elink3.c revision 1.59 1 /* $NetBSD: elink3.c,v 1.59 1999/10/11 17:48:20 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
42 * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 * must display the following acknowledgement:
55 * This product includes software developed by Herb Peyerl.
56 * 4. The name of Herb Peyerl may not be used to endorse or promote products
57 * derived from this software without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
60 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
61 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
63 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
64 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
65 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
66 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
67 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
68 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 #include "opt_inet.h"
72 #include "opt_ns.h"
73 #include "bpfilter.h"
74 #include "rnd.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/mbuf.h>
80 #include <sys/socket.h>
81 #include <sys/ioctl.h>
82 #include <sys/errno.h>
83 #include <sys/syslog.h>
84 #include <sys/select.h>
85 #include <sys/device.h>
86 #if NRND > 0
87 #include <sys/rnd.h>
88 #endif
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_ether.h>
93 #include <net/if_media.h>
94
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/in_var.h>
99 #include <netinet/ip.h>
100 #include <netinet/if_inarp.h>
101 #endif
102
103 #ifdef NS
104 #include <netns/ns.h>
105 #include <netns/ns_if.h>
106 #endif
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #include <net/bpfdesc.h>
111 #endif
112
113 #include <machine/cpu.h>
114 #include <machine/bus.h>
115 #include <machine/intr.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119
120 #include <dev/ic/elink3var.h>
121 #include <dev/ic/elink3reg.h>
122
123 #ifdef DEBUG
124 int epdebug = 0;
125 #endif
126
127 /*
128 * XXX endian workaround for big-endian CPUs with pcmcia:
129 * if stream methods for bus_space_multi are not provided, define them
130 * using non-stream bus_space_{read,write}_multi_.
131 * Assumes host CPU is same endian-ness as bus.
132 */
133 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
134 #define bus_space_read_multi_stream_2 bus_space_read_multi_2
135 #define bus_space_read_multi_stream_4 bus_space_read_multi_4
136 #define bus_space_write_multi_stream_2 bus_space_write_multi_2
137 #define bus_space_write_multi_stream_4 bus_space_write_multi_4
138 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
139
140 /*
141 * Structure to map media-present bits in boards to ifmedia codes and
142 * printable media names. Used for table-driven ifmedia initialization.
143 */
144 struct ep_media {
145 int epm_mpbit; /* media present bit */
146 const char *epm_name; /* name of medium */
147 int epm_ifmedia; /* ifmedia word for medium */
148 int epm_epmedia; /* ELINKMEDIA_* constant */
149 };
150
151 /*
152 * Media table for the Demon/Vortex/Boomerang chipsets.
153 *
154 * Note that MII on the Demon and Vortex (3c59x) indicates an external
155 * MII connector (for connecting an external PHY) ... I think. Treat
156 * it as `manual' on these chips.
157 *
158 * Any Boomerang (3c90x) chips with MII really do have an internal
159 * MII and real PHYs attached; no `native' media.
160 */
161 struct ep_media ep_vortex_media[] = {
162 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
163 ELINKMEDIA_10BASE_T },
164 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
165 ELINKMEDIA_10BASE_T },
166 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
167 ELINKMEDIA_AUI },
168 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
169 ELINKMEDIA_10BASE_2 },
170 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
171 ELINKMEDIA_100BASE_TX },
172 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
173 ELINKMEDIA_100BASE_TX },
174 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
175 ELINKMEDIA_100BASE_FX },
176 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
177 ELINKMEDIA_MII },
178 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
179 ELINKMEDIA_100BASE_T4 },
180 { 0, NULL, 0,
181 0 },
182 };
183
184 /*
185 * Media table for the older 3Com Etherlink III chipset, used
186 * in the 3c509, 3c579, and 3c589.
187 */
188 struct ep_media ep_509_media[] = {
189 { ELINK_W0_CC_UTP, "10baseT", IFM_ETHER|IFM_10_T,
190 ELINKMEDIA_10BASE_T },
191 { ELINK_W0_CC_AUI, "10base5", IFM_ETHER|IFM_10_5,
192 ELINKMEDIA_AUI },
193 { ELINK_W0_CC_BNC, "10base2", IFM_ETHER|IFM_10_2,
194 ELINKMEDIA_10BASE_2 },
195 { 0, NULL, 0,
196 0 },
197 };
198
199 void ep_internalconfig __P((struct ep_softc *sc));
200 void ep_vortex_probemedia __P((struct ep_softc *sc));
201 void ep_509_probemedia __P((struct ep_softc *sc));
202
203 static void eptxstat __P((struct ep_softc *));
204 static int epstatus __P((struct ep_softc *));
205 void epinit __P((struct ep_softc *));
206 int epioctl __P((struct ifnet *, u_long, caddr_t));
207 void epstart __P((struct ifnet *));
208 void epwatchdog __P((struct ifnet *));
209 void epreset __P((struct ep_softc *));
210 static void epshutdown __P((void *));
211 void epread __P((struct ep_softc *));
212 struct mbuf *epget __P((struct ep_softc *, int));
213 void epmbuffill __P((void *));
214 void epmbufempty __P((struct ep_softc *));
215 void epsetfilter __P((struct ep_softc *));
216 void ep_roadrunner_mii_enable __P((struct ep_softc *));
217 void epsetmedia __P((struct ep_softc *));
218
219 /* ifmedia callbacks */
220 int ep_media_change __P((struct ifnet *ifp));
221 void ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
222
223 /* MII callbacks */
224 int ep_mii_readreg __P((struct device *, int, int));
225 void ep_mii_writereg __P((struct device *, int, int, int));
226 void ep_statchg __P((struct device *));
227
228 void ep_tick __P((void *));
229
230 void ep_mii_setbit __P((struct ep_softc *, u_int16_t));
231 void ep_mii_clrbit __P((struct ep_softc *, u_int16_t));
232 u_int16_t ep_mii_readbit __P((struct ep_softc *, u_int16_t));
233 void ep_mii_sync __P((struct ep_softc *));
234 void ep_mii_sendbits __P((struct ep_softc *, u_int32_t, int));
235
236 static int epbusyeeprom __P((struct ep_softc *));
237 u_int16_t ep_read_eeprom __P((struct ep_softc *, u_int16_t));
238 static inline void ep_reset_cmd __P((struct ep_softc *sc,
239 u_int cmd, u_int arg));
240 static inline void ep_finish_reset __P((bus_space_tag_t, bus_space_handle_t));
241 static inline void ep_discard_rxtop __P((bus_space_tag_t, bus_space_handle_t));
242 static __inline int ep_w1_reg __P((struct ep_softc *, int));
243
244 /*
245 * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
246 * Window 1 registers offset!
247 */
248 static __inline int
249 ep_w1_reg(sc, reg)
250 struct ep_softc *sc;
251 int reg;
252 {
253
254 switch (sc->ep_chipset) {
255 case ELINK_CHIPSET_CORKSCREW:
256 return (reg + 0x10);
257
258 case ELINK_CHIPSET_ROADRUNNER:
259 switch (reg) {
260 case ELINK_W1_FREE_TX:
261 case ELINK_W1_RUNNER_RDCTL:
262 case ELINK_W1_RUNNER_WRCTL:
263 return (reg);
264 }
265 return (reg + 0x10);
266 }
267
268 return (reg);
269 }
270
271 /*
272 * Wait for any pending reset to complete.
273 * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
274 * but older hardware doesn't implement it and we must delay.
275 */
276 static inline void
277 ep_finish_reset(iot, ioh)
278 bus_space_tag_t iot;
279 bus_space_handle_t ioh;
280
281 {
282 int i;
283
284 for (i = 0; i < 10000; i++) {
285 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) & S_COMMAND_IN_PROGRESS) == 0)
286 break;
287 DELAY(10);
288 }
289 }
290
291 /*
292 * Issue a (reset) command, and be sure it has completed.
293 * Used for global reset, TX_RESET, RX_RESET.
294 */
295 static inline void
296 ep_reset_cmd(sc, cmd, arg)
297 struct ep_softc *sc;
298 u_int cmd, arg;
299 {
300 register bus_space_tag_t iot = sc->sc_iot;
301 register bus_space_handle_t ioh = sc->sc_ioh;
302
303 bus_space_write_2(iot, ioh, cmd, arg);
304 ep_finish_reset(iot, ioh);
305 }
306
307
308 static inline void
309 ep_discard_rxtop(iot, ioh)
310 register bus_space_tag_t iot;
311 register bus_space_handle_t ioh;
312 {
313 int i;
314
315 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
316
317 /*
318 * Spin for about 1 msec, to avoid forcing a DELAY() between
319 * every received packet (adding latency and limiting pkt-recv rate).
320 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
321 * is about right.
322 */
323 for (i = 0; i < 8000; i++) {
324 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) & S_COMMAND_IN_PROGRESS) == 0)
325 return;
326 }
327
328 /* Didn't complete in a hurry. Do DELAY()s. */
329 ep_finish_reset(iot, ioh);
330 }
331
332 /*
333 * Back-end attach and configure.
334 */
335 void
336 epconfig(sc, chipset, enaddr)
337 struct ep_softc *sc;
338 u_short chipset;
339 u_int8_t *enaddr;
340 {
341 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
342 bus_space_tag_t iot = sc->sc_iot;
343 bus_space_handle_t ioh = sc->sc_ioh;
344 u_int16_t i;
345 u_int8_t myla[6];
346
347 sc->ep_chipset = chipset;
348
349 /*
350 * We could have been groveling around in other register
351 * windows in the front-end; make sure we're in window 0
352 * to read the EEPROM.
353 */
354 GO_WINDOW(0);
355
356 if (enaddr == NULL) {
357 /*
358 * Read the station address from the eeprom.
359 */
360 for (i = 0; i < 3; i++) {
361 u_int16_t x = ep_read_eeprom(sc, i);
362 myla[(i << 1)] = x >> 8;
363 myla[(i << 1) + 1] = x;
364 }
365 enaddr = myla;
366 }
367
368 /*
369 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
370 * allow FDDI-sized (4500) byte packets. Commands only take an
371 * 11-bit parameter, and 11 bits isn't enough to hold a full-size
372 * packet length.
373 * Commands to these cards implicitly upshift a packet size
374 * or threshold by 2 bits.
375 * To detect cards with large-packet support, we probe by setting
376 * the transmit threshold register, then change windows and
377 * read back the threshold register directly, and see if the
378 * threshold value was shifted or not.
379 */
380 bus_space_write_2(iot, ioh, ELINK_COMMAND,
381 SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE );
382 GO_WINDOW(5);
383 i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
384 GO_WINDOW(1);
385 switch (i) {
386 case ELINK_LARGEWIN_PROBE:
387 case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
388 sc->ep_pktlenshift = 0;
389 break;
390
391 case (ELINK_LARGEWIN_PROBE << 2):
392 sc->ep_pktlenshift = 2;
393 break;
394
395 default:
396 printf("%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
397 "Interface disabled\n",
398 sc->sc_dev.dv_xname, ELINK_LARGEWIN_PROBE, (int) i);
399 return;
400 }
401
402 /*
403 * Ensure Tx-available interrupts are enabled for
404 * start the interface.
405 * XXX should be in epinit()?
406 */
407 bus_space_write_2(iot, ioh, ELINK_COMMAND,
408 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
409
410 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
411 ifp->if_softc = sc;
412 ifp->if_start = epstart;
413 ifp->if_ioctl = epioctl;
414 ifp->if_watchdog = epwatchdog;
415 ifp->if_flags =
416 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
417
418 if_attach(ifp);
419 ether_ifattach(ifp, enaddr);
420
421 /*
422 * Finish configuration:
423 * determine chipset if the front-end couldn't do so,
424 * show board details, set media.
425 */
426
427 /*
428 * Print RAM size. We also print the Ethernet address in here.
429 * It's extracted from the ifp, so we have to make sure it's
430 * been attached first.
431 */
432 ep_internalconfig(sc);
433 GO_WINDOW(0);
434
435 /*
436 * Display some additional information, if pertinent.
437 */
438 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
439 printf("%s: RoadRunner FIFO buffer enabled\n",
440 sc->sc_dev.dv_xname);
441
442 /*
443 * Initialize our media structures and MII info. We'll
444 * probe the MII if we discover that we have one.
445 */
446 sc->sc_mii.mii_ifp = ifp;
447 sc->sc_mii.mii_readreg = ep_mii_readreg;
448 sc->sc_mii.mii_writereg = ep_mii_writereg;
449 sc->sc_mii.mii_statchg = ep_statchg;
450 ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
451 ep_media_status);
452
453 /*
454 * Now, determine which media we have.
455 */
456 switch (sc->ep_chipset) {
457 case ELINK_CHIPSET_ROADRUNNER:
458 if (sc->ep_flags & ELINK_FLAGS_MII) {
459 ep_roadrunner_mii_enable(sc);
460 GO_WINDOW(0);
461 }
462 /* FALLTHROUGH */
463
464 case ELINK_CHIPSET_BOOMERANG:
465 /*
466 * If the device has MII, probe it. We won't be using
467 * any `native' media in this case, only PHYs. If
468 * we don't, just treat the Boomerang like the Vortex.
469 */
470 if (sc->ep_flags & ELINK_FLAGS_MII) {
471 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
472 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
473 ifmedia_add(&sc->sc_mii.mii_media,
474 IFM_ETHER|IFM_NONE, 0, NULL);
475 ifmedia_set(&sc->sc_mii.mii_media,
476 IFM_ETHER|IFM_NONE);
477 } else {
478 ifmedia_set(&sc->sc_mii.mii_media,
479 IFM_ETHER|IFM_AUTO);
480 }
481 break;
482 }
483 /* FALLTHROUGH */
484
485 case ELINK_CHIPSET_VORTEX:
486 ep_vortex_probemedia(sc);
487 break;
488
489 default:
490 ep_509_probemedia(sc);
491 break;
492 }
493
494 GO_WINDOW(1); /* Window 1 is operating window */
495
496 #if NBPFILTER > 0
497 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
498 sizeof(struct ether_header));
499 #endif
500
501 #if NRND > 0
502 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
503 RND_TYPE_NET, 0);
504 #endif
505
506 sc->tx_start_thresh = 20; /* probably a good starting point. */
507
508 /* Establish callback to reset card when we reboot. */
509 shutdownhook_establish(epshutdown, sc);
510
511 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
512 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
513 }
514
515
516 /*
517 * Show interface-model-independent info from window 3
518 * internal-configuration register.
519 */
520 void
521 ep_internalconfig(sc)
522 struct ep_softc *sc;
523 {
524 bus_space_tag_t iot = sc->sc_iot;
525 bus_space_handle_t ioh = sc->sc_ioh;
526
527 u_int config0;
528 u_int config1;
529
530 int ram_size, ram_width, ram_speed, rom_size, ram_split;
531 /*
532 * NVRAM buffer Rx:Tx config names for busmastering cards
533 * (Demon, Vortex, and later).
534 */
535 const char *onboard_ram_config[] = {
536 "5:3", "3:1", "1:1", "3:5" };
537
538 GO_WINDOW(3);
539 config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
540 config1 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
541 GO_WINDOW(0);
542
543 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
544 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
545 ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
546 rom_size = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
547
548 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
549
550 printf("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
551 sc->sc_dev.dv_xname,
552 ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
553 8 << ram_size,
554 (ram_width) ? "word" : "byte",
555 onboard_ram_config[ram_split]);
556 }
557
558
559 /*
560 * Find supported media on 3c509-generation hardware that doesn't have
561 * a "reset_options" register in window 3.
562 * Use the config_cntrl register in window 0 instead.
563 * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
564 * that implement CONFIG_CTRL. We don't have a good way to set the
565 * default active mediuim; punt to ifconfig instead.
566 */
567 void
568 ep_509_probemedia(sc)
569 struct ep_softc *sc;
570 {
571 bus_space_tag_t iot = sc->sc_iot;
572 bus_space_handle_t ioh = sc->sc_ioh;
573 struct ifmedia *ifm = &sc->sc_mii.mii_media;
574 u_int16_t ep_w0_config, port;
575 struct ep_media *epm;
576 const char *sep = "", *defmedianame = NULL;
577 int defmedia = 0;
578
579 GO_WINDOW(0);
580 ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
581
582 printf("%s: ", sc->sc_dev.dv_xname);
583
584 /* Sanity check that there are any media! */
585 if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
586 printf("no media present!\n");
587 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
588 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
589 return;
590 }
591
592 /*
593 * Get the default media from the EEPROM.
594 */
595 port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
596
597 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
598
599 for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
600 if (ep_w0_config & epm->epm_mpbit) {
601 /*
602 * This simple test works because 509 chipsets
603 * don't do full-duplex.
604 */
605 if (epm->epm_epmedia == port || defmedia == 0) {
606 defmedia = epm->epm_ifmedia;
607 defmedianame = epm->epm_name;
608 }
609 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
610 NULL);
611 PRINT(epm->epm_name);
612 }
613 }
614
615 #undef PRINT
616
617 #ifdef DIAGNOSTIC
618 if (defmedia == 0)
619 panic("ep_509_probemedia: impossible");
620 #endif
621
622 printf(" (default %s)\n", defmedianame);
623 ifmedia_set(ifm, defmedia);
624 }
625
626 /*
627 * Find media present on large-packet-capable elink3 devices.
628 * Show onboard configuration of large-packet-capable elink3 devices
629 * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
630 * Use media and card-version info in window 3 instead.
631 */
632 void
633 ep_vortex_probemedia(sc)
634 struct ep_softc *sc;
635 {
636 bus_space_tag_t iot = sc->sc_iot;
637 bus_space_handle_t ioh = sc->sc_ioh;
638 struct ifmedia *ifm = &sc->sc_mii.mii_media;
639 struct ep_media *epm;
640 u_int config1;
641 int reset_options;
642 int default_media; /* 3-bit encoding of default (EEPROM) media */
643 int defmedia = 0;
644 const char *sep = "", *defmedianame = NULL;
645
646 GO_WINDOW(3);
647 config1 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
648 reset_options = (int)bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
649 GO_WINDOW(0);
650
651 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
652
653 printf("%s: ", sc->sc_dev.dv_xname);
654
655 /* Sanity check that there are any media! */
656 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
657 printf("no media present!\n");
658 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
659 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
660 return;
661 }
662
663 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
664
665 for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
666 if (reset_options & epm->epm_mpbit) {
667 /*
668 * Default media is a little more complicated
669 * on the Vortex. We support full-duplex which
670 * uses the same reset options bit.
671 *
672 * XXX Check EEPROM for default to FDX?
673 */
674 if (epm->epm_epmedia == default_media) {
675 if ((epm->epm_ifmedia & IFM_FDX) == 0) {
676 defmedia = epm->epm_ifmedia;
677 defmedianame = epm->epm_name;
678 }
679 } else if (defmedia == 0) {
680 defmedia = epm->epm_ifmedia;
681 defmedianame = epm->epm_name;
682 }
683 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
684 NULL);
685 PRINT(epm->epm_name);
686 }
687 }
688
689 #undef PRINT
690
691 #ifdef DIAGNOSTIC
692 if (defmedia == 0)
693 panic("ep_vortex_probemedia: impossible");
694 #endif
695
696 printf(" (default %s)\n", defmedianame);
697 ifmedia_set(ifm, defmedia);
698 }
699
700 /*
701 * One second timer, used to tick the MII.
702 */
703 void
704 ep_tick(arg)
705 void *arg;
706 {
707 struct ep_softc *sc = arg;
708 int s;
709
710 #ifdef DIAGNOSTIC
711 if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
712 panic("ep_tick");
713 #endif
714
715 s = splnet();
716 mii_tick(&sc->sc_mii);
717 splx(s);
718
719 timeout(ep_tick, sc, hz);
720 }
721
722 /*
723 * Bring device up.
724 *
725 * The order in here seems important. Otherwise we may not receive
726 * interrupts. ?!
727 */
728 void
729 epinit(sc)
730 register struct ep_softc *sc;
731 {
732 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
733 bus_space_tag_t iot = sc->sc_iot;
734 bus_space_handle_t ioh = sc->sc_ioh;
735 int i;
736
737 /* Make sure any pending reset has completed before touching board. */
738 ep_finish_reset(iot, ioh);
739
740
741 if (sc->bustype != ELINK_BUS_PCI) {
742 GO_WINDOW(0);
743 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
744 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
745 }
746
747 if (sc->bustype == ELINK_BUS_PCMCIA) {
748 bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
749 }
750
751 GO_WINDOW(2);
752 for (i = 0; i < 6; i++) /* Reload the ether_addr. */
753 bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
754 LLADDR(ifp->if_sadl)[i]);
755
756 /*
757 * Reset the station-address receive filter.
758 * A bug workaround for busmastering (Vortex, Demon) cards.
759 */
760 for (i = 0; i < 6; i++)
761 bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
762
763 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
764 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
765
766 GO_WINDOW(1); /* Window 1 is operating window */
767 for (i = 0; i < 31; i++)
768 bus_space_read_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS));
769
770 /* Set threshhold for for Tx-space avaiable interrupt. */
771 bus_space_write_2(iot, ioh, ELINK_COMMAND,
772 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
773
774 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
775 /*
776 * Enable options in the PCMCIA LAN COR register, via
777 * RoadRunner Window 1.
778 *
779 * XXX MAGIC CONSTANTS!
780 */
781 u_int16_t cor;
782
783 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
784
785 cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
786 if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
787 cor |= 0x10;
788 if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
789 cor |= 0x20;
790 bus_space_write_2(iot, ioh, 0, cor);
791
792 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
793 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
794
795 if (sc->ep_flags & ELINK_FLAGS_MII) {
796 ep_roadrunner_mii_enable(sc);
797 GO_WINDOW(1);
798 }
799 }
800
801 /* Enable interrupts. */
802 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK | S_CARD_FAILURE |
803 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
804 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK | S_CARD_FAILURE |
805 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
806
807 /*
808 * Attempt to get rid of any stray interrupts that occured during
809 * configuration. On the i386 this isn't possible because one may
810 * already be queued. However, a single stray interrupt is
811 * unimportant.
812 */
813 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
814
815 epsetfilter(sc);
816 epsetmedia(sc);
817
818 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
819 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
820
821 epmbuffill(sc);
822
823 /* Interface is now `running', with no output active. */
824 ifp->if_flags |= IFF_RUNNING;
825 ifp->if_flags &= ~IFF_OACTIVE;
826
827 if (sc->ep_flags & ELINK_FLAGS_MII) {
828 /* Start the one second clock. */
829 timeout(ep_tick, sc, hz);
830 }
831
832 /* Attempt to start output, if any. */
833 epstart(ifp);
834 }
835
836
837 /*
838 * Set multicast receive filter.
839 * elink3 hardware has no selective multicast filter in hardware.
840 * Enable reception of all multicasts and filter in software.
841 */
842 void
843 epsetfilter(sc)
844 register struct ep_softc *sc;
845 {
846 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
847
848 GO_WINDOW(1); /* Window 1 is operating window */
849 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, SET_RX_FILTER |
850 FIL_INDIVIDUAL | FIL_BRDCST |
851 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
852 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
853 }
854
855 int
856 ep_media_change(ifp)
857 struct ifnet *ifp;
858 {
859 register struct ep_softc *sc = ifp->if_softc;
860
861 if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
862 epreset(sc);
863
864 return (0);
865 }
866
867 /*
868 * Reset and enable the MII on the RoadRunner.
869 */
870 void
871 ep_roadrunner_mii_enable(sc)
872 struct ep_softc *sc;
873 {
874 bus_space_tag_t iot = sc->sc_iot;
875 bus_space_handle_t ioh = sc->sc_ioh;
876
877 GO_WINDOW(3);
878 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
879 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
880 delay(1000);
881 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
882 ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
883 ELINK_RUNNER_ENABLE_MII);
884 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
885 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
886 delay(1000);
887 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
888 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
889 }
890
891 /*
892 * Set the card to use the specified media.
893 */
894 void
895 epsetmedia(sc)
896 struct ep_softc *sc;
897 {
898 bus_space_tag_t iot = sc->sc_iot;
899 bus_space_handle_t ioh = sc->sc_ioh;
900
901 /* Turn everything off. First turn off linkbeat and UTP. */
902 GO_WINDOW(4);
903 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
904
905 /* Turn off coax */
906 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
907 delay(1000);
908
909 /*
910 * If the device has MII, select it, and then tell the
911 * PHY which media to use.
912 */
913 if (sc->ep_flags & ELINK_FLAGS_MII) {
914 int config0, config1;
915
916 GO_WINDOW(3);
917
918 #if 0
919 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
920 int resopt;
921
922 resopt = bus_space_read_2(iot, ioh,
923 ELINK_W3_RESET_OPTIONS);
924 bus_space_write_2(iot, ioh,
925 ELINK_W3_RESET_OPTIONS, resopt|ELINK_RUNNER_ENABLE_MII);
926 }
927 #endif
928
929 config0 = (u_int)bus_space_read_2(iot, ioh,
930 ELINK_W3_INTERNAL_CONFIG);
931 config1 = (u_int)bus_space_read_2(iot, ioh,
932 ELINK_W3_INTERNAL_CONFIG + 2);
933
934 config1 = config1 & ~CONFIG_MEDIAMASK;
935 config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
936
937 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
938 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2, config1);
939 GO_WINDOW(1); /* back to operating window */
940
941 mii_mediachg(&sc->sc_mii);
942 return;
943 }
944
945 /*
946 * Now turn on the selected media/transceiver.
947 */
948 GO_WINDOW(4);
949 switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
950 case IFM_10_T:
951 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
952 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
953 break;
954
955 case IFM_10_2:
956 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
957 DELAY(1000); /* 50ms not enmough? */
958 break;
959
960 case IFM_100_TX:
961 case IFM_100_FX:
962 case IFM_100_T4: /* XXX check documentation */
963 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
964 LINKBEAT_ENABLE);
965 DELAY(1000); /* not strictly necessary? */
966 break;
967
968 case IFM_10_5:
969 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
970 SQE_ENABLE);
971 DELAY(1000); /* not strictly necessary? */
972 break;
973
974 case IFM_MANUAL:
975 /*
976 * Nothing to do here; we are actually enabling the
977 * external PHY on the MII port.
978 */
979 break;
980
981 case IFM_NONE:
982 printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
983 return;
984
985 default:
986 panic("epsetmedia: impossible");
987 }
988
989 /*
990 * Tell the chip which port to use.
991 */
992 switch (sc->ep_chipset) {
993 case ELINK_CHIPSET_VORTEX:
994 case ELINK_CHIPSET_BOOMERANG:
995 {
996 int mctl, config0, config1;
997
998 GO_WINDOW(3);
999 config0 = (u_int)bus_space_read_2(iot, ioh,
1000 ELINK_W3_INTERNAL_CONFIG);
1001 config1 = (u_int)bus_space_read_2(iot, ioh,
1002 ELINK_W3_INTERNAL_CONFIG + 2);
1003
1004 config1 = config1 & ~CONFIG_MEDIAMASK;
1005 config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
1006 CONFIG_MEDIAMASK_SHIFT);
1007
1008 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
1009 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
1010 config1);
1011
1012 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1013 if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
1014 mctl |= MAC_CONTROL_FDX;
1015 else
1016 mctl &= ~MAC_CONTROL_FDX;
1017 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1018 break;
1019 }
1020 default:
1021 {
1022 int w0_addr_cfg;
1023
1024 GO_WINDOW(0);
1025 w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
1026 w0_addr_cfg &= 0x3fff;
1027 bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
1028 (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
1029 DELAY(1000);
1030 break;
1031 }
1032 }
1033
1034 GO_WINDOW(1); /* Window 1 is operating window */
1035 }
1036
1037 /*
1038 * Get currently-selected media from card.
1039 * (if_media callback, may be called before interface is brought up).
1040 */
1041 void
1042 ep_media_status(ifp, req)
1043 struct ifnet *ifp;
1044 struct ifmediareq *req;
1045 {
1046 register struct ep_softc *sc = ifp->if_softc;
1047 bus_space_tag_t iot = sc->sc_iot;
1048 bus_space_handle_t ioh = sc->sc_ioh;
1049
1050 if (sc->enabled == 0) {
1051 req->ifm_active = IFM_ETHER|IFM_NONE;
1052 req->ifm_status = 0;
1053 return;
1054 }
1055
1056 /*
1057 * If we have MII, go ask the PHY what's going on.
1058 */
1059 if (sc->ep_flags & ELINK_FLAGS_MII) {
1060 mii_pollstat(&sc->sc_mii);
1061 req->ifm_active = sc->sc_mii.mii_media_active;
1062 req->ifm_status = sc->sc_mii.mii_media_status;
1063 return;
1064 }
1065
1066 /*
1067 * Ok, at this point we claim that our active media is
1068 * the currently selected media. We'll update our status
1069 * if our chipset allows us to detect link.
1070 */
1071 req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1072 req->ifm_status = 0;
1073
1074 switch (sc->ep_chipset) {
1075 case ELINK_CHIPSET_VORTEX:
1076 case ELINK_CHIPSET_BOOMERANG:
1077 GO_WINDOW(4);
1078 req->ifm_status = IFM_AVALID;
1079 if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
1080 LINKBEAT_DETECT)
1081 req->ifm_status |= IFM_ACTIVE;
1082 GO_WINDOW(1); /* back to operating window */
1083 break;
1084 }
1085 }
1086
1087
1088
1089 /*
1090 * Start outputting on the interface.
1091 * Always called as splnet().
1092 */
1093 void
1094 epstart(ifp)
1095 struct ifnet *ifp;
1096 {
1097 register struct ep_softc *sc = ifp->if_softc;
1098 bus_space_tag_t iot = sc->sc_iot;
1099 bus_space_handle_t ioh = sc->sc_ioh;
1100 struct mbuf *m, *m0;
1101 int sh, len, pad;
1102 bus_addr_t txreg;
1103
1104 /* Don't transmit if interface is busy or not running */
1105 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1106 return;
1107
1108 startagain:
1109 /* Sneak a peek at the next packet */
1110 m0 = ifp->if_snd.ifq_head;
1111 if (m0 == 0)
1112 return;
1113
1114 /* We need to use m->m_pkthdr.len, so require the header */
1115 if ((m0->m_flags & M_PKTHDR) == 0)
1116 panic("epstart: no header mbuf");
1117 len = m0->m_pkthdr.len;
1118
1119 pad = (4 - len) & 3;
1120
1121 /*
1122 * The 3c509 automatically pads short packets to minimum ethernet
1123 * length, but we drop packets that are too large. Perhaps we should
1124 * truncate them instead?
1125 */
1126 if (len + pad > ETHER_MAX_LEN) {
1127 /* packet is obviously too large: toss it */
1128 ++ifp->if_oerrors;
1129 IF_DEQUEUE(&ifp->if_snd, m0);
1130 m_freem(m0);
1131 goto readcheck;
1132 }
1133
1134 if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
1135 len + pad + 4) {
1136 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1137 SET_TX_AVAIL_THRESH |
1138 ((len + pad + 4) >> sc->ep_pktlenshift));
1139 /* not enough room in FIFO */
1140 ifp->if_flags |= IFF_OACTIVE;
1141 return;
1142 } else {
1143 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1144 SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE );
1145 }
1146
1147 IF_DEQUEUE(&ifp->if_snd, m0);
1148 if (m0 == 0) /* not really needed */
1149 return;
1150
1151 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
1152 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/) );
1153
1154 #if NBPFILTER > 0
1155 if (ifp->if_bpf)
1156 bpf_mtap(ifp->if_bpf, m0);
1157 #endif
1158
1159 /*
1160 * Do the output at splhigh() so that an interrupt from another device
1161 * won't cause a FIFO underrun.
1162 */
1163 sh = splhigh();
1164
1165 txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
1166
1167 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1168 /*
1169 * Prime the FIFO buffer counter (number of 16-bit
1170 * words about to be written to the FIFO).
1171 *
1172 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1173 * COUNTER IS NON-ZERO!
1174 */
1175 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
1176 (len + pad) >> 1);
1177 }
1178
1179 bus_space_write_2(iot, ioh, txreg, len);
1180 bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1181 if (ELINK_IS_BUS_32(sc->bustype)) {
1182 for (m = m0; m; ) {
1183 if (m->m_len > 3) {
1184 /* align our reads from core */
1185 if (mtod(m, u_long) & 3) {
1186 u_long count =
1187 4 - (mtod(m, u_long) & 3);
1188 bus_space_write_multi_1(iot, ioh,
1189 txreg, mtod(m, u_int8_t *), count);
1190 m->m_data =
1191 (void *)(mtod(m, u_long) + count);
1192 m->m_len -= count;
1193 }
1194 bus_space_write_multi_stream_4(iot, ioh,
1195 txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1196 m->m_data = (void *)(mtod(m, u_long) +
1197 (u_long)(m->m_len & ~3));
1198 m->m_len -= m->m_len & ~3;
1199 }
1200 if (m->m_len) {
1201 bus_space_write_multi_1(iot, ioh,
1202 txreg, mtod(m, u_int8_t *), m->m_len);
1203 }
1204 MFREE(m, m0);
1205 m = m0;
1206 }
1207 } else {
1208 for (m = m0; m; ) {
1209 if (m->m_len > 1) {
1210 if (mtod(m, u_long) & 1) {
1211 bus_space_write_1(iot, ioh,
1212 txreg, *(mtod(m, u_int8_t *)));
1213 m->m_data =
1214 (void *)(mtod(m, u_long) + 1);
1215 m->m_len -= 1;
1216 }
1217 bus_space_write_multi_stream_2(iot, ioh,
1218 txreg, mtod(m, u_int16_t *),
1219 m->m_len >> 1);
1220 }
1221 if (m->m_len & 1) {
1222 bus_space_write_1(iot, ioh, txreg,
1223 *(mtod(m, u_int8_t *) + m->m_len - 1));
1224 }
1225 MFREE(m, m0);
1226 m = m0;
1227 }
1228 }
1229 while (pad--)
1230 bus_space_write_1(iot, ioh, txreg, 0);
1231
1232 splx(sh);
1233
1234 ++ifp->if_opackets;
1235
1236 readcheck:
1237 if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
1238 ERR_INCOMPLETE) == 0) {
1239 /* We received a complete packet. */
1240 u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1241
1242 if ((status & S_INTR_LATCH) == 0) {
1243 /*
1244 * No interrupt, read the packet and continue
1245 * Is this supposed to happen? Is my motherboard
1246 * completely busted?
1247 */
1248 epread(sc);
1249 } else {
1250 /* Got an interrupt, return so that it gets serviced. */
1251 return;
1252 }
1253 } else {
1254 /* Check if we are stuck and reset [see XXX comment] */
1255 if (epstatus(sc)) {
1256 if (ifp->if_flags & IFF_DEBUG)
1257 printf("%s: adapter reset\n",
1258 sc->sc_dev.dv_xname);
1259 epreset(sc);
1260 }
1261 }
1262
1263 goto startagain;
1264 }
1265
1266
1267 /*
1268 * XXX: The 3c509 card can get in a mode where both the fifo status bit
1269 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1270 * We detect this situation and we reset the adapter.
1271 * It happens at times when there is a lot of broadcast traffic
1272 * on the cable (once in a blue moon).
1273 */
1274 static int
1275 epstatus(sc)
1276 register struct ep_softc *sc;
1277 {
1278 bus_space_tag_t iot = sc->sc_iot;
1279 bus_space_handle_t ioh = sc->sc_ioh;
1280 u_int16_t fifost;
1281
1282 /*
1283 * Check the FIFO status and act accordingly
1284 */
1285 GO_WINDOW(4);
1286 fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
1287 GO_WINDOW(1);
1288
1289 if (fifost & FIFOS_RX_UNDERRUN) {
1290 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1291 printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
1292 epreset(sc);
1293 return 0;
1294 }
1295
1296 if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1297 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1298 printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
1299 return 1;
1300 }
1301
1302 if (fifost & FIFOS_RX_OVERRUN) {
1303 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1304 printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
1305 return 1;
1306 }
1307
1308 if (fifost & FIFOS_TX_OVERRUN) {
1309 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1310 printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
1311 epreset(sc);
1312 return 0;
1313 }
1314
1315 return 0;
1316 }
1317
1318
1319 static void
1320 eptxstat(sc)
1321 register struct ep_softc *sc;
1322 {
1323 bus_space_tag_t iot = sc->sc_iot;
1324 bus_space_handle_t ioh = sc->sc_ioh;
1325 int i;
1326
1327 /*
1328 * We need to read+write TX_STATUS until we get a 0 status
1329 * in order to turn off the interrupt flag.
1330 */
1331 while ((i = bus_space_read_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS)))
1332 & TXS_COMPLETE) {
1333 bus_space_write_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
1334 0x0);
1335
1336 if (i & TXS_JABBER) {
1337 ++sc->sc_ethercom.ec_if.if_oerrors;
1338 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1339 printf("%s: jabber (%x)\n",
1340 sc->sc_dev.dv_xname, i);
1341 #if 1
1342 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1343 #else
1344 epreset(sc);
1345 #endif
1346 } else if (i & TXS_UNDERRUN) {
1347 ++sc->sc_ethercom.ec_if.if_oerrors;
1348 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1349 printf("%s: fifo underrun (%x) @%d\n",
1350 sc->sc_dev.dv_xname, i,
1351 sc->tx_start_thresh);
1352 if (sc->tx_succ_ok < 100)
1353 sc->tx_start_thresh = min(ETHER_MAX_LEN,
1354 sc->tx_start_thresh + 20);
1355 sc->tx_succ_ok = 0;
1356 #if 1
1357 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1358 #else
1359 epreset(sc);
1360 #endif
1361 } else if (i & TXS_MAX_COLLISION) {
1362 ++sc->sc_ethercom.ec_if.if_collisions;
1363 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
1364 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1365 } else
1366 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1367 }
1368 }
1369
1370 int
1371 epintr(arg)
1372 void *arg;
1373 {
1374 register struct ep_softc *sc = arg;
1375 bus_space_tag_t iot = sc->sc_iot;
1376 bus_space_handle_t ioh = sc->sc_ioh;
1377 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1378 u_int16_t status;
1379 int ret = 0;
1380 int addrandom = 0;
1381
1382 if (sc->enabled == 0)
1383 return (0);
1384
1385 for (;;) {
1386 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1387
1388 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1389
1390 if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
1391 S_RX_COMPLETE | S_CARD_FAILURE)) == 0) {
1392 if ((status & S_INTR_LATCH) == 0) {
1393 #if 0
1394 printf("%s: intr latch cleared\n",
1395 sc->sc_dev.dv_xname);
1396 #endif
1397 break;
1398 }
1399 }
1400
1401 ret = 1;
1402
1403 /*
1404 * Acknowledge any interrupts. It's important that we do this
1405 * first, since there would otherwise be a race condition.
1406 * Due to the i386 interrupt queueing, we may get spurious
1407 * interrupts occasionally.
1408 */
1409 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1410 (status & (C_INTR_LATCH |
1411 C_CARD_FAILURE |
1412 C_TX_COMPLETE |
1413 C_TX_AVAIL |
1414 C_RX_COMPLETE |
1415 C_RX_EARLY |
1416 C_INT_RQD |
1417 C_UPD_STATS)));
1418
1419 #if 0
1420 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1421
1422 printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
1423 (status & S_RX_COMPLETE)?" RX_COMPLETE":"",
1424 (status & S_TX_COMPLETE)?" TX_COMPLETE":"",
1425 (status & S_TX_AVAIL)?" TX_AVAIL":"",
1426 (status & S_CARD_FAILURE)?" CARD_FAILURE":"");
1427 #endif
1428
1429 if (status & S_RX_COMPLETE) {
1430 epread(sc);
1431 addrandom = 1;
1432 }
1433 if (status & S_TX_AVAIL) {
1434 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1435 epstart(&sc->sc_ethercom.ec_if);
1436 addrandom = 1;
1437 }
1438 if (status & S_CARD_FAILURE) {
1439 printf("%s: adapter failure (%x)\n",
1440 sc->sc_dev.dv_xname, status);
1441 #if 1
1442 epinit(sc);
1443 #else
1444 epreset(sc);
1445 #endif
1446 return (1);
1447 }
1448 if (status & S_TX_COMPLETE) {
1449 eptxstat(sc);
1450 epstart(ifp);
1451 addrandom = 1;
1452 }
1453
1454 #if NRND > 0
1455 if (status)
1456 rnd_add_uint32(&sc->rnd_source, status);
1457 #endif
1458 }
1459
1460 /* no more interrupts */
1461 return (ret);
1462 }
1463
1464 void
1465 epread(sc)
1466 register struct ep_softc *sc;
1467 {
1468 bus_space_tag_t iot = sc->sc_iot;
1469 bus_space_handle_t ioh = sc->sc_ioh;
1470 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1471 struct mbuf *m;
1472 struct ether_header *eh;
1473 int len;
1474
1475 len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1476
1477 again:
1478 if (ifp->if_flags & IFF_DEBUG) {
1479 int err = len & ERR_MASK;
1480 char *s = NULL;
1481
1482 if (len & ERR_INCOMPLETE)
1483 s = "incomplete packet";
1484 else if (err == ERR_OVERRUN)
1485 s = "packet overrun";
1486 else if (err == ERR_RUNT)
1487 s = "runt packet";
1488 else if (err == ERR_ALIGNMENT)
1489 s = "bad alignment";
1490 else if (err == ERR_CRC)
1491 s = "bad crc";
1492 else if (err == ERR_OVERSIZE)
1493 s = "oversized packet";
1494 else if (err == ERR_DRIBBLE)
1495 s = "dribble bits";
1496
1497 if (s)
1498 printf("%s: %s\n", sc->sc_dev.dv_xname, s);
1499 }
1500
1501 if (len & ERR_INCOMPLETE)
1502 return;
1503
1504 if (len & ERR_RX) {
1505 ++ifp->if_ierrors;
1506 goto abort;
1507 }
1508
1509 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
1510
1511 /* Pull packet off interface. */
1512 m = epget(sc, len);
1513 if (m == 0) {
1514 ifp->if_ierrors++;
1515 goto abort;
1516 }
1517
1518 ++ifp->if_ipackets;
1519
1520 /* We assume the header fit entirely in one mbuf. */
1521 eh = mtod(m, struct ether_header *);
1522
1523 #if NBPFILTER > 0
1524 /*
1525 * Check if there's a BPF listener on this interface.
1526 * If so, hand off the raw packet to BPF.
1527 */
1528 if (ifp->if_bpf) {
1529 bpf_mtap(ifp->if_bpf, m);
1530
1531 /*
1532 * Note that the interface cannot be in promiscuous mode if
1533 * there are no BPF listeners. And if we are in promiscuous
1534 * mode, we have to check if this packet is really ours.
1535 */
1536 if ((ifp->if_flags & IFF_PROMISC) &&
1537 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
1538 bcmp(eh->ether_dhost, LLADDR(sc->sc_ethercom.ec_if.if_sadl),
1539 sizeof(eh->ether_dhost)) != 0) {
1540 m_freem(m);
1541 return;
1542 }
1543 }
1544 #endif
1545 (*ifp->if_input)(ifp, m);
1546
1547 /*
1548 * In periods of high traffic we can actually receive enough
1549 * packets so that the fifo overrun bit will be set at this point,
1550 * even though we just read a packet. In this case we
1551 * are not going to receive any more interrupts. We check for
1552 * this condition and read again until the fifo is not full.
1553 * We could simplify this test by not using epstatus(), but
1554 * rechecking the RX_STATUS register directly. This test could
1555 * result in unnecessary looping in cases where there is a new
1556 * packet but the fifo is not full, but it will not fix the
1557 * stuck behavior.
1558 *
1559 * Even with this improvement, we still get packet overrun errors
1560 * which are hurting performance. Maybe when I get some more time
1561 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1562 */
1563 if (epstatus(sc)) {
1564 len = bus_space_read_2(iot, ioh,
1565 ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1566 /* Check if we are stuck and reset [see XXX comment] */
1567 if (len & ERR_INCOMPLETE) {
1568 if (ifp->if_flags & IFF_DEBUG)
1569 printf("%s: adapter reset\n",
1570 sc->sc_dev.dv_xname);
1571 epreset(sc);
1572 return;
1573 }
1574 goto again;
1575 }
1576
1577 return;
1578
1579 abort:
1580 ep_discard_rxtop(iot, ioh);
1581
1582 }
1583
1584 struct mbuf *
1585 epget(sc, totlen)
1586 struct ep_softc *sc;
1587 int totlen;
1588 {
1589 bus_space_tag_t iot = sc->sc_iot;
1590 bus_space_handle_t ioh = sc->sc_ioh;
1591 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1592 struct mbuf *top, **mp, *m, *rv = NULL;
1593 bus_addr_t rxreg;
1594 int len, remaining;
1595 int sh;
1596
1597 m = sc->mb[sc->next_mb];
1598 sc->mb[sc->next_mb] = 0;
1599 if (m == 0) {
1600 MGETHDR(m, M_DONTWAIT, MT_DATA);
1601 if (m == 0)
1602 return 0;
1603 } else {
1604 /* If the queue is no longer full, refill. */
1605 if (sc->last_mb == sc->next_mb)
1606 timeout(epmbuffill, sc, 1);
1607 /* Convert one of our saved mbuf's. */
1608 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1609 m->m_data = m->m_pktdat;
1610 m->m_flags = M_PKTHDR;
1611 }
1612 m->m_pkthdr.rcvif = ifp;
1613 m->m_pkthdr.len = totlen;
1614 len = MHLEN;
1615 top = 0;
1616 mp = ⊤
1617
1618 /*
1619 * We read the packet at splhigh() so that an interrupt from another
1620 * device doesn't cause the card's buffer to overflow while we're
1621 * reading it. We may still lose packets at other times.
1622 */
1623 sh = splhigh();
1624
1625 rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
1626
1627 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1628 /*
1629 * Prime the FIFO buffer counter (number of 16-bit
1630 * words about to be read from the FIFO).
1631 *
1632 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1633 * COUNTER IS NON-ZERO!
1634 */
1635 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
1636 }
1637
1638 while (totlen > 0) {
1639 if (top) {
1640 m = sc->mb[sc->next_mb];
1641 sc->mb[sc->next_mb] = 0;
1642 if (m == 0) {
1643 MGET(m, M_DONTWAIT, MT_DATA);
1644 if (m == 0) {
1645 m_freem(top);
1646 goto out;
1647 }
1648 } else {
1649 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1650 }
1651 len = MLEN;
1652 }
1653 if (totlen >= MINCLSIZE) {
1654 MCLGET(m, M_DONTWAIT);
1655 if ((m->m_flags & M_EXT) == 0) {
1656 m_free(m);
1657 m_freem(top);
1658 goto out;
1659 }
1660 len = MCLBYTES;
1661 }
1662 if (top == 0) {
1663 /* align the struct ip header */
1664 caddr_t newdata = (caddr_t)
1665 ALIGN(m->m_data + sizeof(struct ether_header))
1666 - sizeof(struct ether_header);
1667 len -= newdata - m->m_data;
1668 m->m_data = newdata;
1669 }
1670 remaining = len = min(totlen, len);
1671 if (ELINK_IS_BUS_32(sc->bustype)) {
1672 u_long offset = mtod(m, u_long);
1673 /*
1674 * Read bytes up to the point where we are aligned.
1675 * (We can align to 4 bytes, rather than ALIGNBYTES,
1676 * here because we're later reading 4-byte chunks.)
1677 */
1678 if ((remaining > 3) && (offset & 3)) {
1679 int count = (4 - (offset & 3));
1680 bus_space_read_multi_1(iot, ioh,
1681 rxreg, (u_int8_t *) offset, count);
1682 offset += count;
1683 remaining -= count;
1684 }
1685 if (remaining > 3) {
1686 bus_space_read_multi_stream_4(iot, ioh,
1687 rxreg, (u_int32_t *) offset,
1688 remaining >> 2);
1689 offset += remaining & ~3;
1690 remaining &= 3;
1691 }
1692 if (remaining) {
1693 bus_space_read_multi_1(iot, ioh,
1694 rxreg, (u_int8_t *) offset, remaining);
1695 }
1696 } else {
1697 u_long offset = mtod(m, u_long);
1698 if ((remaining > 1) && (offset & 1)) {
1699 bus_space_read_multi_1(iot, ioh,
1700 rxreg, (u_int8_t *) offset, 1);
1701 remaining -= 1;
1702 offset += 1;
1703 }
1704 if (remaining > 1) {
1705 bus_space_read_multi_stream_2(iot, ioh,
1706 rxreg, (u_int16_t *) offset,
1707 remaining >> 1);
1708 offset += remaining & ~1;
1709 }
1710 if (remaining & 1) {
1711 bus_space_read_multi_1(iot, ioh,
1712 rxreg, (u_int8_t *) offset, remaining & 1);
1713 }
1714 }
1715 m->m_len = len;
1716 totlen -= len;
1717 *mp = m;
1718 mp = &m->m_next;
1719 }
1720
1721 rv = top;
1722
1723 ep_discard_rxtop(iot, ioh);
1724
1725 out:
1726 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
1727 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1728 splx(sh);
1729
1730 return rv;
1731 }
1732
1733 int
1734 epioctl(ifp, cmd, data)
1735 register struct ifnet *ifp;
1736 u_long cmd;
1737 caddr_t data;
1738 {
1739 struct ep_softc *sc = ifp->if_softc;
1740 struct ifaddr *ifa = (struct ifaddr *)data;
1741 struct ifreq *ifr = (struct ifreq *)data;
1742 int s, error = 0;
1743
1744 s = splnet();
1745
1746 switch (cmd) {
1747
1748 case SIOCSIFADDR:
1749 if ((error = epenable(sc)) != 0)
1750 break;
1751 /* epinit is called just below */
1752 ifp->if_flags |= IFF_UP;
1753 switch (ifa->ifa_addr->sa_family) {
1754 #ifdef INET
1755 case AF_INET:
1756 epinit(sc);
1757 arp_ifinit(&sc->sc_ethercom.ec_if, ifa);
1758 break;
1759 #endif
1760 #ifdef NS
1761 case AF_NS:
1762 {
1763 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1764
1765 if (ns_nullhost(*ina))
1766 ina->x_host = *(union ns_host *)
1767 LLADDR(ifp->if_sadl);
1768 else
1769 bcopy(ina->x_host.c_host,
1770 LLADDR(ifp->if_sadl),
1771 ifp->if_addrlen);
1772 /* Set new address. */
1773 epinit(sc);
1774 break;
1775 }
1776 #endif
1777 default:
1778 epinit(sc);
1779 break;
1780 }
1781 break;
1782
1783 case SIOCSIFMEDIA:
1784 case SIOCGIFMEDIA:
1785 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1786 break;
1787
1788 case SIOCSIFFLAGS:
1789 if ((ifp->if_flags & IFF_UP) == 0 &&
1790 (ifp->if_flags & IFF_RUNNING) != 0) {
1791 /*
1792 * If interface is marked down and it is running, then
1793 * stop it.
1794 */
1795 epstop(sc);
1796 ifp->if_flags &= ~IFF_RUNNING;
1797 epdisable(sc);
1798 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1799 (ifp->if_flags & IFF_RUNNING) == 0) {
1800 /*
1801 * If interface is marked up and it is stopped, then
1802 * start it.
1803 */
1804 if ((error = epenable(sc)) != 0)
1805 break;
1806 epinit(sc);
1807 } else if ((ifp->if_flags & IFF_UP) != 0) {
1808 /*
1809 * deal with flags changes:
1810 * IFF_MULTICAST, IFF_PROMISC.
1811 */
1812 epsetfilter(sc);
1813 }
1814 break;
1815
1816 case SIOCADDMULTI:
1817 case SIOCDELMULTI:
1818 if (sc->enabled == 0) {
1819 error = EIO;
1820 break;
1821 }
1822
1823 error = (cmd == SIOCADDMULTI) ?
1824 ether_addmulti(ifr, &sc->sc_ethercom) :
1825 ether_delmulti(ifr, &sc->sc_ethercom);
1826
1827 if (error == ENETRESET) {
1828 /*
1829 * Multicast list has changed; set the hardware filter
1830 * accordingly.
1831 */
1832 epreset(sc);
1833 error = 0;
1834 }
1835 break;
1836
1837 default:
1838 error = EINVAL;
1839 break;
1840 }
1841
1842 splx(s);
1843 return (error);
1844 }
1845
1846 void
1847 epreset(sc)
1848 struct ep_softc *sc;
1849 {
1850 int s;
1851
1852 s = splnet();
1853 epstop(sc);
1854 epinit(sc);
1855 splx(s);
1856 }
1857
1858 void
1859 epwatchdog(ifp)
1860 struct ifnet *ifp;
1861 {
1862 struct ep_softc *sc = ifp->if_softc;
1863
1864 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1865 ++sc->sc_ethercom.ec_if.if_oerrors;
1866
1867 epreset(sc);
1868 }
1869
1870 void
1871 epstop(sc)
1872 register struct ep_softc *sc;
1873 {
1874 bus_space_tag_t iot = sc->sc_iot;
1875 bus_space_handle_t ioh = sc->sc_ioh;
1876
1877 if (sc->ep_flags & ELINK_FLAGS_MII) {
1878 /* Stop the one second clock. */
1879 untimeout(ep_tick, sc);
1880 }
1881
1882 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
1883 /*
1884 * Clear the FIFO buffer count, thus halting
1885 * any currently-running transactions.
1886 */
1887 GO_WINDOW(1); /* sanity */
1888 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
1889 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1890 }
1891
1892 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1893 ep_discard_rxtop(iot, ioh);
1894
1895 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1896 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1897
1898 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
1899 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1900
1901 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1902 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
1903 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
1904 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
1905
1906 epmbufempty(sc);
1907 }
1908
1909
1910 /*
1911 * Before reboots, reset card completely.
1912 */
1913 static void
1914 epshutdown(arg)
1915 void *arg;
1916 {
1917 register struct ep_softc *sc = arg;
1918 int s = splnet();
1919
1920 if (sc->enabled) {
1921 epstop(sc);
1922 ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
1923 sc->enabled = 0;
1924 }
1925 splx(s);
1926 }
1927
1928 /*
1929 * We get eeprom data from the id_port given an offset into the
1930 * eeprom. Basically; after the ID_sequence is sent to all of
1931 * the cards; they enter the ID_CMD state where they will accept
1932 * command requests. 0x80-0xbf loads the eeprom data. We then
1933 * read the port 16 times and with every read; the cards check
1934 * for contention (ie: if one card writes a 0 bit and another
1935 * writes a 1 bit then the host sees a 0. At the end of the cycle;
1936 * each card compares the data on the bus; if there is a difference
1937 * then that card goes into ID_WAIT state again). In the meantime;
1938 * one bit of data is returned in the AX register which is conveniently
1939 * returned to us by bus_space_read_1(). Hence; we read 16 times getting one
1940 * bit of data with each read.
1941 *
1942 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1943 */
1944 u_int16_t
1945 epreadeeprom(iot, ioh, offset)
1946 bus_space_tag_t iot;
1947 bus_space_handle_t ioh;
1948 int offset;
1949 {
1950 u_int16_t data = 0;
1951 int i;
1952
1953 bus_space_write_1(iot, ioh, 0, 0x80 + offset);
1954 delay(1000);
1955 for (i = 0; i < 16; i++)
1956 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1957 return (data);
1958 }
1959
1960 static int
1961 epbusyeeprom(sc)
1962 struct ep_softc *sc;
1963 {
1964 bus_space_tag_t iot = sc->sc_iot;
1965 bus_space_handle_t ioh = sc->sc_ioh;
1966 int i = 100, j;
1967
1968 if (sc->bustype == ELINK_BUS_PCMCIA) {
1969 delay(1000);
1970 return 0;
1971 }
1972
1973 j = 0; /* bad GCC flow analysis */
1974 while (i--) {
1975 j = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND);
1976 if (j & EEPROM_BUSY)
1977 delay(100);
1978 else
1979 break;
1980 }
1981 if (!i) {
1982 printf("\n%s: eeprom failed to come ready\n",
1983 sc->sc_dev.dv_xname);
1984 return (1);
1985 }
1986 if (j & EEPROM_TST_MODE) {
1987 /* XXX PnP mode? */
1988 printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
1989 return (1);
1990 }
1991 return (0);
1992 }
1993
1994 u_int16_t
1995 ep_read_eeprom(sc, offset)
1996 struct ep_softc *sc;
1997 u_int16_t offset;
1998 {
1999 u_int16_t readcmd;
2000
2001 /*
2002 * RoadRunner has a larger EEPROM, so a different read command
2003 * is required.
2004 */
2005 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
2006 readcmd = READ_EEPROM_RR;
2007 else
2008 readcmd = READ_EEPROM;
2009
2010 if (epbusyeeprom(sc))
2011 return (0); /* XXX why is eeprom busy? */
2012 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W0_EEPROM_COMMAND,
2013 readcmd | offset);
2014 if (epbusyeeprom(sc))
2015 return (0); /* XXX why is eeprom busy? */
2016 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W0_EEPROM_DATA));
2017 }
2018
2019 void
2020 epmbuffill(v)
2021 void *v;
2022 {
2023 struct ep_softc *sc = v;
2024 struct mbuf *m;
2025 int s, i;
2026
2027 s = splnet();
2028 i = sc->last_mb;
2029 do {
2030 if (sc->mb[i] == 0) {
2031 MGET(m, M_DONTWAIT, MT_DATA);
2032 if (m == 0)
2033 break;
2034 sc->mb[i] = m;
2035 }
2036 i = (i + 1) % MAX_MBS;
2037 } while (i != sc->next_mb);
2038 sc->last_mb = i;
2039 /* If the queue was not filled, try again. */
2040 if (sc->last_mb != sc->next_mb)
2041 timeout(epmbuffill, sc, 1);
2042 splx(s);
2043 }
2044
2045 void
2046 epmbufempty(sc)
2047 struct ep_softc *sc;
2048 {
2049 int s, i;
2050
2051 s = splnet();
2052 for (i = 0; i<MAX_MBS; i++) {
2053 if (sc->mb[i]) {
2054 m_freem(sc->mb[i]);
2055 sc->mb[i] = NULL;
2056 }
2057 }
2058 sc->last_mb = sc->next_mb = 0;
2059 untimeout(epmbuffill, sc);
2060 splx(s);
2061 }
2062
2063 int
2064 epenable(sc)
2065 struct ep_softc *sc;
2066 {
2067
2068 if (sc->enabled == 0 && sc->enable != NULL) {
2069 if ((*sc->enable)(sc) != 0) {
2070 printf("%s: device enable failed\n",
2071 sc->sc_dev.dv_xname);
2072 return (EIO);
2073 }
2074 }
2075
2076 sc->enabled = 1;
2077 return (0);
2078 }
2079
2080 void
2081 epdisable(sc)
2082 struct ep_softc *sc;
2083 {
2084
2085 if (sc->enabled != 0 && sc->disable != NULL) {
2086 (*sc->disable)(sc);
2087 sc->enabled = 0;
2088 }
2089 }
2090
2091 int
2092 ep_activate(self, act)
2093 struct device *self;
2094 enum devact act;
2095 {
2096 struct ep_softc *sc = (struct ep_softc *)self;
2097 int rv = 0, s;
2098
2099 s = splnet();
2100 switch (act) {
2101 case DVACT_ACTIVATE:
2102 rv = EOPNOTSUPP;
2103 break;
2104
2105 case DVACT_DEACTIVATE:
2106 #ifdef notyet
2107 /* First, kill off the interface. */
2108 if_detach(sc->sc_ethercom.ec_if);
2109 #endif
2110
2111 /* Now disable the interface. */
2112 epdisable(sc);
2113 break;
2114 }
2115 splx(s);
2116 return (rv);
2117 }
2118
2119 void
2120 ep_mii_setbit(sc, bit)
2121 struct ep_softc *sc;
2122 u_int16_t bit;
2123 {
2124 u_int16_t val;
2125
2126 /* We assume we're already in Window 4 */
2127 val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT);
2128 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT,
2129 val | bit);
2130 }
2131
2132 void
2133 ep_mii_clrbit(sc, bit)
2134 struct ep_softc *sc;
2135 u_int16_t bit;
2136 {
2137 u_int16_t val;
2138
2139 /* We assume we're already in Window 4 */
2140 val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT);
2141 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT,
2142 val & ~bit);
2143 }
2144
2145 u_int16_t
2146 ep_mii_readbit(sc, bit)
2147 struct ep_softc *sc;
2148 u_int16_t bit;
2149 {
2150
2151 /* We assume we're already in Window 4 */
2152 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT) &
2153 bit);
2154 }
2155
2156 void
2157 ep_mii_sync(sc)
2158 struct ep_softc *sc;
2159 {
2160 int i;
2161
2162 /* We assume we're already in Window 4 */
2163 ep_mii_clrbit(sc, PHYSMGMT_DIR);
2164 for (i = 0; i < 32; i++) {
2165 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2166 ep_mii_setbit(sc, PHYSMGMT_CLK);
2167 }
2168 }
2169
2170 void
2171 ep_mii_sendbits(sc, data, nbits)
2172 struct ep_softc *sc;
2173 u_int32_t data;
2174 int nbits;
2175 {
2176 int i;
2177
2178 /* We assume we're already in Window 4 */
2179 ep_mii_setbit(sc, PHYSMGMT_DIR);
2180 for (i = 1 << (nbits - 1); i; i = i >> 1) {
2181 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2182 ep_mii_readbit(sc, PHYSMGMT_CLK);
2183 if (data & i)
2184 ep_mii_setbit(sc, PHYSMGMT_DATA);
2185 else
2186 ep_mii_clrbit(sc, PHYSMGMT_DATA);
2187 ep_mii_setbit(sc, PHYSMGMT_CLK);
2188 ep_mii_readbit(sc, PHYSMGMT_CLK);
2189 }
2190 }
2191
2192 int
2193 ep_mii_readreg(self, phy, reg)
2194 struct device *self;
2195 int phy, reg;
2196 {
2197 struct ep_softc *sc = (struct ep_softc *)self;
2198 int val = 0, i, err;
2199
2200 /*
2201 * Read the PHY register by manually driving the MII control lines.
2202 */
2203
2204 GO_WINDOW(4);
2205
2206 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT, 0);
2207
2208 ep_mii_sync(sc);
2209 ep_mii_sendbits(sc, MII_COMMAND_START, 2);
2210 ep_mii_sendbits(sc, MII_COMMAND_READ, 2);
2211 ep_mii_sendbits(sc, phy, 5);
2212 ep_mii_sendbits(sc, reg, 5);
2213
2214 ep_mii_clrbit(sc, PHYSMGMT_DIR);
2215 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2216 ep_mii_setbit(sc, PHYSMGMT_CLK);
2217 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2218
2219 err = ep_mii_readbit(sc, PHYSMGMT_DATA);
2220 ep_mii_setbit(sc, PHYSMGMT_CLK);
2221
2222 /* Even if an error occurs, must still clock out the cycle. */
2223 for (i = 0; i < 16; i++) {
2224 val <<= 1;
2225 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2226 if (err == 0 && ep_mii_readbit(sc, PHYSMGMT_DATA))
2227 val |= 1;
2228 ep_mii_setbit(sc, PHYSMGMT_CLK);
2229 }
2230 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2231 ep_mii_setbit(sc, PHYSMGMT_CLK);
2232
2233 GO_WINDOW(1); /* back to operating window */
2234
2235 return (err ? 0 : val);
2236 }
2237
2238 void
2239 ep_mii_writereg(self, phy, reg, val)
2240 struct device *self;
2241 int phy, reg, val;
2242 {
2243 struct ep_softc *sc = (struct ep_softc *)self;
2244
2245 /*
2246 * Write the PHY register by manually driving the MII control lines.
2247 */
2248
2249 GO_WINDOW(4);
2250
2251 ep_mii_sync(sc);
2252 ep_mii_sendbits(sc, MII_COMMAND_START, 2);
2253 ep_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
2254 ep_mii_sendbits(sc, phy, 5);
2255 ep_mii_sendbits(sc, reg, 5);
2256 ep_mii_sendbits(sc, MII_COMMAND_ACK, 2);
2257 ep_mii_sendbits(sc, val, 16);
2258
2259 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2260 ep_mii_setbit(sc, PHYSMGMT_CLK);
2261
2262 GO_WINDOW(1); /* back to operating window */
2263 }
2264
2265 void
2266 ep_statchg(self)
2267 struct device *self;
2268 {
2269 struct ep_softc *sc = (struct ep_softc *)self;
2270 bus_space_tag_t iot = sc->sc_iot;
2271 bus_space_handle_t ioh = sc->sc_ioh;
2272 int mctl;
2273
2274 /* XXX Update ifp->if_baudrate */
2275
2276 GO_WINDOW(3);
2277 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
2278 if (sc->sc_mii.mii_media_active & IFM_FDX)
2279 mctl |= MAC_CONTROL_FDX;
2280 else
2281 mctl &= ~MAC_CONTROL_FDX;
2282 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
2283 GO_WINDOW(1); /* back to operating window */
2284 }
2285