Home | History | Annotate | Line # | Download | only in ic
elink3.c revision 1.62
      1 /*	$NetBSD: elink3.c,v 1.62 1999/10/30 01:35:47 enami Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
     42  * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
     43  * All rights reserved.
     44  *
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice, this list of conditions and the following disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  * 3. All advertising materials mentioning features or use of this software
     54  *    must display the following acknowledgement:
     55  *      This product includes software developed by Herb Peyerl.
     56  * 4. The name of Herb Peyerl may not be used to endorse or promote products
     57  *    derived from this software without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     60  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     61  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     63  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     64  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     65  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     66  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     67  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     68  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     69  */
     70 
     71 #include "opt_inet.h"
     72 #include "opt_ns.h"
     73 #include "bpfilter.h"
     74 #include "rnd.h"
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/mbuf.h>
     80 #include <sys/socket.h>
     81 #include <sys/ioctl.h>
     82 #include <sys/errno.h>
     83 #include <sys/syslog.h>
     84 #include <sys/select.h>
     85 #include <sys/device.h>
     86 #if NRND > 0
     87 #include <sys/rnd.h>
     88 #endif
     89 
     90 #include <net/if.h>
     91 #include <net/if_dl.h>
     92 #include <net/if_ether.h>
     93 #include <net/if_media.h>
     94 
     95 #ifdef INET
     96 #include <netinet/in.h>
     97 #include <netinet/in_systm.h>
     98 #include <netinet/in_var.h>
     99 #include <netinet/ip.h>
    100 #include <netinet/if_inarp.h>
    101 #endif
    102 
    103 #ifdef NS
    104 #include <netns/ns.h>
    105 #include <netns/ns_if.h>
    106 #endif
    107 
    108 #if NBPFILTER > 0
    109 #include <net/bpf.h>
    110 #include <net/bpfdesc.h>
    111 #endif
    112 
    113 #include <machine/cpu.h>
    114 #include <machine/bus.h>
    115 #include <machine/intr.h>
    116 
    117 #include <dev/mii/mii.h>
    118 #include <dev/mii/miivar.h>
    119 
    120 #include <dev/ic/elink3var.h>
    121 #include <dev/ic/elink3reg.h>
    122 
    123 #ifdef DEBUG
    124 int epdebug = 0;
    125 #endif
    126 
    127 /*
    128  * XXX endian workaround for big-endian CPUs  with pcmcia:
    129  * if stream methods for bus_space_multi are not provided, define them
    130  * using non-stream bus_space_{read,write}_multi_.
    131  * Assumes host CPU is same endian-ness as bus.
    132  */
    133 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
    134 #define bus_space_read_multi_stream_2	bus_space_read_multi_2
    135 #define bus_space_read_multi_stream_4	bus_space_read_multi_4
    136 #define bus_space_write_multi_stream_2	bus_space_write_multi_2
    137 #define bus_space_write_multi_stream_4	bus_space_write_multi_4
    138 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
    139 
    140 /*
    141  * Structure to map media-present bits in boards to ifmedia codes and
    142  * printable media names. Used for table-driven ifmedia initialization.
    143  */
    144 struct ep_media {
    145 	int	epm_mpbit;		/* media present bit */
    146 	const char *epm_name;		/* name of medium */
    147 	int	epm_ifmedia;		/* ifmedia word for medium */
    148 	int	epm_epmedia;		/* ELINKMEDIA_* constant */
    149 };
    150 
    151 /*
    152  * Media table for the Demon/Vortex/Boomerang chipsets.
    153  *
    154  * Note that MII on the Demon and Vortex (3c59x) indicates an external
    155  * MII connector (for connecting an external PHY) ... I think.  Treat
    156  * it as `manual' on these chips.
    157  *
    158  * Any Boomerang (3c90x) chips with MII really do have an internal
    159  * MII and real PHYs attached; no `native' media.
    160  */
    161 struct ep_media ep_vortex_media[] = {
    162 	{ ELINK_PCI_10BASE_T,	"10baseT",	IFM_ETHER|IFM_10_T,
    163 	  ELINKMEDIA_10BASE_T },
    164 	{ ELINK_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER|IFM_10_T|IFM_FDX,
    165 	  ELINKMEDIA_10BASE_T },
    166 	{ ELINK_PCI_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
    167 	  ELINKMEDIA_AUI },
    168 	{ ELINK_PCI_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
    169 	  ELINKMEDIA_10BASE_2 },
    170 	{ ELINK_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER|IFM_100_TX,
    171 	  ELINKMEDIA_100BASE_TX },
    172 	{ ELINK_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
    173 	  ELINKMEDIA_100BASE_TX },
    174 	{ ELINK_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER|IFM_100_FX,
    175 	  ELINKMEDIA_100BASE_FX },
    176 	{ ELINK_PCI_100BASE_MII,"manual",	IFM_ETHER|IFM_MANUAL,
    177 	  ELINKMEDIA_MII },
    178 	{ ELINK_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER|IFM_100_T4,
    179 	  ELINKMEDIA_100BASE_T4 },
    180 	{ 0,			NULL,		0,
    181 	  0 },
    182 };
    183 
    184 /*
    185  * Media table for the older 3Com Etherlink III chipset, used
    186  * in the 3c509, 3c579, and 3c589.
    187  */
    188 struct ep_media ep_509_media[] = {
    189 	{ ELINK_W0_CC_UTP,	"10baseT",	IFM_ETHER|IFM_10_T,
    190 	  ELINKMEDIA_10BASE_T },
    191 	{ ELINK_W0_CC_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
    192 	  ELINKMEDIA_AUI },
    193 	{ ELINK_W0_CC_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
    194 	  ELINKMEDIA_10BASE_2 },
    195 	{ 0,			NULL,		0,
    196 	  0 },
    197 };
    198 
    199 void	ep_internalconfig __P((struct ep_softc *sc));
    200 void	ep_vortex_probemedia __P((struct ep_softc *sc));
    201 void	ep_509_probemedia __P((struct ep_softc *sc));
    202 
    203 static void eptxstat __P((struct ep_softc *));
    204 static int epstatus __P((struct ep_softc *));
    205 void	epinit __P((struct ep_softc *));
    206 int	epioctl __P((struct ifnet *, u_long, caddr_t));
    207 void	epstart __P((struct ifnet *));
    208 void	epwatchdog __P((struct ifnet *));
    209 void	epreset __P((struct ep_softc *));
    210 static void epshutdown __P((void *));
    211 void	epread __P((struct ep_softc *));
    212 struct mbuf *epget __P((struct ep_softc *, int));
    213 void	epmbuffill __P((void *));
    214 void	epmbufempty __P((struct ep_softc *));
    215 void	epsetfilter __P((struct ep_softc *));
    216 void	ep_roadrunner_mii_enable __P((struct ep_softc *));
    217 void	epsetmedia __P((struct ep_softc *));
    218 
    219 /* ifmedia callbacks */
    220 int	ep_media_change __P((struct ifnet *ifp));
    221 void	ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
    222 
    223 /* MII callbacks */
    224 int	ep_mii_readreg __P((struct device *, int, int));
    225 void	ep_mii_writereg __P((struct device *, int, int, int));
    226 void	ep_statchg __P((struct device *));
    227 
    228 void	ep_tick __P((void *));
    229 
    230 void	ep_mii_setbit __P((struct ep_softc *, u_int16_t));
    231 void	ep_mii_clrbit __P((struct ep_softc *, u_int16_t));
    232 u_int16_t ep_mii_readbit __P((struct ep_softc *, u_int16_t));
    233 void	ep_mii_sync __P((struct ep_softc *));
    234 void	ep_mii_sendbits __P((struct ep_softc *, u_int32_t, int));
    235 
    236 static int epbusyeeprom __P((struct ep_softc *));
    237 u_int16_t ep_read_eeprom __P((struct ep_softc *, u_int16_t));
    238 static inline void ep_reset_cmd __P((struct ep_softc *sc,
    239 					u_int cmd, u_int arg));
    240 static inline void ep_finish_reset __P((bus_space_tag_t, bus_space_handle_t));
    241 static inline void ep_discard_rxtop __P((bus_space_tag_t, bus_space_handle_t));
    242 static __inline int ep_w1_reg __P((struct ep_softc *, int));
    243 
    244 /*
    245  * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
    246  * Window 1 registers offset!
    247  */
    248 static __inline int
    249 ep_w1_reg(sc, reg)
    250 	struct ep_softc *sc;
    251 	int reg;
    252 {
    253 
    254 	switch (sc->ep_chipset) {
    255 	case ELINK_CHIPSET_CORKSCREW:
    256 		return (reg + 0x10);
    257 
    258 	case ELINK_CHIPSET_ROADRUNNER:
    259 		switch (reg) {
    260 		case ELINK_W1_FREE_TX:
    261 		case ELINK_W1_RUNNER_RDCTL:
    262 		case ELINK_W1_RUNNER_WRCTL:
    263 			return (reg);
    264 		}
    265 		return (reg + 0x10);
    266 	}
    267 
    268 	return (reg);
    269 }
    270 
    271 /*
    272  * Wait for any pending reset to complete.
    273  * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
    274  * but older hardware doesn't implement it and we must delay.
    275  */
    276 static inline void
    277 ep_finish_reset(iot, ioh)
    278 	bus_space_tag_t iot;
    279 	bus_space_handle_t ioh;
    280 
    281 {
    282 	int i;
    283 
    284 	for (i = 0; i < 10000; i++) {
    285 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
    286 		    S_COMMAND_IN_PROGRESS) == 0)
    287 			break;
    288 		DELAY(10);
    289 	}
    290 }
    291 
    292 /*
    293  * Issue a (reset) command, and be sure it has completed.
    294  * Used for global reset, TX_RESET, RX_RESET.
    295  */
    296 static inline void
    297 ep_reset_cmd(sc, cmd, arg)
    298 	struct ep_softc *sc;
    299 	u_int cmd, arg;
    300 {
    301 	register bus_space_tag_t iot = sc->sc_iot;
    302 	register bus_space_handle_t ioh = sc->sc_ioh;
    303 
    304 	bus_space_write_2(iot, ioh, cmd, arg);
    305 	ep_finish_reset(iot, ioh);
    306 }
    307 
    308 
    309 static inline void
    310 ep_discard_rxtop(iot, ioh)
    311 	register bus_space_tag_t iot;
    312 	register bus_space_handle_t ioh;
    313 {
    314 	int i;
    315 
    316 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
    317 
    318         /*
    319 	 * Spin for about 1 msec, to avoid forcing a DELAY() between
    320 	 * every received packet (adding latency and  limiting pkt-recv rate).
    321 	 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
    322 	 * is about right.
    323 	 */
    324 	for (i = 0; i < 8000; i++) {
    325 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
    326 		    S_COMMAND_IN_PROGRESS) == 0)
    327 		    return;
    328 	}
    329 
    330 	/*  Didn't complete in a hurry. Do DELAY()s. */
    331 	ep_finish_reset(iot, ioh);
    332 }
    333 
    334 /*
    335  * Back-end attach and configure.
    336  */
    337 void
    338 epconfig(sc, chipset, enaddr)
    339 	struct ep_softc *sc;
    340 	u_short chipset;
    341 	u_int8_t *enaddr;
    342 {
    343 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    344 	bus_space_tag_t iot = sc->sc_iot;
    345 	bus_space_handle_t ioh = sc->sc_ioh;
    346 	u_int16_t i;
    347 	u_int8_t myla[6];
    348 
    349 	sc->ep_chipset = chipset;
    350 
    351 	/*
    352 	 * We could have been groveling around in other register
    353 	 * windows in the front-end; make sure we're in window 0
    354 	 * to read the EEPROM.
    355 	 */
    356 	GO_WINDOW(0);
    357 
    358 	if (enaddr == NULL) {
    359 		/*
    360 		 * Read the station address from the eeprom.
    361 		 */
    362 		for (i = 0; i < 3; i++) {
    363 			u_int16_t x = ep_read_eeprom(sc, i);
    364 			myla[(i << 1)] = x >> 8;
    365 			myla[(i << 1) + 1] = x;
    366 		}
    367 		enaddr = myla;
    368 	}
    369 
    370 	/*
    371 	 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
    372 	 * allow FDDI-sized (4500) byte packets.  Commands only take an
    373 	 * 11-bit parameter, and  11 bits isn't enough to hold a full-size
    374 	 * packet length.
    375 	 * Commands to these cards implicitly upshift a packet size
    376 	 * or threshold by 2 bits.
    377 	 * To detect  cards with large-packet support, we probe by setting
    378 	 * the transmit threshold register, then change windows and
    379 	 * read back the threshold register directly, and see if the
    380 	 * threshold value was shifted or not.
    381 	 */
    382 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    383 	    SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
    384 	GO_WINDOW(5);
    385 	i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
    386 	GO_WINDOW(1);
    387 	switch (i)  {
    388 	case ELINK_LARGEWIN_PROBE:
    389 	case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
    390 		sc->ep_pktlenshift = 0;
    391 		break;
    392 
    393 	case (ELINK_LARGEWIN_PROBE << 2):
    394 		sc->ep_pktlenshift = 2;
    395 		break;
    396 
    397 	default:
    398 		printf("%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
    399 		    "Interface disabled\n",
    400 		    sc->sc_dev.dv_xname, ELINK_LARGEWIN_PROBE, (int) i);
    401 		return;
    402 	}
    403 
    404 	/*
    405 	 * Ensure Tx-available interrupts are enabled for
    406 	 * start the interface.
    407 	 * XXX should be in epinit()?
    408 	 */
    409 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    410 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
    411 
    412 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
    413 	ifp->if_softc = sc;
    414 	ifp->if_start = epstart;
    415 	ifp->if_ioctl = epioctl;
    416 	ifp->if_watchdog = epwatchdog;
    417 	ifp->if_flags =
    418 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    419 
    420 	if_attach(ifp);
    421 	ether_ifattach(ifp, enaddr);
    422 
    423 	/*
    424 	 * Finish configuration:
    425 	 * determine chipset if the front-end couldn't do so,
    426 	 * show board details, set media.
    427 	 */
    428 
    429 	/*
    430 	 * Print RAM size.  We also print the Ethernet address in here.
    431 	 * It's extracted from the ifp, so we have to make sure it's
    432 	 * been attached first.
    433 	 */
    434 	ep_internalconfig(sc);
    435 	GO_WINDOW(0);
    436 
    437 	/*
    438 	 * Display some additional information, if pertinent.
    439 	 */
    440 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
    441 		printf("%s: RoadRunner FIFO buffer enabled\n",
    442 		    sc->sc_dev.dv_xname);
    443 
    444 	/*
    445 	 * Initialize our media structures and MII info.  We'll
    446 	 * probe the MII if we discover that we have one.
    447 	 */
    448 	sc->sc_mii.mii_ifp = ifp;
    449 	sc->sc_mii.mii_readreg = ep_mii_readreg;
    450 	sc->sc_mii.mii_writereg = ep_mii_writereg;
    451 	sc->sc_mii.mii_statchg = ep_statchg;
    452 	ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
    453 	    ep_media_status);
    454 
    455 	/*
    456 	 * Now, determine which media we have.
    457 	 */
    458 	switch (sc->ep_chipset) {
    459 	case ELINK_CHIPSET_ROADRUNNER:
    460 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    461 			ep_roadrunner_mii_enable(sc);
    462 			GO_WINDOW(0);
    463 		}
    464 		/* FALLTHROUGH */
    465 
    466 	case ELINK_CHIPSET_BOOMERANG:
    467 		/*
    468 		 * If the device has MII, probe it.  We won't be using
    469 		 * any `native' media in this case, only PHYs.  If
    470 		 * we don't, just treat the Boomerang like the Vortex.
    471 		 */
    472 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    473 			mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff);
    474 			if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    475 				ifmedia_add(&sc->sc_mii.mii_media,
    476 				    IFM_ETHER|IFM_NONE, 0, NULL);
    477 				ifmedia_set(&sc->sc_mii.mii_media,
    478 				    IFM_ETHER|IFM_NONE);
    479 			} else {
    480 				ifmedia_set(&sc->sc_mii.mii_media,
    481 				    IFM_ETHER|IFM_AUTO);
    482 			}
    483 			break;
    484 		}
    485 		/* FALLTHROUGH */
    486 
    487 	case ELINK_CHIPSET_VORTEX:
    488 		ep_vortex_probemedia(sc);
    489 		break;
    490 
    491 	default:
    492 		ep_509_probemedia(sc);
    493 		break;
    494 	}
    495 
    496 	GO_WINDOW(1);		/* Window 1 is operating window */
    497 
    498 #if NBPFILTER > 0
    499 	bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
    500 #endif
    501 
    502 #if NRND > 0
    503 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    504 	    RND_TYPE_NET, 0);
    505 #endif
    506 
    507 	sc->tx_start_thresh = 20;	/* probably a good starting point. */
    508 
    509 	/*  Establish callback to reset card when we reboot. */
    510 	shutdownhook_establish(epshutdown, sc);
    511 
    512 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    513 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    514 }
    515 
    516 
    517 /*
    518  * Show interface-model-independent info from window 3
    519  * internal-configuration register.
    520  */
    521 void
    522 ep_internalconfig(sc)
    523 	struct ep_softc *sc;
    524 {
    525 	bus_space_tag_t iot = sc->sc_iot;
    526 	bus_space_handle_t ioh = sc->sc_ioh;
    527 
    528 	u_int config0;
    529 	u_int config1;
    530 
    531 	int  ram_size, ram_width, ram_speed, rom_size, ram_split;
    532 	/*
    533 	 * NVRAM buffer Rx:Tx config names for busmastering cards
    534 	 * (Demon, Vortex, and later).
    535 	 */
    536 	const char *onboard_ram_config[] = {
    537 		"5:3", "3:1", "1:1", "3:5" };
    538 
    539 	GO_WINDOW(3);
    540 	config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
    541 	config1 = (u_int)bus_space_read_2(iot, ioh,
    542 	    ELINK_W3_INTERNAL_CONFIG + 2);
    543 	GO_WINDOW(0);
    544 
    545 	ram_size  = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
    546 	ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
    547 	ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
    548 	rom_size  = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
    549 
    550 	ram_split  = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
    551 
    552 	printf("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
    553 	       sc->sc_dev.dv_xname,
    554 	       ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
    555 	       8 << ram_size,
    556 	       (ram_width) ? "word" : "byte",
    557 	       onboard_ram_config[ram_split]);
    558 }
    559 
    560 
    561 /*
    562  * Find supported media on 3c509-generation hardware that doesn't have
    563  * a "reset_options" register in window 3.
    564  * Use the config_cntrl register  in window 0 instead.
    565  * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
    566  * that implement  CONFIG_CTRL.  We don't have a good way to set the
    567  * default active mediuim; punt to ifconfig  instead.
    568  */
    569 void
    570 ep_509_probemedia(sc)
    571 	struct ep_softc *sc;
    572 {
    573 	bus_space_tag_t iot = sc->sc_iot;
    574 	bus_space_handle_t ioh = sc->sc_ioh;
    575 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    576 	u_int16_t ep_w0_config, port;
    577 	struct ep_media *epm;
    578 	const char *sep = "", *defmedianame = NULL;
    579 	int defmedia = 0;
    580 
    581 	GO_WINDOW(0);
    582 	ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
    583 
    584 	printf("%s: ", sc->sc_dev.dv_xname);
    585 
    586 	/* Sanity check that there are any media! */
    587 	if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
    588 		printf("no media present!\n");
    589 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
    590 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
    591 		return;
    592 	}
    593 
    594 	/*
    595 	 * Get the default media from the EEPROM.
    596 	 */
    597 	port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
    598 
    599 #define	PRINT(s)	printf("%s%s", sep, s); sep = ", "
    600 
    601 	for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
    602 		if (ep_w0_config & epm->epm_mpbit) {
    603 			/*
    604 			 * This simple test works because 509 chipsets
    605 			 * don't do full-duplex.
    606 			 */
    607 			if (epm->epm_epmedia == port || defmedia == 0) {
    608 				defmedia = epm->epm_ifmedia;
    609 				defmedianame = epm->epm_name;
    610 			}
    611 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
    612 			    NULL);
    613 			PRINT(epm->epm_name);
    614 		}
    615 	}
    616 
    617 #undef PRINT
    618 
    619 #ifdef DIAGNOSTIC
    620 	if (defmedia == 0)
    621 		panic("ep_509_probemedia: impossible");
    622 #endif
    623 
    624 	printf(" (default %s)\n", defmedianame);
    625 	ifmedia_set(ifm, defmedia);
    626 }
    627 
    628 /*
    629  * Find media present on large-packet-capable elink3 devices.
    630  * Show onboard configuration of large-packet-capable elink3 devices
    631  * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
    632  * Use media and card-version info in window 3 instead.
    633  */
    634 void
    635 ep_vortex_probemedia(sc)
    636 	struct ep_softc *sc;
    637 {
    638 	bus_space_tag_t iot = sc->sc_iot;
    639 	bus_space_handle_t ioh = sc->sc_ioh;
    640 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    641 	struct ep_media *epm;
    642 	u_int config1;
    643 	int reset_options;
    644 	int default_media;	/* 3-bit encoding of default (EEPROM) media */
    645 	int defmedia = 0;
    646 	const char *sep = "", *defmedianame = NULL;
    647 
    648 	GO_WINDOW(3);
    649 	config1 = (u_int)bus_space_read_2(iot, ioh,
    650 	    ELINK_W3_INTERNAL_CONFIG + 2);
    651 	reset_options = (int)bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
    652 	GO_WINDOW(0);
    653 
    654 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
    655 
    656 	printf("%s: ", sc->sc_dev.dv_xname);
    657 
    658 	/* Sanity check that there are any media! */
    659 	if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
    660 		printf("no media present!\n");
    661 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
    662 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
    663 		return;
    664 	}
    665 
    666 #define	PRINT(s)	printf("%s%s", sep, s); sep = ", "
    667 
    668 	for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
    669 		if (reset_options & epm->epm_mpbit) {
    670 			/*
    671 			 * Default media is a little more complicated
    672 			 * on the Vortex.  We support full-duplex which
    673 			 * uses the same reset options bit.
    674 			 *
    675 			 * XXX Check EEPROM for default to FDX?
    676 			 */
    677 			if (epm->epm_epmedia == default_media) {
    678 				if ((epm->epm_ifmedia & IFM_FDX) == 0) {
    679 					defmedia = epm->epm_ifmedia;
    680 					defmedianame = epm->epm_name;
    681 				}
    682 			} else if (defmedia == 0) {
    683 				defmedia = epm->epm_ifmedia;
    684 				defmedianame = epm->epm_name;
    685 			}
    686 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
    687 			    NULL);
    688 			PRINT(epm->epm_name);
    689 		}
    690 	}
    691 
    692 #undef PRINT
    693 
    694 #ifdef DIAGNOSTIC
    695 	if (defmedia == 0)
    696 		panic("ep_vortex_probemedia: impossible");
    697 #endif
    698 
    699 	printf(" (default %s)\n", defmedianame);
    700 	ifmedia_set(ifm, defmedia);
    701 }
    702 
    703 /*
    704  * One second timer, used to tick the MII.
    705  */
    706 void
    707 ep_tick(arg)
    708 	void *arg;
    709 {
    710 	struct ep_softc *sc = arg;
    711 	int s;
    712 
    713 #ifdef DIAGNOSTIC
    714 	if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
    715 		panic("ep_tick");
    716 #endif
    717 
    718 	s = splnet();
    719 	mii_tick(&sc->sc_mii);
    720 	splx(s);
    721 
    722 	timeout(ep_tick, sc, hz);
    723 }
    724 
    725 /*
    726  * Bring device up.
    727  *
    728  * The order in here seems important. Otherwise we may not receive
    729  * interrupts. ?!
    730  */
    731 void
    732 epinit(sc)
    733 	register struct ep_softc *sc;
    734 {
    735 	register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    736 	bus_space_tag_t iot = sc->sc_iot;
    737 	bus_space_handle_t ioh = sc->sc_ioh;
    738 	int i;
    739 
    740 	/* Make sure any pending reset has completed before touching board. */
    741 	ep_finish_reset(iot, ioh);
    742 
    743 	/*
    744 	 * Cance any pending I/O.
    745 	 */
    746 	epstop(sc);
    747 
    748 	if (sc->bustype != ELINK_BUS_PCI) {
    749 		GO_WINDOW(0);
    750 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
    751 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
    752 		    ENABLE_DRQ_IRQ);
    753 	}
    754 
    755 	if (sc->bustype == ELINK_BUS_PCMCIA) {
    756 		bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
    757 	}
    758 
    759 	GO_WINDOW(2);
    760 	for (i = 0; i < 6; i++)	/* Reload the ether_addr. */
    761 		bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
    762 		    LLADDR(ifp->if_sadl)[i]);
    763 
    764 	/*
    765 	 * Reset the station-address receive filter.
    766 	 * A bug workaround for busmastering (Vortex, Demon) cards.
    767 	 */
    768 	for (i = 0; i < 6; i++)
    769 		bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
    770 
    771 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    772 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    773 
    774 	GO_WINDOW(1);		/* Window 1 is operating window */
    775 	for (i = 0; i < 31; i++)
    776 		bus_space_read_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS));
    777 
    778 	/* Set threshhold for for Tx-space avaiable interrupt. */
    779 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    780 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
    781 
    782 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
    783 		/*
    784 		 * Enable options in the PCMCIA LAN COR register, via
    785 		 * RoadRunner Window 1.
    786 		 *
    787 		 * XXX MAGIC CONSTANTS!
    788 		 */
    789 		u_int16_t cor;
    790 
    791 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
    792 
    793 		cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
    794 		if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
    795 			cor |= 0x10;
    796 		if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
    797 			cor |= 0x20;
    798 		bus_space_write_2(iot, ioh, 0, cor);
    799 
    800 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
    801 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
    802 
    803 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    804 			ep_roadrunner_mii_enable(sc);
    805 			GO_WINDOW(1);
    806 		}
    807 	}
    808 
    809 	/* Enable interrupts. */
    810 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    811 	    SET_RD_0_MASK | S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE |
    812 	    S_TX_AVAIL);
    813 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    814 	    SET_INTR_MASK | S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE |
    815 	    S_TX_AVAIL);
    816 
    817 	/*
    818 	 * Attempt to get rid of any stray interrupts that occured during
    819 	 * configuration.  On the i386 this isn't possible because one may
    820 	 * already be queued.  However, a single stray interrupt is
    821 	 * unimportant.
    822 	 */
    823 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
    824 
    825 	epsetfilter(sc);
    826 	epsetmedia(sc);
    827 
    828 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
    829 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
    830 
    831 	epmbuffill(sc);
    832 
    833 	/* Interface is now `running', with no output active. */
    834 	ifp->if_flags |= IFF_RUNNING;
    835 	ifp->if_flags &= ~IFF_OACTIVE;
    836 
    837 	if (sc->ep_flags & ELINK_FLAGS_MII) {
    838 		/* Start the one second clock. */
    839 		timeout(ep_tick, sc, hz);
    840 	}
    841 
    842 	/* Attempt to start output, if any. */
    843 	epstart(ifp);
    844 }
    845 
    846 
    847 /*
    848  * Set multicast receive filter.
    849  * elink3 hardware has no selective multicast filter in hardware.
    850  * Enable reception of all multicasts and filter in software.
    851  */
    852 void
    853 epsetfilter(sc)
    854 	register struct ep_softc *sc;
    855 {
    856 	register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    857 
    858 	GO_WINDOW(1);		/* Window 1 is operating window */
    859 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
    860 	    SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
    861 	    ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
    862 	    ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
    863 }
    864 
    865 int
    866 ep_media_change(ifp)
    867 	struct ifnet *ifp;
    868 {
    869 	register struct ep_softc *sc = ifp->if_softc;
    870 
    871 	if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
    872 		epreset(sc);
    873 
    874 	return (0);
    875 }
    876 
    877 /*
    878  * Reset and enable the MII on the RoadRunner.
    879  */
    880 void
    881 ep_roadrunner_mii_enable(sc)
    882 	struct ep_softc *sc;
    883 {
    884 	bus_space_tag_t iot = sc->sc_iot;
    885 	bus_space_handle_t ioh = sc->sc_ioh;
    886 
    887 	GO_WINDOW(3);
    888 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    889 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
    890 	delay(1000);
    891 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    892 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
    893 	    ELINK_RUNNER_ENABLE_MII);
    894 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    895 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    896 	delay(1000);
    897 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    898 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
    899 }
    900 
    901 /*
    902  * Set the card to use the specified media.
    903  */
    904 void
    905 epsetmedia(sc)
    906 	struct ep_softc *sc;
    907 {
    908 	bus_space_tag_t iot = sc->sc_iot;
    909 	bus_space_handle_t ioh = sc->sc_ioh;
    910 
    911 	/* Turn everything off.  First turn off linkbeat and UTP. */
    912 	GO_WINDOW(4);
    913 	bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
    914 
    915 	/* Turn off coax */
    916 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
    917 	delay(1000);
    918 
    919 	/*
    920 	 * If the device has MII, select it, and then tell the
    921 	 * PHY which media to use.
    922 	 */
    923 	if (sc->ep_flags & ELINK_FLAGS_MII) {
    924 		int config0, config1;
    925 
    926 		GO_WINDOW(3);
    927 
    928 #if 0
    929 		if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
    930 			int resopt;
    931 
    932 			resopt = bus_space_read_2(iot, ioh,
    933 			    ELINK_W3_RESET_OPTIONS);
    934 			bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    935 			    resopt | ELINK_RUNNER_ENABLE_MII);
    936 		}
    937 #endif
    938 
    939 		config0 = (u_int)bus_space_read_2(iot, ioh,
    940 		    ELINK_W3_INTERNAL_CONFIG);
    941 		config1 = (u_int)bus_space_read_2(iot, ioh,
    942 		    ELINK_W3_INTERNAL_CONFIG + 2);
    943 
    944 		config1 = config1 & ~CONFIG_MEDIAMASK;
    945 		config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
    946 
    947 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
    948 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
    949 		    config1);
    950 		GO_WINDOW(1);	/* back to operating window */
    951 
    952 		mii_mediachg(&sc->sc_mii);
    953 		return;
    954 	}
    955 
    956 	/*
    957 	 * Now turn on the selected media/transceiver.
    958 	 */
    959 	GO_WINDOW(4);
    960 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
    961 	case IFM_10_T:
    962 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
    963 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
    964 		break;
    965 
    966 	case IFM_10_2:
    967 		bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
    968 		DELAY(1000);	/* 50ms not enmough? */
    969 		break;
    970 
    971 	case IFM_100_TX:
    972 	case IFM_100_FX:
    973 	case IFM_100_T4:		/* XXX check documentation */
    974 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
    975 		    LINKBEAT_ENABLE);
    976 		DELAY(1000);	/* not strictly necessary? */
    977 		break;
    978 
    979 	case IFM_10_5:
    980 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
    981 		    SQE_ENABLE);
    982 		DELAY(1000);	/* not strictly necessary? */
    983 		break;
    984 
    985 	case IFM_MANUAL:
    986 		/*
    987 		 * Nothing to do here; we are actually enabling the
    988 		 * external PHY on the MII port.
    989 		 */
    990 		break;
    991 
    992 	case IFM_NONE:
    993 		printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
    994 		return;
    995 
    996 	default:
    997 		panic("epsetmedia: impossible");
    998 	}
    999 
   1000 	/*
   1001 	 * Tell the chip which port to use.
   1002 	 */
   1003 	switch (sc->ep_chipset) {
   1004 	case ELINK_CHIPSET_VORTEX:
   1005 	case ELINK_CHIPSET_BOOMERANG:
   1006 	    {
   1007 		int mctl, config0, config1;
   1008 
   1009 		GO_WINDOW(3);
   1010 		config0 = (u_int)bus_space_read_2(iot, ioh,
   1011 		    ELINK_W3_INTERNAL_CONFIG);
   1012 		config1 = (u_int)bus_space_read_2(iot, ioh,
   1013 		    ELINK_W3_INTERNAL_CONFIG + 2);
   1014 
   1015 		config1 = config1 & ~CONFIG_MEDIAMASK;
   1016 		config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
   1017 		    CONFIG_MEDIAMASK_SHIFT);
   1018 
   1019 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
   1020 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
   1021 		    config1);
   1022 
   1023 		mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
   1024 		if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
   1025 			mctl |= MAC_CONTROL_FDX;
   1026 		else
   1027 			mctl &= ~MAC_CONTROL_FDX;
   1028 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
   1029 		break;
   1030 	    }
   1031 	default:
   1032 	    {
   1033 		int w0_addr_cfg;
   1034 
   1035 		GO_WINDOW(0);
   1036 		w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
   1037 		w0_addr_cfg &= 0x3fff;
   1038 		bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
   1039 		    (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
   1040 		DELAY(1000);
   1041 		break;
   1042 	    }
   1043 	}
   1044 
   1045 	GO_WINDOW(1);		/* Window 1 is operating window */
   1046 }
   1047 
   1048 /*
   1049  * Get currently-selected media from card.
   1050  * (if_media callback, may be called before interface is brought up).
   1051  */
   1052 void
   1053 ep_media_status(ifp, req)
   1054 	struct ifnet *ifp;
   1055 	struct ifmediareq *req;
   1056 {
   1057 	register struct ep_softc *sc = ifp->if_softc;
   1058 	bus_space_tag_t iot = sc->sc_iot;
   1059 	bus_space_handle_t ioh = sc->sc_ioh;
   1060 
   1061 	if (sc->enabled == 0) {
   1062 		req->ifm_active = IFM_ETHER|IFM_NONE;
   1063 		req->ifm_status = 0;
   1064 		return;
   1065 	}
   1066 
   1067 	/*
   1068 	 * If we have MII, go ask the PHY what's going on.
   1069 	 */
   1070 	if (sc->ep_flags & ELINK_FLAGS_MII) {
   1071 		mii_pollstat(&sc->sc_mii);
   1072 		req->ifm_active = sc->sc_mii.mii_media_active;
   1073 		req->ifm_status = sc->sc_mii.mii_media_status;
   1074 		return;
   1075 	}
   1076 
   1077 	/*
   1078 	 * Ok, at this point we claim that our active media is
   1079 	 * the currently selected media.  We'll update our status
   1080 	 * if our chipset allows us to detect link.
   1081 	 */
   1082 	req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   1083 	req->ifm_status = 0;
   1084 
   1085 	switch (sc->ep_chipset) {
   1086 	case ELINK_CHIPSET_VORTEX:
   1087 	case ELINK_CHIPSET_BOOMERANG:
   1088 		GO_WINDOW(4);
   1089 		req->ifm_status = IFM_AVALID;
   1090 		if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
   1091 		    LINKBEAT_DETECT)
   1092 			req->ifm_status |= IFM_ACTIVE;
   1093 		GO_WINDOW(1);	/* back to operating window */
   1094 		break;
   1095 	}
   1096 }
   1097 
   1098 
   1099 
   1100 /*
   1101  * Start outputting on the interface.
   1102  * Always called as splnet().
   1103  */
   1104 void
   1105 epstart(ifp)
   1106 	struct ifnet *ifp;
   1107 {
   1108 	register struct ep_softc *sc = ifp->if_softc;
   1109 	bus_space_tag_t iot = sc->sc_iot;
   1110 	bus_space_handle_t ioh = sc->sc_ioh;
   1111 	struct mbuf *m, *m0;
   1112 	int sh, len, pad;
   1113 	bus_addr_t txreg;
   1114 
   1115 	/* Don't transmit if interface is busy or not running */
   1116 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1117 		return;
   1118 
   1119 startagain:
   1120 	/* Sneak a peek at the next packet */
   1121 	m0 = ifp->if_snd.ifq_head;
   1122 	if (m0 == 0)
   1123 		return;
   1124 
   1125 	/* We need to use m->m_pkthdr.len, so require the header */
   1126 	if ((m0->m_flags & M_PKTHDR) == 0)
   1127 		panic("epstart: no header mbuf");
   1128 	len = m0->m_pkthdr.len;
   1129 
   1130 	pad = (4 - len) & 3;
   1131 
   1132 	/*
   1133 	 * The 3c509 automatically pads short packets to minimum ethernet
   1134 	 * length, but we drop packets that are too large. Perhaps we should
   1135 	 * truncate them instead?
   1136 	 */
   1137 	if (len + pad > ETHER_MAX_LEN) {
   1138 		/* packet is obviously too large: toss it */
   1139 		++ifp->if_oerrors;
   1140 		IF_DEQUEUE(&ifp->if_snd, m0);
   1141 		m_freem(m0);
   1142 		goto readcheck;
   1143 	}
   1144 
   1145 	if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
   1146 	    len + pad + 4) {
   1147 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
   1148 		    SET_TX_AVAIL_THRESH |
   1149 		    ((len + pad + 4) >> sc->ep_pktlenshift));
   1150 		/* not enough room in FIFO */
   1151 		ifp->if_flags |= IFF_OACTIVE;
   1152 		return;
   1153 	} else {
   1154 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
   1155 		    SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
   1156 	}
   1157 
   1158 	IF_DEQUEUE(&ifp->if_snd, m0);
   1159 	if (m0 == 0)		/* not really needed */
   1160 		return;
   1161 
   1162 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
   1163 	    ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
   1164 
   1165 #if NBPFILTER > 0
   1166 	if (ifp->if_bpf)
   1167 		bpf_mtap(ifp->if_bpf, m0);
   1168 #endif
   1169 
   1170 	/*
   1171 	 * Do the output at splhigh() so that an interrupt from another device
   1172 	 * won't cause a FIFO underrun.
   1173 	 */
   1174 	sh = splhigh();
   1175 
   1176 	txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
   1177 
   1178 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
   1179 		/*
   1180 		 * Prime the FIFO buffer counter (number of 16-bit
   1181 		 * words about to be written to the FIFO).
   1182 		 *
   1183 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
   1184 		 * COUNTER IS NON-ZERO!
   1185 		 */
   1186 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
   1187 		    (len + pad) >> 1);
   1188 	}
   1189 
   1190 	bus_space_write_2(iot, ioh, txreg, len);
   1191 	bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
   1192 	if (ELINK_IS_BUS_32(sc->bustype)) {
   1193 		for (m = m0; m;) {
   1194 			if (m->m_len > 3)  {
   1195 				/* align our reads from core */
   1196 				if (mtod(m, u_long) & 3)  {
   1197 					u_long count =
   1198 					    4 - (mtod(m, u_long) & 3);
   1199 					bus_space_write_multi_1(iot, ioh,
   1200 					    txreg, mtod(m, u_int8_t *), count);
   1201 					m->m_data =
   1202 					    (void *)(mtod(m, u_long) + count);
   1203 					m->m_len -= count;
   1204 				}
   1205 				bus_space_write_multi_stream_4(iot, ioh,
   1206 				    txreg, mtod(m, u_int32_t *), m->m_len >> 2);
   1207 				m->m_data = (void *)(mtod(m, u_long) +
   1208 					(u_long)(m->m_len & ~3));
   1209 				m->m_len -= m->m_len & ~3;
   1210 			}
   1211 			if (m->m_len)  {
   1212 				bus_space_write_multi_1(iot, ioh,
   1213 				    txreg, mtod(m, u_int8_t *), m->m_len);
   1214 			}
   1215 			MFREE(m, m0);
   1216 			m = m0;
   1217 		}
   1218 	} else {
   1219 		for (m = m0; m;) {
   1220 			if (m->m_len > 1)  {
   1221 				if (mtod(m, u_long) & 1)  {
   1222 					bus_space_write_1(iot, ioh,
   1223 					    txreg, *(mtod(m, u_int8_t *)));
   1224 					m->m_data =
   1225 					    (void *)(mtod(m, u_long) + 1);
   1226 					m->m_len -= 1;
   1227 				}
   1228 				bus_space_write_multi_stream_2(iot, ioh,
   1229 				    txreg, mtod(m, u_int16_t *),
   1230 				    m->m_len >> 1);
   1231 			}
   1232 			if (m->m_len & 1)  {
   1233 				bus_space_write_1(iot, ioh, txreg,
   1234 				     *(mtod(m, u_int8_t *) + m->m_len - 1));
   1235 			}
   1236 			MFREE(m, m0);
   1237 			m = m0;
   1238 		}
   1239 	}
   1240 	while (pad--)
   1241 		bus_space_write_1(iot, ioh, txreg, 0);
   1242 
   1243 	splx(sh);
   1244 
   1245 	++ifp->if_opackets;
   1246 
   1247 readcheck:
   1248 	if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
   1249 	    ERR_INCOMPLETE) == 0) {
   1250 		/* We received a complete packet. */
   1251 		u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1252 
   1253 		if ((status & S_INTR_LATCH) == 0) {
   1254 			/*
   1255 			 * No interrupt, read the packet and continue
   1256 			 * Is  this supposed to happen? Is my motherboard
   1257 			 * completely busted?
   1258 			 */
   1259 			epread(sc);
   1260 		} else {
   1261 			/* Got an interrupt, return so that it gets serviced. */
   1262 			return;
   1263 		}
   1264 	} else {
   1265 		/* Check if we are stuck and reset [see XXX comment] */
   1266 		if (epstatus(sc)) {
   1267 			if (ifp->if_flags & IFF_DEBUG)
   1268 				printf("%s: adapter reset\n",
   1269 				    sc->sc_dev.dv_xname);
   1270 			epreset(sc);
   1271 		}
   1272 	}
   1273 
   1274 	goto startagain;
   1275 }
   1276 
   1277 
   1278 /*
   1279  * XXX: The 3c509 card can get in a mode where both the fifo status bit
   1280  *	FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
   1281  *	We detect this situation and we reset the adapter.
   1282  *	It happens at times when there is a lot of broadcast traffic
   1283  *	on the cable (once in a blue moon).
   1284  */
   1285 static int
   1286 epstatus(sc)
   1287 	register struct ep_softc *sc;
   1288 {
   1289 	bus_space_tag_t iot = sc->sc_iot;
   1290 	bus_space_handle_t ioh = sc->sc_ioh;
   1291 	u_int16_t fifost;
   1292 
   1293 	/*
   1294 	 * Check the FIFO status and act accordingly
   1295 	 */
   1296 	GO_WINDOW(4);
   1297 	fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
   1298 	GO_WINDOW(1);
   1299 
   1300 	if (fifost & FIFOS_RX_UNDERRUN) {
   1301 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1302 			printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
   1303 		epreset(sc);
   1304 		return 0;
   1305 	}
   1306 
   1307 	if (fifost & FIFOS_RX_STATUS_OVERRUN) {
   1308 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1309 			printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
   1310 		return 1;
   1311 	}
   1312 
   1313 	if (fifost & FIFOS_RX_OVERRUN) {
   1314 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1315 			printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
   1316 		return 1;
   1317 	}
   1318 
   1319 	if (fifost & FIFOS_TX_OVERRUN) {
   1320 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1321 			printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
   1322 		epreset(sc);
   1323 		return 0;
   1324 	}
   1325 
   1326 	return 0;
   1327 }
   1328 
   1329 
   1330 static void
   1331 eptxstat(sc)
   1332 	register struct ep_softc *sc;
   1333 {
   1334 	bus_space_tag_t iot = sc->sc_iot;
   1335 	bus_space_handle_t ioh = sc->sc_ioh;
   1336 	int i;
   1337 
   1338 	/*
   1339 	 * We need to read+write TX_STATUS until we get a 0 status
   1340 	 * in order to turn off the interrupt flag.
   1341 	 */
   1342 	while ((i = bus_space_read_1(iot, ioh,
   1343 	     ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
   1344 		bus_space_write_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
   1345 		    0x0);
   1346 
   1347 		if (i & TXS_JABBER) {
   1348 			++sc->sc_ethercom.ec_if.if_oerrors;
   1349 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1350 				printf("%s: jabber (%x)\n",
   1351 				       sc->sc_dev.dv_xname, i);
   1352 #if 1
   1353 			ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
   1354 #else
   1355 			epreset(sc);
   1356 #endif
   1357 		} else if (i & TXS_UNDERRUN) {
   1358 			++sc->sc_ethercom.ec_if.if_oerrors;
   1359 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1360 				printf("%s: fifo underrun (%x) @%d\n",
   1361 				       sc->sc_dev.dv_xname, i,
   1362 				       sc->tx_start_thresh);
   1363 			if (sc->tx_succ_ok < 100)
   1364 				    sc->tx_start_thresh = min(ETHER_MAX_LEN,
   1365 					    sc->tx_start_thresh + 20);
   1366 			sc->tx_succ_ok = 0;
   1367 #if 1
   1368 			ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
   1369 #else
   1370 			epreset(sc);
   1371 #endif
   1372 		} else if (i & TXS_MAX_COLLISION) {
   1373 			++sc->sc_ethercom.ec_if.if_collisions;
   1374 			bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
   1375 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
   1376 		} else
   1377 			sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
   1378 	}
   1379 }
   1380 
   1381 int
   1382 epintr(arg)
   1383 	void *arg;
   1384 {
   1385 	register struct ep_softc *sc = arg;
   1386 	bus_space_tag_t iot = sc->sc_iot;
   1387 	bus_space_handle_t ioh = sc->sc_ioh;
   1388 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1389 	u_int16_t status;
   1390 	int ret = 0;
   1391 	int addrandom = 0;
   1392 
   1393 	if (sc->enabled == 0)
   1394 		return (0);
   1395 
   1396 	for (;;) {
   1397 		bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
   1398 
   1399 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1400 
   1401 		if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
   1402 			       S_RX_COMPLETE | S_CARD_FAILURE)) == 0) {
   1403 			if ((status & S_INTR_LATCH) == 0) {
   1404 #if 0
   1405 				printf("%s: intr latch cleared\n",
   1406 				       sc->sc_dev.dv_xname);
   1407 #endif
   1408 				break;
   1409 			}
   1410 		}
   1411 
   1412 		ret = 1;
   1413 
   1414 		/*
   1415 		 * Acknowledge any interrupts.  It's important that we do this
   1416 		 * first, since there would otherwise be a race condition.
   1417 		 * Due to the i386 interrupt queueing, we may get spurious
   1418 		 * interrupts occasionally.
   1419 		 */
   1420 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
   1421 				  (status & (C_INTR_LATCH |
   1422 					     C_CARD_FAILURE |
   1423 					     C_TX_COMPLETE |
   1424 					     C_TX_AVAIL |
   1425 					     C_RX_COMPLETE |
   1426 					     C_RX_EARLY |
   1427 					     C_INT_RQD |
   1428 					     C_UPD_STATS)));
   1429 
   1430 #if 0
   1431 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1432 
   1433 		printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
   1434 		       (status & S_RX_COMPLETE)?" RX_COMPLETE":"",
   1435 		       (status & S_TX_COMPLETE)?" TX_COMPLETE":"",
   1436 		       (status & S_TX_AVAIL)?" TX_AVAIL":"",
   1437 		       (status & S_CARD_FAILURE)?" CARD_FAILURE":"");
   1438 #endif
   1439 
   1440 		if (status & S_RX_COMPLETE) {
   1441 			epread(sc);
   1442 			addrandom = 1;
   1443 		}
   1444 		if (status & S_TX_AVAIL) {
   1445 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
   1446 			epstart(&sc->sc_ethercom.ec_if);
   1447 			addrandom = 1;
   1448 		}
   1449 		if (status & S_CARD_FAILURE) {
   1450 			printf("%s: adapter failure (%x)\n",
   1451 			    sc->sc_dev.dv_xname, status);
   1452 #if 1
   1453 			epinit(sc);
   1454 #else
   1455 			epreset(sc);
   1456 #endif
   1457 			return (1);
   1458 		}
   1459 		if (status & S_TX_COMPLETE) {
   1460 			eptxstat(sc);
   1461 			epstart(ifp);
   1462 			addrandom = 1;
   1463 		}
   1464 
   1465 #if NRND > 0
   1466 		if (status)
   1467 			rnd_add_uint32(&sc->rnd_source, status);
   1468 #endif
   1469 	}
   1470 
   1471 	/* no more interrupts */
   1472 	return (ret);
   1473 }
   1474 
   1475 void
   1476 epread(sc)
   1477 	register struct ep_softc *sc;
   1478 {
   1479 	bus_space_tag_t iot = sc->sc_iot;
   1480 	bus_space_handle_t ioh = sc->sc_ioh;
   1481 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1482 	struct mbuf *m;
   1483 	struct ether_header *eh;
   1484 	int len;
   1485 
   1486 	len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
   1487 
   1488 again:
   1489 	if (ifp->if_flags & IFF_DEBUG) {
   1490 		int err = len & ERR_MASK;
   1491 		char *s = NULL;
   1492 
   1493 		if (len & ERR_INCOMPLETE)
   1494 			s = "incomplete packet";
   1495 		else if (err == ERR_OVERRUN)
   1496 			s = "packet overrun";
   1497 		else if (err == ERR_RUNT)
   1498 			s = "runt packet";
   1499 		else if (err == ERR_ALIGNMENT)
   1500 			s = "bad alignment";
   1501 		else if (err == ERR_CRC)
   1502 			s = "bad crc";
   1503 		else if (err == ERR_OVERSIZE)
   1504 			s = "oversized packet";
   1505 		else if (err == ERR_DRIBBLE)
   1506 			s = "dribble bits";
   1507 
   1508 		if (s)
   1509 			printf("%s: %s\n", sc->sc_dev.dv_xname, s);
   1510 	}
   1511 
   1512 	if (len & ERR_INCOMPLETE)
   1513 		return;
   1514 
   1515 	if (len & ERR_RX) {
   1516 		++ifp->if_ierrors;
   1517 		goto abort;
   1518 	}
   1519 
   1520 	len &= RX_BYTES_MASK;	/* Lower 11 bits = RX bytes. */
   1521 
   1522 	/* Pull packet off interface. */
   1523 	m = epget(sc, len);
   1524 	if (m == 0) {
   1525 		ifp->if_ierrors++;
   1526 		goto abort;
   1527 	}
   1528 
   1529 	++ifp->if_ipackets;
   1530 
   1531 	/* We assume the header fit entirely in one mbuf. */
   1532 	eh = mtod(m, struct ether_header *);
   1533 
   1534 #if NBPFILTER > 0
   1535 	/*
   1536 	 * Check if there's a BPF listener on this interface.
   1537 	 * If so, hand off the raw packet to BPF.
   1538 	 */
   1539 	if (ifp->if_bpf) {
   1540 		bpf_mtap(ifp->if_bpf, m);
   1541 
   1542 		/*
   1543 		 * Note that the interface cannot be in promiscuous mode if
   1544 		 * there are no BPF listeners.  And if we are in promiscuous
   1545 		 * mode, we have to check if this packet is really ours.
   1546 		 */
   1547 		if ((ifp->if_flags & IFF_PROMISC) &&
   1548 		    (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
   1549 		    bcmp(eh->ether_dhost, LLADDR(sc->sc_ethercom.ec_if.if_sadl),
   1550 		        sizeof(eh->ether_dhost)) != 0) {
   1551 			m_freem(m);
   1552 			return;
   1553 		}
   1554 	}
   1555 #endif
   1556 	(*ifp->if_input)(ifp, m);
   1557 
   1558 	/*
   1559 	 * In periods of high traffic we can actually receive enough
   1560 	 * packets so that the fifo overrun bit will be set at this point,
   1561 	 * even though we just read a packet. In this case we
   1562 	 * are not going to receive any more interrupts. We check for
   1563 	 * this condition and read again until the fifo is not full.
   1564 	 * We could simplify this test by not using epstatus(), but
   1565 	 * rechecking the RX_STATUS register directly. This test could
   1566 	 * result in unnecessary looping in cases where there is a new
   1567 	 * packet but the fifo is not full, but it will not fix the
   1568 	 * stuck behavior.
   1569 	 *
   1570 	 * Even with this improvement, we still get packet overrun errors
   1571 	 * which are hurting performance. Maybe when I get some more time
   1572 	 * I'll modify epread() so that it can handle RX_EARLY interrupts.
   1573 	 */
   1574 	if (epstatus(sc)) {
   1575 		len = bus_space_read_2(iot, ioh,
   1576 		    ep_w1_reg(sc, ELINK_W1_RX_STATUS));
   1577 		/* Check if we are stuck and reset [see XXX comment] */
   1578 		if (len & ERR_INCOMPLETE) {
   1579 			if (ifp->if_flags & IFF_DEBUG)
   1580 				printf("%s: adapter reset\n",
   1581 				    sc->sc_dev.dv_xname);
   1582 			epreset(sc);
   1583 			return;
   1584 		}
   1585 		goto again;
   1586 	}
   1587 
   1588 	return;
   1589 
   1590 abort:
   1591 	ep_discard_rxtop(iot, ioh);
   1592 
   1593 }
   1594 
   1595 struct mbuf *
   1596 epget(sc, totlen)
   1597 	struct ep_softc *sc;
   1598 	int totlen;
   1599 {
   1600 	bus_space_tag_t iot = sc->sc_iot;
   1601 	bus_space_handle_t ioh = sc->sc_ioh;
   1602 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1603 	struct mbuf *top, **mp, *m, *rv = NULL;
   1604 	bus_addr_t rxreg;
   1605 	int len, remaining;
   1606 	int sh;
   1607 
   1608 	m = sc->mb[sc->next_mb];
   1609 	sc->mb[sc->next_mb] = 0;
   1610 	if (m == 0) {
   1611 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1612 		if (m == 0)
   1613 			return 0;
   1614 	} else {
   1615 		/* If the queue is no longer full, refill. */
   1616 		if (sc->last_mb == sc->next_mb)
   1617 			timeout(epmbuffill, sc, 1);
   1618 		/* Convert one of our saved mbuf's. */
   1619 		sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
   1620 		m->m_data = m->m_pktdat;
   1621 		m->m_flags = M_PKTHDR;
   1622 	}
   1623 	m->m_pkthdr.rcvif = ifp;
   1624 	m->m_pkthdr.len = totlen;
   1625 	len = MHLEN;
   1626 	top = 0;
   1627 	mp = &top;
   1628 
   1629 	/*
   1630 	 * We read the packet at splhigh() so that an interrupt from another
   1631 	 * device doesn't cause the card's buffer to overflow while we're
   1632 	 * reading it.  We may still lose packets at other times.
   1633 	 */
   1634 	sh = splhigh();
   1635 
   1636 	rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
   1637 
   1638 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
   1639 		/*
   1640 		 * Prime the FIFO buffer counter (number of 16-bit
   1641 		 * words about to be read from the FIFO).
   1642 		 *
   1643 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
   1644 		 * COUNTER IS NON-ZERO!
   1645 		 */
   1646 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
   1647 	}
   1648 
   1649 	while (totlen > 0) {
   1650 		if (top) {
   1651 			m = sc->mb[sc->next_mb];
   1652 			sc->mb[sc->next_mb] = 0;
   1653 			if (m == 0) {
   1654 				MGET(m, M_DONTWAIT, MT_DATA);
   1655 				if (m == 0) {
   1656 					m_freem(top);
   1657 					goto out;
   1658 				}
   1659 			} else {
   1660 				sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
   1661 			}
   1662 			len = MLEN;
   1663 		}
   1664 		if (totlen >= MINCLSIZE) {
   1665 			MCLGET(m, M_DONTWAIT);
   1666 			if ((m->m_flags & M_EXT) == 0) {
   1667 				m_free(m);
   1668 				m_freem(top);
   1669 				goto out;
   1670 			}
   1671 			len = MCLBYTES;
   1672 		}
   1673 		if (top == 0)  {
   1674 			/* align the struct ip header */
   1675 			caddr_t newdata = (caddr_t)
   1676 			    ALIGN(m->m_data + sizeof(struct ether_header))
   1677 			    - sizeof(struct ether_header);
   1678 			len -= newdata - m->m_data;
   1679 			m->m_data = newdata;
   1680 		}
   1681 		remaining = len = min(totlen, len);
   1682 		if (ELINK_IS_BUS_32(sc->bustype)) {
   1683 			u_long offset = mtod(m, u_long);
   1684 			/*
   1685 			 * Read bytes up to the point where we are aligned.
   1686 			 * (We can align to 4 bytes, rather than ALIGNBYTES,
   1687 			 * here because we're later reading 4-byte chunks.)
   1688 			 */
   1689 			if ((remaining > 3) && (offset & 3))  {
   1690 				int count = (4 - (offset & 3));
   1691 				bus_space_read_multi_1(iot, ioh,
   1692 				    rxreg, (u_int8_t *) offset, count);
   1693 				offset += count;
   1694 				remaining -= count;
   1695 			}
   1696 			if (remaining > 3) {
   1697 				bus_space_read_multi_stream_4(iot, ioh,
   1698 				    rxreg, (u_int32_t *) offset,
   1699 				    remaining >> 2);
   1700 				offset += remaining & ~3;
   1701 				remaining &= 3;
   1702 			}
   1703 			if (remaining)  {
   1704 				bus_space_read_multi_1(iot, ioh,
   1705 				    rxreg, (u_int8_t *) offset, remaining);
   1706 			}
   1707 		} else {
   1708 			u_long offset = mtod(m, u_long);
   1709 			if ((remaining > 1) && (offset & 1))  {
   1710 				bus_space_read_multi_1(iot, ioh,
   1711 				    rxreg, (u_int8_t *) offset, 1);
   1712 				remaining -= 1;
   1713 				offset += 1;
   1714 			}
   1715 			if (remaining > 1) {
   1716 				bus_space_read_multi_stream_2(iot, ioh,
   1717 				    rxreg, (u_int16_t *) offset,
   1718 				    remaining >> 1);
   1719 				offset += remaining & ~1;
   1720 			}
   1721 			if (remaining & 1)  {
   1722 				bus_space_read_multi_1(iot, ioh,
   1723 				    rxreg, (u_int8_t *) offset, remaining & 1);
   1724 			}
   1725 		}
   1726 		m->m_len = len;
   1727 		totlen -= len;
   1728 		*mp = m;
   1729 		mp = &m->m_next;
   1730 	}
   1731 
   1732 	rv = top;
   1733 
   1734 	ep_discard_rxtop(iot, ioh);
   1735 
   1736  out:
   1737 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
   1738 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
   1739 	splx(sh);
   1740 
   1741 	return rv;
   1742 }
   1743 
   1744 int
   1745 epioctl(ifp, cmd, data)
   1746 	register struct ifnet *ifp;
   1747 	u_long cmd;
   1748 	caddr_t data;
   1749 {
   1750 	struct ep_softc *sc = ifp->if_softc;
   1751 	struct ifaddr *ifa = (struct ifaddr *)data;
   1752 	struct ifreq *ifr = (struct ifreq *)data;
   1753 	int s, error = 0;
   1754 
   1755 	s = splnet();
   1756 
   1757 	switch (cmd) {
   1758 
   1759 	case SIOCSIFADDR:
   1760 		if ((error = epenable(sc)) != 0)
   1761 			break;
   1762 		/* epinit is called just below */
   1763 		ifp->if_flags |= IFF_UP;
   1764 		switch (ifa->ifa_addr->sa_family) {
   1765 #ifdef INET
   1766 		case AF_INET:
   1767 			epinit(sc);
   1768 			arp_ifinit(&sc->sc_ethercom.ec_if, ifa);
   1769 			break;
   1770 #endif
   1771 #ifdef NS
   1772 		case AF_NS:
   1773 		    {
   1774 			register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1775 
   1776 			if (ns_nullhost(*ina))
   1777 				ina->x_host = *(union ns_host *)
   1778 				    LLADDR(ifp->if_sadl);
   1779 			else
   1780 				bcopy(ina->x_host.c_host,
   1781 				    LLADDR(ifp->if_sadl),
   1782 				    ifp->if_addrlen);
   1783 			/* Set new address. */
   1784 			epinit(sc);
   1785 			break;
   1786 		    }
   1787 #endif
   1788 		default:
   1789 			epinit(sc);
   1790 			break;
   1791 		}
   1792 		break;
   1793 
   1794 	case SIOCSIFMEDIA:
   1795 	case SIOCGIFMEDIA:
   1796 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1797 		break;
   1798 
   1799 	case SIOCSIFFLAGS:
   1800 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1801 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1802 			/*
   1803 			 * If interface is marked down and it is running, then
   1804 			 * stop it.
   1805 			 */
   1806 			epstop(sc);
   1807 			ifp->if_flags &= ~IFF_RUNNING;
   1808 			epdisable(sc);
   1809 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1810 			   (ifp->if_flags & IFF_RUNNING) == 0) {
   1811 			/*
   1812 			 * If interface is marked up and it is stopped, then
   1813 			 * start it.
   1814 			 */
   1815 			if ((error = epenable(sc)) != 0)
   1816 				break;
   1817 			epinit(sc);
   1818 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1819 			/*
   1820 			 * deal with flags changes:
   1821 			 * IFF_MULTICAST, IFF_PROMISC.
   1822 			 */
   1823 			epsetfilter(sc);
   1824 		}
   1825 		break;
   1826 
   1827 	case SIOCADDMULTI:
   1828 	case SIOCDELMULTI:
   1829 		if (sc->enabled == 0) {
   1830 			error = EIO;
   1831 			break;
   1832 		}
   1833 
   1834 		error = (cmd == SIOCADDMULTI) ?
   1835 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   1836 		    ether_delmulti(ifr, &sc->sc_ethercom);
   1837 
   1838 		if (error == ENETRESET) {
   1839 			/*
   1840 			 * Multicast list has changed; set the hardware filter
   1841 			 * accordingly.
   1842 			 */
   1843 			epreset(sc);
   1844 			error = 0;
   1845 		}
   1846 		break;
   1847 
   1848 	default:
   1849 		error = EINVAL;
   1850 		break;
   1851 	}
   1852 
   1853 	splx(s);
   1854 	return (error);
   1855 }
   1856 
   1857 void
   1858 epreset(sc)
   1859 	struct ep_softc *sc;
   1860 {
   1861 	int s;
   1862 
   1863 	s = splnet();
   1864 	epinit(sc);
   1865 	splx(s);
   1866 }
   1867 
   1868 void
   1869 epwatchdog(ifp)
   1870 	struct ifnet *ifp;
   1871 {
   1872 	struct ep_softc *sc = ifp->if_softc;
   1873 
   1874 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1875 	++sc->sc_ethercom.ec_if.if_oerrors;
   1876 
   1877 	epreset(sc);
   1878 }
   1879 
   1880 void
   1881 epstop(sc)
   1882 	register struct ep_softc *sc;
   1883 {
   1884 	bus_space_tag_t iot = sc->sc_iot;
   1885 	bus_space_handle_t ioh = sc->sc_ioh;
   1886 
   1887 	if (sc->ep_flags & ELINK_FLAGS_MII) {
   1888 		/* Stop the one second clock. */
   1889 		untimeout(ep_tick, sc);
   1890 	}
   1891 
   1892 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
   1893 		/*
   1894 		 * Clear the FIFO buffer count, thus halting
   1895 		 * any currently-running transactions.
   1896 		 */
   1897 		GO_WINDOW(1);		/* sanity */
   1898 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
   1899 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
   1900 	}
   1901 
   1902 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
   1903 	ep_discard_rxtop(iot, ioh);
   1904 
   1905 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
   1906 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
   1907 
   1908 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
   1909 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
   1910 
   1911 	bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
   1912 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
   1913 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
   1914 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
   1915 
   1916 	epmbufempty(sc);
   1917 }
   1918 
   1919 
   1920 /*
   1921  * Before reboots, reset card completely.
   1922  */
   1923 static void
   1924 epshutdown(arg)
   1925 	void *arg;
   1926 {
   1927 	register struct ep_softc *sc = arg;
   1928 	int s = splnet();
   1929 
   1930 	if (sc->enabled) {
   1931 		epstop(sc);
   1932 		ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
   1933 		sc->enabled = 0;
   1934 	}
   1935 	splx(s);
   1936 }
   1937 
   1938 /*
   1939  * We get eeprom data from the id_port given an offset into the
   1940  * eeprom.  Basically; after the ID_sequence is sent to all of
   1941  * the cards; they enter the ID_CMD state where they will accept
   1942  * command requests. 0x80-0xbf loads the eeprom data.  We then
   1943  * read the port 16 times and with every read; the cards check
   1944  * for contention (ie: if one card writes a 0 bit and another
   1945  * writes a 1 bit then the host sees a 0. At the end of the cycle;
   1946  * each card compares the data on the bus; if there is a difference
   1947  * then that card goes into ID_WAIT state again). In the meantime;
   1948  * one bit of data is returned in the AX register which is conveniently
   1949  * returned to us by bus_space_read_1().  Hence; we read 16 times getting one
   1950  * bit of data with each read.
   1951  *
   1952  * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
   1953  */
   1954 u_int16_t
   1955 epreadeeprom(iot, ioh, offset)
   1956 	bus_space_tag_t iot;
   1957 	bus_space_handle_t ioh;
   1958 	int offset;
   1959 {
   1960 	u_int16_t data = 0;
   1961 	int i;
   1962 
   1963 	bus_space_write_1(iot, ioh, 0, 0x80 + offset);
   1964 	delay(1000);
   1965 	for (i = 0; i < 16; i++)
   1966 		data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
   1967 	return (data);
   1968 }
   1969 
   1970 static int
   1971 epbusyeeprom(sc)
   1972 	struct ep_softc *sc;
   1973 {
   1974 	bus_space_tag_t iot = sc->sc_iot;
   1975 	bus_space_handle_t ioh = sc->sc_ioh;
   1976 	int i = 100, j;
   1977 
   1978 	if (sc->bustype == ELINK_BUS_PCMCIA) {
   1979 		delay(1000);
   1980 		return 0;
   1981 	}
   1982 
   1983 	j = 0;		/* bad GCC flow analysis */
   1984 	while (i--) {
   1985 		j = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND);
   1986 		if (j & EEPROM_BUSY)
   1987 			delay(100);
   1988 		else
   1989 			break;
   1990 	}
   1991 	if (!i) {
   1992 		printf("\n%s: eeprom failed to come ready\n",
   1993 		    sc->sc_dev.dv_xname);
   1994 		return (1);
   1995 	}
   1996 	if (j & EEPROM_TST_MODE) {
   1997 		/* XXX PnP mode? */
   1998 		printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
   1999 		return (1);
   2000 	}
   2001 	return (0);
   2002 }
   2003 
   2004 u_int16_t
   2005 ep_read_eeprom(sc, offset)
   2006 	struct ep_softc *sc;
   2007 	u_int16_t offset;
   2008 {
   2009 	u_int16_t readcmd;
   2010 
   2011 	/*
   2012 	 * RoadRunner has a larger EEPROM, so a different read command
   2013 	 * is required.
   2014 	 */
   2015 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
   2016 		readcmd = READ_EEPROM_RR;
   2017 	else
   2018 		readcmd = READ_EEPROM;
   2019 
   2020 	if (epbusyeeprom(sc))
   2021 		return (0);		/* XXX why is eeprom busy? */
   2022 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W0_EEPROM_COMMAND,
   2023 	    readcmd | offset);
   2024 	if (epbusyeeprom(sc))
   2025 		return (0);		/* XXX why is eeprom busy? */
   2026 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W0_EEPROM_DATA));
   2027 }
   2028 
   2029 void
   2030 epmbuffill(v)
   2031 	void *v;
   2032 {
   2033 	struct ep_softc *sc = v;
   2034 	struct mbuf *m;
   2035 	int s, i;
   2036 
   2037 	s = splnet();
   2038 	i = sc->last_mb;
   2039 	do {
   2040 		if (sc->mb[i] == 0) {
   2041 			MGET(m, M_DONTWAIT, MT_DATA);
   2042 			if (m == 0)
   2043 				break;
   2044 			sc->mb[i] = m;
   2045 		}
   2046 		i = (i + 1) % MAX_MBS;
   2047 	} while (i != sc->next_mb);
   2048 	sc->last_mb = i;
   2049 	/* If the queue was not filled, try again. */
   2050 	if (sc->last_mb != sc->next_mb)
   2051 		timeout(epmbuffill, sc, 1);
   2052 	splx(s);
   2053 }
   2054 
   2055 void
   2056 epmbufempty(sc)
   2057 	struct ep_softc *sc;
   2058 {
   2059 	int s, i;
   2060 
   2061 	s = splnet();
   2062 	for (i = 0; i<MAX_MBS; i++) {
   2063 		if (sc->mb[i]) {
   2064 			m_freem(sc->mb[i]);
   2065 			sc->mb[i] = NULL;
   2066 		}
   2067 	}
   2068 	sc->last_mb = sc->next_mb = 0;
   2069 	untimeout(epmbuffill, sc);
   2070 	splx(s);
   2071 }
   2072 
   2073 int
   2074 epenable(sc)
   2075 	struct ep_softc *sc;
   2076 {
   2077 
   2078 	if (sc->enabled == 0 && sc->enable != NULL) {
   2079 		if ((*sc->enable)(sc) != 0) {
   2080 			printf("%s: device enable failed\n",
   2081 			    sc->sc_dev.dv_xname);
   2082 			return (EIO);
   2083 		}
   2084 	}
   2085 
   2086 	sc->enabled = 1;
   2087 	return (0);
   2088 }
   2089 
   2090 void
   2091 epdisable(sc)
   2092 	struct ep_softc *sc;
   2093 {
   2094 
   2095 	if (sc->enabled != 0 && sc->disable != NULL) {
   2096 		(*sc->disable)(sc);
   2097 		sc->enabled = 0;
   2098 	}
   2099 }
   2100 
   2101 int
   2102 ep_activate(self, act)
   2103 	struct device *self;
   2104 	enum devact act;
   2105 {
   2106 	struct ep_softc *sc = (struct ep_softc *)self;
   2107 	int rv = 0, s;
   2108 
   2109 	s = splnet();
   2110 	switch (act) {
   2111 	case DVACT_ACTIVATE:
   2112 		rv = EOPNOTSUPP;
   2113 		break;
   2114 
   2115 	case DVACT_DEACTIVATE:
   2116 #ifdef notyet
   2117 		/* First, kill off the interface. */
   2118 		if_detach(sc->sc_ethercom.ec_if);
   2119 #endif
   2120 
   2121 		/* Now disable the interface. */
   2122 		epdisable(sc);
   2123 		break;
   2124 	}
   2125 	splx(s);
   2126 	return (rv);
   2127 }
   2128 
   2129 void
   2130 ep_mii_setbit(sc, bit)
   2131 	struct ep_softc *sc;
   2132 	u_int16_t bit;
   2133 {
   2134 	u_int16_t val;
   2135 
   2136 	/* We assume we're already in Window 4 */
   2137 	val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT);
   2138 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT,
   2139 	    val | bit);
   2140 }
   2141 
   2142 void
   2143 ep_mii_clrbit(sc, bit)
   2144 	struct ep_softc *sc;
   2145 	u_int16_t bit;
   2146 {
   2147 	u_int16_t val;
   2148 
   2149 	/* We assume we're already in Window 4 */
   2150 	val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT);
   2151 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT,
   2152 	    val & ~bit);
   2153 }
   2154 
   2155 u_int16_t
   2156 ep_mii_readbit(sc, bit)
   2157 	struct ep_softc *sc;
   2158 	u_int16_t bit;
   2159 {
   2160 
   2161 	/* We assume we're already in Window 4 */
   2162 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT) &
   2163 	    bit);
   2164 }
   2165 
   2166 void
   2167 ep_mii_sync(sc)
   2168 	struct ep_softc *sc;
   2169 {
   2170 	int i;
   2171 
   2172 	/* We assume we're already in Window 4 */
   2173 	ep_mii_clrbit(sc, PHYSMGMT_DIR);
   2174 	for (i = 0; i < 32; i++) {
   2175 		ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2176 		ep_mii_setbit(sc, PHYSMGMT_CLK);
   2177 	}
   2178 }
   2179 
   2180 void
   2181 ep_mii_sendbits(sc, data, nbits)
   2182 	struct ep_softc *sc;
   2183 	u_int32_t data;
   2184 	int nbits;
   2185 {
   2186 	int i;
   2187 
   2188 	/* We assume we're already in Window 4 */
   2189 	ep_mii_setbit(sc, PHYSMGMT_DIR);
   2190 	for (i = 1 << (nbits - 1); i; i = i >> 1) {
   2191 		ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2192 		ep_mii_readbit(sc, PHYSMGMT_CLK);
   2193 		if (data & i)
   2194 			ep_mii_setbit(sc, PHYSMGMT_DATA);
   2195 		else
   2196 			ep_mii_clrbit(sc, PHYSMGMT_DATA);
   2197 		ep_mii_setbit(sc, PHYSMGMT_CLK);
   2198 		ep_mii_readbit(sc, PHYSMGMT_CLK);
   2199 	}
   2200 }
   2201 
   2202 int
   2203 ep_mii_readreg(self, phy, reg)
   2204 	struct device *self;
   2205 	int phy, reg;
   2206 {
   2207 	struct ep_softc *sc = (struct ep_softc *)self;
   2208 	int val = 0, i, err;
   2209 
   2210 	/*
   2211 	 * Read the PHY register by manually driving the MII control lines.
   2212 	 */
   2213 
   2214 	GO_WINDOW(4);
   2215 
   2216 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT, 0);
   2217 
   2218 	ep_mii_sync(sc);
   2219 	ep_mii_sendbits(sc, MII_COMMAND_START, 2);
   2220 	ep_mii_sendbits(sc, MII_COMMAND_READ, 2);
   2221 	ep_mii_sendbits(sc, phy, 5);
   2222 	ep_mii_sendbits(sc, reg, 5);
   2223 
   2224 	ep_mii_clrbit(sc, PHYSMGMT_DIR);
   2225 	ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2226 	ep_mii_setbit(sc, PHYSMGMT_CLK);
   2227 	ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2228 
   2229 	err = ep_mii_readbit(sc, PHYSMGMT_DATA);
   2230 	ep_mii_setbit(sc, PHYSMGMT_CLK);
   2231 
   2232 	/* Even if an error occurs, must still clock out the cycle. */
   2233 	for (i = 0; i < 16; i++) {
   2234 		val <<= 1;
   2235 		ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2236 		if (err == 0 && ep_mii_readbit(sc, PHYSMGMT_DATA))
   2237 			val |= 1;
   2238 		ep_mii_setbit(sc, PHYSMGMT_CLK);
   2239 	}
   2240 	ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2241 	ep_mii_setbit(sc, PHYSMGMT_CLK);
   2242 
   2243 	GO_WINDOW(1);	/* back to operating window */
   2244 
   2245 	return (err ? 0 : val);
   2246 }
   2247 
   2248 void
   2249 ep_mii_writereg(self, phy, reg, val)
   2250 	struct device *self;
   2251 	int phy, reg, val;
   2252 {
   2253 	struct ep_softc *sc = (struct ep_softc *)self;
   2254 
   2255 	/*
   2256 	 * Write the PHY register by manually driving the MII control lines.
   2257 	 */
   2258 
   2259 	GO_WINDOW(4);
   2260 
   2261 	ep_mii_sync(sc);
   2262 	ep_mii_sendbits(sc, MII_COMMAND_START, 2);
   2263 	ep_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
   2264 	ep_mii_sendbits(sc, phy, 5);
   2265 	ep_mii_sendbits(sc, reg, 5);
   2266 	ep_mii_sendbits(sc, MII_COMMAND_ACK, 2);
   2267 	ep_mii_sendbits(sc, val, 16);
   2268 
   2269 	ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2270 	ep_mii_setbit(sc, PHYSMGMT_CLK);
   2271 
   2272 	GO_WINDOW(1);	/* back to operating window */
   2273 }
   2274 
   2275 void
   2276 ep_statchg(self)
   2277 	struct device *self;
   2278 {
   2279 	struct ep_softc *sc = (struct ep_softc *)self;
   2280 	bus_space_tag_t iot = sc->sc_iot;
   2281 	bus_space_handle_t ioh = sc->sc_ioh;
   2282 	int mctl;
   2283 
   2284 	/* XXX Update ifp->if_baudrate */
   2285 
   2286 	GO_WINDOW(3);
   2287 	mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
   2288 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   2289 		mctl |= MAC_CONTROL_FDX;
   2290 	else
   2291 		mctl &= ~MAC_CONTROL_FDX;
   2292 	bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
   2293 	GO_WINDOW(1);	/* back to operating window */
   2294 }
   2295