1305 while ((i = bus_space_read_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS)))
1306 & TXS_COMPLETE) {
1307 bus_space_write_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
1308 0x0);
1309
1310 if (i & TXS_JABBER) {
1311 ++sc->sc_ethercom.ec_if.if_oerrors;
1312 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1313 printf("%s: jabber (%x)\n",
1314 sc->sc_dev.dv_xname, i);
1315 epreset(sc);
1316 } else if (i & TXS_UNDERRUN) {
1317 ++sc->sc_ethercom.ec_if.if_oerrors;
1318 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1319 printf("%s: fifo underrun (%x) @%d\n",
1320 sc->sc_dev.dv_xname, i,
1321 sc->tx_start_thresh);
1322 if (sc->tx_succ_ok < 100)
1323 sc->tx_start_thresh = min(ETHER_MAX_LEN,
1324 sc->tx_start_thresh + 20);
1325 sc->tx_succ_ok = 0;
1326 epreset(sc);
1327 } else if (i & TXS_MAX_COLLISION) {
1328 ++sc->sc_ethercom.ec_if.if_collisions;
1329 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
1330 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1331 } else
1332 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1333 }
1334 }
1335
1336 int
1337 epintr(arg)
1338 void *arg;
1339 {
1340 register struct ep_softc *sc = arg;
1341 bus_space_tag_t iot = sc->sc_iot;
1342 bus_space_handle_t ioh = sc->sc_ioh;
1343 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1344 u_int16_t status;
1345 int ret = 0;
1346 int addrandom = 0;
1347
1348 if (sc->enabled == 0)
1349 return (0);
1350
1351 for (;;) {
1352 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1353
1354 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1355
1356 if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
1357 S_RX_COMPLETE | S_CARD_FAILURE)) == 0) {
1358 if ((status & S_INTR_LATCH) == 0) {
1359 #if 0
1360 printf("%s: intr latch cleared\n",
1361 sc->sc_dev.dv_xname);
1362 #endif
1363 break;
1364 }
1365 }
1366
1367 ret = 1;
1368
1369 /*
1370 * Acknowledge any interrupts. It's important that we do this
1371 * first, since there would otherwise be a race condition.
1372 * Due to the i386 interrupt queueing, we may get spurious
1373 * interrupts occasionally.
1374 */
1375 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1376 (status & (C_INTR_LATCH |
1377 C_CARD_FAILURE |
1378 C_TX_COMPLETE |
1379 C_TX_AVAIL |
1380 C_RX_COMPLETE |
1381 C_RX_EARLY |
1382 C_INT_RQD |
1383 C_UPD_STATS)));
1384
1385 #if 0
1386 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1387
1388 printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
1389 (status & S_RX_COMPLETE)?" RX_COMPLETE":"",
1390 (status & S_TX_COMPLETE)?" TX_COMPLETE":"",
1391 (status & S_TX_AVAIL)?" TX_AVAIL":"",
1392 (status & S_CARD_FAILURE)?" CARD_FAILURE":"");
1393 #endif
1394
1395 if (status & S_RX_COMPLETE) {
1396 epread(sc);
1397 addrandom = 1;
1398 }
1399 if (status & S_TX_AVAIL) {
1400 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1401 epstart(&sc->sc_ethercom.ec_if);
1402 addrandom = 1;
1403 }
1404 if (status & S_CARD_FAILURE) {
1405 printf("%s: adapter failure (%x)\n",
1406 sc->sc_dev.dv_xname, status);
1407 epreset(sc);
1408 return (1);
1409 }
1410 if (status & S_TX_COMPLETE) {
1411 eptxstat(sc);
1412 epstart(ifp);
1413 addrandom = 1;
1414 }
1415
1416 #if NRND > 0
1417 if (status)
1418 rnd_add_uint32(&sc->rnd_source, status);
1419 #endif
1420 }
1421
1422 /* no more interrupts */
1423 return (ret);
1424 }
1425
1426 void
1427 epread(sc)
1428 register struct ep_softc *sc;
1429 {
1430 bus_space_tag_t iot = sc->sc_iot;
1431 bus_space_handle_t ioh = sc->sc_ioh;
1432 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1433 struct mbuf *m;
1434 struct ether_header *eh;
1435 int len;
1436
1437 len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1438
1439 again:
1440 if (ifp->if_flags & IFF_DEBUG) {
1441 int err = len & ERR_MASK;
1442 char *s = NULL;
1443
1444 if (len & ERR_INCOMPLETE)
1445 s = "incomplete packet";
1446 else if (err == ERR_OVERRUN)
1447 s = "packet overrun";
1448 else if (err == ERR_RUNT)
1449 s = "runt packet";
1450 else if (err == ERR_ALIGNMENT)
1451 s = "bad alignment";
1452 else if (err == ERR_CRC)
1453 s = "bad crc";
1454 else if (err == ERR_OVERSIZE)
1455 s = "oversized packet";
1456 else if (err == ERR_DRIBBLE)
1457 s = "dribble bits";
1458
1459 if (s)
1460 printf("%s: %s\n", sc->sc_dev.dv_xname, s);
1461 }
1462
1463 if (len & ERR_INCOMPLETE)
1464 return;
1465
1466 if (len & ERR_RX) {
1467 ++ifp->if_ierrors;
1468 goto abort;
1469 }
1470
1471 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
1472
1473 /* Pull packet off interface. */
1474 m = epget(sc, len);
1475 if (m == 0) {
1476 ifp->if_ierrors++;
1477 goto abort;
1478 }
1479
1480 ++ifp->if_ipackets;
1481
1482 /* We assume the header fit entirely in one mbuf. */
1483 eh = mtod(m, struct ether_header *);
1484
1485 #if NBPFILTER > 0
1486 /*
1487 * Check if there's a BPF listener on this interface.
1488 * If so, hand off the raw packet to BPF.
1489 */
1490 if (ifp->if_bpf) {
1491 bpf_mtap(ifp->if_bpf, m);
1492
1493 /*
1494 * Note that the interface cannot be in promiscuous mode if
1495 * there are no BPF listeners. And if we are in promiscuous
1496 * mode, we have to check if this packet is really ours.
1497 */
1498 if ((ifp->if_flags & IFF_PROMISC) &&
1499 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
1500 bcmp(eh->ether_dhost, LLADDR(sc->sc_ethercom.ec_if.if_sadl),
1501 sizeof(eh->ether_dhost)) != 0) {
1502 m_freem(m);
1503 return;
1504 }
1505 }
1506 #endif
1507 (*ifp->if_input)(ifp, m);
1508
1509 /*
1510 * In periods of high traffic we can actually receive enough
1511 * packets so that the fifo overrun bit will be set at this point,
1512 * even though we just read a packet. In this case we
1513 * are not going to receive any more interrupts. We check for
1514 * this condition and read again until the fifo is not full.
1515 * We could simplify this test by not using epstatus(), but
1516 * rechecking the RX_STATUS register directly. This test could
1517 * result in unnecessary looping in cases where there is a new
1518 * packet but the fifo is not full, but it will not fix the
1519 * stuck behavior.
1520 *
1521 * Even with this improvement, we still get packet overrun errors
1522 * which are hurting performance. Maybe when I get some more time
1523 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1524 */
1525 if (epstatus(sc)) {
1526 len = bus_space_read_2(iot, ioh,
1527 ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1528 /* Check if we are stuck and reset [see XXX comment] */
1529 if (len & ERR_INCOMPLETE) {
1530 if (ifp->if_flags & IFF_DEBUG)
1531 printf("%s: adapter reset\n",
1532 sc->sc_dev.dv_xname);
1533 epreset(sc);
1534 return;
1535 }
1536 goto again;
1537 }
1538
1539 return;
1540
1541 abort:
1542 ep_discard_rxtop(iot, ioh);
1543
1544 }
1545
1546 struct mbuf *
1547 epget(sc, totlen)
1548 struct ep_softc *sc;
1549 int totlen;
1550 {
1551 bus_space_tag_t iot = sc->sc_iot;
1552 bus_space_handle_t ioh = sc->sc_ioh;
1553 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1554 struct mbuf *top, **mp, *m, *rv = NULL;
1555 bus_addr_t rxreg;
1556 int len, remaining;
1557 int sh;
1558
1559 m = sc->mb[sc->next_mb];
1560 sc->mb[sc->next_mb] = 0;
1561 if (m == 0) {
1562 MGETHDR(m, M_DONTWAIT, MT_DATA);
1563 if (m == 0)
1564 return 0;
1565 } else {
1566 /* If the queue is no longer full, refill. */
1567 if (sc->last_mb == sc->next_mb)
1568 timeout(epmbuffill, sc, 1);
1569 /* Convert one of our saved mbuf's. */
1570 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1571 m->m_data = m->m_pktdat;
1572 m->m_flags = M_PKTHDR;
1573 }
1574 m->m_pkthdr.rcvif = ifp;
1575 m->m_pkthdr.len = totlen;
1576 len = MHLEN;
1577 top = 0;
1578 mp = ⊤
1579
1580 /*
1581 * We read the packet at splhigh() so that an interrupt from another
1582 * device doesn't cause the card's buffer to overflow while we're
1583 * reading it. We may still lose packets at other times.
1584 */
1585 sh = splhigh();
1586
1587 rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
1588
1589 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1590 /*
1591 * Prime the FIFO buffer counter (number of 16-bit
1592 * words about to be read from the FIFO).
1593 *
1594 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1595 * COUNTER IS NON-ZERO!
1596 */
1597 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
1598 }
1599
1600 while (totlen > 0) {
1601 if (top) {
1602 m = sc->mb[sc->next_mb];
1603 sc->mb[sc->next_mb] = 0;
1604 if (m == 0) {
1605 MGET(m, M_DONTWAIT, MT_DATA);
1606 if (m == 0) {
1607 m_freem(top);
1608 goto out;
1609 }
1610 } else {
1611 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1612 }
1613 len = MLEN;
1614 }
1615 if (totlen >= MINCLSIZE) {
1616 MCLGET(m, M_DONTWAIT);
1617 if ((m->m_flags & M_EXT) == 0) {
1618 m_free(m);
1619 m_freem(top);
1620 goto out;
1621 }
1622 len = MCLBYTES;
1623 }
1624 if (top == 0) {
1625 /* align the struct ip header */
1626 caddr_t newdata = (caddr_t)
1627 ALIGN(m->m_data + sizeof(struct ether_header))
1628 - sizeof(struct ether_header);
1629 len -= newdata - m->m_data;
1630 m->m_data = newdata;
1631 }
1632 remaining = len = min(totlen, len);
1633 if (ELINK_IS_BUS_32(sc->bustype)) {
1634 u_long offset = mtod(m, u_long);
1635 /*
1636 * Read bytes up to the point where we are aligned.
1637 * (We can align to 4 bytes, rather than ALIGNBYTES,
1638 * here because we're later reading 4-byte chunks.)
1639 */
1640 if ((remaining > 3) && (offset & 3)) {
1641 int count = (4 - (offset & 3));
1642 bus_space_read_multi_1(iot, ioh,
1643 rxreg, (u_int8_t *) offset, count);
1644 offset += count;
1645 remaining -= count;
1646 }
1647 if (remaining > 3) {
1648 bus_space_read_multi_stream_4(iot, ioh,
1649 rxreg, (u_int32_t *) offset,
1650 remaining >> 2);
1651 offset += remaining & ~3;
1652 remaining &= 3;
1653 }
1654 if (remaining) {
1655 bus_space_read_multi_1(iot, ioh,
1656 rxreg, (u_int8_t *) offset, remaining);
1657 }
1658 } else {
1659 u_long offset = mtod(m, u_long);
1660 if ((remaining > 1) && (offset & 1)) {
1661 bus_space_read_multi_1(iot, ioh,
1662 rxreg, (u_int8_t *) offset, 1);
1663 remaining -= 1;
1664 offset += 1;
1665 }
1666 if (remaining > 1) {
1667 bus_space_read_multi_stream_2(iot, ioh,
1668 rxreg, (u_int16_t *) offset,
1669 remaining >> 1);
1670 offset += remaining & ~1;
1671 }
1672 if (remaining & 1) {
1673 bus_space_read_multi_1(iot, ioh,
1674 rxreg, (u_int8_t *) offset, remaining & 1);
1675 }
1676 }
1677 m->m_len = len;
1678 totlen -= len;
1679 *mp = m;
1680 mp = &m->m_next;
1681 }
1682
1683 rv = top;
1684
1685 ep_discard_rxtop(iot, ioh);
1686
1687 out:
1688 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
1689 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1690 splx(sh);
1691
1692 return rv;
1693 }
1694
1695 int
1696 epioctl(ifp, cmd, data)
1697 register struct ifnet *ifp;
1698 u_long cmd;
1699 caddr_t data;
1700 {
1701 struct ep_softc *sc = ifp->if_softc;
1702 struct ifaddr *ifa = (struct ifaddr *)data;
1703 struct ifreq *ifr = (struct ifreq *)data;
1704 int s, error = 0;
1705
1706 s = splnet();
1707
1708 switch (cmd) {
1709
1710 case SIOCSIFADDR:
1711 if ((error = epenable(sc)) != 0)
1712 break;
1713 /* epinit is called just below */
1714 ifp->if_flags |= IFF_UP;
1715 switch (ifa->ifa_addr->sa_family) {
1716 #ifdef INET
1717 case AF_INET:
1718 epinit(sc);
1719 arp_ifinit(&sc->sc_ethercom.ec_if, ifa);
1720 break;
1721 #endif
1722 #ifdef NS
1723 case AF_NS:
1724 {
1725 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1726
1727 if (ns_nullhost(*ina))
1728 ina->x_host = *(union ns_host *)
1729 LLADDR(ifp->if_sadl);
1730 else
1731 bcopy(ina->x_host.c_host,
1732 LLADDR(ifp->if_sadl),
1733 ifp->if_addrlen);
1734 /* Set new address. */
1735 epinit(sc);
1736 break;
1737 }
1738 #endif
1739 default:
1740 epinit(sc);
1741 break;
1742 }
1743 break;
1744
1745 case SIOCSIFMEDIA:
1746 case SIOCGIFMEDIA:
1747 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1748 break;
1749
1750 case SIOCSIFFLAGS:
1751 if ((ifp->if_flags & IFF_UP) == 0 &&
1752 (ifp->if_flags & IFF_RUNNING) != 0) {
1753 /*
1754 * If interface is marked down and it is running, then
1755 * stop it.
1756 */
1757 epstop(sc);
1758 ifp->if_flags &= ~IFF_RUNNING;
1759 epdisable(sc);
1760 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1761 (ifp->if_flags & IFF_RUNNING) == 0) {
1762 /*
1763 * If interface is marked up and it is stopped, then
1764 * start it.
1765 */
1766 if ((error = epenable(sc)) != 0)
1767 break;
1768 epinit(sc);
1769 } else if ((ifp->if_flags & IFF_UP) != 0) {
1770 /*
1771 * deal with flags changes:
1772 * IFF_MULTICAST, IFF_PROMISC.
1773 */
1774 epsetfilter(sc);
1775 }
1776 break;
1777
1778 case SIOCADDMULTI:
1779 case SIOCDELMULTI:
1780 if (sc->enabled == 0) {
1781 error = EIO;
1782 break;
1783 }
1784
1785 error = (cmd == SIOCADDMULTI) ?
1786 ether_addmulti(ifr, &sc->sc_ethercom) :
1787 ether_delmulti(ifr, &sc->sc_ethercom);
1788
1789 if (error == ENETRESET) {
1790 /*
1791 * Multicast list has changed; set the hardware filter
1792 * accordingly.
1793 */
1794 epreset(sc);
1795 error = 0;
1796 }
1797 break;
1798
1799 default:
1800 error = EINVAL;
1801 break;
1802 }
1803
1804 splx(s);
1805 return (error);
1806 }
1807
1808 void
1809 epreset(sc)
1810 struct ep_softc *sc;
1811 {
1812 int s;
1813
1814 s = splnet();
1815 epstop(sc);
1816 epinit(sc);
1817 splx(s);
1818 }
1819
1820 void
1821 epwatchdog(ifp)
1822 struct ifnet *ifp;
1823 {
1824 struct ep_softc *sc = ifp->if_softc;
1825
1826 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1827 ++sc->sc_ethercom.ec_if.if_oerrors;
1828
1829 epreset(sc);
1830 }
1831
1832 void
1833 epstop(sc)
1834 register struct ep_softc *sc;
1835 {
1836 bus_space_tag_t iot = sc->sc_iot;
1837 bus_space_handle_t ioh = sc->sc_ioh;
1838
1839 if (sc->ep_flags & ELINK_FLAGS_MII) {
1840 /* Stop the one second clock. */
1841 untimeout(ep_tick, sc);
1842 }
1843
1844 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
1845 /*
1846 * Clear the FIFO buffer count, thus halting
1847 * any currently-running transactions.
1848 */
1849 GO_WINDOW(1); /* sanity */
1850 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
1851 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1852 }
1853
1854 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1855 ep_discard_rxtop(iot, ioh);
1856
1857 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1858 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1859
1860 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
1861 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1862
1863 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1864 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
1865 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
1866 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
1867
1868 epmbufempty(sc);
1869 }
1870
1871
1872 /*
1873 * Before reboots, reset card completely.
1874 */
1875 static void
1876 epshutdown(arg)
1877 void *arg;
1878 {
1879 register struct ep_softc *sc = arg;
1880 int s = splnet();
1881
1882 if (sc->enabled) {
1883 epstop(sc);
1884 ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
1885 sc->enabled = 0;
1886 }
1887 splx(s);
1888 }
1889
1890 /*
1891 * We get eeprom data from the id_port given an offset into the
1892 * eeprom. Basically; after the ID_sequence is sent to all of
1893 * the cards; they enter the ID_CMD state where they will accept
1894 * command requests. 0x80-0xbf loads the eeprom data. We then
1895 * read the port 16 times and with every read; the cards check
1896 * for contention (ie: if one card writes a 0 bit and another
1897 * writes a 1 bit then the host sees a 0. At the end of the cycle;
1898 * each card compares the data on the bus; if there is a difference
1899 * then that card goes into ID_WAIT state again). In the meantime;
1900 * one bit of data is returned in the AX register which is conveniently
1901 * returned to us by bus_space_read_1(). Hence; we read 16 times getting one
1902 * bit of data with each read.
1903 *
1904 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1905 */
1906 u_int16_t
1907 epreadeeprom(iot, ioh, offset)
1908 bus_space_tag_t iot;
1909 bus_space_handle_t ioh;
1910 int offset;
1911 {
1912 u_int16_t data = 0;
1913 int i;
1914
1915 bus_space_write_1(iot, ioh, 0, 0x80 + offset);
1916 delay(1000);
1917 for (i = 0; i < 16; i++)
1918 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1919 return (data);
1920 }
1921
1922 static int
1923 epbusyeeprom(sc)
1924 struct ep_softc *sc;
1925 {
1926 bus_space_tag_t iot = sc->sc_iot;
1927 bus_space_handle_t ioh = sc->sc_ioh;
1928 int i = 100, j;
1929
1930 if (sc->bustype == ELINK_BUS_PCMCIA) {
1931 delay(1000);
1932 return 0;
1933 }
1934
1935 j = 0; /* bad GCC flow analysis */
1936 while (i--) {
1937 j = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND);
1938 if (j & EEPROM_BUSY)
1939 delay(100);
1940 else
1941 break;
1942 }
1943 if (!i) {
1944 printf("\n%s: eeprom failed to come ready\n",
1945 sc->sc_dev.dv_xname);
1946 return (1);
1947 }
1948 if (j & EEPROM_TST_MODE) {
1949 /* XXX PnP mode? */
1950 printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
1951 return (1);
1952 }
1953 return (0);
1954 }
1955
1956 void
1957 epmbuffill(v)
1958 void *v;
1959 {
1960 struct ep_softc *sc = v;
1961 struct mbuf *m;
1962 int s, i;
1963
1964 s = splnet();
1965 i = sc->last_mb;
1966 do {
1967 if (sc->mb[i] == 0) {
1968 MGET(m, M_DONTWAIT, MT_DATA);
1969 if (m == 0)
1970 break;
1971 sc->mb[i] = m;
1972 }
1973 i = (i + 1) % MAX_MBS;
1974 } while (i != sc->next_mb);
1975 sc->last_mb = i;
1976 /* If the queue was not filled, try again. */
1977 if (sc->last_mb != sc->next_mb)
1978 timeout(epmbuffill, sc, 1);
1979 splx(s);
1980 }
1981
1982 void
1983 epmbufempty(sc)
1984 struct ep_softc *sc;
1985 {
1986 int s, i;
1987
1988 s = splnet();
1989 for (i = 0; i<MAX_MBS; i++) {
1990 if (sc->mb[i]) {
1991 m_freem(sc->mb[i]);
1992 sc->mb[i] = NULL;
1993 }
1994 }
1995 sc->last_mb = sc->next_mb = 0;
1996 untimeout(epmbuffill, sc);
1997 splx(s);
1998 }
1999
2000 int
2001 epenable(sc)
2002 struct ep_softc *sc;
2003 {
2004
2005 if (sc->enabled == 0 && sc->enable != NULL) {
2006 if ((*sc->enable)(sc) != 0) {
2007 printf("%s: device enable failed\n",
2008 sc->sc_dev.dv_xname);
2009 return (EIO);
2010 }
2011 }
2012
2013 sc->enabled = 1;
2014 return (0);
2015 }
2016
2017 void
2018 epdisable(sc)
2019 struct ep_softc *sc;
2020 {
2021
2022 if (sc->enabled != 0 && sc->disable != NULL) {
2023 (*sc->disable)(sc);
2024 sc->enabled = 0;
2025 }
2026 }
2027
2028 int
2029 ep_activate(self, act)
2030 struct device *self;
2031 enum devact act;
2032 {
2033 struct ep_softc *sc = (struct ep_softc *)self;
2034 int rv = 0, s;
2035
2036 s = splnet();
2037 switch (act) {
2038 case DVACT_ACTIVATE:
2039 rv = EOPNOTSUPP;
2040 break;
2041
2042 case DVACT_DEACTIVATE:
2043 #ifdef notyet
2044 /* First, kill off the interface. */
2045 if_detach(sc->sc_ethercom.ec_if);
2046 #endif
2047
2048 /* Now disable the interface. */
2049 epdisable(sc);
2050 break;
2051 }
2052 splx(s);
2053 return (rv);
2054 }
2055
2056 void
2057 ep_mii_setbit(sc, bit)
2058 struct ep_softc *sc;
2059 u_int16_t bit;
2060 {
2061 u_int16_t val;
2062
2063 /* We assume we're already in Window 4 */
2064 val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT);
2065 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT,
2066 val | bit);
2067 }
2068
2069 void
2070 ep_mii_clrbit(sc, bit)
2071 struct ep_softc *sc;
2072 u_int16_t bit;
2073 {
2074 u_int16_t val;
2075
2076 /* We assume we're already in Window 4 */
2077 val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT);
2078 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT,
2079 val & ~bit);
2080 }
2081
2082 u_int16_t
2083 ep_mii_readbit(sc, bit)
2084 struct ep_softc *sc;
2085 u_int16_t bit;
2086 {
2087
2088 /* We assume we're already in Window 4 */
2089 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT) &
2090 bit);
2091 }
2092
2093 void
2094 ep_mii_sync(sc)
2095 struct ep_softc *sc;
2096 {
2097 int i;
2098
2099 /* We assume we're already in Window 4 */
2100 ep_mii_clrbit(sc, PHYSMGMT_DIR);
2101 for (i = 0; i < 32; i++) {
2102 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2103 ep_mii_setbit(sc, PHYSMGMT_CLK);
2104 }
2105 }
2106
2107 void
2108 ep_mii_sendbits(sc, data, nbits)
2109 struct ep_softc *sc;
2110 u_int32_t data;
2111 int nbits;
2112 {
2113 int i;
2114
2115 /* We assume we're already in Window 4 */
2116 ep_mii_setbit(sc, PHYSMGMT_DIR);
2117 for (i = 1 << (nbits - 1); i; i = i >> 1) {
2118 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2119 ep_mii_readbit(sc, PHYSMGMT_CLK);
2120 if (data & i)
2121 ep_mii_setbit(sc, PHYSMGMT_DATA);
2122 else
2123 ep_mii_clrbit(sc, PHYSMGMT_DATA);
2124 ep_mii_setbit(sc, PHYSMGMT_CLK);
2125 ep_mii_readbit(sc, PHYSMGMT_CLK);
2126 }
2127 }
2128
2129 int
2130 ep_mii_readreg(self, phy, reg)
2131 struct device *self;
2132 int phy, reg;
2133 {
2134 struct ep_softc *sc = (struct ep_softc *)self;
2135 int val = 0, i, err;
2136
2137 /*
2138 * Read the PHY register by manually driving the MII control lines.
2139 */
2140
2141 GO_WINDOW(4);
2142
2143 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT, 0);
2144
2145 ep_mii_sync(sc);
2146 ep_mii_sendbits(sc, MII_COMMAND_START, 2);
2147 ep_mii_sendbits(sc, MII_COMMAND_READ, 2);
2148 ep_mii_sendbits(sc, phy, 5);
2149 ep_mii_sendbits(sc, reg, 5);
2150
2151 ep_mii_clrbit(sc, PHYSMGMT_DIR);
2152 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2153 ep_mii_setbit(sc, PHYSMGMT_CLK);
2154 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2155
2156 err = ep_mii_readbit(sc, PHYSMGMT_DATA);
2157 ep_mii_setbit(sc, PHYSMGMT_CLK);
2158
2159 /* Even if an error occurs, must still clock out the cycle. */
2160 for (i = 0; i < 16; i++) {
2161 val <<= 1;
2162 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2163 if (err == 0 && ep_mii_readbit(sc, PHYSMGMT_DATA))
2164 val |= 1;
2165 ep_mii_setbit(sc, PHYSMGMT_CLK);
2166 }
2167 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2168 ep_mii_setbit(sc, PHYSMGMT_CLK);
2169
2170 GO_WINDOW(1); /* back to operating window */
2171
2172 return (err ? 0 : val);
2173 }
2174
2175 void
2176 ep_mii_writereg(self, phy, reg, val)
2177 struct device *self;
2178 int phy, reg, val;
2179 {
2180 struct ep_softc *sc = (struct ep_softc *)self;
2181
2182 /*
2183 * Write the PHY register by manually driving the MII control lines.
2184 */
2185
2186 GO_WINDOW(4);
2187
2188 ep_mii_sync(sc);
2189 ep_mii_sendbits(sc, MII_COMMAND_START, 2);
2190 ep_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
2191 ep_mii_sendbits(sc, phy, 5);
2192 ep_mii_sendbits(sc, reg, 5);
2193 ep_mii_sendbits(sc, MII_COMMAND_ACK, 2);
2194 ep_mii_sendbits(sc, val, 16);
2195
2196 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2197 ep_mii_setbit(sc, PHYSMGMT_CLK);
2198
2199 GO_WINDOW(1); /* back to operating window */
2200 }
2201
2202 void
2203 ep_statchg(self)
2204 struct device *self;
2205 {
2206 struct ep_softc *sc = (struct ep_softc *)self;
2207 bus_space_tag_t iot = sc->sc_iot;
2208 bus_space_handle_t ioh = sc->sc_ioh;
2209 int mctl;
2210
2211 /* XXX Update ifp->if_baudrate */
2212
2213 GO_WINDOW(3);
2214 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
2215 if (sc->sc_mii.mii_media_active & IFM_FDX)
2216 mctl |= MAC_CONTROL_FDX;
2217 else
2218 mctl &= ~MAC_CONTROL_FDX;
2219 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
2220 GO_WINDOW(1); /* back to operating window */
2221 }
2222