Home | History | Annotate | Line # | Download | only in ic
elink3.c revision 1.66
      1 /*	$NetBSD: elink3.c,v 1.66 1999/11/12 18:14:17 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
     42  * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
     43  * All rights reserved.
     44  *
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice, this list of conditions and the following disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  * 3. All advertising materials mentioning features or use of this software
     54  *    must display the following acknowledgement:
     55  *      This product includes software developed by Herb Peyerl.
     56  * 4. The name of Herb Peyerl may not be used to endorse or promote products
     57  *    derived from this software without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     60  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     61  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     63  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     64  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     65  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     66  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     67  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     68  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     69  */
     70 
     71 #include "opt_inet.h"
     72 #include "opt_ns.h"
     73 #include "bpfilter.h"
     74 #include "rnd.h"
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/kernel.h>
     79 #include <sys/mbuf.h>
     80 #include <sys/socket.h>
     81 #include <sys/ioctl.h>
     82 #include <sys/errno.h>
     83 #include <sys/syslog.h>
     84 #include <sys/select.h>
     85 #include <sys/device.h>
     86 #if NRND > 0
     87 #include <sys/rnd.h>
     88 #endif
     89 
     90 #include <net/if.h>
     91 #include <net/if_dl.h>
     92 #include <net/if_ether.h>
     93 #include <net/if_media.h>
     94 
     95 #ifdef INET
     96 #include <netinet/in.h>
     97 #include <netinet/in_systm.h>
     98 #include <netinet/in_var.h>
     99 #include <netinet/ip.h>
    100 #include <netinet/if_inarp.h>
    101 #endif
    102 
    103 #ifdef NS
    104 #include <netns/ns.h>
    105 #include <netns/ns_if.h>
    106 #endif
    107 
    108 #if NBPFILTER > 0
    109 #include <net/bpf.h>
    110 #include <net/bpfdesc.h>
    111 #endif
    112 
    113 #include <machine/cpu.h>
    114 #include <machine/bus.h>
    115 #include <machine/intr.h>
    116 
    117 #include <dev/mii/mii.h>
    118 #include <dev/mii/miivar.h>
    119 
    120 #include <dev/ic/elink3var.h>
    121 #include <dev/ic/elink3reg.h>
    122 
    123 #ifdef DEBUG
    124 int epdebug = 0;
    125 #endif
    126 
    127 /*
    128  * XXX endian workaround for big-endian CPUs  with pcmcia:
    129  * if stream methods for bus_space_multi are not provided, define them
    130  * using non-stream bus_space_{read,write}_multi_.
    131  * Assumes host CPU is same endian-ness as bus.
    132  */
    133 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
    134 #define bus_space_read_multi_stream_2	bus_space_read_multi_2
    135 #define bus_space_read_multi_stream_4	bus_space_read_multi_4
    136 #define bus_space_write_multi_stream_2	bus_space_write_multi_2
    137 #define bus_space_write_multi_stream_4	bus_space_write_multi_4
    138 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
    139 
    140 /*
    141  * Structure to map media-present bits in boards to ifmedia codes and
    142  * printable media names. Used for table-driven ifmedia initialization.
    143  */
    144 struct ep_media {
    145 	int	epm_mpbit;		/* media present bit */
    146 	const char *epm_name;		/* name of medium */
    147 	int	epm_ifmedia;		/* ifmedia word for medium */
    148 	int	epm_epmedia;		/* ELINKMEDIA_* constant */
    149 };
    150 
    151 /*
    152  * Media table for the Demon/Vortex/Boomerang chipsets.
    153  *
    154  * Note that MII on the Demon and Vortex (3c59x) indicates an external
    155  * MII connector (for connecting an external PHY) ... I think.  Treat
    156  * it as `manual' on these chips.
    157  *
    158  * Any Boomerang (3c90x) chips with MII really do have an internal
    159  * MII and real PHYs attached; no `native' media.
    160  */
    161 struct ep_media ep_vortex_media[] = {
    162 	{ ELINK_PCI_10BASE_T,	"10baseT",	IFM_ETHER|IFM_10_T,
    163 	  ELINKMEDIA_10BASE_T },
    164 	{ ELINK_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER|IFM_10_T|IFM_FDX,
    165 	  ELINKMEDIA_10BASE_T },
    166 	{ ELINK_PCI_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
    167 	  ELINKMEDIA_AUI },
    168 	{ ELINK_PCI_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
    169 	  ELINKMEDIA_10BASE_2 },
    170 	{ ELINK_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER|IFM_100_TX,
    171 	  ELINKMEDIA_100BASE_TX },
    172 	{ ELINK_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
    173 	  ELINKMEDIA_100BASE_TX },
    174 	{ ELINK_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER|IFM_100_FX,
    175 	  ELINKMEDIA_100BASE_FX },
    176 	{ ELINK_PCI_100BASE_MII,"manual",	IFM_ETHER|IFM_MANUAL,
    177 	  ELINKMEDIA_MII },
    178 	{ ELINK_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER|IFM_100_T4,
    179 	  ELINKMEDIA_100BASE_T4 },
    180 	{ 0,			NULL,		0,
    181 	  0 },
    182 };
    183 
    184 /*
    185  * Media table for the older 3Com Etherlink III chipset, used
    186  * in the 3c509, 3c579, and 3c589.
    187  */
    188 struct ep_media ep_509_media[] = {
    189 	{ ELINK_W0_CC_UTP,	"10baseT",	IFM_ETHER|IFM_10_T,
    190 	  ELINKMEDIA_10BASE_T },
    191 	{ ELINK_W0_CC_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
    192 	  ELINKMEDIA_AUI },
    193 	{ ELINK_W0_CC_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
    194 	  ELINKMEDIA_10BASE_2 },
    195 	{ 0,			NULL,		0,
    196 	  0 },
    197 };
    198 
    199 void	ep_internalconfig __P((struct ep_softc *sc));
    200 void	ep_vortex_probemedia __P((struct ep_softc *sc));
    201 void	ep_509_probemedia __P((struct ep_softc *sc));
    202 
    203 static void eptxstat __P((struct ep_softc *));
    204 static int epstatus __P((struct ep_softc *));
    205 void	epinit __P((struct ep_softc *));
    206 int	epioctl __P((struct ifnet *, u_long, caddr_t));
    207 void	epstart __P((struct ifnet *));
    208 void	epwatchdog __P((struct ifnet *));
    209 void	epreset __P((struct ep_softc *));
    210 static void epshutdown __P((void *));
    211 void	epread __P((struct ep_softc *));
    212 struct mbuf *epget __P((struct ep_softc *, int));
    213 void	epmbuffill __P((void *));
    214 void	epmbufempty __P((struct ep_softc *));
    215 void	epsetfilter __P((struct ep_softc *));
    216 void	ep_roadrunner_mii_enable __P((struct ep_softc *));
    217 void	epsetmedia __P((struct ep_softc *));
    218 
    219 /* ifmedia callbacks */
    220 int	ep_media_change __P((struct ifnet *ifp));
    221 void	ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
    222 
    223 /* MII callbacks */
    224 int	ep_mii_readreg __P((struct device *, int, int));
    225 void	ep_mii_writereg __P((struct device *, int, int, int));
    226 void	ep_statchg __P((struct device *));
    227 
    228 void	ep_tick __P((void *));
    229 
    230 void	ep_mii_setbit __P((struct ep_softc *, u_int16_t));
    231 void	ep_mii_clrbit __P((struct ep_softc *, u_int16_t));
    232 u_int16_t ep_mii_readbit __P((struct ep_softc *, u_int16_t));
    233 void	ep_mii_sync __P((struct ep_softc *));
    234 void	ep_mii_sendbits __P((struct ep_softc *, u_int32_t, int));
    235 
    236 static int epbusyeeprom __P((struct ep_softc *));
    237 u_int16_t ep_read_eeprom __P((struct ep_softc *, u_int16_t));
    238 static inline void ep_reset_cmd __P((struct ep_softc *sc,
    239 					u_int cmd, u_int arg));
    240 static inline void ep_finish_reset __P((bus_space_tag_t, bus_space_handle_t));
    241 static inline void ep_discard_rxtop __P((bus_space_tag_t, bus_space_handle_t));
    242 static __inline int ep_w1_reg __P((struct ep_softc *, int));
    243 
    244 /*
    245  * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
    246  * Window 1 registers offset!
    247  */
    248 static __inline int
    249 ep_w1_reg(sc, reg)
    250 	struct ep_softc *sc;
    251 	int reg;
    252 {
    253 
    254 	switch (sc->ep_chipset) {
    255 	case ELINK_CHIPSET_CORKSCREW:
    256 		return (reg + 0x10);
    257 
    258 	case ELINK_CHIPSET_ROADRUNNER:
    259 		switch (reg) {
    260 		case ELINK_W1_FREE_TX:
    261 		case ELINK_W1_RUNNER_RDCTL:
    262 		case ELINK_W1_RUNNER_WRCTL:
    263 			return (reg);
    264 		}
    265 		return (reg + 0x10);
    266 	}
    267 
    268 	return (reg);
    269 }
    270 
    271 /*
    272  * Wait for any pending reset to complete.
    273  * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
    274  * but older hardware doesn't implement it and we must delay.
    275  */
    276 static inline void
    277 ep_finish_reset(iot, ioh)
    278 	bus_space_tag_t iot;
    279 	bus_space_handle_t ioh;
    280 {
    281 	int i;
    282 
    283 	for (i = 0; i < 10000; i++) {
    284 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
    285 		    S_COMMAND_IN_PROGRESS) == 0)
    286 			break;
    287 		DELAY(10);
    288 	}
    289 }
    290 
    291 /*
    292  * Issue a (reset) command, and be sure it has completed.
    293  * Used for global reset, TX_RESET, RX_RESET.
    294  */
    295 static inline void
    296 ep_reset_cmd(sc, cmd, arg)
    297 	struct ep_softc *sc;
    298 	u_int cmd, arg;
    299 {
    300 	register bus_space_tag_t iot = sc->sc_iot;
    301 	register bus_space_handle_t ioh = sc->sc_ioh;
    302 
    303 	bus_space_write_2(iot, ioh, cmd, arg);
    304 	ep_finish_reset(iot, ioh);
    305 }
    306 
    307 
    308 static inline void
    309 ep_discard_rxtop(iot, ioh)
    310 	register bus_space_tag_t iot;
    311 	register bus_space_handle_t ioh;
    312 {
    313 	int i;
    314 
    315 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
    316 
    317         /*
    318 	 * Spin for about 1 msec, to avoid forcing a DELAY() between
    319 	 * every received packet (adding latency and  limiting pkt-recv rate).
    320 	 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
    321 	 * is about right.
    322 	 */
    323 	for (i = 0; i < 8000; i++) {
    324 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
    325 		    S_COMMAND_IN_PROGRESS) == 0)
    326 		    return;
    327 	}
    328 
    329 	/*  Didn't complete in a hurry. Do DELAY()s. */
    330 	ep_finish_reset(iot, ioh);
    331 }
    332 
    333 /*
    334  * Back-end attach and configure.
    335  */
    336 void
    337 epconfig(sc, chipset, enaddr)
    338 	struct ep_softc *sc;
    339 	u_short chipset;
    340 	u_int8_t *enaddr;
    341 {
    342 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    343 	bus_space_tag_t iot = sc->sc_iot;
    344 	bus_space_handle_t ioh = sc->sc_ioh;
    345 	u_int16_t i;
    346 	u_int8_t myla[6];
    347 
    348 	sc->ep_chipset = chipset;
    349 
    350 	/*
    351 	 * We could have been groveling around in other register
    352 	 * windows in the front-end; make sure we're in window 0
    353 	 * to read the EEPROM.
    354 	 */
    355 	GO_WINDOW(0);
    356 
    357 	if (enaddr == NULL) {
    358 		/*
    359 		 * Read the station address from the eeprom.
    360 		 */
    361 		for (i = 0; i < 3; i++) {
    362 			u_int16_t x = ep_read_eeprom(sc, i);
    363 			myla[(i << 1)] = x >> 8;
    364 			myla[(i << 1) + 1] = x;
    365 		}
    366 		enaddr = myla;
    367 	}
    368 
    369 	/*
    370 	 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
    371 	 * allow FDDI-sized (4500) byte packets.  Commands only take an
    372 	 * 11-bit parameter, and  11 bits isn't enough to hold a full-size
    373 	 * packet length.
    374 	 * Commands to these cards implicitly upshift a packet size
    375 	 * or threshold by 2 bits.
    376 	 * To detect  cards with large-packet support, we probe by setting
    377 	 * the transmit threshold register, then change windows and
    378 	 * read back the threshold register directly, and see if the
    379 	 * threshold value was shifted or not.
    380 	 */
    381 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    382 	    SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
    383 	GO_WINDOW(5);
    384 	i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
    385 	GO_WINDOW(1);
    386 	switch (i)  {
    387 	case ELINK_LARGEWIN_PROBE:
    388 	case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
    389 		sc->ep_pktlenshift = 0;
    390 		break;
    391 
    392 	case (ELINK_LARGEWIN_PROBE << 2):
    393 		sc->ep_pktlenshift = 2;
    394 		break;
    395 
    396 	default:
    397 		printf("%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
    398 		    "Interface disabled\n",
    399 		    sc->sc_dev.dv_xname, ELINK_LARGEWIN_PROBE, (int) i);
    400 		return;
    401 	}
    402 
    403 	/*
    404 	 * Ensure Tx-available interrupts are enabled for
    405 	 * start the interface.
    406 	 * XXX should be in epinit()?
    407 	 */
    408 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    409 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
    410 
    411 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
    412 	ifp->if_softc = sc;
    413 	ifp->if_start = epstart;
    414 	ifp->if_ioctl = epioctl;
    415 	ifp->if_watchdog = epwatchdog;
    416 	ifp->if_flags =
    417 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    418 
    419 	if_attach(ifp);
    420 	ether_ifattach(ifp, enaddr);
    421 
    422 	/*
    423 	 * Finish configuration:
    424 	 * determine chipset if the front-end couldn't do so,
    425 	 * show board details, set media.
    426 	 */
    427 
    428 	/*
    429 	 * Print RAM size.  We also print the Ethernet address in here.
    430 	 * It's extracted from the ifp, so we have to make sure it's
    431 	 * been attached first.
    432 	 */
    433 	ep_internalconfig(sc);
    434 	GO_WINDOW(0);
    435 
    436 	/*
    437 	 * Display some additional information, if pertinent.
    438 	 */
    439 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
    440 		printf("%s: RoadRunner FIFO buffer enabled\n",
    441 		    sc->sc_dev.dv_xname);
    442 
    443 	/*
    444 	 * Initialize our media structures and MII info.  We'll
    445 	 * probe the MII if we discover that we have one.
    446 	 */
    447 	sc->sc_mii.mii_ifp = ifp;
    448 	sc->sc_mii.mii_readreg = ep_mii_readreg;
    449 	sc->sc_mii.mii_writereg = ep_mii_writereg;
    450 	sc->sc_mii.mii_statchg = ep_statchg;
    451 	ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
    452 	    ep_media_status);
    453 
    454 	/*
    455 	 * Now, determine which media we have.
    456 	 */
    457 	switch (sc->ep_chipset) {
    458 	case ELINK_CHIPSET_ROADRUNNER:
    459 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    460 			ep_roadrunner_mii_enable(sc);
    461 			GO_WINDOW(0);
    462 		}
    463 		/* FALLTHROUGH */
    464 
    465 	case ELINK_CHIPSET_BOOMERANG:
    466 		/*
    467 		 * If the device has MII, probe it.  We won't be using
    468 		 * any `native' media in this case, only PHYs.  If
    469 		 * we don't, just treat the Boomerang like the Vortex.
    470 		 */
    471 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    472 			mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
    473 			    MII_PHY_ANY, MII_OFFSET_ANY);
    474 			if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    475 				ifmedia_add(&sc->sc_mii.mii_media,
    476 				    IFM_ETHER|IFM_NONE, 0, NULL);
    477 				ifmedia_set(&sc->sc_mii.mii_media,
    478 				    IFM_ETHER|IFM_NONE);
    479 			} else {
    480 				ifmedia_set(&sc->sc_mii.mii_media,
    481 				    IFM_ETHER|IFM_AUTO);
    482 			}
    483 			break;
    484 		}
    485 		/* FALLTHROUGH */
    486 
    487 	case ELINK_CHIPSET_VORTEX:
    488 		ep_vortex_probemedia(sc);
    489 		break;
    490 
    491 	default:
    492 		ep_509_probemedia(sc);
    493 		break;
    494 	}
    495 
    496 	GO_WINDOW(1);		/* Window 1 is operating window */
    497 
    498 #if NBPFILTER > 0
    499 	bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
    500 #endif
    501 
    502 #if NRND > 0
    503 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    504 	    RND_TYPE_NET, 0);
    505 #endif
    506 
    507 	sc->tx_start_thresh = 20;	/* probably a good starting point. */
    508 
    509 	/*  Establish callback to reset card when we reboot. */
    510 	shutdownhook_establish(epshutdown, sc);
    511 
    512 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    513 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    514 }
    515 
    516 
    517 /*
    518  * Show interface-model-independent info from window 3
    519  * internal-configuration register.
    520  */
    521 void
    522 ep_internalconfig(sc)
    523 	struct ep_softc *sc;
    524 {
    525 	bus_space_tag_t iot = sc->sc_iot;
    526 	bus_space_handle_t ioh = sc->sc_ioh;
    527 
    528 	u_int config0;
    529 	u_int config1;
    530 
    531 	int  ram_size, ram_width, ram_speed, rom_size, ram_split;
    532 	/*
    533 	 * NVRAM buffer Rx:Tx config names for busmastering cards
    534 	 * (Demon, Vortex, and later).
    535 	 */
    536 	const char *onboard_ram_config[] = {
    537 		"5:3", "3:1", "1:1", "3:5" };
    538 
    539 	GO_WINDOW(3);
    540 	config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
    541 	config1 = (u_int)bus_space_read_2(iot, ioh,
    542 	    ELINK_W3_INTERNAL_CONFIG + 2);
    543 	GO_WINDOW(0);
    544 
    545 	ram_size  = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
    546 	ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
    547 	ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
    548 	rom_size  = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
    549 
    550 	ram_split  = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
    551 
    552 	printf("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
    553 	       sc->sc_dev.dv_xname,
    554 	       ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
    555 	       8 << ram_size,
    556 	       (ram_width) ? "word" : "byte",
    557 	       onboard_ram_config[ram_split]);
    558 }
    559 
    560 
    561 /*
    562  * Find supported media on 3c509-generation hardware that doesn't have
    563  * a "reset_options" register in window 3.
    564  * Use the config_cntrl register  in window 0 instead.
    565  * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
    566  * that implement  CONFIG_CTRL.  We don't have a good way to set the
    567  * default active mediuim; punt to ifconfig  instead.
    568  */
    569 void
    570 ep_509_probemedia(sc)
    571 	struct ep_softc *sc;
    572 {
    573 	bus_space_tag_t iot = sc->sc_iot;
    574 	bus_space_handle_t ioh = sc->sc_ioh;
    575 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    576 	u_int16_t ep_w0_config, port;
    577 	struct ep_media *epm;
    578 	const char *sep = "", *defmedianame = NULL;
    579 	int defmedia = 0;
    580 
    581 	GO_WINDOW(0);
    582 	ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
    583 
    584 	printf("%s: ", sc->sc_dev.dv_xname);
    585 
    586 	/* Sanity check that there are any media! */
    587 	if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
    588 		printf("no media present!\n");
    589 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
    590 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
    591 		return;
    592 	}
    593 
    594 	/*
    595 	 * Get the default media from the EEPROM.
    596 	 */
    597 	port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
    598 
    599 #define	PRINT(s)	printf("%s%s", sep, s); sep = ", "
    600 
    601 	for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
    602 		if (ep_w0_config & epm->epm_mpbit) {
    603 			/*
    604 			 * This simple test works because 509 chipsets
    605 			 * don't do full-duplex.
    606 			 */
    607 			if (epm->epm_epmedia == port || defmedia == 0) {
    608 				defmedia = epm->epm_ifmedia;
    609 				defmedianame = epm->epm_name;
    610 			}
    611 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
    612 			    NULL);
    613 			PRINT(epm->epm_name);
    614 		}
    615 	}
    616 
    617 #undef PRINT
    618 
    619 #ifdef DIAGNOSTIC
    620 	if (defmedia == 0)
    621 		panic("ep_509_probemedia: impossible");
    622 #endif
    623 
    624 	printf(" (default %s)\n", defmedianame);
    625 	ifmedia_set(ifm, defmedia);
    626 }
    627 
    628 /*
    629  * Find media present on large-packet-capable elink3 devices.
    630  * Show onboard configuration of large-packet-capable elink3 devices
    631  * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
    632  * Use media and card-version info in window 3 instead.
    633  */
    634 void
    635 ep_vortex_probemedia(sc)
    636 	struct ep_softc *sc;
    637 {
    638 	bus_space_tag_t iot = sc->sc_iot;
    639 	bus_space_handle_t ioh = sc->sc_ioh;
    640 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    641 	struct ep_media *epm;
    642 	u_int config1;
    643 	int reset_options;
    644 	int default_media;	/* 3-bit encoding of default (EEPROM) media */
    645 	int defmedia = 0;
    646 	const char *sep = "", *defmedianame = NULL;
    647 
    648 	GO_WINDOW(3);
    649 	config1 = (u_int)bus_space_read_2(iot, ioh,
    650 	    ELINK_W3_INTERNAL_CONFIG + 2);
    651 	reset_options = (int)bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
    652 	GO_WINDOW(0);
    653 
    654 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
    655 
    656 	printf("%s: ", sc->sc_dev.dv_xname);
    657 
    658 	/* Sanity check that there are any media! */
    659 	if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
    660 		printf("no media present!\n");
    661 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
    662 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
    663 		return;
    664 	}
    665 
    666 #define	PRINT(s)	printf("%s%s", sep, s); sep = ", "
    667 
    668 	for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
    669 		if (reset_options & epm->epm_mpbit) {
    670 			/*
    671 			 * Default media is a little more complicated
    672 			 * on the Vortex.  We support full-duplex which
    673 			 * uses the same reset options bit.
    674 			 *
    675 			 * XXX Check EEPROM for default to FDX?
    676 			 */
    677 			if (epm->epm_epmedia == default_media) {
    678 				if ((epm->epm_ifmedia & IFM_FDX) == 0) {
    679 					defmedia = epm->epm_ifmedia;
    680 					defmedianame = epm->epm_name;
    681 				}
    682 			} else if (defmedia == 0) {
    683 				defmedia = epm->epm_ifmedia;
    684 				defmedianame = epm->epm_name;
    685 			}
    686 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
    687 			    NULL);
    688 			PRINT(epm->epm_name);
    689 		}
    690 	}
    691 
    692 #undef PRINT
    693 
    694 #ifdef DIAGNOSTIC
    695 	if (defmedia == 0)
    696 		panic("ep_vortex_probemedia: impossible");
    697 #endif
    698 
    699 	printf(" (default %s)\n", defmedianame);
    700 	ifmedia_set(ifm, defmedia);
    701 }
    702 
    703 /*
    704  * One second timer, used to tick the MII.
    705  */
    706 void
    707 ep_tick(arg)
    708 	void *arg;
    709 {
    710 	struct ep_softc *sc = arg;
    711 	int s;
    712 
    713 #ifdef DIAGNOSTIC
    714 	if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
    715 		panic("ep_tick");
    716 #endif
    717 
    718 	s = splnet();
    719 	mii_tick(&sc->sc_mii);
    720 	splx(s);
    721 
    722 	timeout(ep_tick, sc, hz);
    723 }
    724 
    725 /*
    726  * Bring device up.
    727  *
    728  * The order in here seems important. Otherwise we may not receive
    729  * interrupts. ?!
    730  */
    731 void
    732 epinit(sc)
    733 	register struct ep_softc *sc;
    734 {
    735 	register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    736 	bus_space_tag_t iot = sc->sc_iot;
    737 	bus_space_handle_t ioh = sc->sc_ioh;
    738 	int i;
    739 
    740 	/* Make sure any pending reset has completed before touching board. */
    741 	ep_finish_reset(iot, ioh);
    742 
    743 	/*
    744 	 * Cance any pending I/O.
    745 	 */
    746 	epstop(sc);
    747 
    748 	if (sc->bustype != ELINK_BUS_PCI) {
    749 		GO_WINDOW(0);
    750 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
    751 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
    752 		    ENABLE_DRQ_IRQ);
    753 	}
    754 
    755 	if (sc->bustype == ELINK_BUS_PCMCIA) {
    756 		bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
    757 	}
    758 
    759 	GO_WINDOW(2);
    760 	for (i = 0; i < 6; i++)	/* Reload the ether_addr. */
    761 		bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
    762 		    LLADDR(ifp->if_sadl)[i]);
    763 
    764 	/*
    765 	 * Reset the station-address receive filter.
    766 	 * A bug workaround for busmastering (Vortex, Demon) cards.
    767 	 */
    768 	for (i = 0; i < 6; i++)
    769 		bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
    770 
    771 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    772 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    773 
    774 	GO_WINDOW(1);		/* Window 1 is operating window */
    775 	for (i = 0; i < 31; i++)
    776 		bus_space_read_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS));
    777 
    778 	/* Set threshhold for for Tx-space avaiable interrupt. */
    779 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    780 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
    781 
    782 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
    783 		/*
    784 		 * Enable options in the PCMCIA LAN COR register, via
    785 		 * RoadRunner Window 1.
    786 		 *
    787 		 * XXX MAGIC CONSTANTS!
    788 		 */
    789 		u_int16_t cor;
    790 
    791 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
    792 
    793 		cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
    794 		if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
    795 			cor |= 0x10;
    796 		if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
    797 			cor |= 0x20;
    798 		bus_space_write_2(iot, ioh, 0, cor);
    799 
    800 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
    801 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
    802 
    803 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    804 			ep_roadrunner_mii_enable(sc);
    805 			GO_WINDOW(1);
    806 		}
    807 	}
    808 
    809 	/* Enable interrupts. */
    810 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    811 	    SET_RD_0_MASK | S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE |
    812 	    S_TX_AVAIL);
    813 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    814 	    SET_INTR_MASK | S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE |
    815 	    S_TX_AVAIL);
    816 
    817 	/*
    818 	 * Attempt to get rid of any stray interrupts that occured during
    819 	 * configuration.  On the i386 this isn't possible because one may
    820 	 * already be queued.  However, a single stray interrupt is
    821 	 * unimportant.
    822 	 */
    823 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
    824 
    825 	epsetfilter(sc);
    826 	epsetmedia(sc);
    827 
    828 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
    829 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
    830 
    831 	epmbuffill(sc);
    832 
    833 	/* Interface is now `running', with no output active. */
    834 	ifp->if_flags |= IFF_RUNNING;
    835 	ifp->if_flags &= ~IFF_OACTIVE;
    836 
    837 	if (sc->ep_flags & ELINK_FLAGS_MII) {
    838 		/* Start the one second clock. */
    839 		timeout(ep_tick, sc, hz);
    840 	}
    841 
    842 	/* Attempt to start output, if any. */
    843 	epstart(ifp);
    844 }
    845 
    846 
    847 /*
    848  * Set multicast receive filter.
    849  * elink3 hardware has no selective multicast filter in hardware.
    850  * Enable reception of all multicasts and filter in software.
    851  */
    852 void
    853 epsetfilter(sc)
    854 	register struct ep_softc *sc;
    855 {
    856 	register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    857 
    858 	GO_WINDOW(1);		/* Window 1 is operating window */
    859 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
    860 	    SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
    861 	    ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
    862 	    ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
    863 }
    864 
    865 int
    866 ep_media_change(ifp)
    867 	struct ifnet *ifp;
    868 {
    869 	register struct ep_softc *sc = ifp->if_softc;
    870 
    871 	if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
    872 		epreset(sc);
    873 
    874 	return (0);
    875 }
    876 
    877 /*
    878  * Reset and enable the MII on the RoadRunner.
    879  */
    880 void
    881 ep_roadrunner_mii_enable(sc)
    882 	struct ep_softc *sc;
    883 {
    884 	bus_space_tag_t iot = sc->sc_iot;
    885 	bus_space_handle_t ioh = sc->sc_ioh;
    886 
    887 	GO_WINDOW(3);
    888 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    889 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
    890 	delay(1000);
    891 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    892 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
    893 	    ELINK_RUNNER_ENABLE_MII);
    894 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    895 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    896 	delay(1000);
    897 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    898 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
    899 }
    900 
    901 /*
    902  * Set the card to use the specified media.
    903  */
    904 void
    905 epsetmedia(sc)
    906 	struct ep_softc *sc;
    907 {
    908 	bus_space_tag_t iot = sc->sc_iot;
    909 	bus_space_handle_t ioh = sc->sc_ioh;
    910 
    911 	/* Turn everything off.  First turn off linkbeat and UTP. */
    912 	GO_WINDOW(4);
    913 	bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
    914 
    915 	/* Turn off coax */
    916 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
    917 	delay(1000);
    918 
    919 	/*
    920 	 * If the device has MII, select it, and then tell the
    921 	 * PHY which media to use.
    922 	 */
    923 	if (sc->ep_flags & ELINK_FLAGS_MII) {
    924 		int config0, config1;
    925 
    926 		GO_WINDOW(3);
    927 
    928 		if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
    929 			int resopt;
    930 
    931 			resopt = bus_space_read_2(iot, ioh,
    932 			    ELINK_W3_RESET_OPTIONS);
    933 			bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    934 			    resopt | ELINK_RUNNER_ENABLE_MII);
    935 		}
    936 
    937 		config0 = (u_int)bus_space_read_2(iot, ioh,
    938 		    ELINK_W3_INTERNAL_CONFIG);
    939 		config1 = (u_int)bus_space_read_2(iot, ioh,
    940 		    ELINK_W3_INTERNAL_CONFIG + 2);
    941 
    942 		config1 = config1 & ~CONFIG_MEDIAMASK;
    943 		config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
    944 
    945 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
    946 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
    947 		    config1);
    948 		GO_WINDOW(1);	/* back to operating window */
    949 
    950 		mii_mediachg(&sc->sc_mii);
    951 		return;
    952 	}
    953 
    954 	/*
    955 	 * Now turn on the selected media/transceiver.
    956 	 */
    957 	GO_WINDOW(4);
    958 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
    959 	case IFM_10_T:
    960 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
    961 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
    962 		break;
    963 
    964 	case IFM_10_2:
    965 		bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
    966 		DELAY(1000);	/* 50ms not enmough? */
    967 		break;
    968 
    969 	case IFM_100_TX:
    970 	case IFM_100_FX:
    971 	case IFM_100_T4:		/* XXX check documentation */
    972 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
    973 		    LINKBEAT_ENABLE);
    974 		DELAY(1000);	/* not strictly necessary? */
    975 		break;
    976 
    977 	case IFM_10_5:
    978 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
    979 		    SQE_ENABLE);
    980 		DELAY(1000);	/* not strictly necessary? */
    981 		break;
    982 
    983 	case IFM_MANUAL:
    984 		/*
    985 		 * Nothing to do here; we are actually enabling the
    986 		 * external PHY on the MII port.
    987 		 */
    988 		break;
    989 
    990 	case IFM_NONE:
    991 		printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
    992 		return;
    993 
    994 	default:
    995 		panic("epsetmedia: impossible");
    996 	}
    997 
    998 	/*
    999 	 * Tell the chip which port to use.
   1000 	 */
   1001 	switch (sc->ep_chipset) {
   1002 	case ELINK_CHIPSET_VORTEX:
   1003 	case ELINK_CHIPSET_BOOMERANG:
   1004 	    {
   1005 		int mctl, config0, config1;
   1006 
   1007 		GO_WINDOW(3);
   1008 		config0 = (u_int)bus_space_read_2(iot, ioh,
   1009 		    ELINK_W3_INTERNAL_CONFIG);
   1010 		config1 = (u_int)bus_space_read_2(iot, ioh,
   1011 		    ELINK_W3_INTERNAL_CONFIG + 2);
   1012 
   1013 		config1 = config1 & ~CONFIG_MEDIAMASK;
   1014 		config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
   1015 		    CONFIG_MEDIAMASK_SHIFT);
   1016 
   1017 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
   1018 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
   1019 		    config1);
   1020 
   1021 		mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
   1022 		if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
   1023 			mctl |= MAC_CONTROL_FDX;
   1024 		else
   1025 			mctl &= ~MAC_CONTROL_FDX;
   1026 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
   1027 		break;
   1028 	    }
   1029 	default:
   1030 	    {
   1031 		int w0_addr_cfg;
   1032 
   1033 		GO_WINDOW(0);
   1034 		w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
   1035 		w0_addr_cfg &= 0x3fff;
   1036 		bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
   1037 		    (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
   1038 		DELAY(1000);
   1039 		break;
   1040 	    }
   1041 	}
   1042 
   1043 	GO_WINDOW(1);		/* Window 1 is operating window */
   1044 }
   1045 
   1046 /*
   1047  * Get currently-selected media from card.
   1048  * (if_media callback, may be called before interface is brought up).
   1049  */
   1050 void
   1051 ep_media_status(ifp, req)
   1052 	struct ifnet *ifp;
   1053 	struct ifmediareq *req;
   1054 {
   1055 	register struct ep_softc *sc = ifp->if_softc;
   1056 	bus_space_tag_t iot = sc->sc_iot;
   1057 	bus_space_handle_t ioh = sc->sc_ioh;
   1058 
   1059 	if (sc->enabled == 0) {
   1060 		req->ifm_active = IFM_ETHER|IFM_NONE;
   1061 		req->ifm_status = 0;
   1062 		return;
   1063 	}
   1064 
   1065 	/*
   1066 	 * If we have MII, go ask the PHY what's going on.
   1067 	 */
   1068 	if (sc->ep_flags & ELINK_FLAGS_MII) {
   1069 		mii_pollstat(&sc->sc_mii);
   1070 		req->ifm_active = sc->sc_mii.mii_media_active;
   1071 		req->ifm_status = sc->sc_mii.mii_media_status;
   1072 		return;
   1073 	}
   1074 
   1075 	/*
   1076 	 * Ok, at this point we claim that our active media is
   1077 	 * the currently selected media.  We'll update our status
   1078 	 * if our chipset allows us to detect link.
   1079 	 */
   1080 	req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   1081 	req->ifm_status = 0;
   1082 
   1083 	switch (sc->ep_chipset) {
   1084 	case ELINK_CHIPSET_VORTEX:
   1085 	case ELINK_CHIPSET_BOOMERANG:
   1086 		GO_WINDOW(4);
   1087 		req->ifm_status = IFM_AVALID;
   1088 		if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
   1089 		    LINKBEAT_DETECT)
   1090 			req->ifm_status |= IFM_ACTIVE;
   1091 		GO_WINDOW(1);	/* back to operating window */
   1092 		break;
   1093 	}
   1094 }
   1095 
   1096 
   1097 
   1098 /*
   1099  * Start outputting on the interface.
   1100  * Always called as splnet().
   1101  */
   1102 void
   1103 epstart(ifp)
   1104 	struct ifnet *ifp;
   1105 {
   1106 	register struct ep_softc *sc = ifp->if_softc;
   1107 	bus_space_tag_t iot = sc->sc_iot;
   1108 	bus_space_handle_t ioh = sc->sc_ioh;
   1109 	struct mbuf *m, *m0;
   1110 	int sh, len, pad;
   1111 	bus_addr_t txreg;
   1112 
   1113 	/* Don't transmit if interface is busy or not running */
   1114 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1115 		return;
   1116 
   1117 startagain:
   1118 	/* Sneak a peek at the next packet */
   1119 	m0 = ifp->if_snd.ifq_head;
   1120 	if (m0 == 0)
   1121 		return;
   1122 
   1123 	/* We need to use m->m_pkthdr.len, so require the header */
   1124 	if ((m0->m_flags & M_PKTHDR) == 0)
   1125 		panic("epstart: no header mbuf");
   1126 	len = m0->m_pkthdr.len;
   1127 
   1128 	pad = (4 - len) & 3;
   1129 
   1130 	/*
   1131 	 * The 3c509 automatically pads short packets to minimum ethernet
   1132 	 * length, but we drop packets that are too large. Perhaps we should
   1133 	 * truncate them instead?
   1134 	 */
   1135 	if (len + pad > ETHER_MAX_LEN) {
   1136 		/* packet is obviously too large: toss it */
   1137 		++ifp->if_oerrors;
   1138 		IF_DEQUEUE(&ifp->if_snd, m0);
   1139 		m_freem(m0);
   1140 		goto readcheck;
   1141 	}
   1142 
   1143 	if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
   1144 	    len + pad + 4) {
   1145 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
   1146 		    SET_TX_AVAIL_THRESH |
   1147 		    ((len + pad + 4) >> sc->ep_pktlenshift));
   1148 		/* not enough room in FIFO */
   1149 		ifp->if_flags |= IFF_OACTIVE;
   1150 		return;
   1151 	} else {
   1152 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
   1153 		    SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
   1154 	}
   1155 
   1156 	IF_DEQUEUE(&ifp->if_snd, m0);
   1157 	if (m0 == 0)		/* not really needed */
   1158 		return;
   1159 
   1160 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
   1161 	    ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
   1162 
   1163 #if NBPFILTER > 0
   1164 	if (ifp->if_bpf)
   1165 		bpf_mtap(ifp->if_bpf, m0);
   1166 #endif
   1167 
   1168 	/*
   1169 	 * Do the output at splhigh() so that an interrupt from another device
   1170 	 * won't cause a FIFO underrun.
   1171 	 */
   1172 	sh = splhigh();
   1173 
   1174 	txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
   1175 
   1176 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
   1177 		/*
   1178 		 * Prime the FIFO buffer counter (number of 16-bit
   1179 		 * words about to be written to the FIFO).
   1180 		 *
   1181 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
   1182 		 * COUNTER IS NON-ZERO!
   1183 		 */
   1184 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
   1185 		    (len + pad) >> 1);
   1186 	}
   1187 
   1188 	bus_space_write_2(iot, ioh, txreg, len);
   1189 	bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
   1190 	if (ELINK_IS_BUS_32(sc->bustype)) {
   1191 		for (m = m0; m;) {
   1192 			if (m->m_len > 3)  {
   1193 				/* align our reads from core */
   1194 				if (mtod(m, u_long) & 3)  {
   1195 					u_long count =
   1196 					    4 - (mtod(m, u_long) & 3);
   1197 					bus_space_write_multi_1(iot, ioh,
   1198 					    txreg, mtod(m, u_int8_t *), count);
   1199 					m->m_data =
   1200 					    (void *)(mtod(m, u_long) + count);
   1201 					m->m_len -= count;
   1202 				}
   1203 				bus_space_write_multi_stream_4(iot, ioh,
   1204 				    txreg, mtod(m, u_int32_t *), m->m_len >> 2);
   1205 				m->m_data = (void *)(mtod(m, u_long) +
   1206 					(u_long)(m->m_len & ~3));
   1207 				m->m_len -= m->m_len & ~3;
   1208 			}
   1209 			if (m->m_len)  {
   1210 				bus_space_write_multi_1(iot, ioh,
   1211 				    txreg, mtod(m, u_int8_t *), m->m_len);
   1212 			}
   1213 			MFREE(m, m0);
   1214 			m = m0;
   1215 		}
   1216 	} else {
   1217 		for (m = m0; m;) {
   1218 			if (m->m_len > 1)  {
   1219 				if (mtod(m, u_long) & 1)  {
   1220 					bus_space_write_1(iot, ioh,
   1221 					    txreg, *(mtod(m, u_int8_t *)));
   1222 					m->m_data =
   1223 					    (void *)(mtod(m, u_long) + 1);
   1224 					m->m_len -= 1;
   1225 				}
   1226 				bus_space_write_multi_stream_2(iot, ioh,
   1227 				    txreg, mtod(m, u_int16_t *),
   1228 				    m->m_len >> 1);
   1229 			}
   1230 			if (m->m_len & 1)  {
   1231 				bus_space_write_1(iot, ioh, txreg,
   1232 				     *(mtod(m, u_int8_t *) + m->m_len - 1));
   1233 			}
   1234 			MFREE(m, m0);
   1235 			m = m0;
   1236 		}
   1237 	}
   1238 	while (pad--)
   1239 		bus_space_write_1(iot, ioh, txreg, 0);
   1240 
   1241 	splx(sh);
   1242 
   1243 	++ifp->if_opackets;
   1244 
   1245 readcheck:
   1246 	if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
   1247 	    ERR_INCOMPLETE) == 0) {
   1248 		/* We received a complete packet. */
   1249 		u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1250 
   1251 		if ((status & S_INTR_LATCH) == 0) {
   1252 			/*
   1253 			 * No interrupt, read the packet and continue
   1254 			 * Is  this supposed to happen? Is my motherboard
   1255 			 * completely busted?
   1256 			 */
   1257 			epread(sc);
   1258 		} else {
   1259 			/* Got an interrupt, return so that it gets serviced. */
   1260 			return;
   1261 		}
   1262 	} else {
   1263 		/* Check if we are stuck and reset [see XXX comment] */
   1264 		if (epstatus(sc)) {
   1265 			if (ifp->if_flags & IFF_DEBUG)
   1266 				printf("%s: adapter reset\n",
   1267 				    sc->sc_dev.dv_xname);
   1268 			epreset(sc);
   1269 		}
   1270 	}
   1271 
   1272 	goto startagain;
   1273 }
   1274 
   1275 
   1276 /*
   1277  * XXX: The 3c509 card can get in a mode where both the fifo status bit
   1278  *	FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
   1279  *	We detect this situation and we reset the adapter.
   1280  *	It happens at times when there is a lot of broadcast traffic
   1281  *	on the cable (once in a blue moon).
   1282  */
   1283 static int
   1284 epstatus(sc)
   1285 	register struct ep_softc *sc;
   1286 {
   1287 	bus_space_tag_t iot = sc->sc_iot;
   1288 	bus_space_handle_t ioh = sc->sc_ioh;
   1289 	u_int16_t fifost;
   1290 
   1291 	/*
   1292 	 * Check the FIFO status and act accordingly
   1293 	 */
   1294 	GO_WINDOW(4);
   1295 	fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
   1296 	GO_WINDOW(1);
   1297 
   1298 	if (fifost & FIFOS_RX_UNDERRUN) {
   1299 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1300 			printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
   1301 		epreset(sc);
   1302 		return 0;
   1303 	}
   1304 
   1305 	if (fifost & FIFOS_RX_STATUS_OVERRUN) {
   1306 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1307 			printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
   1308 		return 1;
   1309 	}
   1310 
   1311 	if (fifost & FIFOS_RX_OVERRUN) {
   1312 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1313 			printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
   1314 		return 1;
   1315 	}
   1316 
   1317 	if (fifost & FIFOS_TX_OVERRUN) {
   1318 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1319 			printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
   1320 		epreset(sc);
   1321 		return 0;
   1322 	}
   1323 
   1324 	return 0;
   1325 }
   1326 
   1327 
   1328 static void
   1329 eptxstat(sc)
   1330 	register struct ep_softc *sc;
   1331 {
   1332 	bus_space_tag_t iot = sc->sc_iot;
   1333 	bus_space_handle_t ioh = sc->sc_ioh;
   1334 	int i;
   1335 
   1336 	/*
   1337 	 * We need to read+write TX_STATUS until we get a 0 status
   1338 	 * in order to turn off the interrupt flag.
   1339 	 */
   1340 	while ((i = bus_space_read_1(iot, ioh,
   1341 	     ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
   1342 		bus_space_write_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
   1343 		    0x0);
   1344 
   1345 		if (i & TXS_JABBER) {
   1346 			++sc->sc_ethercom.ec_if.if_oerrors;
   1347 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1348 				printf("%s: jabber (%x)\n",
   1349 				       sc->sc_dev.dv_xname, i);
   1350 			epreset(sc);
   1351 		} else if (i & TXS_UNDERRUN) {
   1352 			++sc->sc_ethercom.ec_if.if_oerrors;
   1353 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1354 				printf("%s: fifo underrun (%x) @%d\n",
   1355 				       sc->sc_dev.dv_xname, i,
   1356 				       sc->tx_start_thresh);
   1357 			if (sc->tx_succ_ok < 100)
   1358 				    sc->tx_start_thresh = min(ETHER_MAX_LEN,
   1359 					    sc->tx_start_thresh + 20);
   1360 			sc->tx_succ_ok = 0;
   1361 			epreset(sc);
   1362 		} else if (i & TXS_MAX_COLLISION) {
   1363 			++sc->sc_ethercom.ec_if.if_collisions;
   1364 			bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
   1365 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
   1366 		} else
   1367 			sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
   1368 	}
   1369 }
   1370 
   1371 int
   1372 epintr(arg)
   1373 	void *arg;
   1374 {
   1375 	register struct ep_softc *sc = arg;
   1376 	bus_space_tag_t iot = sc->sc_iot;
   1377 	bus_space_handle_t ioh = sc->sc_ioh;
   1378 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1379 	u_int16_t status;
   1380 	int ret = 0;
   1381 	int addrandom = 0;
   1382 
   1383 	if (sc->enabled == 0)
   1384 		return (0);
   1385 
   1386 	for (;;) {
   1387 		bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
   1388 
   1389 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1390 
   1391 		if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
   1392 			       S_RX_COMPLETE | S_CARD_FAILURE)) == 0) {
   1393 			if ((status & S_INTR_LATCH) == 0) {
   1394 #if 0
   1395 				printf("%s: intr latch cleared\n",
   1396 				       sc->sc_dev.dv_xname);
   1397 #endif
   1398 				break;
   1399 			}
   1400 		}
   1401 
   1402 		ret = 1;
   1403 
   1404 		/*
   1405 		 * Acknowledge any interrupts.  It's important that we do this
   1406 		 * first, since there would otherwise be a race condition.
   1407 		 * Due to the i386 interrupt queueing, we may get spurious
   1408 		 * interrupts occasionally.
   1409 		 */
   1410 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
   1411 				  (status & (C_INTR_LATCH |
   1412 					     C_CARD_FAILURE |
   1413 					     C_TX_COMPLETE |
   1414 					     C_TX_AVAIL |
   1415 					     C_RX_COMPLETE |
   1416 					     C_RX_EARLY |
   1417 					     C_INT_RQD |
   1418 					     C_UPD_STATS)));
   1419 
   1420 #if 0
   1421 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1422 
   1423 		printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
   1424 		       (status & S_RX_COMPLETE)?" RX_COMPLETE":"",
   1425 		       (status & S_TX_COMPLETE)?" TX_COMPLETE":"",
   1426 		       (status & S_TX_AVAIL)?" TX_AVAIL":"",
   1427 		       (status & S_CARD_FAILURE)?" CARD_FAILURE":"");
   1428 #endif
   1429 
   1430 		if (status & S_RX_COMPLETE) {
   1431 			epread(sc);
   1432 			addrandom = 1;
   1433 		}
   1434 		if (status & S_TX_AVAIL) {
   1435 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
   1436 			epstart(&sc->sc_ethercom.ec_if);
   1437 			addrandom = 1;
   1438 		}
   1439 		if (status & S_CARD_FAILURE) {
   1440 			printf("%s: adapter failure (%x)\n",
   1441 			    sc->sc_dev.dv_xname, status);
   1442 #if 1
   1443 			epinit(sc);
   1444 #else
   1445 			epreset(sc);
   1446 #endif
   1447 			return (1);
   1448 		}
   1449 		if (status & S_TX_COMPLETE) {
   1450 			eptxstat(sc);
   1451 			epstart(ifp);
   1452 			addrandom = 1;
   1453 		}
   1454 
   1455 #if NRND > 0
   1456 		if (status)
   1457 			rnd_add_uint32(&sc->rnd_source, status);
   1458 #endif
   1459 	}
   1460 
   1461 	/* no more interrupts */
   1462 	return (ret);
   1463 }
   1464 
   1465 void
   1466 epread(sc)
   1467 	register struct ep_softc *sc;
   1468 {
   1469 	bus_space_tag_t iot = sc->sc_iot;
   1470 	bus_space_handle_t ioh = sc->sc_ioh;
   1471 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1472 	struct mbuf *m;
   1473 	struct ether_header *eh;
   1474 	int len;
   1475 
   1476 	len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
   1477 
   1478 again:
   1479 	if (ifp->if_flags & IFF_DEBUG) {
   1480 		int err = len & ERR_MASK;
   1481 		char *s = NULL;
   1482 
   1483 		if (len & ERR_INCOMPLETE)
   1484 			s = "incomplete packet";
   1485 		else if (err == ERR_OVERRUN)
   1486 			s = "packet overrun";
   1487 		else if (err == ERR_RUNT)
   1488 			s = "runt packet";
   1489 		else if (err == ERR_ALIGNMENT)
   1490 			s = "bad alignment";
   1491 		else if (err == ERR_CRC)
   1492 			s = "bad crc";
   1493 		else if (err == ERR_OVERSIZE)
   1494 			s = "oversized packet";
   1495 		else if (err == ERR_DRIBBLE)
   1496 			s = "dribble bits";
   1497 
   1498 		if (s)
   1499 			printf("%s: %s\n", sc->sc_dev.dv_xname, s);
   1500 	}
   1501 
   1502 	if (len & ERR_INCOMPLETE)
   1503 		return;
   1504 
   1505 	if (len & ERR_RX) {
   1506 		++ifp->if_ierrors;
   1507 		goto abort;
   1508 	}
   1509 
   1510 	len &= RX_BYTES_MASK;	/* Lower 11 bits = RX bytes. */
   1511 
   1512 	/* Pull packet off interface. */
   1513 	m = epget(sc, len);
   1514 	if (m == 0) {
   1515 		ifp->if_ierrors++;
   1516 		goto abort;
   1517 	}
   1518 
   1519 	++ifp->if_ipackets;
   1520 
   1521 	/* We assume the header fit entirely in one mbuf. */
   1522 	eh = mtod(m, struct ether_header *);
   1523 
   1524 #if NBPFILTER > 0
   1525 	/*
   1526 	 * Check if there's a BPF listener on this interface.
   1527 	 * If so, hand off the raw packet to BPF.
   1528 	 */
   1529 	if (ifp->if_bpf) {
   1530 		bpf_mtap(ifp->if_bpf, m);
   1531 
   1532 		/*
   1533 		 * Note that the interface cannot be in promiscuous mode if
   1534 		 * there are no BPF listeners.  And if we are in promiscuous
   1535 		 * mode, we have to check if this packet is really ours.
   1536 		 */
   1537 		if ((ifp->if_flags & IFF_PROMISC) &&
   1538 		    (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
   1539 		    bcmp(eh->ether_dhost, LLADDR(sc->sc_ethercom.ec_if.if_sadl),
   1540 		        sizeof(eh->ether_dhost)) != 0) {
   1541 			m_freem(m);
   1542 			return;
   1543 		}
   1544 	}
   1545 #endif
   1546 	(*ifp->if_input)(ifp, m);
   1547 
   1548 	/*
   1549 	 * In periods of high traffic we can actually receive enough
   1550 	 * packets so that the fifo overrun bit will be set at this point,
   1551 	 * even though we just read a packet. In this case we
   1552 	 * are not going to receive any more interrupts. We check for
   1553 	 * this condition and read again until the fifo is not full.
   1554 	 * We could simplify this test by not using epstatus(), but
   1555 	 * rechecking the RX_STATUS register directly. This test could
   1556 	 * result in unnecessary looping in cases where there is a new
   1557 	 * packet but the fifo is not full, but it will not fix the
   1558 	 * stuck behavior.
   1559 	 *
   1560 	 * Even with this improvement, we still get packet overrun errors
   1561 	 * which are hurting performance. Maybe when I get some more time
   1562 	 * I'll modify epread() so that it can handle RX_EARLY interrupts.
   1563 	 */
   1564 	if (epstatus(sc)) {
   1565 		len = bus_space_read_2(iot, ioh,
   1566 		    ep_w1_reg(sc, ELINK_W1_RX_STATUS));
   1567 		/* Check if we are stuck and reset [see XXX comment] */
   1568 		if (len & ERR_INCOMPLETE) {
   1569 			if (ifp->if_flags & IFF_DEBUG)
   1570 				printf("%s: adapter reset\n",
   1571 				    sc->sc_dev.dv_xname);
   1572 			epreset(sc);
   1573 			return;
   1574 		}
   1575 		goto again;
   1576 	}
   1577 
   1578 	return;
   1579 
   1580 abort:
   1581 	ep_discard_rxtop(iot, ioh);
   1582 
   1583 }
   1584 
   1585 struct mbuf *
   1586 epget(sc, totlen)
   1587 	struct ep_softc *sc;
   1588 	int totlen;
   1589 {
   1590 	bus_space_tag_t iot = sc->sc_iot;
   1591 	bus_space_handle_t ioh = sc->sc_ioh;
   1592 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1593 	struct mbuf *top, **mp, *m, *rv = NULL;
   1594 	bus_addr_t rxreg;
   1595 	int len, remaining;
   1596 	int sh;
   1597 
   1598 	m = sc->mb[sc->next_mb];
   1599 	sc->mb[sc->next_mb] = 0;
   1600 	if (m == 0) {
   1601 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1602 		if (m == 0)
   1603 			return 0;
   1604 	} else {
   1605 		/* If the queue is no longer full, refill. */
   1606 		if (sc->last_mb == sc->next_mb)
   1607 			timeout(epmbuffill, sc, 1);
   1608 		/* Convert one of our saved mbuf's. */
   1609 		sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
   1610 		m->m_data = m->m_pktdat;
   1611 		m->m_flags = M_PKTHDR;
   1612 	}
   1613 	m->m_pkthdr.rcvif = ifp;
   1614 	m->m_pkthdr.len = totlen;
   1615 	len = MHLEN;
   1616 	top = 0;
   1617 	mp = &top;
   1618 
   1619 	/*
   1620 	 * We read the packet at splhigh() so that an interrupt from another
   1621 	 * device doesn't cause the card's buffer to overflow while we're
   1622 	 * reading it.  We may still lose packets at other times.
   1623 	 */
   1624 	sh = splhigh();
   1625 
   1626 	rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
   1627 
   1628 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
   1629 		/*
   1630 		 * Prime the FIFO buffer counter (number of 16-bit
   1631 		 * words about to be read from the FIFO).
   1632 		 *
   1633 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
   1634 		 * COUNTER IS NON-ZERO!
   1635 		 */
   1636 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
   1637 	}
   1638 
   1639 	while (totlen > 0) {
   1640 		if (top) {
   1641 			m = sc->mb[sc->next_mb];
   1642 			sc->mb[sc->next_mb] = 0;
   1643 			if (m == 0) {
   1644 				MGET(m, M_DONTWAIT, MT_DATA);
   1645 				if (m == 0) {
   1646 					m_freem(top);
   1647 					goto out;
   1648 				}
   1649 			} else {
   1650 				sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
   1651 			}
   1652 			len = MLEN;
   1653 		}
   1654 		if (totlen >= MINCLSIZE) {
   1655 			MCLGET(m, M_DONTWAIT);
   1656 			if ((m->m_flags & M_EXT) == 0) {
   1657 				m_free(m);
   1658 				m_freem(top);
   1659 				goto out;
   1660 			}
   1661 			len = MCLBYTES;
   1662 		}
   1663 		if (top == 0)  {
   1664 			/* align the struct ip header */
   1665 			caddr_t newdata = (caddr_t)
   1666 			    ALIGN(m->m_data + sizeof(struct ether_header))
   1667 			    - sizeof(struct ether_header);
   1668 			len -= newdata - m->m_data;
   1669 			m->m_data = newdata;
   1670 		}
   1671 		remaining = len = min(totlen, len);
   1672 		if (ELINK_IS_BUS_32(sc->bustype)) {
   1673 			u_long offset = mtod(m, u_long);
   1674 			/*
   1675 			 * Read bytes up to the point where we are aligned.
   1676 			 * (We can align to 4 bytes, rather than ALIGNBYTES,
   1677 			 * here because we're later reading 4-byte chunks.)
   1678 			 */
   1679 			if ((remaining > 3) && (offset & 3))  {
   1680 				int count = (4 - (offset & 3));
   1681 				bus_space_read_multi_1(iot, ioh,
   1682 				    rxreg, (u_int8_t *) offset, count);
   1683 				offset += count;
   1684 				remaining -= count;
   1685 			}
   1686 			if (remaining > 3) {
   1687 				bus_space_read_multi_stream_4(iot, ioh,
   1688 				    rxreg, (u_int32_t *) offset,
   1689 				    remaining >> 2);
   1690 				offset += remaining & ~3;
   1691 				remaining &= 3;
   1692 			}
   1693 			if (remaining)  {
   1694 				bus_space_read_multi_1(iot, ioh,
   1695 				    rxreg, (u_int8_t *) offset, remaining);
   1696 			}
   1697 		} else {
   1698 			u_long offset = mtod(m, u_long);
   1699 			if ((remaining > 1) && (offset & 1))  {
   1700 				bus_space_read_multi_1(iot, ioh,
   1701 				    rxreg, (u_int8_t *) offset, 1);
   1702 				remaining -= 1;
   1703 				offset += 1;
   1704 			}
   1705 			if (remaining > 1) {
   1706 				bus_space_read_multi_stream_2(iot, ioh,
   1707 				    rxreg, (u_int16_t *) offset,
   1708 				    remaining >> 1);
   1709 				offset += remaining & ~1;
   1710 			}
   1711 			if (remaining & 1)  {
   1712 				bus_space_read_multi_1(iot, ioh,
   1713 				    rxreg, (u_int8_t *) offset, remaining & 1);
   1714 			}
   1715 		}
   1716 		m->m_len = len;
   1717 		totlen -= len;
   1718 		*mp = m;
   1719 		mp = &m->m_next;
   1720 	}
   1721 
   1722 	rv = top;
   1723 
   1724 	ep_discard_rxtop(iot, ioh);
   1725 
   1726  out:
   1727 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
   1728 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
   1729 	splx(sh);
   1730 
   1731 	return rv;
   1732 }
   1733 
   1734 int
   1735 epioctl(ifp, cmd, data)
   1736 	register struct ifnet *ifp;
   1737 	u_long cmd;
   1738 	caddr_t data;
   1739 {
   1740 	struct ep_softc *sc = ifp->if_softc;
   1741 	struct ifaddr *ifa = (struct ifaddr *)data;
   1742 	struct ifreq *ifr = (struct ifreq *)data;
   1743 	int s, error = 0;
   1744 
   1745 	s = splnet();
   1746 
   1747 	switch (cmd) {
   1748 
   1749 	case SIOCSIFADDR:
   1750 		if ((error = epenable(sc)) != 0)
   1751 			break;
   1752 		/* epinit is called just below */
   1753 		ifp->if_flags |= IFF_UP;
   1754 		switch (ifa->ifa_addr->sa_family) {
   1755 #ifdef INET
   1756 		case AF_INET:
   1757 			epinit(sc);
   1758 			arp_ifinit(&sc->sc_ethercom.ec_if, ifa);
   1759 			break;
   1760 #endif
   1761 #ifdef NS
   1762 		case AF_NS:
   1763 		    {
   1764 			register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1765 
   1766 			if (ns_nullhost(*ina))
   1767 				ina->x_host = *(union ns_host *)
   1768 				    LLADDR(ifp->if_sadl);
   1769 			else
   1770 				bcopy(ina->x_host.c_host,
   1771 				    LLADDR(ifp->if_sadl),
   1772 				    ifp->if_addrlen);
   1773 			/* Set new address. */
   1774 			epinit(sc);
   1775 			break;
   1776 		    }
   1777 #endif
   1778 		default:
   1779 			epinit(sc);
   1780 			break;
   1781 		}
   1782 		break;
   1783 
   1784 	case SIOCSIFMEDIA:
   1785 	case SIOCGIFMEDIA:
   1786 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1787 		break;
   1788 
   1789 	case SIOCSIFFLAGS:
   1790 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1791 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1792 			/*
   1793 			 * If interface is marked down and it is running, then
   1794 			 * stop it.
   1795 			 */
   1796 			epstop(sc);
   1797 			ifp->if_flags &= ~IFF_RUNNING;
   1798 			epdisable(sc);
   1799 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1800 			   (ifp->if_flags & IFF_RUNNING) == 0) {
   1801 			/*
   1802 			 * If interface is marked up and it is stopped, then
   1803 			 * start it.
   1804 			 */
   1805 			if ((error = epenable(sc)) != 0)
   1806 				break;
   1807 			epinit(sc);
   1808 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1809 			/*
   1810 			 * deal with flags changes:
   1811 			 * IFF_MULTICAST, IFF_PROMISC.
   1812 			 */
   1813 			epsetfilter(sc);
   1814 		}
   1815 		break;
   1816 
   1817 	case SIOCADDMULTI:
   1818 	case SIOCDELMULTI:
   1819 		if (sc->enabled == 0) {
   1820 			error = EIO;
   1821 			break;
   1822 		}
   1823 
   1824 		error = (cmd == SIOCADDMULTI) ?
   1825 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   1826 		    ether_delmulti(ifr, &sc->sc_ethercom);
   1827 
   1828 		if (error == ENETRESET) {
   1829 			/*
   1830 			 * Multicast list has changed; set the hardware filter
   1831 			 * accordingly.
   1832 			 */
   1833 			epreset(sc);
   1834 			error = 0;
   1835 		}
   1836 		break;
   1837 
   1838 	default:
   1839 		error = EINVAL;
   1840 		break;
   1841 	}
   1842 
   1843 	splx(s);
   1844 	return (error);
   1845 }
   1846 
   1847 void
   1848 epreset(sc)
   1849 	struct ep_softc *sc;
   1850 {
   1851 	int s;
   1852 
   1853 	s = splnet();
   1854 	epinit(sc);
   1855 	splx(s);
   1856 }
   1857 
   1858 void
   1859 epwatchdog(ifp)
   1860 	struct ifnet *ifp;
   1861 {
   1862 	struct ep_softc *sc = ifp->if_softc;
   1863 
   1864 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1865 	++sc->sc_ethercom.ec_if.if_oerrors;
   1866 
   1867 	epreset(sc);
   1868 }
   1869 
   1870 void
   1871 epstop(sc)
   1872 	register struct ep_softc *sc;
   1873 {
   1874 	bus_space_tag_t iot = sc->sc_iot;
   1875 	bus_space_handle_t ioh = sc->sc_ioh;
   1876 
   1877 	if (sc->ep_flags & ELINK_FLAGS_MII) {
   1878 		/* Stop the one second clock. */
   1879 		untimeout(ep_tick, sc);
   1880 
   1881 		/* Down the MII. */
   1882 		mii_down(&sc->sc_mii);
   1883 	}
   1884 
   1885 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
   1886 		/*
   1887 		 * Clear the FIFO buffer count, thus halting
   1888 		 * any currently-running transactions.
   1889 		 */
   1890 		GO_WINDOW(1);		/* sanity */
   1891 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
   1892 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
   1893 	}
   1894 
   1895 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
   1896 	ep_discard_rxtop(iot, ioh);
   1897 
   1898 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
   1899 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
   1900 
   1901 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
   1902 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
   1903 
   1904 	bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
   1905 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
   1906 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
   1907 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
   1908 
   1909 	epmbufempty(sc);
   1910 }
   1911 
   1912 
   1913 /*
   1914  * Before reboots, reset card completely.
   1915  */
   1916 static void
   1917 epshutdown(arg)
   1918 	void *arg;
   1919 {
   1920 	register struct ep_softc *sc = arg;
   1921 	int s = splnet();
   1922 
   1923 	if (sc->enabled) {
   1924 		epstop(sc);
   1925 		ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
   1926 		sc->enabled = 0;
   1927 	}
   1928 	splx(s);
   1929 }
   1930 
   1931 /*
   1932  * We get eeprom data from the id_port given an offset into the
   1933  * eeprom.  Basically; after the ID_sequence is sent to all of
   1934  * the cards; they enter the ID_CMD state where they will accept
   1935  * command requests. 0x80-0xbf loads the eeprom data.  We then
   1936  * read the port 16 times and with every read; the cards check
   1937  * for contention (ie: if one card writes a 0 bit and another
   1938  * writes a 1 bit then the host sees a 0. At the end of the cycle;
   1939  * each card compares the data on the bus; if there is a difference
   1940  * then that card goes into ID_WAIT state again). In the meantime;
   1941  * one bit of data is returned in the AX register which is conveniently
   1942  * returned to us by bus_space_read_1().  Hence; we read 16 times getting one
   1943  * bit of data with each read.
   1944  *
   1945  * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
   1946  */
   1947 u_int16_t
   1948 epreadeeprom(iot, ioh, offset)
   1949 	bus_space_tag_t iot;
   1950 	bus_space_handle_t ioh;
   1951 	int offset;
   1952 {
   1953 	u_int16_t data = 0;
   1954 	int i;
   1955 
   1956 	bus_space_write_1(iot, ioh, 0, 0x80 + offset);
   1957 	delay(1000);
   1958 	for (i = 0; i < 16; i++)
   1959 		data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
   1960 	return (data);
   1961 }
   1962 
   1963 static int
   1964 epbusyeeprom(sc)
   1965 	struct ep_softc *sc;
   1966 {
   1967 	bus_space_tag_t iot = sc->sc_iot;
   1968 	bus_space_handle_t ioh = sc->sc_ioh;
   1969 	int i = 100, j;
   1970 
   1971 	if (sc->bustype == ELINK_BUS_PCMCIA) {
   1972 		delay(1000);
   1973 		return 0;
   1974 	}
   1975 
   1976 	j = 0;		/* bad GCC flow analysis */
   1977 	while (i--) {
   1978 		j = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND);
   1979 		if (j & EEPROM_BUSY)
   1980 			delay(100);
   1981 		else
   1982 			break;
   1983 	}
   1984 	if (!i) {
   1985 		printf("\n%s: eeprom failed to come ready\n",
   1986 		    sc->sc_dev.dv_xname);
   1987 		return (1);
   1988 	}
   1989 	if (j & EEPROM_TST_MODE) {
   1990 		/* XXX PnP mode? */
   1991 		printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
   1992 		return (1);
   1993 	}
   1994 	return (0);
   1995 }
   1996 
   1997 u_int16_t
   1998 ep_read_eeprom(sc, offset)
   1999 	struct ep_softc *sc;
   2000 	u_int16_t offset;
   2001 {
   2002 	u_int16_t readcmd;
   2003 
   2004 	/*
   2005 	 * RoadRunner has a larger EEPROM, so a different read command
   2006 	 * is required.
   2007 	 */
   2008 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
   2009 		readcmd = READ_EEPROM_RR;
   2010 	else
   2011 		readcmd = READ_EEPROM;
   2012 
   2013 	if (epbusyeeprom(sc))
   2014 		return (0);		/* XXX why is eeprom busy? */
   2015 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W0_EEPROM_COMMAND,
   2016 	    readcmd | offset);
   2017 	if (epbusyeeprom(sc))
   2018 		return (0);		/* XXX why is eeprom busy? */
   2019 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W0_EEPROM_DATA));
   2020 }
   2021 
   2022 void
   2023 epmbuffill(v)
   2024 	void *v;
   2025 {
   2026 	struct ep_softc *sc = v;
   2027 	struct mbuf *m;
   2028 	int s, i;
   2029 
   2030 	s = splnet();
   2031 	i = sc->last_mb;
   2032 	do {
   2033 		if (sc->mb[i] == 0) {
   2034 			MGET(m, M_DONTWAIT, MT_DATA);
   2035 			if (m == 0)
   2036 				break;
   2037 			sc->mb[i] = m;
   2038 		}
   2039 		i = (i + 1) % MAX_MBS;
   2040 	} while (i != sc->next_mb);
   2041 	sc->last_mb = i;
   2042 	/* If the queue was not filled, try again. */
   2043 	if (sc->last_mb != sc->next_mb)
   2044 		timeout(epmbuffill, sc, 1);
   2045 	splx(s);
   2046 }
   2047 
   2048 void
   2049 epmbufempty(sc)
   2050 	struct ep_softc *sc;
   2051 {
   2052 	int s, i;
   2053 
   2054 	s = splnet();
   2055 	for (i = 0; i<MAX_MBS; i++) {
   2056 		if (sc->mb[i]) {
   2057 			m_freem(sc->mb[i]);
   2058 			sc->mb[i] = NULL;
   2059 		}
   2060 	}
   2061 	sc->last_mb = sc->next_mb = 0;
   2062 	untimeout(epmbuffill, sc);
   2063 	splx(s);
   2064 }
   2065 
   2066 int
   2067 epenable(sc)
   2068 	struct ep_softc *sc;
   2069 {
   2070 
   2071 	if (sc->enabled == 0 && sc->enable != NULL) {
   2072 		if ((*sc->enable)(sc) != 0) {
   2073 			printf("%s: device enable failed\n",
   2074 			    sc->sc_dev.dv_xname);
   2075 			return (EIO);
   2076 		}
   2077 	}
   2078 
   2079 	sc->enabled = 1;
   2080 	return (0);
   2081 }
   2082 
   2083 void
   2084 epdisable(sc)
   2085 	struct ep_softc *sc;
   2086 {
   2087 
   2088 	if (sc->enabled != 0 && sc->disable != NULL) {
   2089 		(*sc->disable)(sc);
   2090 		sc->enabled = 0;
   2091 	}
   2092 }
   2093 
   2094 int
   2095 ep_activate(self, act)
   2096 	struct device *self;
   2097 	enum devact act;
   2098 {
   2099 	struct ep_softc *sc = (struct ep_softc *)self;
   2100 	int rv = 0, s;
   2101 
   2102 	s = splnet();
   2103 	switch (act) {
   2104 	case DVACT_ACTIVATE:
   2105 		rv = EOPNOTSUPP;
   2106 		break;
   2107 
   2108 	case DVACT_DEACTIVATE:
   2109 #ifdef notyet
   2110 		/* First, kill off the interface. */
   2111 		if_detach(sc->sc_ethercom.ec_if);
   2112 #endif
   2113 
   2114 		/* Now disable the interface. */
   2115 		epdisable(sc);
   2116 		break;
   2117 	}
   2118 	splx(s);
   2119 	return (rv);
   2120 }
   2121 
   2122 void
   2123 ep_mii_setbit(sc, bit)
   2124 	struct ep_softc *sc;
   2125 	u_int16_t bit;
   2126 {
   2127 	u_int16_t val;
   2128 
   2129 	/* We assume we're already in Window 4 */
   2130 	val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT);
   2131 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT,
   2132 	    val | bit);
   2133 }
   2134 
   2135 void
   2136 ep_mii_clrbit(sc, bit)
   2137 	struct ep_softc *sc;
   2138 	u_int16_t bit;
   2139 {
   2140 	u_int16_t val;
   2141 
   2142 	/* We assume we're already in Window 4 */
   2143 	val = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT);
   2144 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT,
   2145 	    val & ~bit);
   2146 }
   2147 
   2148 u_int16_t
   2149 ep_mii_readbit(sc, bit)
   2150 	struct ep_softc *sc;
   2151 	u_int16_t bit;
   2152 {
   2153 
   2154 	/* We assume we're already in Window 4 */
   2155 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT) &
   2156 	    bit);
   2157 }
   2158 
   2159 void
   2160 ep_mii_sync(sc)
   2161 	struct ep_softc *sc;
   2162 {
   2163 	int i;
   2164 
   2165 	/* We assume we're already in Window 4 */
   2166 	ep_mii_clrbit(sc, PHYSMGMT_DIR);
   2167 	for (i = 0; i < 32; i++) {
   2168 		ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2169 		ep_mii_setbit(sc, PHYSMGMT_CLK);
   2170 	}
   2171 }
   2172 
   2173 void
   2174 ep_mii_sendbits(sc, data, nbits)
   2175 	struct ep_softc *sc;
   2176 	u_int32_t data;
   2177 	int nbits;
   2178 {
   2179 	int i;
   2180 
   2181 	/* We assume we're already in Window 4 */
   2182 	ep_mii_setbit(sc, PHYSMGMT_DIR);
   2183 	for (i = 1 << (nbits - 1); i; i = i >> 1) {
   2184 		ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2185 		ep_mii_readbit(sc, PHYSMGMT_CLK);
   2186 		if (data & i)
   2187 			ep_mii_setbit(sc, PHYSMGMT_DATA);
   2188 		else
   2189 			ep_mii_clrbit(sc, PHYSMGMT_DATA);
   2190 		ep_mii_setbit(sc, PHYSMGMT_CLK);
   2191 		ep_mii_readbit(sc, PHYSMGMT_CLK);
   2192 	}
   2193 }
   2194 
   2195 int
   2196 ep_mii_readreg(self, phy, reg)
   2197 	struct device *self;
   2198 	int phy, reg;
   2199 {
   2200 	struct ep_softc *sc = (struct ep_softc *)self;
   2201 	int val = 0, i, err;
   2202 
   2203 	/*
   2204 	 * Read the PHY register by manually driving the MII control lines.
   2205 	 */
   2206 
   2207 	GO_WINDOW(4);
   2208 
   2209 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_BOOM_PHYSMGMT, 0);
   2210 
   2211 	ep_mii_sync(sc);
   2212 	ep_mii_sendbits(sc, MII_COMMAND_START, 2);
   2213 	ep_mii_sendbits(sc, MII_COMMAND_READ, 2);
   2214 	ep_mii_sendbits(sc, phy, 5);
   2215 	ep_mii_sendbits(sc, reg, 5);
   2216 
   2217 	ep_mii_clrbit(sc, PHYSMGMT_DIR);
   2218 	ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2219 	ep_mii_setbit(sc, PHYSMGMT_CLK);
   2220 	ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2221 
   2222 	err = ep_mii_readbit(sc, PHYSMGMT_DATA);
   2223 	ep_mii_setbit(sc, PHYSMGMT_CLK);
   2224 
   2225 	/* Even if an error occurs, must still clock out the cycle. */
   2226 	for (i = 0; i < 16; i++) {
   2227 		val <<= 1;
   2228 		ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2229 		if (err == 0 && ep_mii_readbit(sc, PHYSMGMT_DATA))
   2230 			val |= 1;
   2231 		ep_mii_setbit(sc, PHYSMGMT_CLK);
   2232 	}
   2233 	ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2234 	ep_mii_setbit(sc, PHYSMGMT_CLK);
   2235 
   2236 	GO_WINDOW(1);	/* back to operating window */
   2237 
   2238 	return (err ? 0 : val);
   2239 }
   2240 
   2241 void
   2242 ep_mii_writereg(self, phy, reg, val)
   2243 	struct device *self;
   2244 	int phy, reg, val;
   2245 {
   2246 	struct ep_softc *sc = (struct ep_softc *)self;
   2247 
   2248 	/*
   2249 	 * Write the PHY register by manually driving the MII control lines.
   2250 	 */
   2251 
   2252 	GO_WINDOW(4);
   2253 
   2254 	ep_mii_sync(sc);
   2255 	ep_mii_sendbits(sc, MII_COMMAND_START, 2);
   2256 	ep_mii_sendbits(sc, MII_COMMAND_WRITE, 2);
   2257 	ep_mii_sendbits(sc, phy, 5);
   2258 	ep_mii_sendbits(sc, reg, 5);
   2259 	ep_mii_sendbits(sc, MII_COMMAND_ACK, 2);
   2260 	ep_mii_sendbits(sc, val, 16);
   2261 
   2262 	ep_mii_clrbit(sc, PHYSMGMT_CLK);
   2263 	ep_mii_setbit(sc, PHYSMGMT_CLK);
   2264 
   2265 	GO_WINDOW(1);	/* back to operating window */
   2266 }
   2267 
   2268 void
   2269 ep_statchg(self)
   2270 	struct device *self;
   2271 {
   2272 	struct ep_softc *sc = (struct ep_softc *)self;
   2273 	bus_space_tag_t iot = sc->sc_iot;
   2274 	bus_space_handle_t ioh = sc->sc_ioh;
   2275 	int mctl;
   2276 
   2277 	/* XXX Update ifp->if_baudrate */
   2278 
   2279 	GO_WINDOW(3);
   2280 	mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
   2281 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   2282 		mctl |= MAC_CONTROL_FDX;
   2283 	else
   2284 		mctl &= ~MAC_CONTROL_FDX;
   2285 	bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
   2286 	GO_WINDOW(1);	/* back to operating window */
   2287 }
   2288