elink3.c revision 1.73 1 /* $NetBSD: elink3.c,v 1.73 2000/02/02 17:09:46 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
42 * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 * must display the following acknowledgement:
55 * This product includes software developed by Herb Peyerl.
56 * 4. The name of Herb Peyerl may not be used to endorse or promote products
57 * derived from this software without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
60 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
61 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
63 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
64 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
65 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
66 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
67 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
68 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 #include "opt_inet.h"
72 #include "opt_ns.h"
73 #include "bpfilter.h"
74 #include "rnd.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/mbuf.h>
80 #include <sys/socket.h>
81 #include <sys/ioctl.h>
82 #include <sys/errno.h>
83 #include <sys/syslog.h>
84 #include <sys/select.h>
85 #include <sys/device.h>
86 #if NRND > 0
87 #include <sys/rnd.h>
88 #endif
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_ether.h>
93 #include <net/if_media.h>
94
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/in_var.h>
99 #include <netinet/ip.h>
100 #include <netinet/if_inarp.h>
101 #endif
102
103 #ifdef NS
104 #include <netns/ns.h>
105 #include <netns/ns_if.h>
106 #endif
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #include <net/bpfdesc.h>
111 #endif
112
113 #include <machine/cpu.h>
114 #include <machine/bus.h>
115 #include <machine/intr.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119 #include <dev/mii/mii_bitbang.h>
120
121 #include <dev/ic/elink3var.h>
122 #include <dev/ic/elink3reg.h>
123
124 #ifdef DEBUG
125 int epdebug = 0;
126 #endif
127
128 /*
129 * XXX endian workaround for big-endian CPUs with pcmcia:
130 * if stream methods for bus_space_multi are not provided, define them
131 * using non-stream bus_space_{read,write}_multi_.
132 * Assumes host CPU is same endian-ness as bus.
133 */
134 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
135 #define bus_space_read_multi_stream_2 bus_space_read_multi_2
136 #define bus_space_read_multi_stream_4 bus_space_read_multi_4
137 #define bus_space_write_multi_stream_2 bus_space_write_multi_2
138 #define bus_space_write_multi_stream_4 bus_space_write_multi_4
139 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
140
141 /*
142 * Structure to map media-present bits in boards to ifmedia codes and
143 * printable media names. Used for table-driven ifmedia initialization.
144 */
145 struct ep_media {
146 int epm_mpbit; /* media present bit */
147 const char *epm_name; /* name of medium */
148 int epm_ifmedia; /* ifmedia word for medium */
149 int epm_epmedia; /* ELINKMEDIA_* constant */
150 };
151
152 /*
153 * Media table for the Demon/Vortex/Boomerang chipsets.
154 *
155 * Note that MII on the Demon and Vortex (3c59x) indicates an external
156 * MII connector (for connecting an external PHY) ... I think. Treat
157 * it as `manual' on these chips.
158 *
159 * Any Boomerang (3c90x) chips with MII really do have an internal
160 * MII and real PHYs attached; no `native' media.
161 */
162 struct ep_media ep_vortex_media[] = {
163 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
164 ELINKMEDIA_10BASE_T },
165 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
166 ELINKMEDIA_10BASE_T },
167 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
168 ELINKMEDIA_AUI },
169 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
170 ELINKMEDIA_10BASE_2 },
171 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
172 ELINKMEDIA_100BASE_TX },
173 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
174 ELINKMEDIA_100BASE_TX },
175 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
176 ELINKMEDIA_100BASE_FX },
177 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
178 ELINKMEDIA_MII },
179 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
180 ELINKMEDIA_100BASE_T4 },
181 { 0, NULL, 0,
182 0 },
183 };
184
185 /*
186 * Media table for the older 3Com Etherlink III chipset, used
187 * in the 3c509, 3c579, and 3c589.
188 */
189 struct ep_media ep_509_media[] = {
190 { ELINK_W0_CC_UTP, "10baseT", IFM_ETHER|IFM_10_T,
191 ELINKMEDIA_10BASE_T },
192 { ELINK_W0_CC_AUI, "10base5", IFM_ETHER|IFM_10_5,
193 ELINKMEDIA_AUI },
194 { ELINK_W0_CC_BNC, "10base2", IFM_ETHER|IFM_10_2,
195 ELINKMEDIA_10BASE_2 },
196 { 0, NULL, 0,
197 0 },
198 };
199
200 void ep_internalconfig __P((struct ep_softc *sc));
201 void ep_vortex_probemedia __P((struct ep_softc *sc));
202 void ep_509_probemedia __P((struct ep_softc *sc));
203
204 static void eptxstat __P((struct ep_softc *));
205 static int epstatus __P((struct ep_softc *));
206 void epinit __P((struct ep_softc *));
207 int epioctl __P((struct ifnet *, u_long, caddr_t));
208 void epstart __P((struct ifnet *));
209 void epwatchdog __P((struct ifnet *));
210 void epreset __P((struct ep_softc *));
211 static void epshutdown __P((void *));
212 void epread __P((struct ep_softc *));
213 struct mbuf *epget __P((struct ep_softc *, int));
214 void epmbuffill __P((void *));
215 void epmbufempty __P((struct ep_softc *));
216 void epsetfilter __P((struct ep_softc *));
217 void ep_roadrunner_mii_enable __P((struct ep_softc *));
218 void epsetmedia __P((struct ep_softc *));
219
220 /* ifmedia callbacks */
221 int ep_media_change __P((struct ifnet *ifp));
222 void ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
223
224 /* MII callbacks */
225 int ep_mii_readreg __P((struct device *, int, int));
226 void ep_mii_writereg __P((struct device *, int, int, int));
227 void ep_statchg __P((struct device *));
228
229 void ep_tick __P((void *));
230
231 static int epbusyeeprom __P((struct ep_softc *));
232 u_int16_t ep_read_eeprom __P((struct ep_softc *, u_int16_t));
233 static inline void ep_reset_cmd __P((struct ep_softc *sc,
234 u_int cmd, u_int arg));
235 static inline void ep_finish_reset __P((bus_space_tag_t, bus_space_handle_t));
236 static inline void ep_discard_rxtop __P((bus_space_tag_t, bus_space_handle_t));
237 static __inline int ep_w1_reg __P((struct ep_softc *, int));
238
239 /*
240 * MII bit-bang glue.
241 */
242 u_int32_t ep_mii_bitbang_read __P((struct device *));
243 void ep_mii_bitbang_write __P((struct device *, u_int32_t));
244
245 const struct mii_bitbang_ops ep_mii_bitbang_ops = {
246 ep_mii_bitbang_read,
247 ep_mii_bitbang_write,
248 {
249 PHYSMGMT_DATA, /* MII_BIT_MDO */
250 PHYSMGMT_DATA, /* MII_BIT_MDI */
251 PHYSMGMT_CLK, /* MII_BIT_MDC */
252 PHYSMGMT_DIR, /* MII_BIT_DIR_HOST_PHY */
253 0, /* MII_BIT_DIR_PHY_HOST */
254 }
255 };
256
257 /*
258 * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
259 * Window 1 registers offset!
260 */
261 static __inline int
262 ep_w1_reg(sc, reg)
263 struct ep_softc *sc;
264 int reg;
265 {
266
267 switch (sc->ep_chipset) {
268 case ELINK_CHIPSET_CORKSCREW:
269 return (reg + 0x10);
270
271 case ELINK_CHIPSET_ROADRUNNER:
272 switch (reg) {
273 case ELINK_W1_FREE_TX:
274 case ELINK_W1_RUNNER_RDCTL:
275 case ELINK_W1_RUNNER_WRCTL:
276 return (reg);
277 }
278 return (reg + 0x10);
279 }
280
281 return (reg);
282 }
283
284 /*
285 * Wait for any pending reset to complete.
286 * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
287 * but older hardware doesn't implement it and we must delay.
288 */
289 static inline void
290 ep_finish_reset(iot, ioh)
291 bus_space_tag_t iot;
292 bus_space_handle_t ioh;
293 {
294 int i;
295
296 for (i = 0; i < 10000; i++) {
297 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
298 S_COMMAND_IN_PROGRESS) == 0)
299 break;
300 DELAY(10);
301 }
302 }
303
304 /*
305 * Issue a (reset) command, and be sure it has completed.
306 * Used for global reset, TX_RESET, RX_RESET.
307 */
308 static inline void
309 ep_reset_cmd(sc, cmd, arg)
310 struct ep_softc *sc;
311 u_int cmd, arg;
312 {
313 register bus_space_tag_t iot = sc->sc_iot;
314 register bus_space_handle_t ioh = sc->sc_ioh;
315
316 bus_space_write_2(iot, ioh, cmd, arg);
317 ep_finish_reset(iot, ioh);
318 }
319
320
321 static inline void
322 ep_discard_rxtop(iot, ioh)
323 register bus_space_tag_t iot;
324 register bus_space_handle_t ioh;
325 {
326 int i;
327
328 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
329
330 /*
331 * Spin for about 1 msec, to avoid forcing a DELAY() between
332 * every received packet (adding latency and limiting pkt-recv rate).
333 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
334 * is about right.
335 */
336 for (i = 0; i < 8000; i++) {
337 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
338 S_COMMAND_IN_PROGRESS) == 0)
339 return;
340 }
341
342 /* Didn't complete in a hurry. Do DELAY()s. */
343 ep_finish_reset(iot, ioh);
344 }
345
346 /*
347 * Back-end attach and configure.
348 */
349 void
350 epconfig(sc, chipset, enaddr)
351 struct ep_softc *sc;
352 u_short chipset;
353 u_int8_t *enaddr;
354 {
355 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
356 bus_space_tag_t iot = sc->sc_iot;
357 bus_space_handle_t ioh = sc->sc_ioh;
358 u_int16_t i;
359 u_int8_t myla[6];
360
361 sc->ep_chipset = chipset;
362
363 /*
364 * We could have been groveling around in other register
365 * windows in the front-end; make sure we're in window 0
366 * to read the EEPROM.
367 */
368 GO_WINDOW(0);
369
370 if (enaddr == NULL) {
371 /*
372 * Read the station address from the eeprom.
373 */
374 for (i = 0; i < 3; i++) {
375 u_int16_t x = ep_read_eeprom(sc, i);
376 myla[(i << 1)] = x >> 8;
377 myla[(i << 1) + 1] = x;
378 }
379 enaddr = myla;
380 }
381
382 /*
383 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
384 * allow FDDI-sized (4500) byte packets. Commands only take an
385 * 11-bit parameter, and 11 bits isn't enough to hold a full-size
386 * packet length.
387 * Commands to these cards implicitly upshift a packet size
388 * or threshold by 2 bits.
389 * To detect cards with large-packet support, we probe by setting
390 * the transmit threshold register, then change windows and
391 * read back the threshold register directly, and see if the
392 * threshold value was shifted or not.
393 */
394 bus_space_write_2(iot, ioh, ELINK_COMMAND,
395 SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
396 GO_WINDOW(5);
397 i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
398 GO_WINDOW(1);
399 switch (i) {
400 case ELINK_LARGEWIN_PROBE:
401 case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
402 sc->ep_pktlenshift = 0;
403 break;
404
405 case (ELINK_LARGEWIN_PROBE << 2):
406 sc->ep_pktlenshift = 2;
407 break;
408
409 default:
410 printf("%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
411 "Interface disabled\n",
412 sc->sc_dev.dv_xname, ELINK_LARGEWIN_PROBE, (int) i);
413 return;
414 }
415
416 /*
417 * Ensure Tx-available interrupts are enabled for
418 * start the interface.
419 * XXX should be in epinit()?
420 */
421 bus_space_write_2(iot, ioh, ELINK_COMMAND,
422 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
423
424 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
425 ifp->if_softc = sc;
426 ifp->if_start = epstart;
427 ifp->if_ioctl = epioctl;
428 ifp->if_watchdog = epwatchdog;
429 ifp->if_flags =
430 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
431
432 if_attach(ifp);
433 ether_ifattach(ifp, enaddr);
434
435 /*
436 * Finish configuration:
437 * determine chipset if the front-end couldn't do so,
438 * show board details, set media.
439 */
440
441 /*
442 * Print RAM size. We also print the Ethernet address in here.
443 * It's extracted from the ifp, so we have to make sure it's
444 * been attached first.
445 */
446 ep_internalconfig(sc);
447 GO_WINDOW(0);
448
449 /*
450 * Display some additional information, if pertinent.
451 */
452 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
453 printf("%s: RoadRunner FIFO buffer enabled\n",
454 sc->sc_dev.dv_xname);
455
456 /*
457 * Initialize our media structures and MII info. We'll
458 * probe the MII if we discover that we have one.
459 */
460 sc->sc_mii.mii_ifp = ifp;
461 sc->sc_mii.mii_readreg = ep_mii_readreg;
462 sc->sc_mii.mii_writereg = ep_mii_writereg;
463 sc->sc_mii.mii_statchg = ep_statchg;
464 ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
465 ep_media_status);
466
467 /*
468 * Now, determine which media we have.
469 */
470 switch (sc->ep_chipset) {
471 case ELINK_CHIPSET_ROADRUNNER:
472 if (sc->ep_flags & ELINK_FLAGS_MII) {
473 ep_roadrunner_mii_enable(sc);
474 GO_WINDOW(0);
475 }
476 /* FALLTHROUGH */
477
478 case ELINK_CHIPSET_BOOMERANG:
479 /*
480 * If the device has MII, probe it. We won't be using
481 * any `native' media in this case, only PHYs. If
482 * we don't, just treat the Boomerang like the Vortex.
483 */
484 if (sc->ep_flags & ELINK_FLAGS_MII) {
485 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
486 MII_PHY_ANY, MII_OFFSET_ANY, 0);
487 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
488 ifmedia_add(&sc->sc_mii.mii_media,
489 IFM_ETHER|IFM_NONE, 0, NULL);
490 ifmedia_set(&sc->sc_mii.mii_media,
491 IFM_ETHER|IFM_NONE);
492 } else {
493 ifmedia_set(&sc->sc_mii.mii_media,
494 IFM_ETHER|IFM_AUTO);
495 }
496 break;
497 }
498 /* FALLTHROUGH */
499
500 case ELINK_CHIPSET_VORTEX:
501 ep_vortex_probemedia(sc);
502 break;
503
504 default:
505 ep_509_probemedia(sc);
506 break;
507 }
508
509 GO_WINDOW(1); /* Window 1 is operating window */
510
511 #if NBPFILTER > 0
512 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
513 #endif
514
515 #if NRND > 0
516 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
517 RND_TYPE_NET, 0);
518 #endif
519
520 sc->tx_start_thresh = 20; /* probably a good starting point. */
521
522 /* Establish callback to reset card when we reboot. */
523 sc->sd_hook = shutdownhook_establish(epshutdown, sc);
524
525 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
526 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
527 }
528
529
530 /*
531 * Show interface-model-independent info from window 3
532 * internal-configuration register.
533 */
534 void
535 ep_internalconfig(sc)
536 struct ep_softc *sc;
537 {
538 bus_space_tag_t iot = sc->sc_iot;
539 bus_space_handle_t ioh = sc->sc_ioh;
540
541 u_int config0;
542 u_int config1;
543
544 int ram_size, ram_width, ram_speed, rom_size, ram_split;
545 /*
546 * NVRAM buffer Rx:Tx config names for busmastering cards
547 * (Demon, Vortex, and later).
548 */
549 const char *onboard_ram_config[] = {
550 "5:3", "3:1", "1:1", "3:5" };
551
552 GO_WINDOW(3);
553 config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
554 config1 = (u_int)bus_space_read_2(iot, ioh,
555 ELINK_W3_INTERNAL_CONFIG + 2);
556 GO_WINDOW(0);
557
558 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
559 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
560 ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
561 rom_size = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
562
563 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
564
565 printf("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
566 sc->sc_dev.dv_xname,
567 ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
568 8 << ram_size,
569 (ram_width) ? "word" : "byte",
570 onboard_ram_config[ram_split]);
571 }
572
573
574 /*
575 * Find supported media on 3c509-generation hardware that doesn't have
576 * a "reset_options" register in window 3.
577 * Use the config_cntrl register in window 0 instead.
578 * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
579 * that implement CONFIG_CTRL. We don't have a good way to set the
580 * default active mediuim; punt to ifconfig instead.
581 */
582 void
583 ep_509_probemedia(sc)
584 struct ep_softc *sc;
585 {
586 bus_space_tag_t iot = sc->sc_iot;
587 bus_space_handle_t ioh = sc->sc_ioh;
588 struct ifmedia *ifm = &sc->sc_mii.mii_media;
589 u_int16_t ep_w0_config, port;
590 struct ep_media *epm;
591 const char *sep = "", *defmedianame = NULL;
592 int defmedia = 0;
593
594 GO_WINDOW(0);
595 ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
596
597 printf("%s: ", sc->sc_dev.dv_xname);
598
599 /* Sanity check that there are any media! */
600 if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
601 printf("no media present!\n");
602 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
603 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
604 return;
605 }
606
607 /*
608 * Get the default media from the EEPROM.
609 */
610 port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
611
612 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
613
614 for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
615 if (ep_w0_config & epm->epm_mpbit) {
616 /*
617 * This simple test works because 509 chipsets
618 * don't do full-duplex.
619 */
620 if (epm->epm_epmedia == port || defmedia == 0) {
621 defmedia = epm->epm_ifmedia;
622 defmedianame = epm->epm_name;
623 }
624 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
625 NULL);
626 PRINT(epm->epm_name);
627 }
628 }
629
630 #undef PRINT
631
632 #ifdef DIAGNOSTIC
633 if (defmedia == 0)
634 panic("ep_509_probemedia: impossible");
635 #endif
636
637 printf(" (default %s)\n", defmedianame);
638 ifmedia_set(ifm, defmedia);
639 }
640
641 /*
642 * Find media present on large-packet-capable elink3 devices.
643 * Show onboard configuration of large-packet-capable elink3 devices
644 * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
645 * Use media and card-version info in window 3 instead.
646 */
647 void
648 ep_vortex_probemedia(sc)
649 struct ep_softc *sc;
650 {
651 bus_space_tag_t iot = sc->sc_iot;
652 bus_space_handle_t ioh = sc->sc_ioh;
653 struct ifmedia *ifm = &sc->sc_mii.mii_media;
654 struct ep_media *epm;
655 u_int config1;
656 int reset_options;
657 int default_media; /* 3-bit encoding of default (EEPROM) media */
658 int defmedia = 0;
659 const char *sep = "", *defmedianame = NULL;
660
661 GO_WINDOW(3);
662 config1 = (u_int)bus_space_read_2(iot, ioh,
663 ELINK_W3_INTERNAL_CONFIG + 2);
664 reset_options = (int)bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
665 GO_WINDOW(0);
666
667 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
668
669 printf("%s: ", sc->sc_dev.dv_xname);
670
671 /* Sanity check that there are any media! */
672 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
673 printf("no media present!\n");
674 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
675 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
676 return;
677 }
678
679 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
680
681 for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
682 if (reset_options & epm->epm_mpbit) {
683 /*
684 * Default media is a little more complicated
685 * on the Vortex. We support full-duplex which
686 * uses the same reset options bit.
687 *
688 * XXX Check EEPROM for default to FDX?
689 */
690 if (epm->epm_epmedia == default_media) {
691 if ((epm->epm_ifmedia & IFM_FDX) == 0) {
692 defmedia = epm->epm_ifmedia;
693 defmedianame = epm->epm_name;
694 }
695 } else if (defmedia == 0) {
696 defmedia = epm->epm_ifmedia;
697 defmedianame = epm->epm_name;
698 }
699 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
700 NULL);
701 PRINT(epm->epm_name);
702 }
703 }
704
705 #undef PRINT
706
707 #ifdef DIAGNOSTIC
708 if (defmedia == 0)
709 panic("ep_vortex_probemedia: impossible");
710 #endif
711
712 printf(" (default %s)\n", defmedianame);
713 ifmedia_set(ifm, defmedia);
714 }
715
716 /*
717 * One second timer, used to tick the MII.
718 */
719 void
720 ep_tick(arg)
721 void *arg;
722 {
723 struct ep_softc *sc = arg;
724 int s;
725
726 #ifdef DIAGNOSTIC
727 if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
728 panic("ep_tick");
729 #endif
730
731 s = splnet();
732 mii_tick(&sc->sc_mii);
733 splx(s);
734
735 timeout(ep_tick, sc, hz);
736 }
737
738 /*
739 * Bring device up.
740 *
741 * The order in here seems important. Otherwise we may not receive
742 * interrupts. ?!
743 */
744 void
745 epinit(sc)
746 register struct ep_softc *sc;
747 {
748 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
749 bus_space_tag_t iot = sc->sc_iot;
750 bus_space_handle_t ioh = sc->sc_ioh;
751 int i;
752
753 /* Make sure any pending reset has completed before touching board. */
754 ep_finish_reset(iot, ioh);
755
756 /*
757 * Cance any pending I/O.
758 */
759 epstop(sc);
760
761 if (sc->bustype != ELINK_BUS_PCI) {
762 GO_WINDOW(0);
763 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
764 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
765 ENABLE_DRQ_IRQ);
766 }
767
768 if (sc->bustype == ELINK_BUS_PCMCIA) {
769 bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
770 }
771
772 GO_WINDOW(2);
773 for (i = 0; i < 6; i++) /* Reload the ether_addr. */
774 bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
775 LLADDR(ifp->if_sadl)[i]);
776
777 /*
778 * Reset the station-address receive filter.
779 * A bug workaround for busmastering (Vortex, Demon) cards.
780 */
781 for (i = 0; i < 6; i++)
782 bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
783
784 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
785 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
786
787 GO_WINDOW(1); /* Window 1 is operating window */
788 for (i = 0; i < 31; i++)
789 bus_space_read_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS));
790
791 /* Set threshhold for for Tx-space avaiable interrupt. */
792 bus_space_write_2(iot, ioh, ELINK_COMMAND,
793 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
794
795 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
796 /*
797 * Enable options in the PCMCIA LAN COR register, via
798 * RoadRunner Window 1.
799 *
800 * XXX MAGIC CONSTANTS!
801 */
802 u_int16_t cor;
803
804 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
805
806 cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
807 if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
808 cor |= 0x10;
809 if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
810 cor |= 0x20;
811 bus_space_write_2(iot, ioh, 0, cor);
812
813 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
814 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
815
816 if (sc->ep_flags & ELINK_FLAGS_MII) {
817 ep_roadrunner_mii_enable(sc);
818 GO_WINDOW(1);
819 }
820 }
821
822 /* Enable interrupts. */
823 bus_space_write_2(iot, ioh, ELINK_COMMAND,
824 SET_RD_0_MASK | S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE |
825 S_TX_AVAIL);
826 bus_space_write_2(iot, ioh, ELINK_COMMAND,
827 SET_INTR_MASK | S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE |
828 S_TX_AVAIL);
829
830 /*
831 * Attempt to get rid of any stray interrupts that occured during
832 * configuration. On the i386 this isn't possible because one may
833 * already be queued. However, a single stray interrupt is
834 * unimportant.
835 */
836 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
837
838 epsetfilter(sc);
839 epsetmedia(sc);
840
841 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
842 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
843
844 epmbuffill(sc);
845
846 /* Interface is now `running', with no output active. */
847 ifp->if_flags |= IFF_RUNNING;
848 ifp->if_flags &= ~IFF_OACTIVE;
849
850 if (sc->ep_flags & ELINK_FLAGS_MII) {
851 /* Start the one second clock. */
852 timeout(ep_tick, sc, hz);
853 }
854
855 /* Attempt to start output, if any. */
856 epstart(ifp);
857 }
858
859
860 /*
861 * Set multicast receive filter.
862 * elink3 hardware has no selective multicast filter in hardware.
863 * Enable reception of all multicasts and filter in software.
864 */
865 void
866 epsetfilter(sc)
867 register struct ep_softc *sc;
868 {
869 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
870
871 GO_WINDOW(1); /* Window 1 is operating window */
872 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
873 SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
874 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
875 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
876 }
877
878 int
879 ep_media_change(ifp)
880 struct ifnet *ifp;
881 {
882 register struct ep_softc *sc = ifp->if_softc;
883
884 if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
885 epreset(sc);
886
887 return (0);
888 }
889
890 /*
891 * Reset and enable the MII on the RoadRunner.
892 */
893 void
894 ep_roadrunner_mii_enable(sc)
895 struct ep_softc *sc;
896 {
897 bus_space_tag_t iot = sc->sc_iot;
898 bus_space_handle_t ioh = sc->sc_ioh;
899
900 GO_WINDOW(3);
901 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
902 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
903 delay(1000);
904 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
905 ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
906 ELINK_RUNNER_ENABLE_MII);
907 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
908 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
909 delay(1000);
910 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
911 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
912 }
913
914 /*
915 * Set the card to use the specified media.
916 */
917 void
918 epsetmedia(sc)
919 struct ep_softc *sc;
920 {
921 bus_space_tag_t iot = sc->sc_iot;
922 bus_space_handle_t ioh = sc->sc_ioh;
923
924 /* Turn everything off. First turn off linkbeat and UTP. */
925 GO_WINDOW(4);
926 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
927
928 /* Turn off coax */
929 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
930 delay(1000);
931
932 /*
933 * If the device has MII, select it, and then tell the
934 * PHY which media to use.
935 */
936 if (sc->ep_flags & ELINK_FLAGS_MII) {
937 int config0, config1;
938
939 GO_WINDOW(3);
940
941 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
942 int resopt;
943
944 resopt = bus_space_read_2(iot, ioh,
945 ELINK_W3_RESET_OPTIONS);
946 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
947 resopt | ELINK_RUNNER_ENABLE_MII);
948 }
949
950 config0 = (u_int)bus_space_read_2(iot, ioh,
951 ELINK_W3_INTERNAL_CONFIG);
952 config1 = (u_int)bus_space_read_2(iot, ioh,
953 ELINK_W3_INTERNAL_CONFIG + 2);
954
955 config1 = config1 & ~CONFIG_MEDIAMASK;
956 config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
957
958 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
959 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
960 config1);
961 GO_WINDOW(1); /* back to operating window */
962
963 mii_mediachg(&sc->sc_mii);
964 return;
965 }
966
967 /*
968 * Now turn on the selected media/transceiver.
969 */
970 GO_WINDOW(4);
971 switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
972 case IFM_10_T:
973 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
974 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
975 break;
976
977 case IFM_10_2:
978 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
979 DELAY(1000); /* 50ms not enmough? */
980 break;
981
982 case IFM_100_TX:
983 case IFM_100_FX:
984 case IFM_100_T4: /* XXX check documentation */
985 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
986 LINKBEAT_ENABLE);
987 DELAY(1000); /* not strictly necessary? */
988 break;
989
990 case IFM_10_5:
991 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
992 SQE_ENABLE);
993 DELAY(1000); /* not strictly necessary? */
994 break;
995
996 case IFM_MANUAL:
997 /*
998 * Nothing to do here; we are actually enabling the
999 * external PHY on the MII port.
1000 */
1001 break;
1002
1003 case IFM_NONE:
1004 printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
1005 return;
1006
1007 default:
1008 panic("epsetmedia: impossible");
1009 }
1010
1011 /*
1012 * Tell the chip which port to use.
1013 */
1014 switch (sc->ep_chipset) {
1015 case ELINK_CHIPSET_VORTEX:
1016 case ELINK_CHIPSET_BOOMERANG:
1017 {
1018 int mctl, config0, config1;
1019
1020 GO_WINDOW(3);
1021 config0 = (u_int)bus_space_read_2(iot, ioh,
1022 ELINK_W3_INTERNAL_CONFIG);
1023 config1 = (u_int)bus_space_read_2(iot, ioh,
1024 ELINK_W3_INTERNAL_CONFIG + 2);
1025
1026 config1 = config1 & ~CONFIG_MEDIAMASK;
1027 config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
1028 CONFIG_MEDIAMASK_SHIFT);
1029
1030 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
1031 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
1032 config1);
1033
1034 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1035 if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
1036 mctl |= MAC_CONTROL_FDX;
1037 else
1038 mctl &= ~MAC_CONTROL_FDX;
1039 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1040 break;
1041 }
1042 default:
1043 {
1044 int w0_addr_cfg;
1045
1046 GO_WINDOW(0);
1047 w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
1048 w0_addr_cfg &= 0x3fff;
1049 bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
1050 (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
1051 DELAY(1000);
1052 break;
1053 }
1054 }
1055
1056 GO_WINDOW(1); /* Window 1 is operating window */
1057 }
1058
1059 /*
1060 * Get currently-selected media from card.
1061 * (if_media callback, may be called before interface is brought up).
1062 */
1063 void
1064 ep_media_status(ifp, req)
1065 struct ifnet *ifp;
1066 struct ifmediareq *req;
1067 {
1068 register struct ep_softc *sc = ifp->if_softc;
1069 bus_space_tag_t iot = sc->sc_iot;
1070 bus_space_handle_t ioh = sc->sc_ioh;
1071
1072 if (sc->enabled == 0) {
1073 req->ifm_active = IFM_ETHER|IFM_NONE;
1074 req->ifm_status = 0;
1075 return;
1076 }
1077
1078 /*
1079 * If we have MII, go ask the PHY what's going on.
1080 */
1081 if (sc->ep_flags & ELINK_FLAGS_MII) {
1082 mii_pollstat(&sc->sc_mii);
1083 req->ifm_active = sc->sc_mii.mii_media_active;
1084 req->ifm_status = sc->sc_mii.mii_media_status;
1085 return;
1086 }
1087
1088 /*
1089 * Ok, at this point we claim that our active media is
1090 * the currently selected media. We'll update our status
1091 * if our chipset allows us to detect link.
1092 */
1093 req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1094 req->ifm_status = 0;
1095
1096 switch (sc->ep_chipset) {
1097 case ELINK_CHIPSET_VORTEX:
1098 case ELINK_CHIPSET_BOOMERANG:
1099 GO_WINDOW(4);
1100 req->ifm_status = IFM_AVALID;
1101 if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
1102 LINKBEAT_DETECT)
1103 req->ifm_status |= IFM_ACTIVE;
1104 GO_WINDOW(1); /* back to operating window */
1105 break;
1106 }
1107 }
1108
1109
1110
1111 /*
1112 * Start outputting on the interface.
1113 * Always called as splnet().
1114 */
1115 void
1116 epstart(ifp)
1117 struct ifnet *ifp;
1118 {
1119 register struct ep_softc *sc = ifp->if_softc;
1120 bus_space_tag_t iot = sc->sc_iot;
1121 bus_space_handle_t ioh = sc->sc_ioh;
1122 struct mbuf *m, *m0;
1123 int sh, len, pad;
1124 bus_addr_t txreg;
1125
1126 /* Don't transmit if interface is busy or not running */
1127 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1128 return;
1129
1130 startagain:
1131 /* Sneak a peek at the next packet */
1132 m0 = ifp->if_snd.ifq_head;
1133 if (m0 == 0)
1134 return;
1135
1136 /* We need to use m->m_pkthdr.len, so require the header */
1137 if ((m0->m_flags & M_PKTHDR) == 0)
1138 panic("epstart: no header mbuf");
1139 len = m0->m_pkthdr.len;
1140
1141 pad = (4 - len) & 3;
1142
1143 /*
1144 * The 3c509 automatically pads short packets to minimum ethernet
1145 * length, but we drop packets that are too large. Perhaps we should
1146 * truncate them instead?
1147 */
1148 if (len + pad > ETHER_MAX_LEN) {
1149 /* packet is obviously too large: toss it */
1150 ++ifp->if_oerrors;
1151 IF_DEQUEUE(&ifp->if_snd, m0);
1152 m_freem(m0);
1153 goto readcheck;
1154 }
1155
1156 if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
1157 len + pad + 4) {
1158 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1159 SET_TX_AVAIL_THRESH |
1160 ((len + pad + 4) >> sc->ep_pktlenshift));
1161 /* not enough room in FIFO */
1162 ifp->if_flags |= IFF_OACTIVE;
1163 return;
1164 } else {
1165 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1166 SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
1167 }
1168
1169 IF_DEQUEUE(&ifp->if_snd, m0);
1170 if (m0 == 0) /* not really needed */
1171 return;
1172
1173 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
1174 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
1175
1176 #if NBPFILTER > 0
1177 if (ifp->if_bpf)
1178 bpf_mtap(ifp->if_bpf, m0);
1179 #endif
1180
1181 /*
1182 * Do the output at splhigh() so that an interrupt from another device
1183 * won't cause a FIFO underrun.
1184 */
1185 sh = splhigh();
1186
1187 txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
1188
1189 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1190 /*
1191 * Prime the FIFO buffer counter (number of 16-bit
1192 * words about to be written to the FIFO).
1193 *
1194 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1195 * COUNTER IS NON-ZERO!
1196 */
1197 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
1198 (len + pad) >> 1);
1199 }
1200
1201 bus_space_write_2(iot, ioh, txreg, len);
1202 bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1203 if (ELINK_IS_BUS_32(sc->bustype)) {
1204 for (m = m0; m;) {
1205 if (m->m_len > 3) {
1206 /* align our reads from core */
1207 if (mtod(m, u_long) & 3) {
1208 u_long count =
1209 4 - (mtod(m, u_long) & 3);
1210 bus_space_write_multi_1(iot, ioh,
1211 txreg, mtod(m, u_int8_t *), count);
1212 m->m_data =
1213 (void *)(mtod(m, u_long) + count);
1214 m->m_len -= count;
1215 }
1216 bus_space_write_multi_stream_4(iot, ioh,
1217 txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1218 m->m_data = (void *)(mtod(m, u_long) +
1219 (u_long)(m->m_len & ~3));
1220 m->m_len -= m->m_len & ~3;
1221 }
1222 if (m->m_len) {
1223 bus_space_write_multi_1(iot, ioh,
1224 txreg, mtod(m, u_int8_t *), m->m_len);
1225 }
1226 MFREE(m, m0);
1227 m = m0;
1228 }
1229 } else {
1230 for (m = m0; m;) {
1231 if (m->m_len > 1) {
1232 if (mtod(m, u_long) & 1) {
1233 bus_space_write_1(iot, ioh,
1234 txreg, *(mtod(m, u_int8_t *)));
1235 m->m_data =
1236 (void *)(mtod(m, u_long) + 1);
1237 m->m_len -= 1;
1238 }
1239 bus_space_write_multi_stream_2(iot, ioh,
1240 txreg, mtod(m, u_int16_t *),
1241 m->m_len >> 1);
1242 }
1243 if (m->m_len & 1) {
1244 bus_space_write_1(iot, ioh, txreg,
1245 *(mtod(m, u_int8_t *) + m->m_len - 1));
1246 }
1247 MFREE(m, m0);
1248 m = m0;
1249 }
1250 }
1251 while (pad--)
1252 bus_space_write_1(iot, ioh, txreg, 0);
1253
1254 splx(sh);
1255
1256 ++ifp->if_opackets;
1257
1258 readcheck:
1259 if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
1260 ERR_INCOMPLETE) == 0) {
1261 /* We received a complete packet. */
1262 u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1263
1264 if ((status & S_INTR_LATCH) == 0) {
1265 /*
1266 * No interrupt, read the packet and continue
1267 * Is this supposed to happen? Is my motherboard
1268 * completely busted?
1269 */
1270 epread(sc);
1271 } else {
1272 /* Got an interrupt, return so that it gets serviced. */
1273 return;
1274 }
1275 } else {
1276 /* Check if we are stuck and reset [see XXX comment] */
1277 if (epstatus(sc)) {
1278 if (ifp->if_flags & IFF_DEBUG)
1279 printf("%s: adapter reset\n",
1280 sc->sc_dev.dv_xname);
1281 epreset(sc);
1282 }
1283 }
1284
1285 goto startagain;
1286 }
1287
1288
1289 /*
1290 * XXX: The 3c509 card can get in a mode where both the fifo status bit
1291 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1292 * We detect this situation and we reset the adapter.
1293 * It happens at times when there is a lot of broadcast traffic
1294 * on the cable (once in a blue moon).
1295 */
1296 static int
1297 epstatus(sc)
1298 register struct ep_softc *sc;
1299 {
1300 bus_space_tag_t iot = sc->sc_iot;
1301 bus_space_handle_t ioh = sc->sc_ioh;
1302 u_int16_t fifost;
1303
1304 /*
1305 * Check the FIFO status and act accordingly
1306 */
1307 GO_WINDOW(4);
1308 fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
1309 GO_WINDOW(1);
1310
1311 if (fifost & FIFOS_RX_UNDERRUN) {
1312 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1313 printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
1314 epreset(sc);
1315 return 0;
1316 }
1317
1318 if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1319 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1320 printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
1321 return 1;
1322 }
1323
1324 if (fifost & FIFOS_RX_OVERRUN) {
1325 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1326 printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
1327 return 1;
1328 }
1329
1330 if (fifost & FIFOS_TX_OVERRUN) {
1331 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1332 printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
1333 epreset(sc);
1334 return 0;
1335 }
1336
1337 return 0;
1338 }
1339
1340
1341 static void
1342 eptxstat(sc)
1343 register struct ep_softc *sc;
1344 {
1345 bus_space_tag_t iot = sc->sc_iot;
1346 bus_space_handle_t ioh = sc->sc_ioh;
1347 int i;
1348
1349 /*
1350 * We need to read+write TX_STATUS until we get a 0 status
1351 * in order to turn off the interrupt flag.
1352 */
1353 while ((i = bus_space_read_1(iot, ioh,
1354 ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
1355 bus_space_write_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
1356 0x0);
1357
1358 if (i & TXS_JABBER) {
1359 ++sc->sc_ethercom.ec_if.if_oerrors;
1360 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1361 printf("%s: jabber (%x)\n",
1362 sc->sc_dev.dv_xname, i);
1363 epreset(sc);
1364 } else if (i & TXS_UNDERRUN) {
1365 ++sc->sc_ethercom.ec_if.if_oerrors;
1366 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1367 printf("%s: fifo underrun (%x) @%d\n",
1368 sc->sc_dev.dv_xname, i,
1369 sc->tx_start_thresh);
1370 if (sc->tx_succ_ok < 100)
1371 sc->tx_start_thresh = min(ETHER_MAX_LEN,
1372 sc->tx_start_thresh + 20);
1373 sc->tx_succ_ok = 0;
1374 epreset(sc);
1375 } else if (i & TXS_MAX_COLLISION) {
1376 ++sc->sc_ethercom.ec_if.if_collisions;
1377 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
1378 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1379 } else
1380 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1381 }
1382 }
1383
1384 int
1385 epintr(arg)
1386 void *arg;
1387 {
1388 register struct ep_softc *sc = arg;
1389 bus_space_tag_t iot = sc->sc_iot;
1390 bus_space_handle_t ioh = sc->sc_ioh;
1391 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1392 u_int16_t status;
1393 int ret = 0;
1394 int addrandom = 0;
1395
1396 if (sc->enabled == 0 ||
1397 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1398 return (0);
1399
1400 for (;;) {
1401 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1402
1403 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1404
1405 if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
1406 S_RX_COMPLETE | S_CARD_FAILURE)) == 0) {
1407 if ((status & S_INTR_LATCH) == 0) {
1408 #if 0
1409 printf("%s: intr latch cleared\n",
1410 sc->sc_dev.dv_xname);
1411 #endif
1412 break;
1413 }
1414 }
1415
1416 ret = 1;
1417
1418 /*
1419 * Acknowledge any interrupts. It's important that we do this
1420 * first, since there would otherwise be a race condition.
1421 * Due to the i386 interrupt queueing, we may get spurious
1422 * interrupts occasionally.
1423 */
1424 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1425 (status & (C_INTR_LATCH |
1426 C_CARD_FAILURE |
1427 C_TX_COMPLETE |
1428 C_TX_AVAIL |
1429 C_RX_COMPLETE |
1430 C_RX_EARLY |
1431 C_INT_RQD |
1432 C_UPD_STATS)));
1433
1434 #if 0
1435 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1436
1437 printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
1438 (status & S_RX_COMPLETE)?" RX_COMPLETE":"",
1439 (status & S_TX_COMPLETE)?" TX_COMPLETE":"",
1440 (status & S_TX_AVAIL)?" TX_AVAIL":"",
1441 (status & S_CARD_FAILURE)?" CARD_FAILURE":"");
1442 #endif
1443
1444 if (status & S_RX_COMPLETE) {
1445 epread(sc);
1446 addrandom = 1;
1447 }
1448 if (status & S_TX_AVAIL) {
1449 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1450 epstart(&sc->sc_ethercom.ec_if);
1451 addrandom = 1;
1452 }
1453 if (status & S_CARD_FAILURE) {
1454 printf("%s: adapter failure (%x)\n",
1455 sc->sc_dev.dv_xname, status);
1456 #if 1
1457 epinit(sc);
1458 #else
1459 epreset(sc);
1460 #endif
1461 return (1);
1462 }
1463 if (status & S_TX_COMPLETE) {
1464 eptxstat(sc);
1465 epstart(ifp);
1466 addrandom = 1;
1467 }
1468
1469 #if NRND > 0
1470 if (status)
1471 rnd_add_uint32(&sc->rnd_source, status);
1472 #endif
1473 }
1474
1475 /* no more interrupts */
1476 return (ret);
1477 }
1478
1479 void
1480 epread(sc)
1481 register struct ep_softc *sc;
1482 {
1483 bus_space_tag_t iot = sc->sc_iot;
1484 bus_space_handle_t ioh = sc->sc_ioh;
1485 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1486 struct mbuf *m;
1487 struct ether_header *eh;
1488 int len;
1489
1490 len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1491
1492 again:
1493 if (ifp->if_flags & IFF_DEBUG) {
1494 int err = len & ERR_MASK;
1495 char *s = NULL;
1496
1497 if (len & ERR_INCOMPLETE)
1498 s = "incomplete packet";
1499 else if (err == ERR_OVERRUN)
1500 s = "packet overrun";
1501 else if (err == ERR_RUNT)
1502 s = "runt packet";
1503 else if (err == ERR_ALIGNMENT)
1504 s = "bad alignment";
1505 else if (err == ERR_CRC)
1506 s = "bad crc";
1507 else if (err == ERR_OVERSIZE)
1508 s = "oversized packet";
1509 else if (err == ERR_DRIBBLE)
1510 s = "dribble bits";
1511
1512 if (s)
1513 printf("%s: %s\n", sc->sc_dev.dv_xname, s);
1514 }
1515
1516 if (len & ERR_INCOMPLETE)
1517 return;
1518
1519 if (len & ERR_RX) {
1520 ++ifp->if_ierrors;
1521 goto abort;
1522 }
1523
1524 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
1525
1526 /* Pull packet off interface. */
1527 m = epget(sc, len);
1528 if (m == 0) {
1529 ifp->if_ierrors++;
1530 goto abort;
1531 }
1532
1533 ++ifp->if_ipackets;
1534
1535 /* We assume the header fit entirely in one mbuf. */
1536 eh = mtod(m, struct ether_header *);
1537
1538 #if NBPFILTER > 0
1539 /*
1540 * Check if there's a BPF listener on this interface.
1541 * If so, hand off the raw packet to BPF.
1542 */
1543 if (ifp->if_bpf) {
1544 bpf_mtap(ifp->if_bpf, m);
1545
1546 /*
1547 * Note that the interface cannot be in promiscuous mode if
1548 * there are no BPF listeners. And if we are in promiscuous
1549 * mode, we have to check if this packet is really ours.
1550 */
1551 if ((ifp->if_flags & IFF_PROMISC) &&
1552 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
1553 bcmp(eh->ether_dhost, LLADDR(sc->sc_ethercom.ec_if.if_sadl),
1554 sizeof(eh->ether_dhost)) != 0) {
1555 m_freem(m);
1556 return;
1557 }
1558 }
1559 #endif
1560 (*ifp->if_input)(ifp, m);
1561
1562 /*
1563 * In periods of high traffic we can actually receive enough
1564 * packets so that the fifo overrun bit will be set at this point,
1565 * even though we just read a packet. In this case we
1566 * are not going to receive any more interrupts. We check for
1567 * this condition and read again until the fifo is not full.
1568 * We could simplify this test by not using epstatus(), but
1569 * rechecking the RX_STATUS register directly. This test could
1570 * result in unnecessary looping in cases where there is a new
1571 * packet but the fifo is not full, but it will not fix the
1572 * stuck behavior.
1573 *
1574 * Even with this improvement, we still get packet overrun errors
1575 * which are hurting performance. Maybe when I get some more time
1576 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1577 */
1578 if (epstatus(sc)) {
1579 len = bus_space_read_2(iot, ioh,
1580 ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1581 /* Check if we are stuck and reset [see XXX comment] */
1582 if (len & ERR_INCOMPLETE) {
1583 if (ifp->if_flags & IFF_DEBUG)
1584 printf("%s: adapter reset\n",
1585 sc->sc_dev.dv_xname);
1586 epreset(sc);
1587 return;
1588 }
1589 goto again;
1590 }
1591
1592 return;
1593
1594 abort:
1595 ep_discard_rxtop(iot, ioh);
1596
1597 }
1598
1599 struct mbuf *
1600 epget(sc, totlen)
1601 struct ep_softc *sc;
1602 int totlen;
1603 {
1604 bus_space_tag_t iot = sc->sc_iot;
1605 bus_space_handle_t ioh = sc->sc_ioh;
1606 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1607 struct mbuf *top, **mp, *m, *rv = NULL;
1608 bus_addr_t rxreg;
1609 int len, remaining;
1610 int sh;
1611
1612 m = sc->mb[sc->next_mb];
1613 sc->mb[sc->next_mb] = 0;
1614 if (m == 0) {
1615 MGETHDR(m, M_DONTWAIT, MT_DATA);
1616 if (m == 0)
1617 return 0;
1618 } else {
1619 /* If the queue is no longer full, refill. */
1620 if (sc->last_mb == sc->next_mb)
1621 timeout(epmbuffill, sc, 1);
1622 /* Convert one of our saved mbuf's. */
1623 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1624 m->m_data = m->m_pktdat;
1625 m->m_flags = M_PKTHDR;
1626 }
1627 m->m_pkthdr.rcvif = ifp;
1628 m->m_pkthdr.len = totlen;
1629 len = MHLEN;
1630 top = 0;
1631 mp = ⊤
1632
1633 /*
1634 * We read the packet at splhigh() so that an interrupt from another
1635 * device doesn't cause the card's buffer to overflow while we're
1636 * reading it. We may still lose packets at other times.
1637 */
1638 sh = splhigh();
1639
1640 rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
1641
1642 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1643 /*
1644 * Prime the FIFO buffer counter (number of 16-bit
1645 * words about to be read from the FIFO).
1646 *
1647 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1648 * COUNTER IS NON-ZERO!
1649 */
1650 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
1651 }
1652
1653 while (totlen > 0) {
1654 if (top) {
1655 m = sc->mb[sc->next_mb];
1656 sc->mb[sc->next_mb] = 0;
1657 if (m == 0) {
1658 MGET(m, M_DONTWAIT, MT_DATA);
1659 if (m == 0) {
1660 m_freem(top);
1661 goto out;
1662 }
1663 } else {
1664 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1665 }
1666 len = MLEN;
1667 }
1668 if (totlen >= MINCLSIZE) {
1669 MCLGET(m, M_DONTWAIT);
1670 if ((m->m_flags & M_EXT) == 0) {
1671 m_free(m);
1672 m_freem(top);
1673 goto out;
1674 }
1675 len = MCLBYTES;
1676 }
1677 if (top == 0) {
1678 /* align the struct ip header */
1679 caddr_t newdata = (caddr_t)
1680 ALIGN(m->m_data + sizeof(struct ether_header))
1681 - sizeof(struct ether_header);
1682 len -= newdata - m->m_data;
1683 m->m_data = newdata;
1684 }
1685 remaining = len = min(totlen, len);
1686 if (ELINK_IS_BUS_32(sc->bustype)) {
1687 u_long offset = mtod(m, u_long);
1688 /*
1689 * Read bytes up to the point where we are aligned.
1690 * (We can align to 4 bytes, rather than ALIGNBYTES,
1691 * here because we're later reading 4-byte chunks.)
1692 */
1693 if ((remaining > 3) && (offset & 3)) {
1694 int count = (4 - (offset & 3));
1695 bus_space_read_multi_1(iot, ioh,
1696 rxreg, (u_int8_t *) offset, count);
1697 offset += count;
1698 remaining -= count;
1699 }
1700 if (remaining > 3) {
1701 bus_space_read_multi_stream_4(iot, ioh,
1702 rxreg, (u_int32_t *) offset,
1703 remaining >> 2);
1704 offset += remaining & ~3;
1705 remaining &= 3;
1706 }
1707 if (remaining) {
1708 bus_space_read_multi_1(iot, ioh,
1709 rxreg, (u_int8_t *) offset, remaining);
1710 }
1711 } else {
1712 u_long offset = mtod(m, u_long);
1713 if ((remaining > 1) && (offset & 1)) {
1714 bus_space_read_multi_1(iot, ioh,
1715 rxreg, (u_int8_t *) offset, 1);
1716 remaining -= 1;
1717 offset += 1;
1718 }
1719 if (remaining > 1) {
1720 bus_space_read_multi_stream_2(iot, ioh,
1721 rxreg, (u_int16_t *) offset,
1722 remaining >> 1);
1723 offset += remaining & ~1;
1724 }
1725 if (remaining & 1) {
1726 bus_space_read_multi_1(iot, ioh,
1727 rxreg, (u_int8_t *) offset, remaining & 1);
1728 }
1729 }
1730 m->m_len = len;
1731 totlen -= len;
1732 *mp = m;
1733 mp = &m->m_next;
1734 }
1735
1736 rv = top;
1737
1738 ep_discard_rxtop(iot, ioh);
1739
1740 out:
1741 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
1742 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1743 splx(sh);
1744
1745 return rv;
1746 }
1747
1748 int
1749 epioctl(ifp, cmd, data)
1750 register struct ifnet *ifp;
1751 u_long cmd;
1752 caddr_t data;
1753 {
1754 struct ep_softc *sc = ifp->if_softc;
1755 struct ifaddr *ifa = (struct ifaddr *)data;
1756 struct ifreq *ifr = (struct ifreq *)data;
1757 int s, error = 0;
1758
1759 s = splnet();
1760
1761 switch (cmd) {
1762
1763 case SIOCSIFADDR:
1764 if ((error = epenable(sc)) != 0)
1765 break;
1766 /* epinit is called just below */
1767 ifp->if_flags |= IFF_UP;
1768 switch (ifa->ifa_addr->sa_family) {
1769 #ifdef INET
1770 case AF_INET:
1771 epinit(sc);
1772 arp_ifinit(&sc->sc_ethercom.ec_if, ifa);
1773 break;
1774 #endif
1775 #ifdef NS
1776 case AF_NS:
1777 {
1778 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1779
1780 if (ns_nullhost(*ina))
1781 ina->x_host = *(union ns_host *)
1782 LLADDR(ifp->if_sadl);
1783 else
1784 bcopy(ina->x_host.c_host,
1785 LLADDR(ifp->if_sadl),
1786 ifp->if_addrlen);
1787 /* Set new address. */
1788 epinit(sc);
1789 break;
1790 }
1791 #endif
1792 default:
1793 epinit(sc);
1794 break;
1795 }
1796 break;
1797
1798 case SIOCSIFMEDIA:
1799 case SIOCGIFMEDIA:
1800 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1801 break;
1802
1803 case SIOCSIFFLAGS:
1804 if ((ifp->if_flags & IFF_UP) == 0 &&
1805 (ifp->if_flags & IFF_RUNNING) != 0) {
1806 /*
1807 * If interface is marked down and it is running, then
1808 * stop it.
1809 */
1810 epstop(sc);
1811 ifp->if_flags &= ~IFF_RUNNING;
1812 epdisable(sc);
1813 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1814 (ifp->if_flags & IFF_RUNNING) == 0) {
1815 /*
1816 * If interface is marked up and it is stopped, then
1817 * start it.
1818 */
1819 if ((error = epenable(sc)) != 0)
1820 break;
1821 epinit(sc);
1822 } else if ((ifp->if_flags & IFF_UP) != 0) {
1823 /*
1824 * deal with flags changes:
1825 * IFF_MULTICAST, IFF_PROMISC.
1826 */
1827 epsetfilter(sc);
1828 }
1829 break;
1830
1831 case SIOCADDMULTI:
1832 case SIOCDELMULTI:
1833 if (sc->enabled == 0) {
1834 error = EIO;
1835 break;
1836 }
1837
1838 error = (cmd == SIOCADDMULTI) ?
1839 ether_addmulti(ifr, &sc->sc_ethercom) :
1840 ether_delmulti(ifr, &sc->sc_ethercom);
1841
1842 if (error == ENETRESET) {
1843 /*
1844 * Multicast list has changed; set the hardware filter
1845 * accordingly.
1846 */
1847 epreset(sc);
1848 error = 0;
1849 }
1850 break;
1851
1852 default:
1853 error = EINVAL;
1854 break;
1855 }
1856
1857 splx(s);
1858 return (error);
1859 }
1860
1861 void
1862 epreset(sc)
1863 struct ep_softc *sc;
1864 {
1865 int s;
1866
1867 s = splnet();
1868 epinit(sc);
1869 splx(s);
1870 }
1871
1872 void
1873 epwatchdog(ifp)
1874 struct ifnet *ifp;
1875 {
1876 struct ep_softc *sc = ifp->if_softc;
1877
1878 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1879 ++sc->sc_ethercom.ec_if.if_oerrors;
1880
1881 epreset(sc);
1882 }
1883
1884 void
1885 epstop(sc)
1886 register struct ep_softc *sc;
1887 {
1888 bus_space_tag_t iot = sc->sc_iot;
1889 bus_space_handle_t ioh = sc->sc_ioh;
1890
1891 if (sc->ep_flags & ELINK_FLAGS_MII) {
1892 /* Stop the one second clock. */
1893 untimeout(ep_tick, sc);
1894
1895 /* Down the MII. */
1896 mii_down(&sc->sc_mii);
1897 }
1898
1899 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
1900 /*
1901 * Clear the FIFO buffer count, thus halting
1902 * any currently-running transactions.
1903 */
1904 GO_WINDOW(1); /* sanity */
1905 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
1906 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1907 }
1908
1909 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1910 ep_discard_rxtop(iot, ioh);
1911
1912 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1913 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1914
1915 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
1916 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1917
1918 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1919 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
1920 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
1921 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
1922
1923 epmbufempty(sc);
1924 }
1925
1926
1927 /*
1928 * Before reboots, reset card completely.
1929 */
1930 static void
1931 epshutdown(arg)
1932 void *arg;
1933 {
1934 register struct ep_softc *sc = arg;
1935 int s = splnet();
1936
1937 if (sc->enabled) {
1938 epstop(sc);
1939 ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
1940 sc->enabled = 0;
1941 }
1942 splx(s);
1943 }
1944
1945 /*
1946 * We get eeprom data from the id_port given an offset into the
1947 * eeprom. Basically; after the ID_sequence is sent to all of
1948 * the cards; they enter the ID_CMD state where they will accept
1949 * command requests. 0x80-0xbf loads the eeprom data. We then
1950 * read the port 16 times and with every read; the cards check
1951 * for contention (ie: if one card writes a 0 bit and another
1952 * writes a 1 bit then the host sees a 0. At the end of the cycle;
1953 * each card compares the data on the bus; if there is a difference
1954 * then that card goes into ID_WAIT state again). In the meantime;
1955 * one bit of data is returned in the AX register which is conveniently
1956 * returned to us by bus_space_read_1(). Hence; we read 16 times getting one
1957 * bit of data with each read.
1958 *
1959 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1960 */
1961 u_int16_t
1962 epreadeeprom(iot, ioh, offset)
1963 bus_space_tag_t iot;
1964 bus_space_handle_t ioh;
1965 int offset;
1966 {
1967 u_int16_t data = 0;
1968 int i;
1969
1970 bus_space_write_1(iot, ioh, 0, 0x80 + offset);
1971 delay(1000);
1972 for (i = 0; i < 16; i++)
1973 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1974 return (data);
1975 }
1976
1977 static int
1978 epbusyeeprom(sc)
1979 struct ep_softc *sc;
1980 {
1981 bus_space_tag_t iot = sc->sc_iot;
1982 bus_space_handle_t ioh = sc->sc_ioh;
1983 int i = 100, j;
1984
1985 if (sc->bustype == ELINK_BUS_PCMCIA) {
1986 delay(1000);
1987 return 0;
1988 }
1989
1990 j = 0; /* bad GCC flow analysis */
1991 while (i--) {
1992 j = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND);
1993 if (j & EEPROM_BUSY)
1994 delay(100);
1995 else
1996 break;
1997 }
1998 if (!i) {
1999 printf("\n%s: eeprom failed to come ready\n",
2000 sc->sc_dev.dv_xname);
2001 return (1);
2002 }
2003 if (j & EEPROM_TST_MODE) {
2004 /* XXX PnP mode? */
2005 printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
2006 return (1);
2007 }
2008 return (0);
2009 }
2010
2011 u_int16_t
2012 ep_read_eeprom(sc, offset)
2013 struct ep_softc *sc;
2014 u_int16_t offset;
2015 {
2016 u_int16_t readcmd;
2017
2018 /*
2019 * RoadRunner has a larger EEPROM, so a different read command
2020 * is required.
2021 */
2022 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
2023 readcmd = READ_EEPROM_RR;
2024 else
2025 readcmd = READ_EEPROM;
2026
2027 if (epbusyeeprom(sc))
2028 return (0); /* XXX why is eeprom busy? */
2029 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W0_EEPROM_COMMAND,
2030 readcmd | offset);
2031 if (epbusyeeprom(sc))
2032 return (0); /* XXX why is eeprom busy? */
2033 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W0_EEPROM_DATA));
2034 }
2035
2036 void
2037 epmbuffill(v)
2038 void *v;
2039 {
2040 struct ep_softc *sc = v;
2041 struct mbuf *m;
2042 int s, i;
2043
2044 s = splnet();
2045 i = sc->last_mb;
2046 do {
2047 if (sc->mb[i] == 0) {
2048 MGET(m, M_DONTWAIT, MT_DATA);
2049 if (m == 0)
2050 break;
2051 sc->mb[i] = m;
2052 }
2053 i = (i + 1) % MAX_MBS;
2054 } while (i != sc->next_mb);
2055 sc->last_mb = i;
2056 /* If the queue was not filled, try again. */
2057 if (sc->last_mb != sc->next_mb)
2058 timeout(epmbuffill, sc, 1);
2059 splx(s);
2060 }
2061
2062 void
2063 epmbufempty(sc)
2064 struct ep_softc *sc;
2065 {
2066 int s, i;
2067
2068 s = splnet();
2069 for (i = 0; i<MAX_MBS; i++) {
2070 if (sc->mb[i]) {
2071 m_freem(sc->mb[i]);
2072 sc->mb[i] = NULL;
2073 }
2074 }
2075 sc->last_mb = sc->next_mb = 0;
2076 untimeout(epmbuffill, sc);
2077 splx(s);
2078 }
2079
2080 int
2081 epenable(sc)
2082 struct ep_softc *sc;
2083 {
2084
2085 if (sc->enabled == 0 && sc->enable != NULL) {
2086 if ((*sc->enable)(sc) != 0) {
2087 printf("%s: device enable failed\n",
2088 sc->sc_dev.dv_xname);
2089 return (EIO);
2090 }
2091 }
2092
2093 sc->enabled = 1;
2094 return (0);
2095 }
2096
2097 void
2098 epdisable(sc)
2099 struct ep_softc *sc;
2100 {
2101
2102 if (sc->enabled != 0 && sc->disable != NULL) {
2103 (*sc->disable)(sc);
2104 sc->enabled = 0;
2105 }
2106 }
2107
2108 int
2109 ep_activate(self, act)
2110 struct device *self;
2111 enum devact act;
2112 {
2113 struct ep_softc *sc = (struct ep_softc *)self;
2114 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2115 int error = 0, s;
2116
2117 s = splnet();
2118 switch (act) {
2119 case DVACT_ACTIVATE:
2120 error = EOPNOTSUPP;
2121 break;
2122
2123 case DVACT_DEACTIVATE:
2124 if_deactivate(ifp);
2125 break;
2126 }
2127 splx(s);
2128 return (error);
2129 }
2130
2131 int
2132 ep_detach(self, flags)
2133 struct device *self;
2134 int flags;
2135 {
2136 struct ep_softc *sc = (struct ep_softc *)self;
2137 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2138
2139 epdisable(sc);
2140
2141 untimeout(ep_tick, sc);
2142 untimeout(epmbuffill, sc);
2143
2144 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2145
2146 #if NRND > 0
2147 rnd_detach_source(&sc->rnd_source);
2148 #endif
2149 #if NBPFILTER > 0
2150 bpfdetach(ifp);
2151 #endif
2152 ether_ifdetach(ifp);
2153 if_detach(ifp);
2154
2155 shutdownhook_disestablish(sc->sd_hook);
2156
2157 return (0);
2158 }
2159
2160 u_int32_t
2161 ep_mii_bitbang_read(self)
2162 struct device *self;
2163 {
2164 struct ep_softc *sc = (void *) self;
2165
2166 /* We're already in Window 4. */
2167 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
2168 ELINK_W4_BOOM_PHYSMGMT));
2169 }
2170
2171 void
2172 ep_mii_bitbang_write(self, val)
2173 struct device *self;
2174 u_int32_t val;
2175 {
2176 struct ep_softc *sc = (void *) self;
2177
2178 /* We're already in Window 4. */
2179 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
2180 ELINK_W4_BOOM_PHYSMGMT, val);
2181 }
2182
2183 int
2184 ep_mii_readreg(self, phy, reg)
2185 struct device *self;
2186 int phy, reg;
2187 {
2188 struct ep_softc *sc = (void *) self;
2189 int val;
2190
2191 GO_WINDOW(4);
2192
2193 val = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg);
2194
2195 GO_WINDOW(1);
2196
2197 return (val);
2198 }
2199
2200 void
2201 ep_mii_writereg(self, phy, reg, val)
2202 struct device *self;
2203 int phy, reg, val;
2204 {
2205 struct ep_softc *sc = (void *) self;
2206
2207 GO_WINDOW(4);
2208
2209 mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
2210
2211 GO_WINDOW(1);
2212 }
2213
2214 void
2215 ep_statchg(self)
2216 struct device *self;
2217 {
2218 struct ep_softc *sc = (struct ep_softc *)self;
2219 bus_space_tag_t iot = sc->sc_iot;
2220 bus_space_handle_t ioh = sc->sc_ioh;
2221 int mctl;
2222
2223 /* XXX Update ifp->if_baudrate */
2224
2225 GO_WINDOW(3);
2226 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
2227 if (sc->sc_mii.mii_media_active & IFM_FDX)
2228 mctl |= MAC_CONTROL_FDX;
2229 else
2230 mctl &= ~MAC_CONTROL_FDX;
2231 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
2232 GO_WINDOW(1); /* back to operating window */
2233 }
2234