elink3.c revision 1.60 1 /* $NetBSD: elink3.c,v 1.60 1999/10/20 16:34:22 enami Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
42 * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 * must display the following acknowledgement:
55 * This product includes software developed by Herb Peyerl.
56 * 4. The name of Herb Peyerl may not be used to endorse or promote products
57 * derived from this software without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
60 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
61 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
63 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
64 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
65 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
66 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
67 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
68 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 #include "opt_inet.h"
72 #include "opt_ns.h"
73 #include "bpfilter.h"
74 #include "rnd.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/mbuf.h>
80 #include <sys/socket.h>
81 #include <sys/ioctl.h>
82 #include <sys/errno.h>
83 #include <sys/syslog.h>
84 #include <sys/select.h>
85 #include <sys/device.h>
86 #if NRND > 0
87 #include <sys/rnd.h>
88 #endif
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_ether.h>
93 #include <net/if_media.h>
94
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/in_var.h>
99 #include <netinet/ip.h>
100 #include <netinet/if_inarp.h>
101 #endif
102
103 #ifdef NS
104 #include <netns/ns.h>
105 #include <netns/ns_if.h>
106 #endif
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #include <net/bpfdesc.h>
111 #endif
112
113 #include <machine/cpu.h>
114 #include <machine/bus.h>
115 #include <machine/intr.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119
120 #include <dev/ic/elink3var.h>
121 #include <dev/ic/elink3reg.h>
122
123 #ifdef DEBUG
124 int epdebug = 0;
125 #endif
126
127 /*
128 * XXX endian workaround for big-endian CPUs with pcmcia:
129 * if stream methods for bus_space_multi are not provided, define them
130 * using non-stream bus_space_{read,write}_multi_.
131 * Assumes host CPU is same endian-ness as bus.
132 */
133 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
134 #define bus_space_read_multi_stream_2 bus_space_read_multi_2
135 #define bus_space_read_multi_stream_4 bus_space_read_multi_4
136 #define bus_space_write_multi_stream_2 bus_space_write_multi_2
137 #define bus_space_write_multi_stream_4 bus_space_write_multi_4
138 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
139
140 /*
141 * Structure to map media-present bits in boards to ifmedia codes and
142 * printable media names. Used for table-driven ifmedia initialization.
143 */
144 struct ep_media {
145 int epm_mpbit; /* media present bit */
146 const char *epm_name; /* name of medium */
147 int epm_ifmedia; /* ifmedia word for medium */
148 int epm_epmedia; /* ELINKMEDIA_* constant */
149 };
150
151 /*
152 * Media table for the Demon/Vortex/Boomerang chipsets.
153 *
154 * Note that MII on the Demon and Vortex (3c59x) indicates an external
155 * MII connector (for connecting an external PHY) ... I think. Treat
156 * it as `manual' on these chips.
157 *
158 * Any Boomerang (3c90x) chips with MII really do have an internal
159 * MII and real PHYs attached; no `native' media.
160 */
161 struct ep_media ep_vortex_media[] = {
162 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
163 ELINKMEDIA_10BASE_T },
164 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
165 ELINKMEDIA_10BASE_T },
166 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
167 ELINKMEDIA_AUI },
168 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
169 ELINKMEDIA_10BASE_2 },
170 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
171 ELINKMEDIA_100BASE_TX },
172 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
173 ELINKMEDIA_100BASE_TX },
174 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
175 ELINKMEDIA_100BASE_FX },
176 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
177 ELINKMEDIA_MII },
178 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
179 ELINKMEDIA_100BASE_T4 },
180 { 0, NULL, 0,
181 0 },
182 };
183
184 /*
185 * Media table for the older 3Com Etherlink III chipset, used
186 * in the 3c509, 3c579, and 3c589.
187 */
188 struct ep_media ep_509_media[] = {
189 { ELINK_W0_CC_UTP, "10baseT", IFM_ETHER|IFM_10_T,
190 ELINKMEDIA_10BASE_T },
191 { ELINK_W0_CC_AUI, "10base5", IFM_ETHER|IFM_10_5,
192 ELINKMEDIA_AUI },
193 { ELINK_W0_CC_BNC, "10base2", IFM_ETHER|IFM_10_2,
194 ELINKMEDIA_10BASE_2 },
195 { 0, NULL, 0,
196 0 },
197 };
198
199 void ep_internalconfig __P((struct ep_softc *sc));
200 void ep_vortex_probemedia __P((struct ep_softc *sc));
201 void ep_509_probemedia __P((struct ep_softc *sc));
202
203 static void eptxstat __P((struct ep_softc *));
204 static int epstatus __P((struct ep_softc *));
205 void epinit __P((struct ep_softc *));
206 int epioctl __P((struct ifnet *, u_long, caddr_t));
207 void epstart __P((struct ifnet *));
208 void epwatchdog __P((struct ifnet *));
209 void epreset __P((struct ep_softc *));
210 static void epshutdown __P((void *));
211 void epread __P((struct ep_softc *));
212 struct mbuf *epget __P((struct ep_softc *, int));
213 void epmbuffill __P((void *));
214 void epmbufempty __P((struct ep_softc *));
215 void epsetfilter __P((struct ep_softc *));
216 void ep_roadrunner_mii_enable __P((struct ep_softc *));
217 void epsetmedia __P((struct ep_softc *));
218
219 /* ifmedia callbacks */
220 int ep_media_change __P((struct ifnet *ifp));
221 void ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
222
223 /* MII callbacks */
224 int ep_mii_readreg __P((struct device *, int, int));
225 void ep_mii_writereg __P((struct device *, int, int, int));
226 void ep_statchg __P((struct device *));
227
228 void ep_tick __P((void *));
229
230 void ep_mii_setbit __P((struct ep_softc *, u_int16_t));
231 void ep_mii_clrbit __P((struct ep_softc *, u_int16_t));
232 u_int16_t ep_mii_readbit __P((struct ep_softc *, u_int16_t));
233 void ep_mii_sync __P((struct ep_softc *));
234 void ep_mii_sendbits __P((struct ep_softc *, u_int32_t, int));
235
236 static int epbusyeeprom __P((struct ep_softc *));
237 u_int16_t ep_read_eeprom __P((struct ep_softc *, u_int16_t));
238 static inline void ep_reset_cmd __P((struct ep_softc *sc,
239 u_int cmd, u_int arg));
240 static inline void ep_finish_reset __P((bus_space_tag_t, bus_space_handle_t));
241 static inline void ep_discard_rxtop __P((bus_space_tag_t, bus_space_handle_t));
242 static __inline int ep_w1_reg __P((struct ep_softc *, int));
243
244 /*
245 * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
246 * Window 1 registers offset!
247 */
248 static __inline int
249 ep_w1_reg(sc, reg)
250 struct ep_softc *sc;
251 int reg;
252 {
253
254 switch (sc->ep_chipset) {
255 case ELINK_CHIPSET_CORKSCREW:
256 return (reg + 0x10);
257
258 case ELINK_CHIPSET_ROADRUNNER:
259 switch (reg) {
260 case ELINK_W1_FREE_TX:
261 case ELINK_W1_RUNNER_RDCTL:
262 case ELINK_W1_RUNNER_WRCTL:
263 return (reg);
264 }
265 return (reg + 0x10);
266 }
267
268 return (reg);
269 }
270
271 /*
272 * Wait for any pending reset to complete.
273 * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
274 * but older hardware doesn't implement it and we must delay.
275 */
276 static inline void
277 ep_finish_reset(iot, ioh)
278 bus_space_tag_t iot;
279 bus_space_handle_t ioh;
280
281 {
282 int i;
283
284 for (i = 0; i < 10000; i++) {
285 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
286 S_COMMAND_IN_PROGRESS) == 0)
287 break;
288 DELAY(10);
289 }
290 }
291
292 /*
293 * Issue a (reset) command, and be sure it has completed.
294 * Used for global reset, TX_RESET, RX_RESET.
295 */
296 static inline void
297 ep_reset_cmd(sc, cmd, arg)
298 struct ep_softc *sc;
299 u_int cmd, arg;
300 {
301 register bus_space_tag_t iot = sc->sc_iot;
302 register bus_space_handle_t ioh = sc->sc_ioh;
303
304 bus_space_write_2(iot, ioh, cmd, arg);
305 ep_finish_reset(iot, ioh);
306 }
307
308
309 static inline void
310 ep_discard_rxtop(iot, ioh)
311 register bus_space_tag_t iot;
312 register bus_space_handle_t ioh;
313 {
314 int i;
315
316 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
317
318 /*
319 * Spin for about 1 msec, to avoid forcing a DELAY() between
320 * every received packet (adding latency and limiting pkt-recv rate).
321 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
322 * is about right.
323 */
324 for (i = 0; i < 8000; i++) {
325 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
326 S_COMMAND_IN_PROGRESS) == 0)
327 return;
328 }
329
330 /* Didn't complete in a hurry. Do DELAY()s. */
331 ep_finish_reset(iot, ioh);
332 }
333
334 /*
335 * Back-end attach and configure.
336 */
337 void
338 epconfig(sc, chipset, enaddr)
339 struct ep_softc *sc;
340 u_short chipset;
341 u_int8_t *enaddr;
342 {
343 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
344 bus_space_tag_t iot = sc->sc_iot;
345 bus_space_handle_t ioh = sc->sc_ioh;
346 u_int16_t i;
347 u_int8_t myla[6];
348
349 sc->ep_chipset = chipset;
350
351 /*
352 * We could have been groveling around in other register
353 * windows in the front-end; make sure we're in window 0
354 * to read the EEPROM.
355 */
356 GO_WINDOW(0);
357
358 if (enaddr == NULL) {
359 /*
360 * Read the station address from the eeprom.
361 */
362 for (i = 0; i < 3; i++) {
363 u_int16_t x = ep_read_eeprom(sc, i);
364 myla[(i << 1)] = x >> 8;
365 myla[(i << 1) + 1] = x;
366 }
367 enaddr = myla;
368 }
369
370 /*
371 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
372 * allow FDDI-sized (4500) byte packets. Commands only take an
373 * 11-bit parameter, and 11 bits isn't enough to hold a full-size
374 * packet length.
375 * Commands to these cards implicitly upshift a packet size
376 * or threshold by 2 bits.
377 * To detect cards with large-packet support, we probe by setting
378 * the transmit threshold register, then change windows and
379 * read back the threshold register directly, and see if the
380 * threshold value was shifted or not.
381 */
382 bus_space_write_2(iot, ioh, ELINK_COMMAND,
383 SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
384 GO_WINDOW(5);
385 i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
386 GO_WINDOW(1);
387 switch (i) {
388 case ELINK_LARGEWIN_PROBE:
389 case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
390 sc->ep_pktlenshift = 0;
391 break;
392
393 case (ELINK_LARGEWIN_PROBE << 2):
394 sc->ep_pktlenshift = 2;
395 break;
396
397 default:
398 printf("%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
399 "Interface disabled\n",
400 sc->sc_dev.dv_xname, ELINK_LARGEWIN_PROBE, (int) i);
401 return;
402 }
403
404 /*
405 * Ensure Tx-available interrupts are enabled for
406 * start the interface.
407 * XXX should be in epinit()?
408 */
409 bus_space_write_2(iot, ioh, ELINK_COMMAND,
410 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
411
412 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
413 ifp->if_softc = sc;
414 ifp->if_start = epstart;
415 ifp->if_ioctl = epioctl;
416 ifp->if_watchdog = epwatchdog;
417 ifp->if_flags =
418 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
419
420 if_attach(ifp);
421 ether_ifattach(ifp, enaddr);
422
423 /*
424 * Finish configuration:
425 * determine chipset if the front-end couldn't do so,
426 * show board details, set media.
427 */
428
429 /*
430 * Print RAM size. We also print the Ethernet address in here.
431 * It's extracted from the ifp, so we have to make sure it's
432 * been attached first.
433 */
434 ep_internalconfig(sc);
435 GO_WINDOW(0);
436
437 /*
438 * Display some additional information, if pertinent.
439 */
440 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
441 printf("%s: RoadRunner FIFO buffer enabled\n",
442 sc->sc_dev.dv_xname);
443
444 /*
445 * Initialize our media structures and MII info. We'll
446 * probe the MII if we discover that we have one.
447 */
448 sc->sc_mii.mii_ifp = ifp;
449 sc->sc_mii.mii_readreg = ep_mii_readreg;
450 sc->sc_mii.mii_writereg = ep_mii_writereg;
451 sc->sc_mii.mii_statchg = ep_statchg;
452 ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
453 ep_media_status);
454
455 /*
456 * Now, determine which media we have.
457 */
458 switch (sc->ep_chipset) {
459 case ELINK_CHIPSET_ROADRUNNER:
460 if (sc->ep_flags & ELINK_FLAGS_MII) {
461 ep_roadrunner_mii_enable(sc);
462 GO_WINDOW(0);
463 }
464 /* FALLTHROUGH */
465
466 case ELINK_CHIPSET_BOOMERANG:
467 /*
468 * If the device has MII, probe it. We won't be using
469 * any `native' media in this case, only PHYs. If
470 * we don't, just treat the Boomerang like the Vortex.
471 */
472 if (sc->ep_flags & ELINK_FLAGS_MII) {
473 mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
474 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
475 ifmedia_add(&sc->sc_mii.mii_media,
476 IFM_ETHER|IFM_NONE, 0, NULL);
477 ifmedia_set(&sc->sc_mii.mii_media,
478 IFM_ETHER|IFM_NONE);
479 } else {
480 ifmedia_set(&sc->sc_mii.mii_media,
481 IFM_ETHER|IFM_AUTO);
482 }
483 break;
484 }
485 /* FALLTHROUGH */
486
487 case ELINK_CHIPSET_VORTEX:
488 ep_vortex_probemedia(sc);
489 break;
490
491 default:
492 ep_509_probemedia(sc);
493 break;
494 }
495
496 GO_WINDOW(1); /* Window 1 is operating window */
497
498 #if NBPFILTER > 0
499 bpfattach(ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
500 #endif
501
502 #if NRND > 0
503 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
504 RND_TYPE_NET, 0);
505 #endif
506
507 sc->tx_start_thresh = 20; /* probably a good starting point. */
508
509 /* Establish callback to reset card when we reboot. */
510 shutdownhook_establish(epshutdown, sc);
511
512 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
513 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
514 }
515
516
517 /*
518 * Show interface-model-independent info from window 3
519 * internal-configuration register.
520 */
521 void
522 ep_internalconfig(sc)
523 struct ep_softc *sc;
524 {
525 bus_space_tag_t iot = sc->sc_iot;
526 bus_space_handle_t ioh = sc->sc_ioh;
527
528 u_int config0;
529 u_int config1;
530
531 int ram_size, ram_width, ram_speed, rom_size, ram_split;
532 /*
533 * NVRAM buffer Rx:Tx config names for busmastering cards
534 * (Demon, Vortex, and later).
535 */
536 const char *onboard_ram_config[] = {
537 "5:3", "3:1", "1:1", "3:5" };
538
539 GO_WINDOW(3);
540 config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
541 config1 = (u_int)bus_space_read_2(iot, ioh,
542 ELINK_W3_INTERNAL_CONFIG + 2);
543 GO_WINDOW(0);
544
545 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
546 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
547 ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
548 rom_size = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
549
550 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
551
552 printf("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
553 sc->sc_dev.dv_xname,
554 ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
555 8 << ram_size,
556 (ram_width) ? "word" : "byte",
557 onboard_ram_config[ram_split]);
558 }
559
560
561 /*
562 * Find supported media on 3c509-generation hardware that doesn't have
563 * a "reset_options" register in window 3.
564 * Use the config_cntrl register in window 0 instead.
565 * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
566 * that implement CONFIG_CTRL. We don't have a good way to set the
567 * default active mediuim; punt to ifconfig instead.
568 */
569 void
570 ep_509_probemedia(sc)
571 struct ep_softc *sc;
572 {
573 bus_space_tag_t iot = sc->sc_iot;
574 bus_space_handle_t ioh = sc->sc_ioh;
575 struct ifmedia *ifm = &sc->sc_mii.mii_media;
576 u_int16_t ep_w0_config, port;
577 struct ep_media *epm;
578 const char *sep = "", *defmedianame = NULL;
579 int defmedia = 0;
580
581 GO_WINDOW(0);
582 ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
583
584 printf("%s: ", sc->sc_dev.dv_xname);
585
586 /* Sanity check that there are any media! */
587 if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
588 printf("no media present!\n");
589 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
590 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
591 return;
592 }
593
594 /*
595 * Get the default media from the EEPROM.
596 */
597 port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
598
599 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
600
601 for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
602 if (ep_w0_config & epm->epm_mpbit) {
603 /*
604 * This simple test works because 509 chipsets
605 * don't do full-duplex.
606 */
607 if (epm->epm_epmedia == port || defmedia == 0) {
608 defmedia = epm->epm_ifmedia;
609 defmedianame = epm->epm_name;
610 }
611 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
612 NULL);
613 PRINT(epm->epm_name);
614 }
615 }
616
617 #undef PRINT
618
619 #ifdef DIAGNOSTIC
620 if (defmedia == 0)
621 panic("ep_509_probemedia: impossible");
622 #endif
623
624 printf(" (default %s)\n", defmedianame);
625 ifmedia_set(ifm, defmedia);
626 }
627
628 /*
629 * Find media present on large-packet-capable elink3 devices.
630 * Show onboard configuration of large-packet-capable elink3 devices
631 * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
632 * Use media and card-version info in window 3 instead.
633 */
634 void
635 ep_vortex_probemedia(sc)
636 struct ep_softc *sc;
637 {
638 bus_space_tag_t iot = sc->sc_iot;
639 bus_space_handle_t ioh = sc->sc_ioh;
640 struct ifmedia *ifm = &sc->sc_mii.mii_media;
641 struct ep_media *epm;
642 u_int config1;
643 int reset_options;
644 int default_media; /* 3-bit encoding of default (EEPROM) media */
645 int defmedia = 0;
646 const char *sep = "", *defmedianame = NULL;
647
648 GO_WINDOW(3);
649 config1 = (u_int)bus_space_read_2(iot, ioh,
650 ELINK_W3_INTERNAL_CONFIG + 2);
651 reset_options = (int)bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
652 GO_WINDOW(0);
653
654 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
655
656 printf("%s: ", sc->sc_dev.dv_xname);
657
658 /* Sanity check that there are any media! */
659 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
660 printf("no media present!\n");
661 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
662 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
663 return;
664 }
665
666 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
667
668 for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
669 if (reset_options & epm->epm_mpbit) {
670 /*
671 * Default media is a little more complicated
672 * on the Vortex. We support full-duplex which
673 * uses the same reset options bit.
674 *
675 * XXX Check EEPROM for default to FDX?
676 */
677 if (epm->epm_epmedia == default_media) {
678 if ((epm->epm_ifmedia & IFM_FDX) == 0) {
679 defmedia = epm->epm_ifmedia;
680 defmedianame = epm->epm_name;
681 }
682 } else if (defmedia == 0) {
683 defmedia = epm->epm_ifmedia;
684 defmedianame = epm->epm_name;
685 }
686 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
687 NULL);
688 PRINT(epm->epm_name);
689 }
690 }
691
692 #undef PRINT
693
694 #ifdef DIAGNOSTIC
695 if (defmedia == 0)
696 panic("ep_vortex_probemedia: impossible");
697 #endif
698
699 printf(" (default %s)\n", defmedianame);
700 ifmedia_set(ifm, defmedia);
701 }
702
703 /*
704 * One second timer, used to tick the MII.
705 */
706 void
707 ep_tick(arg)
708 void *arg;
709 {
710 struct ep_softc *sc = arg;
711 int s;
712
713 #ifdef DIAGNOSTIC
714 if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
715 panic("ep_tick");
716 #endif
717
718 s = splnet();
719 mii_tick(&sc->sc_mii);
720 splx(s);
721
722 timeout(ep_tick, sc, hz);
723 }
724
725 /*
726 * Bring device up.
727 *
728 * The order in here seems important. Otherwise we may not receive
729 * interrupts. ?!
730 */
731 void
732 epinit(sc)
733 register struct ep_softc *sc;
734 {
735 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
736 bus_space_tag_t iot = sc->sc_iot;
737 bus_space_handle_t ioh = sc->sc_ioh;
738 int i;
739
740 /* Make sure any pending reset has completed before touching board. */
741 ep_finish_reset(iot, ioh);
742
743
744 if (sc->bustype != ELINK_BUS_PCI) {
745 GO_WINDOW(0);
746 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
747 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
748 ENABLE_DRQ_IRQ);
749 }
750
751 if (sc->bustype == ELINK_BUS_PCMCIA) {
752 bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
753 }
754
755 GO_WINDOW(2);
756 for (i = 0; i < 6; i++) /* Reload the ether_addr. */
757 bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
758 LLADDR(ifp->if_sadl)[i]);
759
760 /*
761 * Reset the station-address receive filter.
762 * A bug workaround for busmastering (Vortex, Demon) cards.
763 */
764 for (i = 0; i < 6; i++)
765 bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
766
767 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
768 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
769
770 GO_WINDOW(1); /* Window 1 is operating window */
771 for (i = 0; i < 31; i++)
772 bus_space_read_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS));
773
774 /* Set threshhold for for Tx-space avaiable interrupt. */
775 bus_space_write_2(iot, ioh, ELINK_COMMAND,
776 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
777
778 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
779 /*
780 * Enable options in the PCMCIA LAN COR register, via
781 * RoadRunner Window 1.
782 *
783 * XXX MAGIC CONSTANTS!
784 */
785 u_int16_t cor;
786
787 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
788
789 cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
790 if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
791 cor |= 0x10;
792 if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
793 cor |= 0x20;
794 bus_space_write_2(iot, ioh, 0, cor);
795
796 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
797 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
798
799 if (sc->ep_flags & ELINK_FLAGS_MII) {
800 ep_roadrunner_mii_enable(sc);
801 GO_WINDOW(1);
802 }
803 }
804
805 /* Enable interrupts. */
806 bus_space_write_2(iot, ioh, ELINK_COMMAND,
807 SET_RD_0_MASK | S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE |
808 S_TX_AVAIL);
809 bus_space_write_2(iot, ioh, ELINK_COMMAND,
810 SET_INTR_MASK | S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE |
811 S_TX_AVAIL);
812
813 /*
814 * Attempt to get rid of any stray interrupts that occured during
815 * configuration. On the i386 this isn't possible because one may
816 * already be queued. However, a single stray interrupt is
817 * unimportant.
818 */
819 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
820
821 epsetfilter(sc);
822 epsetmedia(sc);
823
824 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
825 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
826
827 epmbuffill(sc);
828
829 /* Interface is now `running', with no output active. */
830 ifp->if_flags |= IFF_RUNNING;
831 ifp->if_flags &= ~IFF_OACTIVE;
832
833 if (sc->ep_flags & ELINK_FLAGS_MII) {
834 /* Start the one second clock. */
835 timeout(ep_tick, sc, hz);
836 }
837
838 /* Attempt to start output, if any. */
839 epstart(ifp);
840 }
841
842
843 /*
844 * Set multicast receive filter.
845 * elink3 hardware has no selective multicast filter in hardware.
846 * Enable reception of all multicasts and filter in software.
847 */
848 void
849 epsetfilter(sc)
850 register struct ep_softc *sc;
851 {
852 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
853
854 GO_WINDOW(1); /* Window 1 is operating window */
855 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
856 SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
857 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
858 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
859 }
860
861 int
862 ep_media_change(ifp)
863 struct ifnet *ifp;
864 {
865 register struct ep_softc *sc = ifp->if_softc;
866
867 if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
868 epreset(sc);
869
870 return (0);
871 }
872
873 /*
874 * Reset and enable the MII on the RoadRunner.
875 */
876 void
877 ep_roadrunner_mii_enable(sc)
878 struct ep_softc *sc;
879 {
880 bus_space_tag_t iot = sc->sc_iot;
881 bus_space_handle_t ioh = sc->sc_ioh;
882
883 GO_WINDOW(3);
884 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
885 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
886 delay(1000);
887 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
888 ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
889 ELINK_RUNNER_ENABLE_MII);
890 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
891 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
892 delay(1000);
893 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
894 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
895 }
896
897 /*
898 * Set the card to use the specified media.
899 */
900 void
901 epsetmedia(sc)
902 struct ep_softc *sc;
903 {
904 bus_space_tag_t iot = sc->sc_iot;
905 bus_space_handle_t ioh = sc->sc_ioh;
906
907 /* Turn everything off. First turn off linkbeat and UTP. */
908 GO_WINDOW(4);
909 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
910
911 /* Turn off coax */
912 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
913 delay(1000);
914
915 /*
916 * If the device has MII, select it, and then tell the
917 * PHY which media to use.
918 */
919 if (sc->ep_flags & ELINK_FLAGS_MII) {
920 int config0, config1;
921
922 GO_WINDOW(3);
923
924 #if 0
925 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
926 int resopt;
927
928 resopt = bus_space_read_2(iot, ioh,
929 ELINK_W3_RESET_OPTIONS);
930 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
931 resopt | ELINK_RUNNER_ENABLE_MII);
932 }
933 #endif
934
935 config0 = (u_int)bus_space_read_2(iot, ioh,
936 ELINK_W3_INTERNAL_CONFIG);
937 config1 = (u_int)bus_space_read_2(iot, ioh,
938 ELINK_W3_INTERNAL_CONFIG + 2);
939
940 config1 = config1 & ~CONFIG_MEDIAMASK;
941 config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
942
943 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
944 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
945 config1);
946 GO_WINDOW(1); /* back to operating window */
947
948 mii_mediachg(&sc->sc_mii);
949 return;
950 }
951
952 /*
953 * Now turn on the selected media/transceiver.
954 */
955 GO_WINDOW(4);
956 switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
957 case IFM_10_T:
958 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
959 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
960 break;
961
962 case IFM_10_2:
963 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
964 DELAY(1000); /* 50ms not enmough? */
965 break;
966
967 case IFM_100_TX:
968 case IFM_100_FX:
969 case IFM_100_T4: /* XXX check documentation */
970 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
971 LINKBEAT_ENABLE);
972 DELAY(1000); /* not strictly necessary? */
973 break;
974
975 case IFM_10_5:
976 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
977 SQE_ENABLE);
978 DELAY(1000); /* not strictly necessary? */
979 break;
980
981 case IFM_MANUAL:
982 /*
983 * Nothing to do here; we are actually enabling the
984 * external PHY on the MII port.
985 */
986 break;
987
988 case IFM_NONE:
989 printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
990 return;
991
992 default:
993 panic("epsetmedia: impossible");
994 }
995
996 /*
997 * Tell the chip which port to use.
998 */
999 switch (sc->ep_chipset) {
1000 case ELINK_CHIPSET_VORTEX:
1001 case ELINK_CHIPSET_BOOMERANG:
1002 {
1003 int mctl, config0, config1;
1004
1005 GO_WINDOW(3);
1006 config0 = (u_int)bus_space_read_2(iot, ioh,
1007 ELINK_W3_INTERNAL_CONFIG);
1008 config1 = (u_int)bus_space_read_2(iot, ioh,
1009 ELINK_W3_INTERNAL_CONFIG + 2);
1010
1011 config1 = config1 & ~CONFIG_MEDIAMASK;
1012 config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
1013 CONFIG_MEDIAMASK_SHIFT);
1014
1015 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
1016 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
1017 config1);
1018
1019 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1020 if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
1021 mctl |= MAC_CONTROL_FDX;
1022 else
1023 mctl &= ~MAC_CONTROL_FDX;
1024 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1025 break;
1026 }
1027 default:
1028 {
1029 int w0_addr_cfg;
1030
1031 GO_WINDOW(0);
1032 w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
1033 w0_addr_cfg &= 0x3fff;
1034 bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
1035 (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
1036 DELAY(1000);
1037 break;
1038 }
1039 }
1040
1041 GO_WINDOW(1); /* Window 1 is operating window */
1042 }
1043
1044 /*
1045 * Get currently-selected media from card.
1046 * (if_media callback, may be called before interface is brought up).
1047 */
1048 void
1049 ep_media_status(ifp, req)
1050 struct ifnet *ifp;
1051 struct ifmediareq *req;
1052 {
1053 register struct ep_softc *sc = ifp->if_softc;
1054 bus_space_tag_t iot = sc->sc_iot;
1055 bus_space_handle_t ioh = sc->sc_ioh;
1056
1057 if (sc->enabled == 0) {
1058 req->ifm_active = IFM_ETHER|IFM_NONE;
1059 req->ifm_status = 0;
1060 return;
1061 }
1062
1063 /*
1064 * If we have MII, go ask the PHY what's going on.
1065 */
1066 if (sc->ep_flags & ELINK_FLAGS_MII) {
1067 mii_pollstat(&sc->sc_mii);
1068 req->ifm_active = sc->sc_mii.mii_media_active;
1069 req->ifm_status = sc->sc_mii.mii_media_status;
1070 return;
1071 }
1072
1073 /*
1074 * Ok, at this point we claim that our active media is
1075 * the currently selected media. We'll update our status
1076 * if our chipset allows us to detect link.
1077 */
1078 req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1079 req->ifm_status = 0;
1080
1081 switch (sc->ep_chipset) {
1082 case ELINK_CHIPSET_VORTEX:
1083 case ELINK_CHIPSET_BOOMERANG:
1084 GO_WINDOW(4);
1085 req->ifm_status = IFM_AVALID;
1086 if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
1087 LINKBEAT_DETECT)
1088 req->ifm_status |= IFM_ACTIVE;
1089 GO_WINDOW(1); /* back to operating window */
1090 break;
1091 }
1092 }
1093
1094
1095
1096 /*
1097 * Start outputting on the interface.
1098 * Always called as splnet().
1099 */
1100 void
1101 epstart(ifp)
1102 struct ifnet *ifp;
1103 {
1104 register struct ep_softc *sc = ifp->if_softc;
1105 bus_space_tag_t iot = sc->sc_iot;
1106 bus_space_handle_t ioh = sc->sc_ioh;
1107 struct mbuf *m, *m0;
1108 int sh, len, pad;
1109 bus_addr_t txreg;
1110
1111 /* Don't transmit if interface is busy or not running */
1112 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1113 return;
1114
1115 startagain:
1116 /* Sneak a peek at the next packet */
1117 m0 = ifp->if_snd.ifq_head;
1118 if (m0 == 0)
1119 return;
1120
1121 /* We need to use m->m_pkthdr.len, so require the header */
1122 if ((m0->m_flags & M_PKTHDR) == 0)
1123 panic("epstart: no header mbuf");
1124 len = m0->m_pkthdr.len;
1125
1126 pad = (4 - len) & 3;
1127
1128 /*
1129 * The 3c509 automatically pads short packets to minimum ethernet
1130 * length, but we drop packets that are too large. Perhaps we should
1131 * truncate them instead?
1132 */
1133 if (len + pad > ETHER_MAX_LEN) {
1134 /* packet is obviously too large: toss it */
1135 ++ifp->if_oerrors;
1136 IF_DEQUEUE(&ifp->if_snd, m0);
1137 m_freem(m0);
1138 goto readcheck;
1139 }
1140
1141 if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
1142 len + pad + 4) {
1143 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1144 SET_TX_AVAIL_THRESH |
1145 ((len + pad + 4) >> sc->ep_pktlenshift));
1146 /* not enough room in FIFO */
1147 ifp->if_flags |= IFF_OACTIVE;
1148 return;
1149 } else {
1150 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1151 SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
1152 }
1153
1154 IF_DEQUEUE(&ifp->if_snd, m0);
1155 if (m0 == 0) /* not really needed */
1156 return;
1157
1158 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
1159 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
1160
1161 #if NBPFILTER > 0
1162 if (ifp->if_bpf)
1163 bpf_mtap(ifp->if_bpf, m0);
1164 #endif
1165
1166 /*
1167 * Do the output at splhigh() so that an interrupt from another device
1168 * won't cause a FIFO underrun.
1169 */
1170 sh = splhigh();
1171
1172 txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
1173
1174 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1175 /*
1176 * Prime the FIFO buffer counter (number of 16-bit
1177 * words about to be written to the FIFO).
1178 *
1179 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1180 * COUNTER IS NON-ZERO!
1181 */
1182 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
1183 (len + pad) >> 1);
1184 }
1185
1186 bus_space_write_2(iot, ioh, txreg, len);
1187 bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1188 if (ELINK_IS_BUS_32(sc->bustype)) {
1189 for (m = m0; m;) {
1190 if (m->m_len > 3) {
1191 /* align our reads from core */
1192 if (mtod(m, u_long) & 3) {
1193 u_long count =
1194 4 - (mtod(m, u_long) & 3);
1195 bus_space_write_multi_1(iot, ioh,
1196 txreg, mtod(m, u_int8_t *), count);
1197 m->m_data =
1198 (void *)(mtod(m, u_long) + count);
1199 m->m_len -= count;
1200 }
1201 bus_space_write_multi_stream_4(iot, ioh,
1202 txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1203 m->m_data = (void *)(mtod(m, u_long) +
1204 (u_long)(m->m_len & ~3));
1205 m->m_len -= m->m_len & ~3;
1206 }
1207 if (m->m_len) {
1208 bus_space_write_multi_1(iot, ioh,
1209 txreg, mtod(m, u_int8_t *), m->m_len);
1210 }
1211 MFREE(m, m0);
1212 m = m0;
1213 }
1214 } else {
1215 for (m = m0; m;) {
1216 if (m->m_len > 1) {
1217 if (mtod(m, u_long) & 1) {
1218 bus_space_write_1(iot, ioh,
1219 txreg, *(mtod(m, u_int8_t *)));
1220 m->m_data =
1221 (void *)(mtod(m, u_long) + 1);
1222 m->m_len -= 1;
1223 }
1224 bus_space_write_multi_stream_2(iot, ioh,
1225 txreg, mtod(m, u_int16_t *),
1226 m->m_len >> 1);
1227 }
1228 if (m->m_len & 1) {
1229 bus_space_write_1(iot, ioh, txreg,
1230 *(mtod(m, u_int8_t *) + m->m_len - 1));
1231 }
1232 MFREE(m, m0);
1233 m = m0;
1234 }
1235 }
1236 while (pad--)
1237 bus_space_write_1(iot, ioh, txreg, 0);
1238
1239 splx(sh);
1240
1241 ++ifp->if_opackets;
1242
1243 readcheck:
1244 if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
1245 ERR_INCOMPLETE) == 0) {
1246 /* We received a complete packet. */
1247 u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1248
1249 if ((status & S_INTR_LATCH) == 0) {
1250 /*
1251 * No interrupt, read the packet and continue
1252 * Is this supposed to happen? Is my motherboard
1253 * completely busted?
1254 */
1255 epread(sc);
1256 } else {
1257 /* Got an interrupt, return so that it gets serviced. */
1258 return;
1259 }
1260 } else {
1261 /* Check if we are stuck and reset [see XXX comment] */
1262 if (epstatus(sc)) {
1263 if (ifp->if_flags & IFF_DEBUG)
1264 printf("%s: adapter reset\n",
1265 sc->sc_dev.dv_xname);
1266 epreset(sc);
1267 }
1268 }
1269
1270 goto startagain;
1271 }
1272
1273
1274 /*
1275 * XXX: The 3c509 card can get in a mode where both the fifo status bit
1276 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1277 * We detect this situation and we reset the adapter.
1278 * It happens at times when there is a lot of broadcast traffic
1279 * on the cable (once in a blue moon).
1280 */
1281 static int
1282 epstatus(sc)
1283 register struct ep_softc *sc;
1284 {
1285 bus_space_tag_t iot = sc->sc_iot;
1286 bus_space_handle_t ioh = sc->sc_ioh;
1287 u_int16_t fifost;
1288
1289 /*
1290 * Check the FIFO status and act accordingly
1291 */
1292 GO_WINDOW(4);
1293 fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
1294 GO_WINDOW(1);
1295
1296 if (fifost & FIFOS_RX_UNDERRUN) {
1297 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1298 printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
1299 epreset(sc);
1300 return 0;
1301 }
1302
1303 if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1304 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1305 printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
1306 return 1;
1307 }
1308
1309 if (fifost & FIFOS_RX_OVERRUN) {
1310 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1311 printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
1312 return 1;
1313 }
1314
1315 if (fifost & FIFOS_TX_OVERRUN) {
1316 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1317 printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
1318 epreset(sc);
1319 return 0;
1320 }
1321
1322 return 0;
1323 }
1324
1325
1326 static void
1327 eptxstat(sc)
1328 register struct ep_softc *sc;
1329 {
1330 bus_space_tag_t iot = sc->sc_iot;
1331 bus_space_handle_t ioh = sc->sc_ioh;
1332 int i;
1333
1334 /*
1335 * We need to read+write TX_STATUS until we get a 0 status
1336 * in order to turn off the interrupt flag.
1337 */
1338 while ((i = bus_space_read_1(iot, ioh,
1339 ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
1340 bus_space_write_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
1341 0x0);
1342
1343 if (i & TXS_JABBER) {
1344 ++sc->sc_ethercom.ec_if.if_oerrors;
1345 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1346 printf("%s: jabber (%x)\n",
1347 sc->sc_dev.dv_xname, i);
1348 #if 1
1349 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1350 #else
1351 epreset(sc);
1352 #endif
1353 } else if (i & TXS_UNDERRUN) {
1354 ++sc->sc_ethercom.ec_if.if_oerrors;
1355 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1356 printf("%s: fifo underrun (%x) @%d\n",
1357 sc->sc_dev.dv_xname, i,
1358 sc->tx_start_thresh);
1359 if (sc->tx_succ_ok < 100)
1360 sc->tx_start_thresh = min(ETHER_MAX_LEN,
1361 sc->tx_start_thresh + 20);
1362 sc->tx_succ_ok = 0;
1363 #if 1
1364 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1365 #else
1366 epreset(sc);
1367 #endif
1368 } else if (i & TXS_MAX_COLLISION) {
1369 ++sc->sc_ethercom.ec_if.if_collisions;
1370 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
1371 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1372 } else
1373 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1374 }
1375 }
1376
1377 int
1378 epintr(arg)
1379 void *arg;
1380 {
1381 register struct ep_softc *sc = arg;
1382 bus_space_tag_t iot = sc->sc_iot;
1383 bus_space_handle_t ioh = sc->sc_ioh;
1384 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1385 u_int16_t status;
1386 int ret = 0;
1387 int addrandom = 0;
1388
1389 if (sc->enabled == 0)
1390 return (0);
1391
1392 for (;;) {
1393 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1394
1395 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1396
1397 if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
1398 S_RX_COMPLETE | S_CARD_FAILURE)) == 0) {
1399 if ((status & S_INTR_LATCH) == 0) {
1400 #if 0
1401 printf("%s: intr latch cleared\n",
1402 sc->sc_dev.dv_xname);
1403 #endif
1404 break;
1405 }
1406 }
1407
1408 ret = 1;
1409
1410 /*
1411 * Acknowledge any interrupts. It's important that we do this
1412 * first, since there would otherwise be a race condition.
1413 * Due to the i386 interrupt queueing, we may get spurious
1414 * interrupts occasionally.
1415 */
1416 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1417 (status & (C_INTR_LATCH |
1418 C_CARD_FAILURE |
1419 C_TX_COMPLETE |
1420 C_TX_AVAIL |
1421 C_RX_COMPLETE |
1422 C_RX_EARLY |
1423 C_INT_RQD |
1424 C_UPD_STATS)));
1425
1426 #if 0
1427 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1428
1429 printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
1430 (status & S_RX_COMPLETE)?" RX_COMPLETE":"",
1431 (status & S_TX_COMPLETE)?" TX_COMPLETE":"",
1432 (status & S_TX_AVAIL)?" TX_AVAIL":"",
1433 (status & S_CARD_FAILURE)?" CARD_FAILURE":"");
1434 #endif
1435
1436 if (status & S_RX_COMPLETE) {
1437 epread(sc);
1438 addrandom = 1;
1439 }
1440 if (status & S_TX_AVAIL) {
1441 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1442 epstart(&sc->sc_ethercom.ec_if);
1443 addrandom = 1;
1444 }
1445 if (status & S_CARD_FAILURE) {
1446 printf("%s: adapter failure (%x)\n",
1447 sc->sc_dev.dv_xname, status);
1448 #if 1
1449 epinit(sc);
1450 #else
1451 epreset(sc);
1452 #endif
1453 return (1);
1454 }
1455 if (status & S_TX_COMPLETE) {
1456 eptxstat(sc);
1457 epstart(ifp);
1458 addrandom = 1;
1459 }
1460
1461 #if NRND > 0
1462 if (status)
1463 rnd_add_uint32(&sc->rnd_source, status);
1464 #endif
1465 }
1466
1467 /* no more interrupts */
1468 return (ret);
1469 }
1470
1471 void
1472 epread(sc)
1473 register struct ep_softc *sc;
1474 {
1475 bus_space_tag_t iot = sc->sc_iot;
1476 bus_space_handle_t ioh = sc->sc_ioh;
1477 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1478 struct mbuf *m;
1479 struct ether_header *eh;
1480 int len;
1481
1482 len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1483
1484 again:
1485 if (ifp->if_flags & IFF_DEBUG) {
1486 int err = len & ERR_MASK;
1487 char *s = NULL;
1488
1489 if (len & ERR_INCOMPLETE)
1490 s = "incomplete packet";
1491 else if (err == ERR_OVERRUN)
1492 s = "packet overrun";
1493 else if (err == ERR_RUNT)
1494 s = "runt packet";
1495 else if (err == ERR_ALIGNMENT)
1496 s = "bad alignment";
1497 else if (err == ERR_CRC)
1498 s = "bad crc";
1499 else if (err == ERR_OVERSIZE)
1500 s = "oversized packet";
1501 else if (err == ERR_DRIBBLE)
1502 s = "dribble bits";
1503
1504 if (s)
1505 printf("%s: %s\n", sc->sc_dev.dv_xname, s);
1506 }
1507
1508 if (len & ERR_INCOMPLETE)
1509 return;
1510
1511 if (len & ERR_RX) {
1512 ++ifp->if_ierrors;
1513 goto abort;
1514 }
1515
1516 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
1517
1518 /* Pull packet off interface. */
1519 m = epget(sc, len);
1520 if (m == 0) {
1521 ifp->if_ierrors++;
1522 goto abort;
1523 }
1524
1525 ++ifp->if_ipackets;
1526
1527 /* We assume the header fit entirely in one mbuf. */
1528 eh = mtod(m, struct ether_header *);
1529
1530 #if NBPFILTER > 0
1531 /*
1532 * Check if there's a BPF listener on this interface.
1533 * If so, hand off the raw packet to BPF.
1534 */
1535 if (ifp->if_bpf) {
1536 bpf_mtap(ifp->if_bpf, m);
1537
1538 /*
1539 * Note that the interface cannot be in promiscuous mode if
1540 * there are no BPF listeners. And if we are in promiscuous
1541 * mode, we have to check if this packet is really ours.
1542 */
1543 if ((ifp->if_flags & IFF_PROMISC) &&
1544 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
1545 bcmp(eh->ether_dhost, LLADDR(sc->sc_ethercom.ec_if.if_sadl),
1546 sizeof(eh->ether_dhost)) != 0) {
1547 m_freem(m);
1548 return;
1549 }
1550 }
1551 #endif
1552 (*ifp->if_input)(ifp, m);
1553
1554 /*
1555 * In periods of high traffic we can actually receive enough
1556 * packets so that the fifo overrun bit will be set at this point,
1557 * even though we just read a packet. In this case we
1558 * are not going to receive any more interrupts. We check for
1559 * this condition and read again until the fifo is not full.
1560 * We could simplify this test by not using epstatus(), but
1561 * rechecking the RX_STATUS register directly. This test could
1562 * result in unnecessary looping in cases where there is a new
1563 * packet but the fifo is not full, but it will not fix the
1564 * stuck behavior.
1565 *
1566 * Even with this improvement, we still get packet overrun errors
1567 * which are hurting performance. Maybe when I get some more time
1568 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1569 */
1570 if (epstatus(sc)) {
1571 len = bus_space_read_2(iot, ioh,
1572 ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1573 /* Check if we are stuck and reset [see XXX comment] */
1574 if (len & ERR_INCOMPLETE) {
1575 if (ifp->if_flags & IFF_DEBUG)
1576 printf("%s: adapter reset\n",
1577 sc->sc_dev.dv_xname);
1578 epreset(sc);
1579 return;
1580 }
1581 goto again;
1582 }
1583
1584 return;
1585
1586 abort:
1587 ep_discard_rxtop(iot, ioh);
1588
1589 }
1590
1591 struct mbuf *
1592 epget(sc, totlen)
1593 struct ep_softc *sc;
1594 int totlen;
1595 {
1596 bus_space_tag_t iot = sc->sc_iot;
1597 bus_space_handle_t ioh = sc->sc_ioh;
1598 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1599 struct mbuf *top, **mp, *m, *rv = NULL;
1600 bus_addr_t rxreg;
1601 int len, remaining;
1602 int sh;
1603
1604 m = sc->mb[sc->next_mb];
1605 sc->mb[sc->next_mb] = 0;
1606 if (m == 0) {
1607 MGETHDR(m, M_DONTWAIT, MT_DATA);
1608 if (m == 0)
1609 return 0;
1610 } else {
1611 /* If the queue is no longer full, refill. */
1612 if (sc->last_mb == sc->next_mb)
1613 timeout(epmbuffill, sc, 1);
1614 /* Convert one of our saved mbuf's. */
1615 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1616 m->m_data = m->m_pktdat;
1617 m->m_flags = M_PKTHDR;
1618 }
1619 m->m_pkthdr.rcvif = ifp;
1620 m->m_pkthdr.len = totlen;
1621 len = MHLEN;
1622 top = 0;
1623 mp = ⊤
1624
1625 /*
1626 * We read the packet at splhigh() so that an interrupt from another
1627 * device doesn't cause the card's buffer to overflow while we're
1628 * reading it. We may still lose packets at other times.
1629 */
1630 sh = splhigh();
1631
1632 rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
1633
1634 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1635 /*
1636 * Prime the FIFO buffer counter (number of 16-bit
1637 * words about to be read from the FIFO).
1638 *
1639 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1640 * COUNTER IS NON-ZERO!
1641 */
1642 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
1643 }
1644
1645 while (totlen > 0) {
1646 if (top) {
1647 m = sc->mb[sc->next_mb];
1648 sc->mb[sc->next_mb] = 0;
1649 if (m == 0) {
1650 MGET(m, M_DONTWAIT, MT_DATA);
1651 if (m == 0) {
1652 m_freem(top);
1653 goto out;
1654 }
1655 } else {
1656 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1657 }
1658 len = MLEN;
1659 }
1660 if (totlen >= MINCLSIZE) {
1661 MCLGET(m, M_DONTWAIT);
1662 if ((m->m_flags & M_EXT) == 0) {
1663 m_free(m);
1664 m_freem(top);
1665 goto out;
1666 }
1667 len = MCLBYTES;
1668 }
1669 if (top == 0) {
1670 /* align the struct ip header */
1671 caddr_t newdata = (caddr_t)
1672 ALIGN(m->m_data + sizeof(struct ether_header))
1673 - sizeof(struct ether_header);
1674 len -= newdata - m->m_data;
1675 m->m_data = newdata;
1676 }
1677 remaining = len = min(totlen, len);
1678 if (ELINK_IS_BUS_32(sc->bustype)) {
1679 u_long offset = mtod(m, u_long);
1680 /*
1681 * Read bytes up to the point where we are aligned.
1682 * (We can align to 4 bytes, rather than ALIGNBYTES,
1683 * here because we're later reading 4-byte chunks.)
1684 */
1685 if ((remaining > 3) && (offset & 3)) {
1686 int count = (4 - (offset & 3));
1687 bus_space_read_multi_1(iot, ioh,
1688 rxreg, (u_int8_t *) offset, count);
1689 offset += count;
1690 remaining -= count;
1691 }
1692 if (remaining > 3) {
1693 bus_space_read_multi_stream_4(iot, ioh,
1694 rxreg, (u_int32_t *) offset,
1695 remaining >> 2);
1696 offset += remaining & ~3;
1697 remaining &= 3;
1698 }
1699 if (remaining) {
1700 bus_space_read_multi_1(iot, ioh,
1701 rxreg, (u_int8_t *) offset, remaining);
1702 }
1703 } else {
1704 u_long offset = mtod(m, u_long);
1705 if ((remaining > 1) && (offset & 1)) {
1706 bus_space_read_multi_1(iot, ioh,
1707 rxreg, (u_int8_t *) offset, 1);
1708 remaining -= 1;
1709 offset += 1;
1710 }
1711 if (remaining > 1) {
1712 bus_space_read_multi_stream_2(iot, ioh,
1713 rxreg, (u_int16_t *) offset,
1714 remaining >> 1);
1715 offset += remaining & ~1;
1716 }
1717 if (remaining & 1) {
1718 bus_space_read_multi_1(iot, ioh,
1719 rxreg, (u_int8_t *) offset, remaining & 1);
1720 }
1721 }
1722 m->m_len = len;
1723 totlen -= len;
1724 *mp = m;
1725 mp = &m->m_next;
1726 }
1727
1728 rv = top;
1729
1730 ep_discard_rxtop(iot, ioh);
1731
1732 out:
1733 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
1734 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1735 splx(sh);
1736
1737 return rv;
1738 }
1739
1740 int
1741 epioctl(ifp, cmd, data)
1742 register struct ifnet *ifp;
1743 u_long cmd;
1744 caddr_t data;
1745 {
1746 struct ep_softc *sc = ifp->if_softc;
1747 struct ifaddr *ifa = (struct ifaddr *)data;
1748 struct ifreq *ifr = (struct ifreq *)data;
1749 int s, error = 0;
1750
1751 s = splnet();
1752
1753 switch (cmd) {
1754
1755 case SIOCSIFADDR:
1756 if ((error = epenable(sc)) != 0)
1757 break;
1758 /* epinit is called just below */
1759 ifp->if_flags |= IFF_UP;
1760 switch (ifa->ifa_addr->sa_family) {
1761 #ifdef INET
1762 case AF_INET:
1763 epinit(sc);
1764 arp_ifinit(&sc->sc_ethercom.ec_if, ifa);
1765 break;
1766 #endif
1767 #ifdef NS
1768 case AF_NS:
1769 {
1770 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1771
1772 if (ns_nullhost(*ina))
1773 ina->x_host = *(union ns_host *)
1774 LLADDR(ifp->if_sadl);
1775 else
1776 bcopy(ina->x_host.c_host,
1777 LLADDR(ifp->if_sadl),
1778 ifp->if_addrlen);
1779 /* Set new address. */
1780 epinit(sc);
1781 break;
1782 }
1783 #endif
1784 default:
1785 epinit(sc);
1786 break;
1787 }
1788 break;
1789
1790 case SIOCSIFMEDIA:
1791 case SIOCGIFMEDIA:
1792 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1793 break;
1794
1795 case SIOCSIFFLAGS:
1796 if ((ifp->if_flags & IFF_UP) == 0 &&
1797 (ifp->if_flags & IFF_RUNNING) != 0) {
1798 /*
1799 * If interface is marked down and it is running, then
1800 * stop it.
1801 */
1802 epstop(sc);
1803 ifp->if_flags &= ~IFF_RUNNING;
1804 epdisable(sc);
1805 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1806 (ifp->if_flags & IFF_RUNNING) == 0) {
1807 /*
1808 * If interface is marked up and it is stopped, then
1809 * start it.
1810 */
1811 if ((error = epenable(sc)) != 0)
1812 break;
1813 epinit(sc);
1814 } else if ((ifp->if_flags & IFF_UP) != 0) {
1815 /*
1816 * deal with flags changes:
1817 * IFF_MULTICAST, IFF_PROMISC.
1818 */
1819 epsetfilter(sc);
1820 }
1821 break;
1822
1823 case SIOCADDMULTI:
1824 case SIOCDELMULTI:
1825 if (sc->enabled == 0) {
1826 error = EIO;
1827 break;
1828 }
1829
1830 error = (cmd == SIOCADDMULTI) ?
1831 ether_addmulti(ifr, &sc->sc_ethercom) :
1832 ether_delmulti(ifr, &sc->sc_ethercom);
1833
1834 if (error == ENETRESET) {
1835 /*
1836 * Multicast list has changed; set the hardware filter
1837 * accordingly.
1838 */
1839 epreset(sc);
1840 error = 0;
1841 }
1842 break;
1843
1844 default:
1845 error = EINVAL;
1846 break;
1847 }
1848
1849 splx(s);
1850 return (error);
1851 }
1852
1853 void
1854 epreset(sc)
1855 struct ep_softc *sc;
1856 {
1857 int s;
1858
1859 s = splnet();
1860 epstop(sc);
1861 epinit(sc);
1862 splx(s);
1863 }
1864
1865 void
1866 epwatchdog(ifp)
1867 struct ifnet *ifp;
1868 {
1869 struct ep_softc *sc = ifp->if_softc;
1870
1871 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1872 ++sc->sc_ethercom.ec_if.if_oerrors;
1873
1874 epreset(sc);
1875 }
1876
1877 void
1878 epstop(sc)
1879 register struct ep_softc *sc;
1880 {
1881 bus_space_tag_t iot = sc->sc_iot;
1882 bus_space_handle_t ioh = sc->sc_ioh;
1883
1884 if (sc->ep_flags & ELINK_FLAGS_MII) {
1885 /* Stop the one second clock. */
1886 untimeout(ep_tick, sc);
1887 }
1888
1889 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
1890 /*
1891 * Clear the FIFO buffer count, thus halting
1892 * any currently-running transactions.
1893 */
1894 GO_WINDOW(1); /* sanity */
1895 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
1896 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1897 }
1898
1899 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1900 ep_discard_rxtop(iot, ioh);
1901
1902 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1903 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1904
1905 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
1906 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1907
1908 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1909 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
1910 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
1911 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
1912
1913 epmbufempty(sc);
1914 }
1915
1916
1917 /*
1918 * Before reboots, reset card completely.
1919 */
1920 static void
1921 epshutdown(arg)
1922 void *arg;
1923 {
1924 register struct ep_softc *sc = arg;
1925 int s = splnet();
1926
1927 if (sc->enabled) {
1928 epstop(sc);
1929 ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
1930 sc->enabled = 0;
1931 }
1932 splx(s);
1933 }
1934
1935 /*
1936 * We get eeprom data from the id_port given an offset into the
1937 * eeprom. Basically; after the ID_sequence is sent to all of
1938 * the cards; they enter the ID_CMD state where they will accept
1939 * command requests. 0x80-0xbf loads the eeprom data. We then
1940 * read the port 16 times and with every read; the cards check
1941 * for contention (ie: if one card writes a 0 bit and another
1942 * writes a 1 bit then the host sees a 0. At the end of the cycle;
1943 * each card compares the data on the bus; if there is a difference
1944 * then that card goes into ID_WAIT state again). In the meantime;
1945 * one bit of data is returned in the AX register which is conveniently
1946 * returned to us by bus_space_read_1(). Hence; we read 16 times getting one
1947 * bit of data with each read.
1948 *
1949 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1950 */
1951 u_int16_t
1952 epreadeeprom(iot, ioh, offset)
1953 bus_space_tag_t iot;
1954 bus_space_handle_t ioh;
1955 int offset;
1956 {
1957 u_int16_t data = 0;
1958 int i;
1959
1960 bus_space_write_1(iot, ioh, 0, 0x80 + offset);
1961 delay(1000);
1962 for (i = 0; i < 16; i++)
1963 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1964 return (data);
1965 }
1966
1967 static int
1968 epbusyeeprom(sc)
1969 struct ep_softc *sc;
1970 {
1971 bus_space_tag_t iot = sc->sc_iot;
1972 bus_space_handle_t ioh = sc->sc_ioh;
1973 int i = 100, j;
1974
1975 if (sc->bustype == ELINK_BUS_PCMCIA) {
1976 delay(1000);
1977 return 0;
1978 }
1979
1980 j = 0; /* bad GCC flow analysis */
1981 while (i--) {
1982 j = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND);
1983 if (j & EEPROM_BUSY)
1984 delay(100);
1985 else
1986 break;
1987 }
1988 if (!i) {
1989 printf("\n%s: eeprom failed to come ready\n",
1990 sc->sc_dev.dv_xname);
1991 return (1);
1992 }
1993 if (j & EEPROM_TST_MODE) {
1994 /* XXX PnP mode? */
1995 printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
1996 return (1);
1997 }
1998 return (0);
1999 }
2000
2001 u_int16_t
2002 ep_read_eeprom(sc, offset)
2003 struct ep_softc *sc;
2004 u_int16_t offset;
2005 {
2006 u_int16_t readcmd;
2007
2008 /*
2009 * RoadRunner has a larger EEPROM, so a different read command
2010 * is required.
2011 */
2012 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
2013 readcmd = READ_EEPROM_RR;
2014 else
2015 readcmd = READ_EEPROM;
2016
2017 if (epbusyeeprom(sc))
2018 return (0); /* XXX why is eeprom busy? */
2019 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W0_EEPROM_COMMAND,
2020 readcmd | offset);
2021 if (epbusyeeprom(sc))
2022 return (0); /* XXX why is eeprom busy? */
2023 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W0_EEPROM_DATA));
2024 }
2025
2026 void
2027 epmbuffill(v)
2028 void *v;
2029 {
2030 struct ep_softc *sc = v;
2031 struct mbuf *m;
2032 int s, i;
2033
2034 s = splnet();
2035 i = sc->last_mb;
2036 do {
2037 if (sc->mb[i] == 0) {
2038 MGET(m, M_DONTWAIT, MT_DATA);
2039 if (m == 0)
2040 break;
2041 sc->mb[i] = m;
2042 }
2043 i = (i + 1) % MAX_MBS;
2044 } while (i != sc->next_mb);
2045 sc->last_mb = i;
2046 /* If the queue was not filled, try again. */
2047 if (sc->last_mb != sc->next_mb)
2048 timeout(epmbuffill, sc, 1);
2049 splx(s);
2050 }
2051
2052 void
2053 epmbufempty(sc)
2054 struct ep_softc *sc;
2055 {
2056 int s, i;
2057
2058 s = splnet();
2059 for (i = 0; i<MAX_MBS; i++) {
2060 if (sc->mb[i]) {
2061 m_freem(sc->mb[i]);
2062 sc->mb[i] = NULL;
2063 }
2064 }
2065 sc->last_mb = sc->next_mb = 0;
2066 untimeout(epmbuffill, sc);
2067 splx(s);
2068 }
2069
2070 int
2071 epenable(sc)
2072 struct ep_softc *sc;
2073 {
2074
2075 if (sc->enabled == 0 && sc->enable != NULL) {
2076 if ((*sc->enable)(sc) != 0) {
2077 printf("%s: device enable failed\n",
2078 sc->sc_dev.dv_xname);
2079 return (EIO);
2080 }
2081 }
2082
2083 sc->enabled = 1;
2084 return (0);
2085 }
2086
2087 void
2088 epdisable(sc)
2089 struct ep_softc *sc;
2090 {
2091
2092 if (sc->enabled != 0 && sc->disable != NULL) {
2093 (*sc->disable)(sc);
2094 sc->enabled = 0;
2095 }
2096 }
2097
2098 int
2099 ep_activate(self, act)
2100 struct device *self;
2101 enum devact act;
2102 {
2103 struct ep_softc *sc = (struct ep_softc *)self;
2104 int rv = 0, s;
2105
2106 s = splnet();
2107 switch (act) {
2108 case DVACT_ACTIVATE:
2109 rv = EOPNOTSUPP;
2110 break;
2111
2112 case DVACT_DEACTIVATE:
2113 #ifdef notyet
2114 /* First, kill off the interface. */
2115 if_detach(sc->sc_ethercom.ec_if);
2116 #endif
2117
2118 /* Now disable the interface. */
2119 epdisable(sc);
2120 break;
2121 }
2122 splx(s);
2123 return (rv);
2124 }
2125
2126 void
2127 ep_mii_setbit(sc, bit)
2128 struct ep_softc *sc;
2129 u_int16_t bit;
2130 {
2131 u_int16_t val;
2132
2133 /* We assume we're already in Window 4 */
2134 val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT);
2135 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT,
2136 val | bit);
2137 }
2138
2139 void
2140 ep_mii_clrbit(sc, bit)
2141 struct ep_softc *sc;
2142 u_int16_t bit;
2143 {
2144 u_int16_t val;
2145
2146 /* We assume we're already in Window 4 */
2147 val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT);
2148 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT,
2149 val & ~bit);
2150 }
2151
2152 u_int16_t
2153 ep_mii_readbit(sc, bit)
2154 struct ep_softc *sc;
2155 u_int16_t bit;
2156 {
2157
2158 /* We assume we're already in Window 4 */
2159 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT) &
2160 bit);
2161 }
2162
2163 void
2164 ep_mii_sync(sc)
2165 struct ep_softc *sc;
2166 {
2167 int i;
2168
2169 /* We assume we're already in Window 4 */
2170 ep_mii_clrbit(sc, PHYSMGMT_DIR);
2171 for (i = 0; i < 32; i++) {
2172 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2173 ep_mii_setbit(sc, PHYSMGMT_CLK);
2174 }
2175 }
2176
2177 void
2178 ep_mii_sendbits(sc, data, nbits)
2179 struct ep_softc *sc;
2180 u_int32_t data;
2181 int nbits;
2182 {
2183 int i;
2184
2185 /* We assume we're already in Window 4 */
2186 ep_mii_setbit(sc, PHYSMGMT_DIR);
2187 for (i = 1 << (nbits - 1); i; i = i >> 1) {
2188 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2189 ep_mii_readbit(sc, PHYSMGMT_CLK);
2190 if (data & i)
2191 ep_mii_setbit(sc, PHYSMGMT_DATA);
2192 else
2193 ep_mii_clrbit(sc, PHYSMGMT_DATA);
2194 ep_mii_setbit(sc, PHYSMGMT_CLK);
2195 ep_mii_readbit(sc, PHYSMGMT_CLK);
2196 }
2197 }
2198
2199 int
2200 ep_mii_readreg(self, phy, reg)
2201 struct device *self;
2202 int phy, reg;
2203 {
2204 struct ep_softc *sc = (struct ep_softc *)self;
2205 int val = 0, i, err;
2206
2207 /*
2208 * Read the PHY register by manually driving the MII control lines.
2209 */
2210
2211 GO_WINDOW(4);
2212
2213 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT, 0);
2214
2215 ep_mii_sync(sc);
2216 ep_mii_sendbits(sc, MII_COMMAND_START, 2);
2217 ep_mii_sendbits(sc, MII_COMMAND_READ, 2);
2218 ep_mii_sendbits(sc, phy, 5);
2219 ep_mii_sendbits(sc, reg, 5);
2220
2221 ep_mii_clrbit(sc, PHYSMGMT_DIR);
2222 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2223 ep_mii_setbit(sc, PHYSMGMT_CLK);
2224 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2225
2226 err = ep_mii_readbit(sc, PHYSMGMT_DATA);
2227 ep_mii_setbit(sc, PHYSMGMT_CLK);
2228
2229 /* Even if an error occurs, must still clock out the cycle. */
2230 for (i = 0; i < 16; i++) {
2231 val <<= 1;
2232 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2233 if (err == 0 && ep_mii_readbit(sc, PHYSMGMT_DATA))
2234 val |= 1;
2235 ep_mii_setbit(sc, PHYSMGMT_CLK);
2236 }
2237 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2238 ep_mii_setbit(sc, PHYSMGMT_CLK);
2239
2240 GO_WINDOW(1); /* back to operating window */
2241
2242 return (err ? 0 : val);
2243 }
2244
2245 void
2246 ep_mii_writereg(self, phy, reg, val)
2247 struct device *self;
2248 int phy, reg, val;
2249 {
2250 struct ep_softc *sc = (struct ep_softc *)self;
2251
2252 /*
2253 * Write the PHY register by manually driving the MII control lines.
2254 */
2255
2256 GO_WINDOW(4);
2257
2258 ep_mii_sync(sc);
2259 ep_mii_sendbits(sc, MII_COMMAND_START, 2);
2260 ep_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
2261 ep_mii_sendbits(sc, phy, 5);
2262 ep_mii_sendbits(sc, reg, 5);
2263 ep_mii_sendbits(sc, MII_COMMAND_ACK, 2);
2264 ep_mii_sendbits(sc, val, 16);
2265
2266 ep_mii_clrbit(sc, PHYSMGMT_CLK);
2267 ep_mii_setbit(sc, PHYSMGMT_CLK);
2268
2269 GO_WINDOW(1); /* back to operating window */
2270 }
2271
2272 void
2273 ep_statchg(self)
2274 struct device *self;
2275 {
2276 struct ep_softc *sc = (struct ep_softc *)self;
2277 bus_space_tag_t iot = sc->sc_iot;
2278 bus_space_handle_t ioh = sc->sc_ioh;
2279 int mctl;
2280
2281 /* XXX Update ifp->if_baudrate */
2282
2283 GO_WINDOW(3);
2284 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
2285 if (sc->sc_mii.mii_media_active & IFM_FDX)
2286 mctl |= MAC_CONTROL_FDX;
2287 else
2288 mctl &= ~MAC_CONTROL_FDX;
2289 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
2290 GO_WINDOW(1); /* back to operating window */
2291 }
2292