elink3.c revision 1.74 1 /* $NetBSD: elink3.c,v 1.74 2000/02/03 06:03:39 enami Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
42 * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 * must display the following acknowledgement:
55 * This product includes software developed by Herb Peyerl.
56 * 4. The name of Herb Peyerl may not be used to endorse or promote products
57 * derived from this software without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
60 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
61 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
63 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
64 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
65 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
66 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
67 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
68 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 #include "opt_inet.h"
72 #include "opt_ns.h"
73 #include "bpfilter.h"
74 #include "rnd.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/mbuf.h>
80 #include <sys/socket.h>
81 #include <sys/ioctl.h>
82 #include <sys/errno.h>
83 #include <sys/syslog.h>
84 #include <sys/select.h>
85 #include <sys/device.h>
86 #if NRND > 0
87 #include <sys/rnd.h>
88 #endif
89
90 #include <net/if.h>
91 #include <net/if_dl.h>
92 #include <net/if_ether.h>
93 #include <net/if_media.h>
94
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/in_var.h>
99 #include <netinet/ip.h>
100 #include <netinet/if_inarp.h>
101 #endif
102
103 #ifdef NS
104 #include <netns/ns.h>
105 #include <netns/ns_if.h>
106 #endif
107
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #include <net/bpfdesc.h>
111 #endif
112
113 #include <machine/cpu.h>
114 #include <machine/bus.h>
115 #include <machine/intr.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119 #include <dev/mii/mii_bitbang.h>
120
121 #include <dev/ic/elink3var.h>
122 #include <dev/ic/elink3reg.h>
123
124 #ifdef DEBUG
125 int epdebug = 0;
126 #endif
127
128 /*
129 * XXX endian workaround for big-endian CPUs with pcmcia:
130 * if stream methods for bus_space_multi are not provided, define them
131 * using non-stream bus_space_{read,write}_multi_.
132 * Assumes host CPU is same endian-ness as bus.
133 */
134 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
135 #define bus_space_read_multi_stream_2 bus_space_read_multi_2
136 #define bus_space_read_multi_stream_4 bus_space_read_multi_4
137 #define bus_space_write_multi_stream_2 bus_space_write_multi_2
138 #define bus_space_write_multi_stream_4 bus_space_write_multi_4
139 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
140
141 /*
142 * Structure to map media-present bits in boards to ifmedia codes and
143 * printable media names. Used for table-driven ifmedia initialization.
144 */
145 struct ep_media {
146 int epm_mpbit; /* media present bit */
147 const char *epm_name; /* name of medium */
148 int epm_ifmedia; /* ifmedia word for medium */
149 int epm_epmedia; /* ELINKMEDIA_* constant */
150 };
151
152 /*
153 * Media table for the Demon/Vortex/Boomerang chipsets.
154 *
155 * Note that MII on the Demon and Vortex (3c59x) indicates an external
156 * MII connector (for connecting an external PHY) ... I think. Treat
157 * it as `manual' on these chips.
158 *
159 * Any Boomerang (3c90x) chips with MII really do have an internal
160 * MII and real PHYs attached; no `native' media.
161 */
162 struct ep_media ep_vortex_media[] = {
163 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
164 ELINKMEDIA_10BASE_T },
165 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
166 ELINKMEDIA_10BASE_T },
167 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
168 ELINKMEDIA_AUI },
169 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
170 ELINKMEDIA_10BASE_2 },
171 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
172 ELINKMEDIA_100BASE_TX },
173 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
174 ELINKMEDIA_100BASE_TX },
175 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
176 ELINKMEDIA_100BASE_FX },
177 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
178 ELINKMEDIA_MII },
179 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
180 ELINKMEDIA_100BASE_T4 },
181 { 0, NULL, 0,
182 0 },
183 };
184
185 /*
186 * Media table for the older 3Com Etherlink III chipset, used
187 * in the 3c509, 3c579, and 3c589.
188 */
189 struct ep_media ep_509_media[] = {
190 { ELINK_W0_CC_UTP, "10baseT", IFM_ETHER|IFM_10_T,
191 ELINKMEDIA_10BASE_T },
192 { ELINK_W0_CC_AUI, "10base5", IFM_ETHER|IFM_10_5,
193 ELINKMEDIA_AUI },
194 { ELINK_W0_CC_BNC, "10base2", IFM_ETHER|IFM_10_2,
195 ELINKMEDIA_10BASE_2 },
196 { 0, NULL, 0,
197 0 },
198 };
199
200 void ep_internalconfig __P((struct ep_softc *sc));
201 void ep_vortex_probemedia __P((struct ep_softc *sc));
202 void ep_509_probemedia __P((struct ep_softc *sc));
203
204 static void eptxstat __P((struct ep_softc *));
205 static int epstatus __P((struct ep_softc *));
206 void epinit __P((struct ep_softc *));
207 int epioctl __P((struct ifnet *, u_long, caddr_t));
208 void epstart __P((struct ifnet *));
209 void epwatchdog __P((struct ifnet *));
210 void epreset __P((struct ep_softc *));
211 static void epshutdown __P((void *));
212 void epread __P((struct ep_softc *));
213 struct mbuf *epget __P((struct ep_softc *, int));
214 void epmbuffill __P((void *));
215 void epmbufempty __P((struct ep_softc *));
216 void epsetfilter __P((struct ep_softc *));
217 void ep_roadrunner_mii_enable __P((struct ep_softc *));
218 void epsetmedia __P((struct ep_softc *));
219
220 /* ifmedia callbacks */
221 int ep_media_change __P((struct ifnet *ifp));
222 void ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
223
224 /* MII callbacks */
225 int ep_mii_readreg __P((struct device *, int, int));
226 void ep_mii_writereg __P((struct device *, int, int, int));
227 void ep_statchg __P((struct device *));
228
229 void ep_tick __P((void *));
230
231 static int epbusyeeprom __P((struct ep_softc *));
232 u_int16_t ep_read_eeprom __P((struct ep_softc *, u_int16_t));
233 static inline void ep_reset_cmd __P((struct ep_softc *sc,
234 u_int cmd, u_int arg));
235 static inline void ep_finish_reset __P((bus_space_tag_t, bus_space_handle_t));
236 static inline void ep_discard_rxtop __P((bus_space_tag_t, bus_space_handle_t));
237 static __inline int ep_w1_reg __P((struct ep_softc *, int));
238
239 /*
240 * MII bit-bang glue.
241 */
242 u_int32_t ep_mii_bitbang_read __P((struct device *));
243 void ep_mii_bitbang_write __P((struct device *, u_int32_t));
244
245 const struct mii_bitbang_ops ep_mii_bitbang_ops = {
246 ep_mii_bitbang_read,
247 ep_mii_bitbang_write,
248 {
249 PHYSMGMT_DATA, /* MII_BIT_MDO */
250 PHYSMGMT_DATA, /* MII_BIT_MDI */
251 PHYSMGMT_CLK, /* MII_BIT_MDC */
252 PHYSMGMT_DIR, /* MII_BIT_DIR_HOST_PHY */
253 0, /* MII_BIT_DIR_PHY_HOST */
254 }
255 };
256
257 /*
258 * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
259 * Window 1 registers offset!
260 */
261 static __inline int
262 ep_w1_reg(sc, reg)
263 struct ep_softc *sc;
264 int reg;
265 {
266
267 switch (sc->ep_chipset) {
268 case ELINK_CHIPSET_CORKSCREW:
269 return (reg + 0x10);
270
271 case ELINK_CHIPSET_ROADRUNNER:
272 switch (reg) {
273 case ELINK_W1_FREE_TX:
274 case ELINK_W1_RUNNER_RDCTL:
275 case ELINK_W1_RUNNER_WRCTL:
276 return (reg);
277 }
278 return (reg + 0x10);
279 }
280
281 return (reg);
282 }
283
284 /*
285 * Wait for any pending reset to complete.
286 * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
287 * but older hardware doesn't implement it and we must delay.
288 */
289 static inline void
290 ep_finish_reset(iot, ioh)
291 bus_space_tag_t iot;
292 bus_space_handle_t ioh;
293 {
294 int i;
295
296 for (i = 0; i < 10000; i++) {
297 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
298 S_COMMAND_IN_PROGRESS) == 0)
299 break;
300 DELAY(10);
301 }
302 }
303
304 /*
305 * Issue a (reset) command, and be sure it has completed.
306 * Used for global reset, TX_RESET, RX_RESET.
307 */
308 static inline void
309 ep_reset_cmd(sc, cmd, arg)
310 struct ep_softc *sc;
311 u_int cmd, arg;
312 {
313 register bus_space_tag_t iot = sc->sc_iot;
314 register bus_space_handle_t ioh = sc->sc_ioh;
315
316 bus_space_write_2(iot, ioh, cmd, arg);
317 ep_finish_reset(iot, ioh);
318 }
319
320
321 static inline void
322 ep_discard_rxtop(iot, ioh)
323 register bus_space_tag_t iot;
324 register bus_space_handle_t ioh;
325 {
326 int i;
327
328 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
329
330 /*
331 * Spin for about 1 msec, to avoid forcing a DELAY() between
332 * every received packet (adding latency and limiting pkt-recv rate).
333 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
334 * is about right.
335 */
336 for (i = 0; i < 8000; i++) {
337 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
338 S_COMMAND_IN_PROGRESS) == 0)
339 return;
340 }
341
342 /* Didn't complete in a hurry. Do DELAY()s. */
343 ep_finish_reset(iot, ioh);
344 }
345
346 /*
347 * Back-end attach and configure.
348 */
349 void
350 epconfig(sc, chipset, enaddr)
351 struct ep_softc *sc;
352 u_short chipset;
353 u_int8_t *enaddr;
354 {
355 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
356 bus_space_tag_t iot = sc->sc_iot;
357 bus_space_handle_t ioh = sc->sc_ioh;
358 u_int16_t i;
359 u_int8_t myla[6];
360
361 sc->ep_chipset = chipset;
362
363 /*
364 * We could have been groveling around in other register
365 * windows in the front-end; make sure we're in window 0
366 * to read the EEPROM.
367 */
368 GO_WINDOW(0);
369
370 if (enaddr == NULL) {
371 /*
372 * Read the station address from the eeprom.
373 */
374 for (i = 0; i < 3; i++) {
375 u_int16_t x = ep_read_eeprom(sc, i);
376 myla[(i << 1)] = x >> 8;
377 myla[(i << 1) + 1] = x;
378 }
379 enaddr = myla;
380 }
381
382 /*
383 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
384 * allow FDDI-sized (4500) byte packets. Commands only take an
385 * 11-bit parameter, and 11 bits isn't enough to hold a full-size
386 * packet length.
387 * Commands to these cards implicitly upshift a packet size
388 * or threshold by 2 bits.
389 * To detect cards with large-packet support, we probe by setting
390 * the transmit threshold register, then change windows and
391 * read back the threshold register directly, and see if the
392 * threshold value was shifted or not.
393 */
394 bus_space_write_2(iot, ioh, ELINK_COMMAND,
395 SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
396 GO_WINDOW(5);
397 i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
398 GO_WINDOW(1);
399 switch (i) {
400 case ELINK_LARGEWIN_PROBE:
401 case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
402 sc->ep_pktlenshift = 0;
403 break;
404
405 case (ELINK_LARGEWIN_PROBE << 2):
406 sc->ep_pktlenshift = 2;
407 break;
408
409 default:
410 printf("%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
411 "Interface disabled\n",
412 sc->sc_dev.dv_xname, ELINK_LARGEWIN_PROBE, (int) i);
413 return;
414 }
415
416 /*
417 * Ensure Tx-available interrupts are enabled for
418 * start the interface.
419 * XXX should be in epinit()?
420 */
421 bus_space_write_2(iot, ioh, ELINK_COMMAND,
422 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
423
424 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
425 ifp->if_softc = sc;
426 ifp->if_start = epstart;
427 ifp->if_ioctl = epioctl;
428 ifp->if_watchdog = epwatchdog;
429 ifp->if_flags =
430 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
431
432 if_attach(ifp);
433 ether_ifattach(ifp, enaddr);
434
435 /*
436 * Finish configuration:
437 * determine chipset if the front-end couldn't do so,
438 * show board details, set media.
439 */
440
441 /*
442 * Print RAM size. We also print the Ethernet address in here.
443 * It's extracted from the ifp, so we have to make sure it's
444 * been attached first.
445 */
446 ep_internalconfig(sc);
447 GO_WINDOW(0);
448
449 /*
450 * Display some additional information, if pertinent.
451 */
452 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
453 printf("%s: RoadRunner FIFO buffer enabled\n",
454 sc->sc_dev.dv_xname);
455
456 /*
457 * Initialize our media structures and MII info. We'll
458 * probe the MII if we discover that we have one.
459 */
460 sc->sc_mii.mii_ifp = ifp;
461 sc->sc_mii.mii_readreg = ep_mii_readreg;
462 sc->sc_mii.mii_writereg = ep_mii_writereg;
463 sc->sc_mii.mii_statchg = ep_statchg;
464 ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
465 ep_media_status);
466
467 /*
468 * Now, determine which media we have.
469 */
470 switch (sc->ep_chipset) {
471 case ELINK_CHIPSET_ROADRUNNER:
472 if (sc->ep_flags & ELINK_FLAGS_MII) {
473 ep_roadrunner_mii_enable(sc);
474 GO_WINDOW(0);
475 }
476 /* FALLTHROUGH */
477
478 case ELINK_CHIPSET_BOOMERANG:
479 /*
480 * If the device has MII, probe it. We won't be using
481 * any `native' media in this case, only PHYs. If
482 * we don't, just treat the Boomerang like the Vortex.
483 */
484 if (sc->ep_flags & ELINK_FLAGS_MII) {
485 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
486 MII_PHY_ANY, MII_OFFSET_ANY, 0);
487 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
488 ifmedia_add(&sc->sc_mii.mii_media,
489 IFM_ETHER|IFM_NONE, 0, NULL);
490 ifmedia_set(&sc->sc_mii.mii_media,
491 IFM_ETHER|IFM_NONE);
492 } else {
493 ifmedia_set(&sc->sc_mii.mii_media,
494 IFM_ETHER|IFM_AUTO);
495 }
496 break;
497 }
498 /* FALLTHROUGH */
499
500 case ELINK_CHIPSET_VORTEX:
501 ep_vortex_probemedia(sc);
502 break;
503
504 default:
505 ep_509_probemedia(sc);
506 break;
507 }
508
509 GO_WINDOW(1); /* Window 1 is operating window */
510
511 #if NBPFILTER > 0
512 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
513 #endif
514
515 #if NRND > 0
516 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
517 RND_TYPE_NET, 0);
518 #endif
519
520 sc->tx_start_thresh = 20; /* probably a good starting point. */
521
522 /* Establish callback to reset card when we reboot. */
523 sc->sd_hook = shutdownhook_establish(epshutdown, sc);
524
525 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
526 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
527 }
528
529
530 /*
531 * Show interface-model-independent info from window 3
532 * internal-configuration register.
533 */
534 void
535 ep_internalconfig(sc)
536 struct ep_softc *sc;
537 {
538 bus_space_tag_t iot = sc->sc_iot;
539 bus_space_handle_t ioh = sc->sc_ioh;
540
541 u_int config0;
542 u_int config1;
543
544 int ram_size, ram_width, ram_speed, rom_size, ram_split;
545 /*
546 * NVRAM buffer Rx:Tx config names for busmastering cards
547 * (Demon, Vortex, and later).
548 */
549 const char *onboard_ram_config[] = {
550 "5:3", "3:1", "1:1", "3:5" };
551
552 GO_WINDOW(3);
553 config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
554 config1 = (u_int)bus_space_read_2(iot, ioh,
555 ELINK_W3_INTERNAL_CONFIG + 2);
556 GO_WINDOW(0);
557
558 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
559 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
560 ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
561 rom_size = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
562
563 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
564
565 printf("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
566 sc->sc_dev.dv_xname,
567 ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
568 8 << ram_size,
569 (ram_width) ? "word" : "byte",
570 onboard_ram_config[ram_split]);
571 }
572
573
574 /*
575 * Find supported media on 3c509-generation hardware that doesn't have
576 * a "reset_options" register in window 3.
577 * Use the config_cntrl register in window 0 instead.
578 * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
579 * that implement CONFIG_CTRL. We don't have a good way to set the
580 * default active mediuim; punt to ifconfig instead.
581 */
582 void
583 ep_509_probemedia(sc)
584 struct ep_softc *sc;
585 {
586 bus_space_tag_t iot = sc->sc_iot;
587 bus_space_handle_t ioh = sc->sc_ioh;
588 struct ifmedia *ifm = &sc->sc_mii.mii_media;
589 u_int16_t ep_w0_config, port;
590 struct ep_media *epm;
591 const char *sep = "", *defmedianame = NULL;
592 int defmedia = 0;
593
594 GO_WINDOW(0);
595 ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
596
597 printf("%s: ", sc->sc_dev.dv_xname);
598
599 /* Sanity check that there are any media! */
600 if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
601 printf("no media present!\n");
602 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
603 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
604 return;
605 }
606
607 /*
608 * Get the default media from the EEPROM.
609 */
610 port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
611
612 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
613
614 for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
615 if (ep_w0_config & epm->epm_mpbit) {
616 /*
617 * This simple test works because 509 chipsets
618 * don't do full-duplex.
619 */
620 if (epm->epm_epmedia == port || defmedia == 0) {
621 defmedia = epm->epm_ifmedia;
622 defmedianame = epm->epm_name;
623 }
624 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
625 NULL);
626 PRINT(epm->epm_name);
627 }
628 }
629
630 #undef PRINT
631
632 #ifdef DIAGNOSTIC
633 if (defmedia == 0)
634 panic("ep_509_probemedia: impossible");
635 #endif
636
637 printf(" (default %s)\n", defmedianame);
638 ifmedia_set(ifm, defmedia);
639 }
640
641 /*
642 * Find media present on large-packet-capable elink3 devices.
643 * Show onboard configuration of large-packet-capable elink3 devices
644 * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
645 * Use media and card-version info in window 3 instead.
646 */
647 void
648 ep_vortex_probemedia(sc)
649 struct ep_softc *sc;
650 {
651 bus_space_tag_t iot = sc->sc_iot;
652 bus_space_handle_t ioh = sc->sc_ioh;
653 struct ifmedia *ifm = &sc->sc_mii.mii_media;
654 struct ep_media *epm;
655 u_int config1;
656 int reset_options;
657 int default_media; /* 3-bit encoding of default (EEPROM) media */
658 int defmedia = 0;
659 const char *sep = "", *defmedianame = NULL;
660
661 GO_WINDOW(3);
662 config1 = (u_int)bus_space_read_2(iot, ioh,
663 ELINK_W3_INTERNAL_CONFIG + 2);
664 reset_options = (int)bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
665 GO_WINDOW(0);
666
667 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
668
669 printf("%s: ", sc->sc_dev.dv_xname);
670
671 /* Sanity check that there are any media! */
672 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
673 printf("no media present!\n");
674 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
675 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
676 return;
677 }
678
679 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
680
681 for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
682 if (reset_options & epm->epm_mpbit) {
683 /*
684 * Default media is a little more complicated
685 * on the Vortex. We support full-duplex which
686 * uses the same reset options bit.
687 *
688 * XXX Check EEPROM for default to FDX?
689 */
690 if (epm->epm_epmedia == default_media) {
691 if ((epm->epm_ifmedia & IFM_FDX) == 0) {
692 defmedia = epm->epm_ifmedia;
693 defmedianame = epm->epm_name;
694 }
695 } else if (defmedia == 0) {
696 defmedia = epm->epm_ifmedia;
697 defmedianame = epm->epm_name;
698 }
699 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
700 NULL);
701 PRINT(epm->epm_name);
702 }
703 }
704
705 #undef PRINT
706
707 #ifdef DIAGNOSTIC
708 if (defmedia == 0)
709 panic("ep_vortex_probemedia: impossible");
710 #endif
711
712 printf(" (default %s)\n", defmedianame);
713 ifmedia_set(ifm, defmedia);
714 }
715
716 /*
717 * One second timer, used to tick the MII.
718 */
719 void
720 ep_tick(arg)
721 void *arg;
722 {
723 struct ep_softc *sc = arg;
724 int s;
725
726 #ifdef DIAGNOSTIC
727 if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
728 panic("ep_tick");
729 #endif
730
731 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
732 return;
733
734 s = splnet();
735 mii_tick(&sc->sc_mii);
736 splx(s);
737
738 timeout(ep_tick, sc, hz);
739 }
740
741 /*
742 * Bring device up.
743 *
744 * The order in here seems important. Otherwise we may not receive
745 * interrupts. ?!
746 */
747 void
748 epinit(sc)
749 register struct ep_softc *sc;
750 {
751 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
752 bus_space_tag_t iot = sc->sc_iot;
753 bus_space_handle_t ioh = sc->sc_ioh;
754 int i;
755
756 /* Make sure any pending reset has completed before touching board. */
757 ep_finish_reset(iot, ioh);
758
759 /*
760 * Cance any pending I/O.
761 */
762 epstop(sc);
763
764 if (sc->bustype != ELINK_BUS_PCI) {
765 GO_WINDOW(0);
766 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
767 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
768 ENABLE_DRQ_IRQ);
769 }
770
771 if (sc->bustype == ELINK_BUS_PCMCIA) {
772 bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
773 }
774
775 GO_WINDOW(2);
776 for (i = 0; i < 6; i++) /* Reload the ether_addr. */
777 bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
778 LLADDR(ifp->if_sadl)[i]);
779
780 /*
781 * Reset the station-address receive filter.
782 * A bug workaround for busmastering (Vortex, Demon) cards.
783 */
784 for (i = 0; i < 6; i++)
785 bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
786
787 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
788 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
789
790 GO_WINDOW(1); /* Window 1 is operating window */
791 for (i = 0; i < 31; i++)
792 bus_space_read_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS));
793
794 /* Set threshhold for for Tx-space avaiable interrupt. */
795 bus_space_write_2(iot, ioh, ELINK_COMMAND,
796 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
797
798 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
799 /*
800 * Enable options in the PCMCIA LAN COR register, via
801 * RoadRunner Window 1.
802 *
803 * XXX MAGIC CONSTANTS!
804 */
805 u_int16_t cor;
806
807 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
808
809 cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
810 if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
811 cor |= 0x10;
812 if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
813 cor |= 0x20;
814 bus_space_write_2(iot, ioh, 0, cor);
815
816 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
817 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
818
819 if (sc->ep_flags & ELINK_FLAGS_MII) {
820 ep_roadrunner_mii_enable(sc);
821 GO_WINDOW(1);
822 }
823 }
824
825 /* Enable interrupts. */
826 bus_space_write_2(iot, ioh, ELINK_COMMAND,
827 SET_RD_0_MASK | S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE |
828 S_TX_AVAIL);
829 bus_space_write_2(iot, ioh, ELINK_COMMAND,
830 SET_INTR_MASK | S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE |
831 S_TX_AVAIL);
832
833 /*
834 * Attempt to get rid of any stray interrupts that occured during
835 * configuration. On the i386 this isn't possible because one may
836 * already be queued. However, a single stray interrupt is
837 * unimportant.
838 */
839 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
840
841 epsetfilter(sc);
842 epsetmedia(sc);
843
844 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
845 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
846
847 epmbuffill(sc);
848
849 /* Interface is now `running', with no output active. */
850 ifp->if_flags |= IFF_RUNNING;
851 ifp->if_flags &= ~IFF_OACTIVE;
852
853 if (sc->ep_flags & ELINK_FLAGS_MII) {
854 /* Start the one second clock. */
855 timeout(ep_tick, sc, hz);
856 }
857
858 /* Attempt to start output, if any. */
859 epstart(ifp);
860 }
861
862
863 /*
864 * Set multicast receive filter.
865 * elink3 hardware has no selective multicast filter in hardware.
866 * Enable reception of all multicasts and filter in software.
867 */
868 void
869 epsetfilter(sc)
870 register struct ep_softc *sc;
871 {
872 register struct ifnet *ifp = &sc->sc_ethercom.ec_if;
873
874 GO_WINDOW(1); /* Window 1 is operating window */
875 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
876 SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
877 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
878 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
879 }
880
881 int
882 ep_media_change(ifp)
883 struct ifnet *ifp;
884 {
885 register struct ep_softc *sc = ifp->if_softc;
886
887 if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
888 epreset(sc);
889
890 return (0);
891 }
892
893 /*
894 * Reset and enable the MII on the RoadRunner.
895 */
896 void
897 ep_roadrunner_mii_enable(sc)
898 struct ep_softc *sc;
899 {
900 bus_space_tag_t iot = sc->sc_iot;
901 bus_space_handle_t ioh = sc->sc_ioh;
902
903 GO_WINDOW(3);
904 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
905 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
906 delay(1000);
907 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
908 ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
909 ELINK_RUNNER_ENABLE_MII);
910 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
911 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
912 delay(1000);
913 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
914 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
915 }
916
917 /*
918 * Set the card to use the specified media.
919 */
920 void
921 epsetmedia(sc)
922 struct ep_softc *sc;
923 {
924 bus_space_tag_t iot = sc->sc_iot;
925 bus_space_handle_t ioh = sc->sc_ioh;
926
927 /* Turn everything off. First turn off linkbeat and UTP. */
928 GO_WINDOW(4);
929 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
930
931 /* Turn off coax */
932 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
933 delay(1000);
934
935 /*
936 * If the device has MII, select it, and then tell the
937 * PHY which media to use.
938 */
939 if (sc->ep_flags & ELINK_FLAGS_MII) {
940 int config0, config1;
941
942 GO_WINDOW(3);
943
944 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
945 int resopt;
946
947 resopt = bus_space_read_2(iot, ioh,
948 ELINK_W3_RESET_OPTIONS);
949 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
950 resopt | ELINK_RUNNER_ENABLE_MII);
951 }
952
953 config0 = (u_int)bus_space_read_2(iot, ioh,
954 ELINK_W3_INTERNAL_CONFIG);
955 config1 = (u_int)bus_space_read_2(iot, ioh,
956 ELINK_W3_INTERNAL_CONFIG + 2);
957
958 config1 = config1 & ~CONFIG_MEDIAMASK;
959 config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
960
961 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
962 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
963 config1);
964 GO_WINDOW(1); /* back to operating window */
965
966 mii_mediachg(&sc->sc_mii);
967 return;
968 }
969
970 /*
971 * Now turn on the selected media/transceiver.
972 */
973 GO_WINDOW(4);
974 switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
975 case IFM_10_T:
976 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
977 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
978 break;
979
980 case IFM_10_2:
981 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
982 DELAY(1000); /* 50ms not enmough? */
983 break;
984
985 case IFM_100_TX:
986 case IFM_100_FX:
987 case IFM_100_T4: /* XXX check documentation */
988 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
989 LINKBEAT_ENABLE);
990 DELAY(1000); /* not strictly necessary? */
991 break;
992
993 case IFM_10_5:
994 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
995 SQE_ENABLE);
996 DELAY(1000); /* not strictly necessary? */
997 break;
998
999 case IFM_MANUAL:
1000 /*
1001 * Nothing to do here; we are actually enabling the
1002 * external PHY on the MII port.
1003 */
1004 break;
1005
1006 case IFM_NONE:
1007 printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
1008 return;
1009
1010 default:
1011 panic("epsetmedia: impossible");
1012 }
1013
1014 /*
1015 * Tell the chip which port to use.
1016 */
1017 switch (sc->ep_chipset) {
1018 case ELINK_CHIPSET_VORTEX:
1019 case ELINK_CHIPSET_BOOMERANG:
1020 {
1021 int mctl, config0, config1;
1022
1023 GO_WINDOW(3);
1024 config0 = (u_int)bus_space_read_2(iot, ioh,
1025 ELINK_W3_INTERNAL_CONFIG);
1026 config1 = (u_int)bus_space_read_2(iot, ioh,
1027 ELINK_W3_INTERNAL_CONFIG + 2);
1028
1029 config1 = config1 & ~CONFIG_MEDIAMASK;
1030 config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
1031 CONFIG_MEDIAMASK_SHIFT);
1032
1033 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
1034 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
1035 config1);
1036
1037 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1038 if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
1039 mctl |= MAC_CONTROL_FDX;
1040 else
1041 mctl &= ~MAC_CONTROL_FDX;
1042 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1043 break;
1044 }
1045 default:
1046 {
1047 int w0_addr_cfg;
1048
1049 GO_WINDOW(0);
1050 w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
1051 w0_addr_cfg &= 0x3fff;
1052 bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
1053 (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
1054 DELAY(1000);
1055 break;
1056 }
1057 }
1058
1059 GO_WINDOW(1); /* Window 1 is operating window */
1060 }
1061
1062 /*
1063 * Get currently-selected media from card.
1064 * (if_media callback, may be called before interface is brought up).
1065 */
1066 void
1067 ep_media_status(ifp, req)
1068 struct ifnet *ifp;
1069 struct ifmediareq *req;
1070 {
1071 register struct ep_softc *sc = ifp->if_softc;
1072 bus_space_tag_t iot = sc->sc_iot;
1073 bus_space_handle_t ioh = sc->sc_ioh;
1074
1075 if (sc->enabled == 0) {
1076 req->ifm_active = IFM_ETHER|IFM_NONE;
1077 req->ifm_status = 0;
1078 return;
1079 }
1080
1081 /*
1082 * If we have MII, go ask the PHY what's going on.
1083 */
1084 if (sc->ep_flags & ELINK_FLAGS_MII) {
1085 mii_pollstat(&sc->sc_mii);
1086 req->ifm_active = sc->sc_mii.mii_media_active;
1087 req->ifm_status = sc->sc_mii.mii_media_status;
1088 return;
1089 }
1090
1091 /*
1092 * Ok, at this point we claim that our active media is
1093 * the currently selected media. We'll update our status
1094 * if our chipset allows us to detect link.
1095 */
1096 req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1097 req->ifm_status = 0;
1098
1099 switch (sc->ep_chipset) {
1100 case ELINK_CHIPSET_VORTEX:
1101 case ELINK_CHIPSET_BOOMERANG:
1102 GO_WINDOW(4);
1103 req->ifm_status = IFM_AVALID;
1104 if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
1105 LINKBEAT_DETECT)
1106 req->ifm_status |= IFM_ACTIVE;
1107 GO_WINDOW(1); /* back to operating window */
1108 break;
1109 }
1110 }
1111
1112
1113
1114 /*
1115 * Start outputting on the interface.
1116 * Always called as splnet().
1117 */
1118 void
1119 epstart(ifp)
1120 struct ifnet *ifp;
1121 {
1122 register struct ep_softc *sc = ifp->if_softc;
1123 bus_space_tag_t iot = sc->sc_iot;
1124 bus_space_handle_t ioh = sc->sc_ioh;
1125 struct mbuf *m, *m0;
1126 int sh, len, pad;
1127 bus_addr_t txreg;
1128
1129 /* Don't transmit if interface is busy or not running */
1130 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1131 return;
1132
1133 startagain:
1134 /* Sneak a peek at the next packet */
1135 m0 = ifp->if_snd.ifq_head;
1136 if (m0 == 0)
1137 return;
1138
1139 /* We need to use m->m_pkthdr.len, so require the header */
1140 if ((m0->m_flags & M_PKTHDR) == 0)
1141 panic("epstart: no header mbuf");
1142 len = m0->m_pkthdr.len;
1143
1144 pad = (4 - len) & 3;
1145
1146 /*
1147 * The 3c509 automatically pads short packets to minimum ethernet
1148 * length, but we drop packets that are too large. Perhaps we should
1149 * truncate them instead?
1150 */
1151 if (len + pad > ETHER_MAX_LEN) {
1152 /* packet is obviously too large: toss it */
1153 ++ifp->if_oerrors;
1154 IF_DEQUEUE(&ifp->if_snd, m0);
1155 m_freem(m0);
1156 goto readcheck;
1157 }
1158
1159 if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
1160 len + pad + 4) {
1161 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1162 SET_TX_AVAIL_THRESH |
1163 ((len + pad + 4) >> sc->ep_pktlenshift));
1164 /* not enough room in FIFO */
1165 ifp->if_flags |= IFF_OACTIVE;
1166 return;
1167 } else {
1168 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1169 SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
1170 }
1171
1172 IF_DEQUEUE(&ifp->if_snd, m0);
1173 if (m0 == 0) /* not really needed */
1174 return;
1175
1176 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
1177 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
1178
1179 #if NBPFILTER > 0
1180 if (ifp->if_bpf)
1181 bpf_mtap(ifp->if_bpf, m0);
1182 #endif
1183
1184 /*
1185 * Do the output at splhigh() so that an interrupt from another device
1186 * won't cause a FIFO underrun.
1187 */
1188 sh = splhigh();
1189
1190 txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
1191
1192 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1193 /*
1194 * Prime the FIFO buffer counter (number of 16-bit
1195 * words about to be written to the FIFO).
1196 *
1197 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1198 * COUNTER IS NON-ZERO!
1199 */
1200 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
1201 (len + pad) >> 1);
1202 }
1203
1204 bus_space_write_2(iot, ioh, txreg, len);
1205 bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1206 if (ELINK_IS_BUS_32(sc->bustype)) {
1207 for (m = m0; m;) {
1208 if (m->m_len > 3) {
1209 /* align our reads from core */
1210 if (mtod(m, u_long) & 3) {
1211 u_long count =
1212 4 - (mtod(m, u_long) & 3);
1213 bus_space_write_multi_1(iot, ioh,
1214 txreg, mtod(m, u_int8_t *), count);
1215 m->m_data =
1216 (void *)(mtod(m, u_long) + count);
1217 m->m_len -= count;
1218 }
1219 bus_space_write_multi_stream_4(iot, ioh,
1220 txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1221 m->m_data = (void *)(mtod(m, u_long) +
1222 (u_long)(m->m_len & ~3));
1223 m->m_len -= m->m_len & ~3;
1224 }
1225 if (m->m_len) {
1226 bus_space_write_multi_1(iot, ioh,
1227 txreg, mtod(m, u_int8_t *), m->m_len);
1228 }
1229 MFREE(m, m0);
1230 m = m0;
1231 }
1232 } else {
1233 for (m = m0; m;) {
1234 if (m->m_len > 1) {
1235 if (mtod(m, u_long) & 1) {
1236 bus_space_write_1(iot, ioh,
1237 txreg, *(mtod(m, u_int8_t *)));
1238 m->m_data =
1239 (void *)(mtod(m, u_long) + 1);
1240 m->m_len -= 1;
1241 }
1242 bus_space_write_multi_stream_2(iot, ioh,
1243 txreg, mtod(m, u_int16_t *),
1244 m->m_len >> 1);
1245 }
1246 if (m->m_len & 1) {
1247 bus_space_write_1(iot, ioh, txreg,
1248 *(mtod(m, u_int8_t *) + m->m_len - 1));
1249 }
1250 MFREE(m, m0);
1251 m = m0;
1252 }
1253 }
1254 while (pad--)
1255 bus_space_write_1(iot, ioh, txreg, 0);
1256
1257 splx(sh);
1258
1259 ++ifp->if_opackets;
1260
1261 readcheck:
1262 if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
1263 ERR_INCOMPLETE) == 0) {
1264 /* We received a complete packet. */
1265 u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1266
1267 if ((status & S_INTR_LATCH) == 0) {
1268 /*
1269 * No interrupt, read the packet and continue
1270 * Is this supposed to happen? Is my motherboard
1271 * completely busted?
1272 */
1273 epread(sc);
1274 } else {
1275 /* Got an interrupt, return so that it gets serviced. */
1276 return;
1277 }
1278 } else {
1279 /* Check if we are stuck and reset [see XXX comment] */
1280 if (epstatus(sc)) {
1281 if (ifp->if_flags & IFF_DEBUG)
1282 printf("%s: adapter reset\n",
1283 sc->sc_dev.dv_xname);
1284 epreset(sc);
1285 }
1286 }
1287
1288 goto startagain;
1289 }
1290
1291
1292 /*
1293 * XXX: The 3c509 card can get in a mode where both the fifo status bit
1294 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1295 * We detect this situation and we reset the adapter.
1296 * It happens at times when there is a lot of broadcast traffic
1297 * on the cable (once in a blue moon).
1298 */
1299 static int
1300 epstatus(sc)
1301 register struct ep_softc *sc;
1302 {
1303 bus_space_tag_t iot = sc->sc_iot;
1304 bus_space_handle_t ioh = sc->sc_ioh;
1305 u_int16_t fifost;
1306
1307 /*
1308 * Check the FIFO status and act accordingly
1309 */
1310 GO_WINDOW(4);
1311 fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
1312 GO_WINDOW(1);
1313
1314 if (fifost & FIFOS_RX_UNDERRUN) {
1315 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1316 printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
1317 epreset(sc);
1318 return 0;
1319 }
1320
1321 if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1322 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1323 printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
1324 return 1;
1325 }
1326
1327 if (fifost & FIFOS_RX_OVERRUN) {
1328 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1329 printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
1330 return 1;
1331 }
1332
1333 if (fifost & FIFOS_TX_OVERRUN) {
1334 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1335 printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
1336 epreset(sc);
1337 return 0;
1338 }
1339
1340 return 0;
1341 }
1342
1343
1344 static void
1345 eptxstat(sc)
1346 register struct ep_softc *sc;
1347 {
1348 bus_space_tag_t iot = sc->sc_iot;
1349 bus_space_handle_t ioh = sc->sc_ioh;
1350 int i;
1351
1352 /*
1353 * We need to read+write TX_STATUS until we get a 0 status
1354 * in order to turn off the interrupt flag.
1355 */
1356 while ((i = bus_space_read_1(iot, ioh,
1357 ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
1358 bus_space_write_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
1359 0x0);
1360
1361 if (i & TXS_JABBER) {
1362 ++sc->sc_ethercom.ec_if.if_oerrors;
1363 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1364 printf("%s: jabber (%x)\n",
1365 sc->sc_dev.dv_xname, i);
1366 epreset(sc);
1367 } else if (i & TXS_UNDERRUN) {
1368 ++sc->sc_ethercom.ec_if.if_oerrors;
1369 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1370 printf("%s: fifo underrun (%x) @%d\n",
1371 sc->sc_dev.dv_xname, i,
1372 sc->tx_start_thresh);
1373 if (sc->tx_succ_ok < 100)
1374 sc->tx_start_thresh = min(ETHER_MAX_LEN,
1375 sc->tx_start_thresh + 20);
1376 sc->tx_succ_ok = 0;
1377 epreset(sc);
1378 } else if (i & TXS_MAX_COLLISION) {
1379 ++sc->sc_ethercom.ec_if.if_collisions;
1380 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
1381 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1382 } else
1383 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1384 }
1385 }
1386
1387 int
1388 epintr(arg)
1389 void *arg;
1390 {
1391 register struct ep_softc *sc = arg;
1392 bus_space_tag_t iot = sc->sc_iot;
1393 bus_space_handle_t ioh = sc->sc_ioh;
1394 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1395 u_int16_t status;
1396 int ret = 0;
1397 int addrandom = 0;
1398
1399 if (sc->enabled == 0 ||
1400 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1401 return (0);
1402
1403 for (;;) {
1404 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1405
1406 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1407
1408 if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
1409 S_RX_COMPLETE | S_CARD_FAILURE)) == 0) {
1410 if ((status & S_INTR_LATCH) == 0) {
1411 #if 0
1412 printf("%s: intr latch cleared\n",
1413 sc->sc_dev.dv_xname);
1414 #endif
1415 break;
1416 }
1417 }
1418
1419 ret = 1;
1420
1421 /*
1422 * Acknowledge any interrupts. It's important that we do this
1423 * first, since there would otherwise be a race condition.
1424 * Due to the i386 interrupt queueing, we may get spurious
1425 * interrupts occasionally.
1426 */
1427 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1428 (status & (C_INTR_LATCH |
1429 C_CARD_FAILURE |
1430 C_TX_COMPLETE |
1431 C_TX_AVAIL |
1432 C_RX_COMPLETE |
1433 C_RX_EARLY |
1434 C_INT_RQD |
1435 C_UPD_STATS)));
1436
1437 #if 0
1438 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1439
1440 printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
1441 (status & S_RX_COMPLETE)?" RX_COMPLETE":"",
1442 (status & S_TX_COMPLETE)?" TX_COMPLETE":"",
1443 (status & S_TX_AVAIL)?" TX_AVAIL":"",
1444 (status & S_CARD_FAILURE)?" CARD_FAILURE":"");
1445 #endif
1446
1447 if (status & S_RX_COMPLETE) {
1448 epread(sc);
1449 addrandom = 1;
1450 }
1451 if (status & S_TX_AVAIL) {
1452 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1453 epstart(&sc->sc_ethercom.ec_if);
1454 addrandom = 1;
1455 }
1456 if (status & S_CARD_FAILURE) {
1457 printf("%s: adapter failure (%x)\n",
1458 sc->sc_dev.dv_xname, status);
1459 #if 1
1460 epinit(sc);
1461 #else
1462 epreset(sc);
1463 #endif
1464 return (1);
1465 }
1466 if (status & S_TX_COMPLETE) {
1467 eptxstat(sc);
1468 epstart(ifp);
1469 addrandom = 1;
1470 }
1471
1472 #if NRND > 0
1473 if (status)
1474 rnd_add_uint32(&sc->rnd_source, status);
1475 #endif
1476 }
1477
1478 /* no more interrupts */
1479 return (ret);
1480 }
1481
1482 void
1483 epread(sc)
1484 register struct ep_softc *sc;
1485 {
1486 bus_space_tag_t iot = sc->sc_iot;
1487 bus_space_handle_t ioh = sc->sc_ioh;
1488 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1489 struct mbuf *m;
1490 struct ether_header *eh;
1491 int len;
1492
1493 len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1494
1495 again:
1496 if (ifp->if_flags & IFF_DEBUG) {
1497 int err = len & ERR_MASK;
1498 char *s = NULL;
1499
1500 if (len & ERR_INCOMPLETE)
1501 s = "incomplete packet";
1502 else if (err == ERR_OVERRUN)
1503 s = "packet overrun";
1504 else if (err == ERR_RUNT)
1505 s = "runt packet";
1506 else if (err == ERR_ALIGNMENT)
1507 s = "bad alignment";
1508 else if (err == ERR_CRC)
1509 s = "bad crc";
1510 else if (err == ERR_OVERSIZE)
1511 s = "oversized packet";
1512 else if (err == ERR_DRIBBLE)
1513 s = "dribble bits";
1514
1515 if (s)
1516 printf("%s: %s\n", sc->sc_dev.dv_xname, s);
1517 }
1518
1519 if (len & ERR_INCOMPLETE)
1520 return;
1521
1522 if (len & ERR_RX) {
1523 ++ifp->if_ierrors;
1524 goto abort;
1525 }
1526
1527 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
1528
1529 /* Pull packet off interface. */
1530 m = epget(sc, len);
1531 if (m == 0) {
1532 ifp->if_ierrors++;
1533 goto abort;
1534 }
1535
1536 ++ifp->if_ipackets;
1537
1538 /* We assume the header fit entirely in one mbuf. */
1539 eh = mtod(m, struct ether_header *);
1540
1541 #if NBPFILTER > 0
1542 /*
1543 * Check if there's a BPF listener on this interface.
1544 * If so, hand off the raw packet to BPF.
1545 */
1546 if (ifp->if_bpf) {
1547 bpf_mtap(ifp->if_bpf, m);
1548
1549 /*
1550 * Note that the interface cannot be in promiscuous mode if
1551 * there are no BPF listeners. And if we are in promiscuous
1552 * mode, we have to check if this packet is really ours.
1553 */
1554 if ((ifp->if_flags & IFF_PROMISC) &&
1555 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
1556 bcmp(eh->ether_dhost, LLADDR(sc->sc_ethercom.ec_if.if_sadl),
1557 sizeof(eh->ether_dhost)) != 0) {
1558 m_freem(m);
1559 return;
1560 }
1561 }
1562 #endif
1563 (*ifp->if_input)(ifp, m);
1564
1565 /*
1566 * In periods of high traffic we can actually receive enough
1567 * packets so that the fifo overrun bit will be set at this point,
1568 * even though we just read a packet. In this case we
1569 * are not going to receive any more interrupts. We check for
1570 * this condition and read again until the fifo is not full.
1571 * We could simplify this test by not using epstatus(), but
1572 * rechecking the RX_STATUS register directly. This test could
1573 * result in unnecessary looping in cases where there is a new
1574 * packet but the fifo is not full, but it will not fix the
1575 * stuck behavior.
1576 *
1577 * Even with this improvement, we still get packet overrun errors
1578 * which are hurting performance. Maybe when I get some more time
1579 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1580 */
1581 if (epstatus(sc)) {
1582 len = bus_space_read_2(iot, ioh,
1583 ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1584 /* Check if we are stuck and reset [see XXX comment] */
1585 if (len & ERR_INCOMPLETE) {
1586 if (ifp->if_flags & IFF_DEBUG)
1587 printf("%s: adapter reset\n",
1588 sc->sc_dev.dv_xname);
1589 epreset(sc);
1590 return;
1591 }
1592 goto again;
1593 }
1594
1595 return;
1596
1597 abort:
1598 ep_discard_rxtop(iot, ioh);
1599
1600 }
1601
1602 struct mbuf *
1603 epget(sc, totlen)
1604 struct ep_softc *sc;
1605 int totlen;
1606 {
1607 bus_space_tag_t iot = sc->sc_iot;
1608 bus_space_handle_t ioh = sc->sc_ioh;
1609 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1610 struct mbuf *top, **mp, *m, *rv = NULL;
1611 bus_addr_t rxreg;
1612 int len, remaining;
1613 int sh;
1614
1615 m = sc->mb[sc->next_mb];
1616 sc->mb[sc->next_mb] = 0;
1617 if (m == 0) {
1618 MGETHDR(m, M_DONTWAIT, MT_DATA);
1619 if (m == 0)
1620 return 0;
1621 } else {
1622 /* If the queue is no longer full, refill. */
1623 if (sc->last_mb == sc->next_mb)
1624 timeout(epmbuffill, sc, 1);
1625 /* Convert one of our saved mbuf's. */
1626 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1627 m->m_data = m->m_pktdat;
1628 m->m_flags = M_PKTHDR;
1629 }
1630 m->m_pkthdr.rcvif = ifp;
1631 m->m_pkthdr.len = totlen;
1632 len = MHLEN;
1633 top = 0;
1634 mp = ⊤
1635
1636 /*
1637 * We read the packet at splhigh() so that an interrupt from another
1638 * device doesn't cause the card's buffer to overflow while we're
1639 * reading it. We may still lose packets at other times.
1640 */
1641 sh = splhigh();
1642
1643 rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
1644
1645 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1646 /*
1647 * Prime the FIFO buffer counter (number of 16-bit
1648 * words about to be read from the FIFO).
1649 *
1650 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1651 * COUNTER IS NON-ZERO!
1652 */
1653 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
1654 }
1655
1656 while (totlen > 0) {
1657 if (top) {
1658 m = sc->mb[sc->next_mb];
1659 sc->mb[sc->next_mb] = 0;
1660 if (m == 0) {
1661 MGET(m, M_DONTWAIT, MT_DATA);
1662 if (m == 0) {
1663 m_freem(top);
1664 goto out;
1665 }
1666 } else {
1667 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1668 }
1669 len = MLEN;
1670 }
1671 if (totlen >= MINCLSIZE) {
1672 MCLGET(m, M_DONTWAIT);
1673 if ((m->m_flags & M_EXT) == 0) {
1674 m_free(m);
1675 m_freem(top);
1676 goto out;
1677 }
1678 len = MCLBYTES;
1679 }
1680 if (top == 0) {
1681 /* align the struct ip header */
1682 caddr_t newdata = (caddr_t)
1683 ALIGN(m->m_data + sizeof(struct ether_header))
1684 - sizeof(struct ether_header);
1685 len -= newdata - m->m_data;
1686 m->m_data = newdata;
1687 }
1688 remaining = len = min(totlen, len);
1689 if (ELINK_IS_BUS_32(sc->bustype)) {
1690 u_long offset = mtod(m, u_long);
1691 /*
1692 * Read bytes up to the point where we are aligned.
1693 * (We can align to 4 bytes, rather than ALIGNBYTES,
1694 * here because we're later reading 4-byte chunks.)
1695 */
1696 if ((remaining > 3) && (offset & 3)) {
1697 int count = (4 - (offset & 3));
1698 bus_space_read_multi_1(iot, ioh,
1699 rxreg, (u_int8_t *) offset, count);
1700 offset += count;
1701 remaining -= count;
1702 }
1703 if (remaining > 3) {
1704 bus_space_read_multi_stream_4(iot, ioh,
1705 rxreg, (u_int32_t *) offset,
1706 remaining >> 2);
1707 offset += remaining & ~3;
1708 remaining &= 3;
1709 }
1710 if (remaining) {
1711 bus_space_read_multi_1(iot, ioh,
1712 rxreg, (u_int8_t *) offset, remaining);
1713 }
1714 } else {
1715 u_long offset = mtod(m, u_long);
1716 if ((remaining > 1) && (offset & 1)) {
1717 bus_space_read_multi_1(iot, ioh,
1718 rxreg, (u_int8_t *) offset, 1);
1719 remaining -= 1;
1720 offset += 1;
1721 }
1722 if (remaining > 1) {
1723 bus_space_read_multi_stream_2(iot, ioh,
1724 rxreg, (u_int16_t *) offset,
1725 remaining >> 1);
1726 offset += remaining & ~1;
1727 }
1728 if (remaining & 1) {
1729 bus_space_read_multi_1(iot, ioh,
1730 rxreg, (u_int8_t *) offset, remaining & 1);
1731 }
1732 }
1733 m->m_len = len;
1734 totlen -= len;
1735 *mp = m;
1736 mp = &m->m_next;
1737 }
1738
1739 rv = top;
1740
1741 ep_discard_rxtop(iot, ioh);
1742
1743 out:
1744 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
1745 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1746 splx(sh);
1747
1748 return rv;
1749 }
1750
1751 int
1752 epioctl(ifp, cmd, data)
1753 register struct ifnet *ifp;
1754 u_long cmd;
1755 caddr_t data;
1756 {
1757 struct ep_softc *sc = ifp->if_softc;
1758 struct ifaddr *ifa = (struct ifaddr *)data;
1759 struct ifreq *ifr = (struct ifreq *)data;
1760 int s, error = 0;
1761
1762 s = splnet();
1763
1764 switch (cmd) {
1765
1766 case SIOCSIFADDR:
1767 if ((error = epenable(sc)) != 0)
1768 break;
1769 /* epinit is called just below */
1770 ifp->if_flags |= IFF_UP;
1771 switch (ifa->ifa_addr->sa_family) {
1772 #ifdef INET
1773 case AF_INET:
1774 epinit(sc);
1775 arp_ifinit(&sc->sc_ethercom.ec_if, ifa);
1776 break;
1777 #endif
1778 #ifdef NS
1779 case AF_NS:
1780 {
1781 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1782
1783 if (ns_nullhost(*ina))
1784 ina->x_host = *(union ns_host *)
1785 LLADDR(ifp->if_sadl);
1786 else
1787 bcopy(ina->x_host.c_host,
1788 LLADDR(ifp->if_sadl),
1789 ifp->if_addrlen);
1790 /* Set new address. */
1791 epinit(sc);
1792 break;
1793 }
1794 #endif
1795 default:
1796 epinit(sc);
1797 break;
1798 }
1799 break;
1800
1801 case SIOCSIFMEDIA:
1802 case SIOCGIFMEDIA:
1803 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1804 break;
1805
1806 case SIOCSIFFLAGS:
1807 if ((ifp->if_flags & IFF_UP) == 0 &&
1808 (ifp->if_flags & IFF_RUNNING) != 0) {
1809 /*
1810 * If interface is marked down and it is running, then
1811 * stop it.
1812 */
1813 epstop(sc);
1814 ifp->if_flags &= ~IFF_RUNNING;
1815 epdisable(sc);
1816 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1817 (ifp->if_flags & IFF_RUNNING) == 0) {
1818 /*
1819 * If interface is marked up and it is stopped, then
1820 * start it.
1821 */
1822 if ((error = epenable(sc)) != 0)
1823 break;
1824 epinit(sc);
1825 } else if ((ifp->if_flags & IFF_UP) != 0) {
1826 /*
1827 * deal with flags changes:
1828 * IFF_MULTICAST, IFF_PROMISC.
1829 */
1830 epsetfilter(sc);
1831 }
1832 break;
1833
1834 case SIOCADDMULTI:
1835 case SIOCDELMULTI:
1836 if (sc->enabled == 0) {
1837 error = EIO;
1838 break;
1839 }
1840
1841 error = (cmd == SIOCADDMULTI) ?
1842 ether_addmulti(ifr, &sc->sc_ethercom) :
1843 ether_delmulti(ifr, &sc->sc_ethercom);
1844
1845 if (error == ENETRESET) {
1846 /*
1847 * Multicast list has changed; set the hardware filter
1848 * accordingly.
1849 */
1850 epreset(sc);
1851 error = 0;
1852 }
1853 break;
1854
1855 default:
1856 error = EINVAL;
1857 break;
1858 }
1859
1860 splx(s);
1861 return (error);
1862 }
1863
1864 void
1865 epreset(sc)
1866 struct ep_softc *sc;
1867 {
1868 int s;
1869
1870 s = splnet();
1871 epinit(sc);
1872 splx(s);
1873 }
1874
1875 void
1876 epwatchdog(ifp)
1877 struct ifnet *ifp;
1878 {
1879 struct ep_softc *sc = ifp->if_softc;
1880
1881 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1882 ++sc->sc_ethercom.ec_if.if_oerrors;
1883
1884 epreset(sc);
1885 }
1886
1887 void
1888 epstop(sc)
1889 register struct ep_softc *sc;
1890 {
1891 bus_space_tag_t iot = sc->sc_iot;
1892 bus_space_handle_t ioh = sc->sc_ioh;
1893
1894 if (sc->ep_flags & ELINK_FLAGS_MII) {
1895 /* Stop the one second clock. */
1896 untimeout(ep_tick, sc);
1897
1898 /* Down the MII. */
1899 mii_down(&sc->sc_mii);
1900 }
1901
1902 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
1903 /*
1904 * Clear the FIFO buffer count, thus halting
1905 * any currently-running transactions.
1906 */
1907 GO_WINDOW(1); /* sanity */
1908 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
1909 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1910 }
1911
1912 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1913 ep_discard_rxtop(iot, ioh);
1914
1915 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1916 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1917
1918 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
1919 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1920
1921 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1922 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
1923 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
1924 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
1925
1926 epmbufempty(sc);
1927 }
1928
1929
1930 /*
1931 * Before reboots, reset card completely.
1932 */
1933 static void
1934 epshutdown(arg)
1935 void *arg;
1936 {
1937 register struct ep_softc *sc = arg;
1938 int s = splnet();
1939
1940 if (sc->enabled) {
1941 epstop(sc);
1942 ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
1943 sc->enabled = 0;
1944 }
1945 splx(s);
1946 }
1947
1948 /*
1949 * We get eeprom data from the id_port given an offset into the
1950 * eeprom. Basically; after the ID_sequence is sent to all of
1951 * the cards; they enter the ID_CMD state where they will accept
1952 * command requests. 0x80-0xbf loads the eeprom data. We then
1953 * read the port 16 times and with every read; the cards check
1954 * for contention (ie: if one card writes a 0 bit and another
1955 * writes a 1 bit then the host sees a 0. At the end of the cycle;
1956 * each card compares the data on the bus; if there is a difference
1957 * then that card goes into ID_WAIT state again). In the meantime;
1958 * one bit of data is returned in the AX register which is conveniently
1959 * returned to us by bus_space_read_1(). Hence; we read 16 times getting one
1960 * bit of data with each read.
1961 *
1962 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1963 */
1964 u_int16_t
1965 epreadeeprom(iot, ioh, offset)
1966 bus_space_tag_t iot;
1967 bus_space_handle_t ioh;
1968 int offset;
1969 {
1970 u_int16_t data = 0;
1971 int i;
1972
1973 bus_space_write_1(iot, ioh, 0, 0x80 + offset);
1974 delay(1000);
1975 for (i = 0; i < 16; i++)
1976 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1977 return (data);
1978 }
1979
1980 static int
1981 epbusyeeprom(sc)
1982 struct ep_softc *sc;
1983 {
1984 bus_space_tag_t iot = sc->sc_iot;
1985 bus_space_handle_t ioh = sc->sc_ioh;
1986 int i = 100, j;
1987
1988 if (sc->bustype == ELINK_BUS_PCMCIA) {
1989 delay(1000);
1990 return 0;
1991 }
1992
1993 j = 0; /* bad GCC flow analysis */
1994 while (i--) {
1995 j = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND);
1996 if (j & EEPROM_BUSY)
1997 delay(100);
1998 else
1999 break;
2000 }
2001 if (!i) {
2002 printf("\n%s: eeprom failed to come ready\n",
2003 sc->sc_dev.dv_xname);
2004 return (1);
2005 }
2006 if (j & EEPROM_TST_MODE) {
2007 /* XXX PnP mode? */
2008 printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
2009 return (1);
2010 }
2011 return (0);
2012 }
2013
2014 u_int16_t
2015 ep_read_eeprom(sc, offset)
2016 struct ep_softc *sc;
2017 u_int16_t offset;
2018 {
2019 u_int16_t readcmd;
2020
2021 /*
2022 * RoadRunner has a larger EEPROM, so a different read command
2023 * is required.
2024 */
2025 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
2026 readcmd = READ_EEPROM_RR;
2027 else
2028 readcmd = READ_EEPROM;
2029
2030 if (epbusyeeprom(sc))
2031 return (0); /* XXX why is eeprom busy? */
2032 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W0_EEPROM_COMMAND,
2033 readcmd | offset);
2034 if (epbusyeeprom(sc))
2035 return (0); /* XXX why is eeprom busy? */
2036 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W0_EEPROM_DATA));
2037 }
2038
2039 void
2040 epmbuffill(v)
2041 void *v;
2042 {
2043 struct ep_softc *sc = v;
2044 struct mbuf *m;
2045 int s, i;
2046
2047 s = splnet();
2048 i = sc->last_mb;
2049 do {
2050 if (sc->mb[i] == 0) {
2051 MGET(m, M_DONTWAIT, MT_DATA);
2052 if (m == 0)
2053 break;
2054 sc->mb[i] = m;
2055 }
2056 i = (i + 1) % MAX_MBS;
2057 } while (i != sc->next_mb);
2058 sc->last_mb = i;
2059 /* If the queue was not filled, try again. */
2060 if (sc->last_mb != sc->next_mb)
2061 timeout(epmbuffill, sc, 1);
2062 splx(s);
2063 }
2064
2065 void
2066 epmbufempty(sc)
2067 struct ep_softc *sc;
2068 {
2069 int s, i;
2070
2071 s = splnet();
2072 for (i = 0; i<MAX_MBS; i++) {
2073 if (sc->mb[i]) {
2074 m_freem(sc->mb[i]);
2075 sc->mb[i] = NULL;
2076 }
2077 }
2078 sc->last_mb = sc->next_mb = 0;
2079 untimeout(epmbuffill, sc);
2080 splx(s);
2081 }
2082
2083 int
2084 epenable(sc)
2085 struct ep_softc *sc;
2086 {
2087
2088 if (sc->enabled == 0 && sc->enable != NULL) {
2089 if ((*sc->enable)(sc) != 0) {
2090 printf("%s: device enable failed\n",
2091 sc->sc_dev.dv_xname);
2092 return (EIO);
2093 }
2094 }
2095
2096 sc->enabled = 1;
2097 return (0);
2098 }
2099
2100 void
2101 epdisable(sc)
2102 struct ep_softc *sc;
2103 {
2104
2105 if (sc->enabled != 0 && sc->disable != NULL) {
2106 (*sc->disable)(sc);
2107 sc->enabled = 0;
2108 }
2109 }
2110
2111 /*
2112 * ep_activate:
2113 *
2114 * Handle device activation/deactivation requests.
2115 */
2116 int
2117 ep_activate(self, act)
2118 struct device *self;
2119 enum devact act;
2120 {
2121 struct ep_softc *sc = (struct ep_softc *)self;
2122 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2123 int error = 0, s;
2124
2125 s = splnet();
2126 switch (act) {
2127 case DVACT_ACTIVATE:
2128 error = EOPNOTSUPP;
2129 break;
2130
2131 case DVACT_DEACTIVATE:
2132 if (sc->ep_flags & ELINK_FLAGS_MII)
2133 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2134 MII_OFFSET_ANY);
2135 if_deactivate(ifp);
2136 break;
2137 }
2138 splx(s);
2139 return (error);
2140 }
2141
2142 /*
2143 * ep_detach:
2144 *
2145 * Detach a elink3 interface.
2146 */
2147 int
2148 ep_detach(self, flags)
2149 struct device *self;
2150 int flags;
2151 {
2152 struct ep_softc *sc = (struct ep_softc *)self;
2153 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2154
2155 epdisable(sc);
2156
2157 untimeout(ep_tick, sc);
2158 untimeout(epmbuffill, sc);
2159
2160 if (sc->ep_flags & ELINK_FLAGS_MII) {
2161 /* Detach all PHYs */
2162 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2163 }
2164
2165 /* Delete all remaining media. */
2166 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2167
2168 #if NRND > 0
2169 rnd_detach_source(&sc->rnd_source);
2170 #endif
2171 #if NBPFILTER > 0
2172 bpfdetach(ifp);
2173 #endif
2174 ether_ifdetach(ifp);
2175 if_detach(ifp);
2176
2177 shutdownhook_disestablish(sc->sd_hook);
2178
2179 return (0);
2180 }
2181
2182 u_int32_t
2183 ep_mii_bitbang_read(self)
2184 struct device *self;
2185 {
2186 struct ep_softc *sc = (void *) self;
2187
2188 /* We're already in Window 4. */
2189 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
2190 ELINK_W4_BOOM_PHYSMGMT));
2191 }
2192
2193 void
2194 ep_mii_bitbang_write(self, val)
2195 struct device *self;
2196 u_int32_t val;
2197 {
2198 struct ep_softc *sc = (void *) self;
2199
2200 /* We're already in Window 4. */
2201 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
2202 ELINK_W4_BOOM_PHYSMGMT, val);
2203 }
2204
2205 int
2206 ep_mii_readreg(self, phy, reg)
2207 struct device *self;
2208 int phy, reg;
2209 {
2210 struct ep_softc *sc = (void *) self;
2211 int val;
2212
2213 GO_WINDOW(4);
2214
2215 val = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg);
2216
2217 GO_WINDOW(1);
2218
2219 return (val);
2220 }
2221
2222 void
2223 ep_mii_writereg(self, phy, reg, val)
2224 struct device *self;
2225 int phy, reg, val;
2226 {
2227 struct ep_softc *sc = (void *) self;
2228
2229 GO_WINDOW(4);
2230
2231 mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
2232
2233 GO_WINDOW(1);
2234 }
2235
2236 void
2237 ep_statchg(self)
2238 struct device *self;
2239 {
2240 struct ep_softc *sc = (struct ep_softc *)self;
2241 bus_space_tag_t iot = sc->sc_iot;
2242 bus_space_handle_t ioh = sc->sc_ioh;
2243 int mctl;
2244
2245 /* XXX Update ifp->if_baudrate */
2246
2247 GO_WINDOW(3);
2248 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
2249 if (sc->sc_mii.mii_media_active & IFM_FDX)
2250 mctl |= MAC_CONTROL_FDX;
2251 else
2252 mctl &= ~MAC_CONTROL_FDX;
2253 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
2254 GO_WINDOW(1); /* back to operating window */
2255 }
2256