Home | History | Annotate | Line # | Download | only in ic
elink3.c revision 1.82
      1 /*	$NetBSD: elink3.c,v 1.82 2000/08/21 14:25:14 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
     42  * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
     43  * All rights reserved.
     44  *
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice, this list of conditions and the following disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  * 3. All advertising materials mentioning features or use of this software
     54  *    must display the following acknowledgement:
     55  *      This product includes software developed by Herb Peyerl.
     56  * 4. The name of Herb Peyerl may not be used to endorse or promote products
     57  *    derived from this software without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     60  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     61  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     63  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     64  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     65  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     66  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     67  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     68  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     69  */
     70 
     71 #include "opt_inet.h"
     72 #include "opt_ns.h"
     73 #include "bpfilter.h"
     74 #include "rnd.h"
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/callout.h>
     79 #include <sys/kernel.h>
     80 #include <sys/mbuf.h>
     81 #include <sys/socket.h>
     82 #include <sys/ioctl.h>
     83 #include <sys/errno.h>
     84 #include <sys/syslog.h>
     85 #include <sys/select.h>
     86 #include <sys/device.h>
     87 #if NRND > 0
     88 #include <sys/rnd.h>
     89 #endif
     90 
     91 #include <net/if.h>
     92 #include <net/if_dl.h>
     93 #include <net/if_ether.h>
     94 #include <net/if_media.h>
     95 
     96 #ifdef INET
     97 #include <netinet/in.h>
     98 #include <netinet/in_systm.h>
     99 #include <netinet/in_var.h>
    100 #include <netinet/ip.h>
    101 #include <netinet/if_inarp.h>
    102 #endif
    103 
    104 #ifdef NS
    105 #include <netns/ns.h>
    106 #include <netns/ns_if.h>
    107 #endif
    108 
    109 #if NBPFILTER > 0
    110 #include <net/bpf.h>
    111 #include <net/bpfdesc.h>
    112 #endif
    113 
    114 #include <machine/cpu.h>
    115 #include <machine/bus.h>
    116 #include <machine/intr.h>
    117 
    118 #include <dev/mii/mii.h>
    119 #include <dev/mii/miivar.h>
    120 #include <dev/mii/mii_bitbang.h>
    121 
    122 #include <dev/ic/elink3var.h>
    123 #include <dev/ic/elink3reg.h>
    124 
    125 #ifdef DEBUG
    126 int epdebug = 0;
    127 #endif
    128 
    129 /*
    130  * XXX endian workaround for big-endian CPUs  with pcmcia:
    131  * if stream methods for bus_space_multi are not provided, define them
    132  * using non-stream bus_space_{read,write}_multi_.
    133  * Assumes host CPU is same endian-ness as bus.
    134  */
    135 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
    136 #define bus_space_read_multi_stream_2	bus_space_read_multi_2
    137 #define bus_space_read_multi_stream_4	bus_space_read_multi_4
    138 #define bus_space_write_multi_stream_2	bus_space_write_multi_2
    139 #define bus_space_write_multi_stream_4	bus_space_write_multi_4
    140 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
    141 
    142 /*
    143  * Structure to map media-present bits in boards to ifmedia codes and
    144  * printable media names. Used for table-driven ifmedia initialization.
    145  */
    146 struct ep_media {
    147 	int	epm_mpbit;		/* media present bit */
    148 	const char *epm_name;		/* name of medium */
    149 	int	epm_ifmedia;		/* ifmedia word for medium */
    150 	int	epm_epmedia;		/* ELINKMEDIA_* constant */
    151 };
    152 
    153 /*
    154  * Media table for the Demon/Vortex/Boomerang chipsets.
    155  *
    156  * Note that MII on the Demon and Vortex (3c59x) indicates an external
    157  * MII connector (for connecting an external PHY) ... I think.  Treat
    158  * it as `manual' on these chips.
    159  *
    160  * Any Boomerang (3c90x) chips with MII really do have an internal
    161  * MII and real PHYs attached; no `native' media.
    162  */
    163 struct ep_media ep_vortex_media[] = {
    164 	{ ELINK_PCI_10BASE_T,	"10baseT",	IFM_ETHER|IFM_10_T,
    165 	  ELINKMEDIA_10BASE_T },
    166 	{ ELINK_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER|IFM_10_T|IFM_FDX,
    167 	  ELINKMEDIA_10BASE_T },
    168 	{ ELINK_PCI_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
    169 	  ELINKMEDIA_AUI },
    170 	{ ELINK_PCI_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
    171 	  ELINKMEDIA_10BASE_2 },
    172 	{ ELINK_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER|IFM_100_TX,
    173 	  ELINKMEDIA_100BASE_TX },
    174 	{ ELINK_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
    175 	  ELINKMEDIA_100BASE_TX },
    176 	{ ELINK_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER|IFM_100_FX,
    177 	  ELINKMEDIA_100BASE_FX },
    178 	{ ELINK_PCI_100BASE_MII,"manual",	IFM_ETHER|IFM_MANUAL,
    179 	  ELINKMEDIA_MII },
    180 	{ ELINK_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER|IFM_100_T4,
    181 	  ELINKMEDIA_100BASE_T4 },
    182 	{ 0,			NULL,		0,
    183 	  0 },
    184 };
    185 
    186 /*
    187  * Media table for the older 3Com Etherlink III chipset, used
    188  * in the 3c509, 3c579, and 3c589.
    189  */
    190 struct ep_media ep_509_media[] = {
    191 	{ ELINK_W0_CC_UTP,	"10baseT",	IFM_ETHER|IFM_10_T,
    192 	  ELINKMEDIA_10BASE_T },
    193 	{ ELINK_W0_CC_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
    194 	  ELINKMEDIA_AUI },
    195 	{ ELINK_W0_CC_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
    196 	  ELINKMEDIA_10BASE_2 },
    197 	{ 0,			NULL,		0,
    198 	  0 },
    199 };
    200 
    201 void	ep_internalconfig __P((struct ep_softc *sc));
    202 void	ep_vortex_probemedia __P((struct ep_softc *sc));
    203 void	ep_509_probemedia __P((struct ep_softc *sc));
    204 
    205 static void eptxstat __P((struct ep_softc *));
    206 static int epstatus __P((struct ep_softc *));
    207 void	epinit __P((struct ep_softc *));
    208 int	epioctl __P((struct ifnet *, u_long, caddr_t));
    209 void	epstart __P((struct ifnet *));
    210 void	epwatchdog __P((struct ifnet *));
    211 void	epreset __P((struct ep_softc *));
    212 static void epshutdown __P((void *));
    213 void	epread __P((struct ep_softc *));
    214 struct mbuf *epget __P((struct ep_softc *, int));
    215 void	epmbuffill __P((void *));
    216 void	epmbufempty __P((struct ep_softc *));
    217 void	epsetfilter __P((struct ep_softc *));
    218 void	ep_roadrunner_mii_enable __P((struct ep_softc *));
    219 void	epsetmedia __P((struct ep_softc *));
    220 
    221 /* ifmedia callbacks */
    222 int	ep_media_change __P((struct ifnet *ifp));
    223 void	ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
    224 
    225 /* MII callbacks */
    226 int	ep_mii_readreg __P((struct device *, int, int));
    227 void	ep_mii_writereg __P((struct device *, int, int, int));
    228 void	ep_statchg __P((struct device *));
    229 
    230 void	ep_tick __P((void *));
    231 
    232 static int epbusyeeprom __P((struct ep_softc *));
    233 u_int16_t ep_read_eeprom __P((struct ep_softc *, u_int16_t));
    234 static inline void ep_reset_cmd __P((struct ep_softc *sc,
    235 					u_int cmd, u_int arg));
    236 static inline void ep_finish_reset __P((bus_space_tag_t, bus_space_handle_t));
    237 static inline void ep_discard_rxtop __P((bus_space_tag_t, bus_space_handle_t));
    238 static __inline int ep_w1_reg __P((struct ep_softc *, int));
    239 
    240 /*
    241  * MII bit-bang glue.
    242  */
    243 u_int32_t ep_mii_bitbang_read __P((struct device *));
    244 void ep_mii_bitbang_write __P((struct device *, u_int32_t));
    245 
    246 const struct mii_bitbang_ops ep_mii_bitbang_ops = {
    247 	ep_mii_bitbang_read,
    248 	ep_mii_bitbang_write,
    249 	{
    250 		PHYSMGMT_DATA,		/* MII_BIT_MDO */
    251 		PHYSMGMT_DATA,		/* MII_BIT_MDI */
    252 		PHYSMGMT_CLK,		/* MII_BIT_MDC */
    253 		PHYSMGMT_DIR,		/* MII_BIT_DIR_HOST_PHY */
    254 		0,			/* MII_BIT_DIR_PHY_HOST */
    255 	}
    256 };
    257 
    258 /*
    259  * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
    260  * Window 1 registers offset!
    261  */
    262 static __inline int
    263 ep_w1_reg(sc, reg)
    264 	struct ep_softc *sc;
    265 	int reg;
    266 {
    267 
    268 	switch (sc->ep_chipset) {
    269 	case ELINK_CHIPSET_CORKSCREW:
    270 		return (reg + 0x10);
    271 
    272 	case ELINK_CHIPSET_ROADRUNNER:
    273 		switch (reg) {
    274 		case ELINK_W1_FREE_TX:
    275 		case ELINK_W1_RUNNER_RDCTL:
    276 		case ELINK_W1_RUNNER_WRCTL:
    277 			return (reg);
    278 		}
    279 		return (reg + 0x10);
    280 	}
    281 
    282 	return (reg);
    283 }
    284 
    285 /*
    286  * Wait for any pending reset to complete.
    287  * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
    288  * but older hardware doesn't implement it and we must delay.
    289  */
    290 static inline void
    291 ep_finish_reset(iot, ioh)
    292 	bus_space_tag_t iot;
    293 	bus_space_handle_t ioh;
    294 {
    295 	int i;
    296 
    297 	for (i = 0; i < 10000; i++) {
    298 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
    299 		    S_COMMAND_IN_PROGRESS) == 0)
    300 			break;
    301 		DELAY(10);
    302 	}
    303 }
    304 
    305 /*
    306  * Issue a (reset) command, and be sure it has completed.
    307  * Used for global reset, TX_RESET, RX_RESET.
    308  */
    309 static inline void
    310 ep_reset_cmd(sc, cmd, arg)
    311 	struct ep_softc *sc;
    312 	u_int cmd, arg;
    313 {
    314 	bus_space_tag_t iot = sc->sc_iot;
    315 	bus_space_handle_t ioh = sc->sc_ioh;
    316 
    317 	bus_space_write_2(iot, ioh, cmd, arg);
    318 	ep_finish_reset(iot, ioh);
    319 }
    320 
    321 
    322 static inline void
    323 ep_discard_rxtop(iot, ioh)
    324 	bus_space_tag_t iot;
    325 	bus_space_handle_t ioh;
    326 {
    327 	int i;
    328 
    329 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
    330 
    331         /*
    332 	 * Spin for about 1 msec, to avoid forcing a DELAY() between
    333 	 * every received packet (adding latency and  limiting pkt-recv rate).
    334 	 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
    335 	 * is about right.
    336 	 */
    337 	for (i = 0; i < 8000; i++) {
    338 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
    339 		    S_COMMAND_IN_PROGRESS) == 0)
    340 		    return;
    341 	}
    342 
    343 	/*  Didn't complete in a hurry. Do DELAY()s. */
    344 	ep_finish_reset(iot, ioh);
    345 }
    346 
    347 /*
    348  * Back-end attach and configure.
    349  */
    350 int
    351 epconfig(sc, chipset, enaddr)
    352 	struct ep_softc *sc;
    353 	u_short chipset;
    354 	u_int8_t *enaddr;
    355 {
    356 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    357 	bus_space_tag_t iot = sc->sc_iot;
    358 	bus_space_handle_t ioh = sc->sc_ioh;
    359 	u_int16_t i;
    360 	u_int8_t myla[6];
    361 
    362 	callout_init(&sc->sc_mii_callout);
    363 	callout_init(&sc->sc_mbuf_callout);
    364 
    365 	sc->ep_chipset = chipset;
    366 
    367 	/*
    368 	 * We could have been groveling around in other register
    369 	 * windows in the front-end; make sure we're in window 0
    370 	 * to read the EEPROM.
    371 	 */
    372 	GO_WINDOW(0);
    373 
    374 	if (enaddr == NULL) {
    375 		/*
    376 		 * Read the station address from the eeprom.
    377 		 */
    378 		for (i = 0; i < 3; i++) {
    379 			u_int16_t x = ep_read_eeprom(sc, i);
    380 			myla[(i << 1)] = x >> 8;
    381 			myla[(i << 1) + 1] = x;
    382 		}
    383 		enaddr = myla;
    384 	}
    385 
    386 	/*
    387 	 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
    388 	 * allow FDDI-sized (4500) byte packets.  Commands only take an
    389 	 * 11-bit parameter, and  11 bits isn't enough to hold a full-size
    390 	 * packet length.
    391 	 * Commands to these cards implicitly upshift a packet size
    392 	 * or threshold by 2 bits.
    393 	 * To detect  cards with large-packet support, we probe by setting
    394 	 * the transmit threshold register, then change windows and
    395 	 * read back the threshold register directly, and see if the
    396 	 * threshold value was shifted or not.
    397 	 */
    398 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    399 	    SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
    400 	GO_WINDOW(5);
    401 	i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
    402 	GO_WINDOW(1);
    403 	switch (i)  {
    404 	case ELINK_LARGEWIN_PROBE:
    405 	case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
    406 		sc->ep_pktlenshift = 0;
    407 		break;
    408 
    409 	case (ELINK_LARGEWIN_PROBE << 2):
    410 		sc->ep_pktlenshift = 2;
    411 		break;
    412 
    413 	default:
    414 		printf("%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
    415 		    "Interface disabled\n",
    416 		    sc->sc_dev.dv_xname, ELINK_LARGEWIN_PROBE, (int) i);
    417 		return (1);
    418 	}
    419 
    420 	/*
    421 	 * Ensure Tx-available interrupts are enabled for
    422 	 * start the interface.
    423 	 * XXX should be in epinit()?
    424 	 */
    425 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    426 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
    427 
    428 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
    429 	ifp->if_softc = sc;
    430 	ifp->if_start = epstart;
    431 	ifp->if_ioctl = epioctl;
    432 	ifp->if_watchdog = epwatchdog;
    433 	ifp->if_flags =
    434 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    435 
    436 	if_attach(ifp);
    437 	ether_ifattach(ifp, enaddr);
    438 
    439 	/*
    440 	 * Finish configuration:
    441 	 * determine chipset if the front-end couldn't do so,
    442 	 * show board details, set media.
    443 	 */
    444 
    445 	/*
    446 	 * Print RAM size.  We also print the Ethernet address in here.
    447 	 * It's extracted from the ifp, so we have to make sure it's
    448 	 * been attached first.
    449 	 */
    450 	ep_internalconfig(sc);
    451 	GO_WINDOW(0);
    452 
    453 	/*
    454 	 * Display some additional information, if pertinent.
    455 	 */
    456 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
    457 		printf("%s: RoadRunner FIFO buffer enabled\n",
    458 		    sc->sc_dev.dv_xname);
    459 
    460 	/*
    461 	 * Initialize our media structures and MII info.  We'll
    462 	 * probe the MII if we discover that we have one.
    463 	 */
    464 	sc->sc_mii.mii_ifp = ifp;
    465 	sc->sc_mii.mii_readreg = ep_mii_readreg;
    466 	sc->sc_mii.mii_writereg = ep_mii_writereg;
    467 	sc->sc_mii.mii_statchg = ep_statchg;
    468 	ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
    469 	    ep_media_status);
    470 
    471 	/*
    472 	 * Now, determine which media we have.
    473 	 */
    474 	switch (sc->ep_chipset) {
    475 	case ELINK_CHIPSET_ROADRUNNER:
    476 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    477 			ep_roadrunner_mii_enable(sc);
    478 			GO_WINDOW(0);
    479 		}
    480 		/* FALLTHROUGH */
    481 
    482 	case ELINK_CHIPSET_BOOMERANG:
    483 		/*
    484 		 * If the device has MII, probe it.  We won't be using
    485 		 * any `native' media in this case, only PHYs.  If
    486 		 * we don't, just treat the Boomerang like the Vortex.
    487 		 */
    488 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    489 			mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
    490 			    MII_PHY_ANY, MII_OFFSET_ANY, 0);
    491 			if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    492 				ifmedia_add(&sc->sc_mii.mii_media,
    493 				    IFM_ETHER|IFM_NONE, 0, NULL);
    494 				ifmedia_set(&sc->sc_mii.mii_media,
    495 				    IFM_ETHER|IFM_NONE);
    496 			} else {
    497 				ifmedia_set(&sc->sc_mii.mii_media,
    498 				    IFM_ETHER|IFM_AUTO);
    499 			}
    500 			break;
    501 		}
    502 		/* FALLTHROUGH */
    503 
    504 	case ELINK_CHIPSET_VORTEX:
    505 		ep_vortex_probemedia(sc);
    506 		break;
    507 
    508 	default:
    509 		ep_509_probemedia(sc);
    510 		break;
    511 	}
    512 
    513 	GO_WINDOW(1);		/* Window 1 is operating window */
    514 
    515 #if NBPFILTER > 0
    516 	bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
    517 #endif
    518 
    519 #if NRND > 0
    520 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    521 	    RND_TYPE_NET, 0);
    522 #endif
    523 
    524 	sc->tx_start_thresh = 20;	/* probably a good starting point. */
    525 
    526 	/*  Establish callback to reset card when we reboot. */
    527 	sc->sd_hook = shutdownhook_establish(epshutdown, sc);
    528 
    529 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    530 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    531 
    532 	/* The attach is successful. */
    533 	sc->sc_flags |= ELINK_FLAGS_ATTACHED;
    534 	return (0);
    535 }
    536 
    537 
    538 /*
    539  * Show interface-model-independent info from window 3
    540  * internal-configuration register.
    541  */
    542 void
    543 ep_internalconfig(sc)
    544 	struct ep_softc *sc;
    545 {
    546 	bus_space_tag_t iot = sc->sc_iot;
    547 	bus_space_handle_t ioh = sc->sc_ioh;
    548 
    549 	u_int config0;
    550 	u_int config1;
    551 
    552 	int  ram_size, ram_width, ram_speed, rom_size, ram_split;
    553 	/*
    554 	 * NVRAM buffer Rx:Tx config names for busmastering cards
    555 	 * (Demon, Vortex, and later).
    556 	 */
    557 	const char *onboard_ram_config[] = {
    558 		"5:3", "3:1", "1:1", "3:5" };
    559 
    560 	GO_WINDOW(3);
    561 	config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
    562 	config1 = (u_int)bus_space_read_2(iot, ioh,
    563 	    ELINK_W3_INTERNAL_CONFIG + 2);
    564 	GO_WINDOW(0);
    565 
    566 	ram_size  = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
    567 	ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
    568 	ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
    569 	rom_size  = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
    570 
    571 	ram_split  = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
    572 
    573 	printf("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
    574 	       sc->sc_dev.dv_xname,
    575 	       ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
    576 	       8 << ram_size,
    577 	       (ram_width) ? "word" : "byte",
    578 	       onboard_ram_config[ram_split]);
    579 }
    580 
    581 
    582 /*
    583  * Find supported media on 3c509-generation hardware that doesn't have
    584  * a "reset_options" register in window 3.
    585  * Use the config_cntrl register  in window 0 instead.
    586  * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
    587  * that implement  CONFIG_CTRL.  We don't have a good way to set the
    588  * default active mediuim; punt to ifconfig  instead.
    589  */
    590 void
    591 ep_509_probemedia(sc)
    592 	struct ep_softc *sc;
    593 {
    594 	bus_space_tag_t iot = sc->sc_iot;
    595 	bus_space_handle_t ioh = sc->sc_ioh;
    596 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    597 	u_int16_t ep_w0_config, port;
    598 	struct ep_media *epm;
    599 	const char *sep = "", *defmedianame = NULL;
    600 	int defmedia = 0;
    601 
    602 	GO_WINDOW(0);
    603 	ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
    604 
    605 	printf("%s: ", sc->sc_dev.dv_xname);
    606 
    607 	/* Sanity check that there are any media! */
    608 	if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
    609 		printf("no media present!\n");
    610 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
    611 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
    612 		return;
    613 	}
    614 
    615 	/*
    616 	 * Get the default media from the EEPROM.
    617 	 */
    618 	port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
    619 
    620 #define	PRINT(s)	printf("%s%s", sep, s); sep = ", "
    621 
    622 	for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
    623 		if (ep_w0_config & epm->epm_mpbit) {
    624 			/*
    625 			 * This simple test works because 509 chipsets
    626 			 * don't do full-duplex.
    627 			 */
    628 			if (epm->epm_epmedia == port || defmedia == 0) {
    629 				defmedia = epm->epm_ifmedia;
    630 				defmedianame = epm->epm_name;
    631 			}
    632 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
    633 			    NULL);
    634 			PRINT(epm->epm_name);
    635 		}
    636 	}
    637 
    638 #undef PRINT
    639 
    640 #ifdef DIAGNOSTIC
    641 	if (defmedia == 0)
    642 		panic("ep_509_probemedia: impossible");
    643 #endif
    644 
    645 	printf(" (default %s)\n", defmedianame);
    646 	ifmedia_set(ifm, defmedia);
    647 }
    648 
    649 /*
    650  * Find media present on large-packet-capable elink3 devices.
    651  * Show onboard configuration of large-packet-capable elink3 devices
    652  * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
    653  * Use media and card-version info in window 3 instead.
    654  */
    655 void
    656 ep_vortex_probemedia(sc)
    657 	struct ep_softc *sc;
    658 {
    659 	bus_space_tag_t iot = sc->sc_iot;
    660 	bus_space_handle_t ioh = sc->sc_ioh;
    661 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    662 	struct ep_media *epm;
    663 	u_int config1;
    664 	int reset_options;
    665 	int default_media;	/* 3-bit encoding of default (EEPROM) media */
    666 	int defmedia = 0;
    667 	const char *sep = "", *defmedianame = NULL;
    668 
    669 	GO_WINDOW(3);
    670 	config1 = (u_int)bus_space_read_2(iot, ioh,
    671 	    ELINK_W3_INTERNAL_CONFIG + 2);
    672 	reset_options = (int)bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
    673 	GO_WINDOW(0);
    674 
    675 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
    676 
    677 	printf("%s: ", sc->sc_dev.dv_xname);
    678 
    679 	/* Sanity check that there are any media! */
    680 	if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
    681 		printf("no media present!\n");
    682 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
    683 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
    684 		return;
    685 	}
    686 
    687 #define	PRINT(s)	printf("%s%s", sep, s); sep = ", "
    688 
    689 	for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
    690 		if (reset_options & epm->epm_mpbit) {
    691 			/*
    692 			 * Default media is a little more complicated
    693 			 * on the Vortex.  We support full-duplex which
    694 			 * uses the same reset options bit.
    695 			 *
    696 			 * XXX Check EEPROM for default to FDX?
    697 			 */
    698 			if (epm->epm_epmedia == default_media) {
    699 				if ((epm->epm_ifmedia & IFM_FDX) == 0) {
    700 					defmedia = epm->epm_ifmedia;
    701 					defmedianame = epm->epm_name;
    702 				}
    703 			} else if (defmedia == 0) {
    704 				defmedia = epm->epm_ifmedia;
    705 				defmedianame = epm->epm_name;
    706 			}
    707 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
    708 			    NULL);
    709 			PRINT(epm->epm_name);
    710 		}
    711 	}
    712 
    713 #undef PRINT
    714 
    715 #ifdef DIAGNOSTIC
    716 	if (defmedia == 0)
    717 		panic("ep_vortex_probemedia: impossible");
    718 #endif
    719 
    720 	printf(" (default %s)\n", defmedianame);
    721 	ifmedia_set(ifm, defmedia);
    722 }
    723 
    724 /*
    725  * One second timer, used to tick the MII.
    726  */
    727 void
    728 ep_tick(arg)
    729 	void *arg;
    730 {
    731 	struct ep_softc *sc = arg;
    732 	int s;
    733 
    734 #ifdef DIAGNOSTIC
    735 	if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
    736 		panic("ep_tick");
    737 #endif
    738 
    739 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
    740 		return;
    741 
    742 	s = splnet();
    743 	mii_tick(&sc->sc_mii);
    744 	splx(s);
    745 
    746 	callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
    747 }
    748 
    749 /*
    750  * Bring device up.
    751  *
    752  * The order in here seems important. Otherwise we may not receive
    753  * interrupts. ?!
    754  */
    755 void
    756 epinit(sc)
    757 	struct ep_softc *sc;
    758 {
    759 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    760 	bus_space_tag_t iot = sc->sc_iot;
    761 	bus_space_handle_t ioh = sc->sc_ioh;
    762 	int i;
    763 
    764 	/* Make sure any pending reset has completed before touching board. */
    765 	ep_finish_reset(iot, ioh);
    766 
    767 	/*
    768 	 * Cance any pending I/O.
    769 	 */
    770 	epstop(sc);
    771 
    772 	if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA) {
    773 		GO_WINDOW(0);
    774 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
    775 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
    776 		    ENABLE_DRQ_IRQ);
    777 	}
    778 
    779 	if (sc->bustype == ELINK_BUS_PCMCIA) {
    780 		bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
    781 	}
    782 
    783 	GO_WINDOW(2);
    784 	for (i = 0; i < 6; i++)	/* Reload the ether_addr. */
    785 		bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
    786 		    LLADDR(ifp->if_sadl)[i]);
    787 
    788 	/*
    789 	 * Reset the station-address receive filter.
    790 	 * A bug workaround for busmastering (Vortex, Demon) cards.
    791 	 */
    792 	for (i = 0; i < 6; i++)
    793 		bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
    794 
    795 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    796 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    797 
    798 	GO_WINDOW(1);		/* Window 1 is operating window */
    799 	for (i = 0; i < 31; i++)
    800 		bus_space_read_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS));
    801 
    802 	/* Set threshhold for for Tx-space avaiable interrupt. */
    803 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    804 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
    805 
    806 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
    807 		/*
    808 		 * Enable options in the PCMCIA LAN COR register, via
    809 		 * RoadRunner Window 1.
    810 		 *
    811 		 * XXX MAGIC CONSTANTS!
    812 		 */
    813 		u_int16_t cor;
    814 
    815 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
    816 
    817 		cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
    818 		if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
    819 			cor |= 0x10;
    820 		if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
    821 			cor |= 0x20;
    822 		bus_space_write_2(iot, ioh, 0, cor);
    823 
    824 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
    825 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
    826 
    827 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    828 			ep_roadrunner_mii_enable(sc);
    829 			GO_WINDOW(1);
    830 		}
    831 	}
    832 
    833 	/* Enable interrupts. */
    834 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    835 	    SET_RD_0_MASK | S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE |
    836 	    S_TX_AVAIL);
    837 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    838 	    SET_INTR_MASK | S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE |
    839 	    S_TX_AVAIL);
    840 
    841 	/*
    842 	 * Attempt to get rid of any stray interrupts that occured during
    843 	 * configuration.  On the i386 this isn't possible because one may
    844 	 * already be queued.  However, a single stray interrupt is
    845 	 * unimportant.
    846 	 */
    847 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
    848 
    849 	epsetfilter(sc);
    850 	epsetmedia(sc);
    851 
    852 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
    853 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
    854 
    855 	epmbuffill(sc);
    856 
    857 	/* Interface is now `running', with no output active. */
    858 	ifp->if_flags |= IFF_RUNNING;
    859 	ifp->if_flags &= ~IFF_OACTIVE;
    860 
    861 	if (sc->ep_flags & ELINK_FLAGS_MII) {
    862 		/* Start the one second clock. */
    863 		callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
    864 	}
    865 
    866 	/* Attempt to start output, if any. */
    867 	epstart(ifp);
    868 }
    869 
    870 
    871 /*
    872  * Set multicast receive filter.
    873  * elink3 hardware has no selective multicast filter in hardware.
    874  * Enable reception of all multicasts and filter in software.
    875  */
    876 void
    877 epsetfilter(sc)
    878 	struct ep_softc *sc;
    879 {
    880 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    881 
    882 	GO_WINDOW(1);		/* Window 1 is operating window */
    883 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
    884 	    SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
    885 	    ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
    886 	    ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
    887 }
    888 
    889 int
    890 ep_media_change(ifp)
    891 	struct ifnet *ifp;
    892 {
    893 	struct ep_softc *sc = ifp->if_softc;
    894 
    895 	if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
    896 		epreset(sc);
    897 
    898 	return (0);
    899 }
    900 
    901 /*
    902  * Reset and enable the MII on the RoadRunner.
    903  */
    904 void
    905 ep_roadrunner_mii_enable(sc)
    906 	struct ep_softc *sc;
    907 {
    908 	bus_space_tag_t iot = sc->sc_iot;
    909 	bus_space_handle_t ioh = sc->sc_ioh;
    910 
    911 	GO_WINDOW(3);
    912 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    913 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
    914 	delay(1000);
    915 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    916 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
    917 	    ELINK_RUNNER_ENABLE_MII);
    918 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    919 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    920 	delay(1000);
    921 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    922 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
    923 }
    924 
    925 /*
    926  * Set the card to use the specified media.
    927  */
    928 void
    929 epsetmedia(sc)
    930 	struct ep_softc *sc;
    931 {
    932 	bus_space_tag_t iot = sc->sc_iot;
    933 	bus_space_handle_t ioh = sc->sc_ioh;
    934 
    935 	/* Turn everything off.  First turn off linkbeat and UTP. */
    936 	GO_WINDOW(4);
    937 	bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
    938 
    939 	/* Turn off coax */
    940 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
    941 	delay(1000);
    942 
    943 	/*
    944 	 * If the device has MII, select it, and then tell the
    945 	 * PHY which media to use.
    946 	 */
    947 	if (sc->ep_flags & ELINK_FLAGS_MII) {
    948 		int config0, config1;
    949 
    950 		GO_WINDOW(3);
    951 
    952 		if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
    953 			int resopt;
    954 
    955 			resopt = bus_space_read_2(iot, ioh,
    956 			    ELINK_W3_RESET_OPTIONS);
    957 			bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    958 			    resopt | ELINK_RUNNER_ENABLE_MII);
    959 		}
    960 
    961 		config0 = (u_int)bus_space_read_2(iot, ioh,
    962 		    ELINK_W3_INTERNAL_CONFIG);
    963 		config1 = (u_int)bus_space_read_2(iot, ioh,
    964 		    ELINK_W3_INTERNAL_CONFIG + 2);
    965 
    966 		config1 = config1 & ~CONFIG_MEDIAMASK;
    967 		config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
    968 
    969 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
    970 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
    971 		    config1);
    972 		GO_WINDOW(1);	/* back to operating window */
    973 
    974 		mii_mediachg(&sc->sc_mii);
    975 		return;
    976 	}
    977 
    978 	/*
    979 	 * Now turn on the selected media/transceiver.
    980 	 */
    981 	GO_WINDOW(4);
    982 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
    983 	case IFM_10_T:
    984 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
    985 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
    986 		break;
    987 
    988 	case IFM_10_2:
    989 		bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
    990 		DELAY(1000);	/* 50ms not enmough? */
    991 		break;
    992 
    993 	case IFM_100_TX:
    994 	case IFM_100_FX:
    995 	case IFM_100_T4:		/* XXX check documentation */
    996 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
    997 		    LINKBEAT_ENABLE);
    998 		DELAY(1000);	/* not strictly necessary? */
    999 		break;
   1000 
   1001 	case IFM_10_5:
   1002 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
   1003 		    SQE_ENABLE);
   1004 		DELAY(1000);	/* not strictly necessary? */
   1005 		break;
   1006 
   1007 	case IFM_MANUAL:
   1008 		/*
   1009 		 * Nothing to do here; we are actually enabling the
   1010 		 * external PHY on the MII port.
   1011 		 */
   1012 		break;
   1013 
   1014 	case IFM_NONE:
   1015 		printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
   1016 		return;
   1017 
   1018 	default:
   1019 		panic("epsetmedia: impossible");
   1020 	}
   1021 
   1022 	/*
   1023 	 * Tell the chip which port to use.
   1024 	 */
   1025 	switch (sc->ep_chipset) {
   1026 	case ELINK_CHIPSET_VORTEX:
   1027 	case ELINK_CHIPSET_BOOMERANG:
   1028 	    {
   1029 		int mctl, config0, config1;
   1030 
   1031 		GO_WINDOW(3);
   1032 		config0 = (u_int)bus_space_read_2(iot, ioh,
   1033 		    ELINK_W3_INTERNAL_CONFIG);
   1034 		config1 = (u_int)bus_space_read_2(iot, ioh,
   1035 		    ELINK_W3_INTERNAL_CONFIG + 2);
   1036 
   1037 		config1 = config1 & ~CONFIG_MEDIAMASK;
   1038 		config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
   1039 		    CONFIG_MEDIAMASK_SHIFT);
   1040 
   1041 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
   1042 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
   1043 		    config1);
   1044 
   1045 		mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
   1046 		if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
   1047 			mctl |= MAC_CONTROL_FDX;
   1048 		else
   1049 			mctl &= ~MAC_CONTROL_FDX;
   1050 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
   1051 		break;
   1052 	    }
   1053 	default:
   1054 	    {
   1055 		int w0_addr_cfg;
   1056 
   1057 		GO_WINDOW(0);
   1058 		w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
   1059 		w0_addr_cfg &= 0x3fff;
   1060 		bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
   1061 		    (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
   1062 		DELAY(1000);
   1063 		break;
   1064 	    }
   1065 	}
   1066 
   1067 	GO_WINDOW(1);		/* Window 1 is operating window */
   1068 }
   1069 
   1070 /*
   1071  * Get currently-selected media from card.
   1072  * (if_media callback, may be called before interface is brought up).
   1073  */
   1074 void
   1075 ep_media_status(ifp, req)
   1076 	struct ifnet *ifp;
   1077 	struct ifmediareq *req;
   1078 {
   1079 	struct ep_softc *sc = ifp->if_softc;
   1080 	bus_space_tag_t iot = sc->sc_iot;
   1081 	bus_space_handle_t ioh = sc->sc_ioh;
   1082 
   1083 	if (sc->enabled == 0) {
   1084 		req->ifm_active = IFM_ETHER|IFM_NONE;
   1085 		req->ifm_status = 0;
   1086 		return;
   1087 	}
   1088 
   1089 	/*
   1090 	 * If we have MII, go ask the PHY what's going on.
   1091 	 */
   1092 	if (sc->ep_flags & ELINK_FLAGS_MII) {
   1093 		mii_pollstat(&sc->sc_mii);
   1094 		req->ifm_active = sc->sc_mii.mii_media_active;
   1095 		req->ifm_status = sc->sc_mii.mii_media_status;
   1096 		return;
   1097 	}
   1098 
   1099 	/*
   1100 	 * Ok, at this point we claim that our active media is
   1101 	 * the currently selected media.  We'll update our status
   1102 	 * if our chipset allows us to detect link.
   1103 	 */
   1104 	req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   1105 	req->ifm_status = 0;
   1106 
   1107 	switch (sc->ep_chipset) {
   1108 	case ELINK_CHIPSET_VORTEX:
   1109 	case ELINK_CHIPSET_BOOMERANG:
   1110 		GO_WINDOW(4);
   1111 		req->ifm_status = IFM_AVALID;
   1112 		if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
   1113 		    LINKBEAT_DETECT)
   1114 			req->ifm_status |= IFM_ACTIVE;
   1115 		GO_WINDOW(1);	/* back to operating window */
   1116 		break;
   1117 	}
   1118 }
   1119 
   1120 
   1121 
   1122 /*
   1123  * Start outputting on the interface.
   1124  * Always called as splnet().
   1125  */
   1126 void
   1127 epstart(ifp)
   1128 	struct ifnet *ifp;
   1129 {
   1130 	struct ep_softc *sc = ifp->if_softc;
   1131 	bus_space_tag_t iot = sc->sc_iot;
   1132 	bus_space_handle_t ioh = sc->sc_ioh;
   1133 	struct mbuf *m, *m0;
   1134 	int sh, len, pad;
   1135 	bus_addr_t txreg;
   1136 
   1137 	/* Don't transmit if interface is busy or not running */
   1138 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1139 		return;
   1140 
   1141 startagain:
   1142 	/* Sneak a peek at the next packet */
   1143 	m0 = ifp->if_snd.ifq_head;
   1144 	if (m0 == 0)
   1145 		return;
   1146 
   1147 	/* We need to use m->m_pkthdr.len, so require the header */
   1148 	if ((m0->m_flags & M_PKTHDR) == 0)
   1149 		panic("epstart: no header mbuf");
   1150 	len = m0->m_pkthdr.len;
   1151 
   1152 	pad = (4 - len) & 3;
   1153 
   1154 	/*
   1155 	 * The 3c509 automatically pads short packets to minimum ethernet
   1156 	 * length, but we drop packets that are too large. Perhaps we should
   1157 	 * truncate them instead?
   1158 	 */
   1159 	if (len + pad > ETHER_MAX_LEN) {
   1160 		/* packet is obviously too large: toss it */
   1161 		++ifp->if_oerrors;
   1162 		IF_DEQUEUE(&ifp->if_snd, m0);
   1163 		m_freem(m0);
   1164 		goto readcheck;
   1165 	}
   1166 
   1167 	if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
   1168 	    len + pad + 4) {
   1169 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
   1170 		    SET_TX_AVAIL_THRESH |
   1171 		    ((len + pad + 4) >> sc->ep_pktlenshift));
   1172 		/* not enough room in FIFO */
   1173 		ifp->if_flags |= IFF_OACTIVE;
   1174 		return;
   1175 	} else {
   1176 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
   1177 		    SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
   1178 	}
   1179 
   1180 	IF_DEQUEUE(&ifp->if_snd, m0);
   1181 	if (m0 == 0)		/* not really needed */
   1182 		return;
   1183 
   1184 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
   1185 	    ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
   1186 
   1187 #if NBPFILTER > 0
   1188 	if (ifp->if_bpf)
   1189 		bpf_mtap(ifp->if_bpf, m0);
   1190 #endif
   1191 
   1192 	/*
   1193 	 * Do the output at a high interrupt priority level so that an
   1194 	 * interrupt from another device won't cause a FIFO underrun.
   1195 	 * We choose splsched() since that blocks essentially everything
   1196 	 * except for interrupts from serial devices (which typically
   1197 	 * lose data of their interrupt isn't serviced fast enough).
   1198 	 *
   1199 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
   1200 	 */
   1201 	sh = splsched();
   1202 
   1203 	txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
   1204 
   1205 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
   1206 		/*
   1207 		 * Prime the FIFO buffer counter (number of 16-bit
   1208 		 * words about to be written to the FIFO).
   1209 		 *
   1210 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
   1211 		 * COUNTER IS NON-ZERO!
   1212 		 */
   1213 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
   1214 		    (len + pad) >> 1);
   1215 	}
   1216 
   1217 	bus_space_write_2(iot, ioh, txreg, len);
   1218 	bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
   1219 	if (ELINK_IS_BUS_32(sc->bustype)) {
   1220 		for (m = m0; m;) {
   1221 			if (m->m_len > 3)  {
   1222 				/* align our reads from core */
   1223 				if (mtod(m, u_long) & 3)  {
   1224 					u_long count =
   1225 					    4 - (mtod(m, u_long) & 3);
   1226 					bus_space_write_multi_1(iot, ioh,
   1227 					    txreg, mtod(m, u_int8_t *), count);
   1228 					m->m_data =
   1229 					    (void *)(mtod(m, u_long) + count);
   1230 					m->m_len -= count;
   1231 				}
   1232 				bus_space_write_multi_stream_4(iot, ioh,
   1233 				    txreg, mtod(m, u_int32_t *), m->m_len >> 2);
   1234 				m->m_data = (void *)(mtod(m, u_long) +
   1235 					(u_long)(m->m_len & ~3));
   1236 				m->m_len -= m->m_len & ~3;
   1237 			}
   1238 			if (m->m_len)  {
   1239 				bus_space_write_multi_1(iot, ioh,
   1240 				    txreg, mtod(m, u_int8_t *), m->m_len);
   1241 			}
   1242 			MFREE(m, m0);
   1243 			m = m0;
   1244 		}
   1245 	} else {
   1246 		for (m = m0; m;) {
   1247 			if (m->m_len > 1)  {
   1248 				if (mtod(m, u_long) & 1)  {
   1249 					bus_space_write_1(iot, ioh,
   1250 					    txreg, *(mtod(m, u_int8_t *)));
   1251 					m->m_data =
   1252 					    (void *)(mtod(m, u_long) + 1);
   1253 					m->m_len -= 1;
   1254 				}
   1255 				bus_space_write_multi_stream_2(iot, ioh,
   1256 				    txreg, mtod(m, u_int16_t *),
   1257 				    m->m_len >> 1);
   1258 			}
   1259 			if (m->m_len & 1)  {
   1260 				bus_space_write_1(iot, ioh, txreg,
   1261 				     *(mtod(m, u_int8_t *) + m->m_len - 1));
   1262 			}
   1263 			MFREE(m, m0);
   1264 			m = m0;
   1265 		}
   1266 	}
   1267 	while (pad--)
   1268 		bus_space_write_1(iot, ioh, txreg, 0);
   1269 
   1270 	splx(sh);
   1271 
   1272 	++ifp->if_opackets;
   1273 
   1274 readcheck:
   1275 	if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
   1276 	    ERR_INCOMPLETE) == 0) {
   1277 		/* We received a complete packet. */
   1278 		u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1279 
   1280 		if ((status & S_INTR_LATCH) == 0) {
   1281 			/*
   1282 			 * No interrupt, read the packet and continue
   1283 			 * Is  this supposed to happen? Is my motherboard
   1284 			 * completely busted?
   1285 			 */
   1286 			epread(sc);
   1287 		} else {
   1288 			/* Got an interrupt, return so that it gets serviced. */
   1289 			return;
   1290 		}
   1291 	} else {
   1292 		/* Check if we are stuck and reset [see XXX comment] */
   1293 		if (epstatus(sc)) {
   1294 			if (ifp->if_flags & IFF_DEBUG)
   1295 				printf("%s: adapter reset\n",
   1296 				    sc->sc_dev.dv_xname);
   1297 			epreset(sc);
   1298 		}
   1299 	}
   1300 
   1301 	goto startagain;
   1302 }
   1303 
   1304 
   1305 /*
   1306  * XXX: The 3c509 card can get in a mode where both the fifo status bit
   1307  *	FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
   1308  *	We detect this situation and we reset the adapter.
   1309  *	It happens at times when there is a lot of broadcast traffic
   1310  *	on the cable (once in a blue moon).
   1311  */
   1312 static int
   1313 epstatus(sc)
   1314 	struct ep_softc *sc;
   1315 {
   1316 	bus_space_tag_t iot = sc->sc_iot;
   1317 	bus_space_handle_t ioh = sc->sc_ioh;
   1318 	u_int16_t fifost;
   1319 
   1320 	/*
   1321 	 * Check the FIFO status and act accordingly
   1322 	 */
   1323 	GO_WINDOW(4);
   1324 	fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
   1325 	GO_WINDOW(1);
   1326 
   1327 	if (fifost & FIFOS_RX_UNDERRUN) {
   1328 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1329 			printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
   1330 		epreset(sc);
   1331 		return 0;
   1332 	}
   1333 
   1334 	if (fifost & FIFOS_RX_STATUS_OVERRUN) {
   1335 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1336 			printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
   1337 		return 1;
   1338 	}
   1339 
   1340 	if (fifost & FIFOS_RX_OVERRUN) {
   1341 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1342 			printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
   1343 		return 1;
   1344 	}
   1345 
   1346 	if (fifost & FIFOS_TX_OVERRUN) {
   1347 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1348 			printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
   1349 		epreset(sc);
   1350 		return 0;
   1351 	}
   1352 
   1353 	return 0;
   1354 }
   1355 
   1356 
   1357 static void
   1358 eptxstat(sc)
   1359 	struct ep_softc *sc;
   1360 {
   1361 	bus_space_tag_t iot = sc->sc_iot;
   1362 	bus_space_handle_t ioh = sc->sc_ioh;
   1363 	int i;
   1364 
   1365 	/*
   1366 	 * We need to read+write TX_STATUS until we get a 0 status
   1367 	 * in order to turn off the interrupt flag.
   1368 	 */
   1369 	while ((i = bus_space_read_1(iot, ioh,
   1370 	     ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
   1371 		bus_space_write_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
   1372 		    0x0);
   1373 
   1374 		if (i & TXS_JABBER) {
   1375 			++sc->sc_ethercom.ec_if.if_oerrors;
   1376 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1377 				printf("%s: jabber (%x)\n",
   1378 				       sc->sc_dev.dv_xname, i);
   1379 			epreset(sc);
   1380 		} else if (i & TXS_UNDERRUN) {
   1381 			++sc->sc_ethercom.ec_if.if_oerrors;
   1382 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1383 				printf("%s: fifo underrun (%x) @%d\n",
   1384 				       sc->sc_dev.dv_xname, i,
   1385 				       sc->tx_start_thresh);
   1386 			if (sc->tx_succ_ok < 100)
   1387 				    sc->tx_start_thresh = min(ETHER_MAX_LEN,
   1388 					    sc->tx_start_thresh + 20);
   1389 			sc->tx_succ_ok = 0;
   1390 			epreset(sc);
   1391 		} else if (i & TXS_MAX_COLLISION) {
   1392 			++sc->sc_ethercom.ec_if.if_collisions;
   1393 			bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
   1394 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
   1395 		} else
   1396 			sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
   1397 	}
   1398 }
   1399 
   1400 int
   1401 epintr(arg)
   1402 	void *arg;
   1403 {
   1404 	struct ep_softc *sc = arg;
   1405 	bus_space_tag_t iot = sc->sc_iot;
   1406 	bus_space_handle_t ioh = sc->sc_ioh;
   1407 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1408 	u_int16_t status;
   1409 	int ret = 0;
   1410 	int addrandom = 0;
   1411 
   1412 	if (sc->enabled == 0 ||
   1413 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   1414 		return (0);
   1415 
   1416 	for (;;) {
   1417 		bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
   1418 
   1419 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1420 
   1421 		if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
   1422 			       S_RX_COMPLETE | S_CARD_FAILURE)) == 0) {
   1423 			if ((status & S_INTR_LATCH) == 0) {
   1424 #if 0
   1425 				printf("%s: intr latch cleared\n",
   1426 				       sc->sc_dev.dv_xname);
   1427 #endif
   1428 				break;
   1429 			}
   1430 		}
   1431 
   1432 		ret = 1;
   1433 
   1434 		/*
   1435 		 * Acknowledge any interrupts.  It's important that we do this
   1436 		 * first, since there would otherwise be a race condition.
   1437 		 * Due to the i386 interrupt queueing, we may get spurious
   1438 		 * interrupts occasionally.
   1439 		 */
   1440 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
   1441 				  (status & (C_INTR_LATCH |
   1442 					     C_CARD_FAILURE |
   1443 					     C_TX_COMPLETE |
   1444 					     C_TX_AVAIL |
   1445 					     C_RX_COMPLETE |
   1446 					     C_RX_EARLY |
   1447 					     C_INT_RQD |
   1448 					     C_UPD_STATS)));
   1449 
   1450 #if 0
   1451 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1452 
   1453 		printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
   1454 		       (status & S_RX_COMPLETE)?" RX_COMPLETE":"",
   1455 		       (status & S_TX_COMPLETE)?" TX_COMPLETE":"",
   1456 		       (status & S_TX_AVAIL)?" TX_AVAIL":"",
   1457 		       (status & S_CARD_FAILURE)?" CARD_FAILURE":"");
   1458 #endif
   1459 
   1460 		if (status & S_RX_COMPLETE) {
   1461 			epread(sc);
   1462 			addrandom = 1;
   1463 		}
   1464 		if (status & S_TX_AVAIL) {
   1465 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
   1466 			epstart(&sc->sc_ethercom.ec_if);
   1467 			addrandom = 1;
   1468 		}
   1469 		if (status & S_CARD_FAILURE) {
   1470 			printf("%s: adapter failure (%x)\n",
   1471 			    sc->sc_dev.dv_xname, status);
   1472 #if 1
   1473 			epinit(sc);
   1474 #else
   1475 			epreset(sc);
   1476 #endif
   1477 			return (1);
   1478 		}
   1479 		if (status & S_TX_COMPLETE) {
   1480 			eptxstat(sc);
   1481 			epstart(ifp);
   1482 			addrandom = 1;
   1483 		}
   1484 
   1485 #if NRND > 0
   1486 		if (status)
   1487 			rnd_add_uint32(&sc->rnd_source, status);
   1488 #endif
   1489 	}
   1490 
   1491 	/* no more interrupts */
   1492 	return (ret);
   1493 }
   1494 
   1495 void
   1496 epread(sc)
   1497 	struct ep_softc *sc;
   1498 {
   1499 	bus_space_tag_t iot = sc->sc_iot;
   1500 	bus_space_handle_t ioh = sc->sc_ioh;
   1501 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1502 	struct mbuf *m;
   1503 	struct ether_header *eh;
   1504 	int len;
   1505 
   1506 	len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
   1507 
   1508 again:
   1509 	if (ifp->if_flags & IFF_DEBUG) {
   1510 		int err = len & ERR_MASK;
   1511 		char *s = NULL;
   1512 
   1513 		if (len & ERR_INCOMPLETE)
   1514 			s = "incomplete packet";
   1515 		else if (err == ERR_OVERRUN)
   1516 			s = "packet overrun";
   1517 		else if (err == ERR_RUNT)
   1518 			s = "runt packet";
   1519 		else if (err == ERR_ALIGNMENT)
   1520 			s = "bad alignment";
   1521 		else if (err == ERR_CRC)
   1522 			s = "bad crc";
   1523 		else if (err == ERR_OVERSIZE)
   1524 			s = "oversized packet";
   1525 		else if (err == ERR_DRIBBLE)
   1526 			s = "dribble bits";
   1527 
   1528 		if (s)
   1529 			printf("%s: %s\n", sc->sc_dev.dv_xname, s);
   1530 	}
   1531 
   1532 	if (len & ERR_INCOMPLETE)
   1533 		return;
   1534 
   1535 	if (len & ERR_RX) {
   1536 		++ifp->if_ierrors;
   1537 		goto abort;
   1538 	}
   1539 
   1540 	len &= RX_BYTES_MASK;	/* Lower 11 bits = RX bytes. */
   1541 
   1542 	/* Pull packet off interface. */
   1543 	m = epget(sc, len);
   1544 	if (m == 0) {
   1545 		ifp->if_ierrors++;
   1546 		goto abort;
   1547 	}
   1548 
   1549 	++ifp->if_ipackets;
   1550 
   1551 	/* We assume the header fit entirely in one mbuf. */
   1552 	eh = mtod(m, struct ether_header *);
   1553 
   1554 #if NBPFILTER > 0
   1555 	/*
   1556 	 * Check if there's a BPF listener on this interface.
   1557 	 * If so, hand off the raw packet to BPF.
   1558 	 */
   1559 	if (ifp->if_bpf) {
   1560 		bpf_mtap(ifp->if_bpf, m);
   1561 
   1562 		/*
   1563 		 * Note that the interface cannot be in promiscuous mode if
   1564 		 * there are no BPF listeners.  And if we are in promiscuous
   1565 		 * mode, we have to check if this packet is really ours.
   1566 		 */
   1567 		if ((ifp->if_flags & IFF_PROMISC) &&
   1568 		    (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
   1569 		    bcmp(eh->ether_dhost, LLADDR(sc->sc_ethercom.ec_if.if_sadl),
   1570 		        sizeof(eh->ether_dhost)) != 0) {
   1571 			m_freem(m);
   1572 			return;
   1573 		}
   1574 	}
   1575 #endif
   1576 	(*ifp->if_input)(ifp, m);
   1577 
   1578 	/*
   1579 	 * In periods of high traffic we can actually receive enough
   1580 	 * packets so that the fifo overrun bit will be set at this point,
   1581 	 * even though we just read a packet. In this case we
   1582 	 * are not going to receive any more interrupts. We check for
   1583 	 * this condition and read again until the fifo is not full.
   1584 	 * We could simplify this test by not using epstatus(), but
   1585 	 * rechecking the RX_STATUS register directly. This test could
   1586 	 * result in unnecessary looping in cases where there is a new
   1587 	 * packet but the fifo is not full, but it will not fix the
   1588 	 * stuck behavior.
   1589 	 *
   1590 	 * Even with this improvement, we still get packet overrun errors
   1591 	 * which are hurting performance. Maybe when I get some more time
   1592 	 * I'll modify epread() so that it can handle RX_EARLY interrupts.
   1593 	 */
   1594 	if (epstatus(sc)) {
   1595 		len = bus_space_read_2(iot, ioh,
   1596 		    ep_w1_reg(sc, ELINK_W1_RX_STATUS));
   1597 		/* Check if we are stuck and reset [see XXX comment] */
   1598 		if (len & ERR_INCOMPLETE) {
   1599 			if (ifp->if_flags & IFF_DEBUG)
   1600 				printf("%s: adapter reset\n",
   1601 				    sc->sc_dev.dv_xname);
   1602 			epreset(sc);
   1603 			return;
   1604 		}
   1605 		goto again;
   1606 	}
   1607 
   1608 	return;
   1609 
   1610 abort:
   1611 	ep_discard_rxtop(iot, ioh);
   1612 
   1613 }
   1614 
   1615 struct mbuf *
   1616 epget(sc, totlen)
   1617 	struct ep_softc *sc;
   1618 	int totlen;
   1619 {
   1620 	bus_space_tag_t iot = sc->sc_iot;
   1621 	bus_space_handle_t ioh = sc->sc_ioh;
   1622 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1623 	struct mbuf *top, **mp, *m, *rv = NULL;
   1624 	bus_addr_t rxreg;
   1625 	int len, remaining;
   1626 	int sh;
   1627 
   1628 	m = sc->mb[sc->next_mb];
   1629 	sc->mb[sc->next_mb] = 0;
   1630 	if (m == 0) {
   1631 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1632 		if (m == 0)
   1633 			return 0;
   1634 	} else {
   1635 		/* If the queue is no longer full, refill. */
   1636 		if (sc->last_mb == sc->next_mb)
   1637 			callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
   1638 		/* Convert one of our saved mbuf's. */
   1639 		sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
   1640 		m->m_data = m->m_pktdat;
   1641 		m->m_flags = M_PKTHDR;
   1642 		bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
   1643 	}
   1644 	m->m_pkthdr.rcvif = ifp;
   1645 	m->m_pkthdr.len = totlen;
   1646 	len = MHLEN;
   1647 	top = 0;
   1648 	mp = &top;
   1649 
   1650 	/*
   1651 	 * We read the packet at a high interrupt priority level so that
   1652 	 * an interrupt from another device won't cause the card's packet
   1653 	 * buffer to overflow.  We choose splsched() since that blocks
   1654 	 * essentially everything except for interrupts from serial
   1655 	 * devices (which typically lose data of their interrupt isn't
   1656 	 * serviced fast enough).
   1657 	 *
   1658 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
   1659 	 */
   1660 	sh = splsched();
   1661 
   1662 	rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
   1663 
   1664 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
   1665 		/*
   1666 		 * Prime the FIFO buffer counter (number of 16-bit
   1667 		 * words about to be read from the FIFO).
   1668 		 *
   1669 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
   1670 		 * COUNTER IS NON-ZERO!
   1671 		 */
   1672 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
   1673 	}
   1674 
   1675 	while (totlen > 0) {
   1676 		if (top) {
   1677 			m = sc->mb[sc->next_mb];
   1678 			sc->mb[sc->next_mb] = 0;
   1679 			if (m == 0) {
   1680 				MGET(m, M_DONTWAIT, MT_DATA);
   1681 				if (m == 0) {
   1682 					m_freem(top);
   1683 					goto out;
   1684 				}
   1685 			} else {
   1686 				sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
   1687 			}
   1688 			len = MLEN;
   1689 		}
   1690 		if (totlen >= MINCLSIZE) {
   1691 			MCLGET(m, M_DONTWAIT);
   1692 			if ((m->m_flags & M_EXT) == 0) {
   1693 				m_free(m);
   1694 				m_freem(top);
   1695 				goto out;
   1696 			}
   1697 			len = MCLBYTES;
   1698 		}
   1699 		if (top == 0)  {
   1700 			/* align the struct ip header */
   1701 			caddr_t newdata = (caddr_t)
   1702 			    ALIGN(m->m_data + sizeof(struct ether_header))
   1703 			    - sizeof(struct ether_header);
   1704 			len -= newdata - m->m_data;
   1705 			m->m_data = newdata;
   1706 		}
   1707 		remaining = len = min(totlen, len);
   1708 		if (ELINK_IS_BUS_32(sc->bustype)) {
   1709 			u_long offset = mtod(m, u_long);
   1710 			/*
   1711 			 * Read bytes up to the point where we are aligned.
   1712 			 * (We can align to 4 bytes, rather than ALIGNBYTES,
   1713 			 * here because we're later reading 4-byte chunks.)
   1714 			 */
   1715 			if ((remaining > 3) && (offset & 3))  {
   1716 				int count = (4 - (offset & 3));
   1717 				bus_space_read_multi_1(iot, ioh,
   1718 				    rxreg, (u_int8_t *) offset, count);
   1719 				offset += count;
   1720 				remaining -= count;
   1721 			}
   1722 			if (remaining > 3) {
   1723 				bus_space_read_multi_stream_4(iot, ioh,
   1724 				    rxreg, (u_int32_t *) offset,
   1725 				    remaining >> 2);
   1726 				offset += remaining & ~3;
   1727 				remaining &= 3;
   1728 			}
   1729 			if (remaining)  {
   1730 				bus_space_read_multi_1(iot, ioh,
   1731 				    rxreg, (u_int8_t *) offset, remaining);
   1732 			}
   1733 		} else {
   1734 			u_long offset = mtod(m, u_long);
   1735 			if ((remaining > 1) && (offset & 1))  {
   1736 				bus_space_read_multi_1(iot, ioh,
   1737 				    rxreg, (u_int8_t *) offset, 1);
   1738 				remaining -= 1;
   1739 				offset += 1;
   1740 			}
   1741 			if (remaining > 1) {
   1742 				bus_space_read_multi_stream_2(iot, ioh,
   1743 				    rxreg, (u_int16_t *) offset,
   1744 				    remaining >> 1);
   1745 				offset += remaining & ~1;
   1746 			}
   1747 			if (remaining & 1)  {
   1748 				bus_space_read_multi_1(iot, ioh,
   1749 				    rxreg, (u_int8_t *) offset, remaining & 1);
   1750 			}
   1751 		}
   1752 		m->m_len = len;
   1753 		totlen -= len;
   1754 		*mp = m;
   1755 		mp = &m->m_next;
   1756 	}
   1757 
   1758 	rv = top;
   1759 
   1760 	ep_discard_rxtop(iot, ioh);
   1761 
   1762  out:
   1763 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
   1764 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
   1765 	splx(sh);
   1766 
   1767 	return rv;
   1768 }
   1769 
   1770 int
   1771 epioctl(ifp, cmd, data)
   1772 	struct ifnet *ifp;
   1773 	u_long cmd;
   1774 	caddr_t data;
   1775 {
   1776 	struct ep_softc *sc = ifp->if_softc;
   1777 	struct ifaddr *ifa = (struct ifaddr *)data;
   1778 	struct ifreq *ifr = (struct ifreq *)data;
   1779 	int s, error = 0;
   1780 
   1781 	s = splnet();
   1782 
   1783 	switch (cmd) {
   1784 
   1785 	case SIOCSIFADDR:
   1786 		if ((error = epenable(sc)) != 0)
   1787 			break;
   1788 		/* epinit is called just below */
   1789 		ifp->if_flags |= IFF_UP;
   1790 		switch (ifa->ifa_addr->sa_family) {
   1791 #ifdef INET
   1792 		case AF_INET:
   1793 			epinit(sc);
   1794 			arp_ifinit(&sc->sc_ethercom.ec_if, ifa);
   1795 			break;
   1796 #endif
   1797 #ifdef NS
   1798 		case AF_NS:
   1799 		    {
   1800 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1801 
   1802 			if (ns_nullhost(*ina))
   1803 				ina->x_host = *(union ns_host *)
   1804 				    LLADDR(ifp->if_sadl);
   1805 			else
   1806 				bcopy(ina->x_host.c_host,
   1807 				    LLADDR(ifp->if_sadl),
   1808 				    ifp->if_addrlen);
   1809 			/* Set new address. */
   1810 			epinit(sc);
   1811 			break;
   1812 		    }
   1813 #endif
   1814 		default:
   1815 			epinit(sc);
   1816 			break;
   1817 		}
   1818 		break;
   1819 
   1820 	case SIOCSIFMEDIA:
   1821 	case SIOCGIFMEDIA:
   1822 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1823 		break;
   1824 
   1825 	case SIOCSIFFLAGS:
   1826 		if ((ifp->if_flags & IFF_UP) == 0 &&
   1827 		    (ifp->if_flags & IFF_RUNNING) != 0) {
   1828 			/*
   1829 			 * If interface is marked down and it is running, then
   1830 			 * stop it.
   1831 			 */
   1832 			epstop(sc);
   1833 			ifp->if_flags &= ~IFF_RUNNING;
   1834 			epdisable(sc);
   1835 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
   1836 			   (ifp->if_flags & IFF_RUNNING) == 0) {
   1837 			/*
   1838 			 * If interface is marked up and it is stopped, then
   1839 			 * start it.
   1840 			 */
   1841 			if ((error = epenable(sc)) != 0)
   1842 				break;
   1843 			epinit(sc);
   1844 		} else if ((ifp->if_flags & IFF_UP) != 0) {
   1845 			/*
   1846 			 * deal with flags changes:
   1847 			 * IFF_MULTICAST, IFF_PROMISC.
   1848 			 */
   1849 			epsetfilter(sc);
   1850 		}
   1851 		break;
   1852 
   1853 	case SIOCADDMULTI:
   1854 	case SIOCDELMULTI:
   1855 		if (sc->enabled == 0) {
   1856 			error = EIO;
   1857 			break;
   1858 		}
   1859 
   1860 		error = (cmd == SIOCADDMULTI) ?
   1861 		    ether_addmulti(ifr, &sc->sc_ethercom) :
   1862 		    ether_delmulti(ifr, &sc->sc_ethercom);
   1863 
   1864 		if (error == ENETRESET) {
   1865 			/*
   1866 			 * Multicast list has changed; set the hardware filter
   1867 			 * accordingly.
   1868 			 */
   1869 			epreset(sc);
   1870 			error = 0;
   1871 		}
   1872 		break;
   1873 
   1874 	default:
   1875 		error = EINVAL;
   1876 		break;
   1877 	}
   1878 
   1879 	splx(s);
   1880 	return (error);
   1881 }
   1882 
   1883 void
   1884 epreset(sc)
   1885 	struct ep_softc *sc;
   1886 {
   1887 	int s;
   1888 
   1889 	s = splnet();
   1890 	epinit(sc);
   1891 	splx(s);
   1892 }
   1893 
   1894 void
   1895 epwatchdog(ifp)
   1896 	struct ifnet *ifp;
   1897 {
   1898 	struct ep_softc *sc = ifp->if_softc;
   1899 
   1900 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1901 	++sc->sc_ethercom.ec_if.if_oerrors;
   1902 
   1903 	epreset(sc);
   1904 }
   1905 
   1906 void
   1907 epstop(sc)
   1908 	struct ep_softc *sc;
   1909 {
   1910 	bus_space_tag_t iot = sc->sc_iot;
   1911 	bus_space_handle_t ioh = sc->sc_ioh;
   1912 
   1913 	if (sc->ep_flags & ELINK_FLAGS_MII) {
   1914 		/* Stop the one second clock. */
   1915 		callout_stop(&sc->sc_mbuf_callout);
   1916 
   1917 		/* Down the MII. */
   1918 		mii_down(&sc->sc_mii);
   1919 	}
   1920 
   1921 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
   1922 		/*
   1923 		 * Clear the FIFO buffer count, thus halting
   1924 		 * any currently-running transactions.
   1925 		 */
   1926 		GO_WINDOW(1);		/* sanity */
   1927 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
   1928 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
   1929 	}
   1930 
   1931 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
   1932 	ep_discard_rxtop(iot, ioh);
   1933 
   1934 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
   1935 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
   1936 
   1937 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
   1938 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
   1939 
   1940 	bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
   1941 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
   1942 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
   1943 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
   1944 
   1945 	epmbufempty(sc);
   1946 }
   1947 
   1948 
   1949 /*
   1950  * Before reboots, reset card completely.
   1951  */
   1952 static void
   1953 epshutdown(arg)
   1954 	void *arg;
   1955 {
   1956 	struct ep_softc *sc = arg;
   1957 	int s = splnet();
   1958 
   1959 	if (sc->enabled) {
   1960 		epstop(sc);
   1961 		ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
   1962 		sc->enabled = 0;
   1963 	}
   1964 	splx(s);
   1965 }
   1966 
   1967 /*
   1968  * We get eeprom data from the id_port given an offset into the
   1969  * eeprom.  Basically; after the ID_sequence is sent to all of
   1970  * the cards; they enter the ID_CMD state where they will accept
   1971  * command requests. 0x80-0xbf loads the eeprom data.  We then
   1972  * read the port 16 times and with every read; the cards check
   1973  * for contention (ie: if one card writes a 0 bit and another
   1974  * writes a 1 bit then the host sees a 0. At the end of the cycle;
   1975  * each card compares the data on the bus; if there is a difference
   1976  * then that card goes into ID_WAIT state again). In the meantime;
   1977  * one bit of data is returned in the AX register which is conveniently
   1978  * returned to us by bus_space_read_1().  Hence; we read 16 times getting one
   1979  * bit of data with each read.
   1980  *
   1981  * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
   1982  */
   1983 u_int16_t
   1984 epreadeeprom(iot, ioh, offset)
   1985 	bus_space_tag_t iot;
   1986 	bus_space_handle_t ioh;
   1987 	int offset;
   1988 {
   1989 	u_int16_t data = 0;
   1990 	int i;
   1991 
   1992 	bus_space_write_1(iot, ioh, 0, 0x80 + offset);
   1993 	delay(1000);
   1994 	for (i = 0; i < 16; i++)
   1995 		data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
   1996 	return (data);
   1997 }
   1998 
   1999 static int
   2000 epbusyeeprom(sc)
   2001 	struct ep_softc *sc;
   2002 {
   2003 	bus_space_tag_t iot = sc->sc_iot;
   2004 	bus_space_handle_t ioh = sc->sc_ioh;
   2005 	int i = 100, j;
   2006 
   2007 	if (sc->bustype == ELINK_BUS_PCMCIA) {
   2008 		delay(1000);
   2009 		return 0;
   2010 	}
   2011 
   2012 	j = 0;		/* bad GCC flow analysis */
   2013 	while (i--) {
   2014 		j = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND);
   2015 		if (j & EEPROM_BUSY)
   2016 			delay(100);
   2017 		else
   2018 			break;
   2019 	}
   2020 	if (!i) {
   2021 		printf("\n%s: eeprom failed to come ready\n",
   2022 		    sc->sc_dev.dv_xname);
   2023 		return (1);
   2024 	}
   2025 	if (j & EEPROM_TST_MODE) {
   2026 		/* XXX PnP mode? */
   2027 		printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
   2028 		return (1);
   2029 	}
   2030 	return (0);
   2031 }
   2032 
   2033 u_int16_t
   2034 ep_read_eeprom(sc, offset)
   2035 	struct ep_softc *sc;
   2036 	u_int16_t offset;
   2037 {
   2038 	u_int16_t readcmd;
   2039 
   2040 	/*
   2041 	 * RoadRunner has a larger EEPROM, so a different read command
   2042 	 * is required.
   2043 	 */
   2044 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
   2045 		readcmd = READ_EEPROM_RR;
   2046 	else
   2047 		readcmd = READ_EEPROM;
   2048 
   2049 	if (epbusyeeprom(sc))
   2050 		return (0);		/* XXX why is eeprom busy? */
   2051 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W0_EEPROM_COMMAND,
   2052 	    readcmd | offset);
   2053 	if (epbusyeeprom(sc))
   2054 		return (0);		/* XXX why is eeprom busy? */
   2055 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W0_EEPROM_DATA));
   2056 }
   2057 
   2058 void
   2059 epmbuffill(v)
   2060 	void *v;
   2061 {
   2062 	struct ep_softc *sc = v;
   2063 	struct mbuf *m;
   2064 	int s, i;
   2065 
   2066 	s = splnet();
   2067 	i = sc->last_mb;
   2068 	do {
   2069 		if (sc->mb[i] == 0) {
   2070 			MGET(m, M_DONTWAIT, MT_DATA);
   2071 			if (m == 0)
   2072 				break;
   2073 			sc->mb[i] = m;
   2074 		}
   2075 		i = (i + 1) % MAX_MBS;
   2076 	} while (i != sc->next_mb);
   2077 	sc->last_mb = i;
   2078 	/* If the queue was not filled, try again. */
   2079 	if (sc->last_mb != sc->next_mb)
   2080 		callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
   2081 	splx(s);
   2082 }
   2083 
   2084 void
   2085 epmbufempty(sc)
   2086 	struct ep_softc *sc;
   2087 {
   2088 	int s, i;
   2089 
   2090 	s = splnet();
   2091 	for (i = 0; i<MAX_MBS; i++) {
   2092 		if (sc->mb[i]) {
   2093 			m_freem(sc->mb[i]);
   2094 			sc->mb[i] = NULL;
   2095 		}
   2096 	}
   2097 	sc->last_mb = sc->next_mb = 0;
   2098 	callout_stop(&sc->sc_mbuf_callout);
   2099 	splx(s);
   2100 }
   2101 
   2102 int
   2103 epenable(sc)
   2104 	struct ep_softc *sc;
   2105 {
   2106 
   2107 	if (sc->enabled == 0 && sc->enable != NULL) {
   2108 		if ((*sc->enable)(sc) != 0) {
   2109 			printf("%s: device enable failed\n",
   2110 			    sc->sc_dev.dv_xname);
   2111 			return (EIO);
   2112 		}
   2113 	}
   2114 
   2115 	sc->enabled = 1;
   2116 	return (0);
   2117 }
   2118 
   2119 void
   2120 epdisable(sc)
   2121 	struct ep_softc *sc;
   2122 {
   2123 
   2124 	if (sc->enabled != 0 && sc->disable != NULL) {
   2125 		(*sc->disable)(sc);
   2126 		sc->enabled = 0;
   2127 	}
   2128 }
   2129 
   2130 /*
   2131  * ep_activate:
   2132  *
   2133  *	Handle device activation/deactivation requests.
   2134  */
   2135 int
   2136 ep_activate(self, act)
   2137 	struct device *self;
   2138 	enum devact act;
   2139 {
   2140 	struct ep_softc *sc = (struct ep_softc *)self;
   2141 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2142 	int error = 0, s;
   2143 
   2144 	s = splnet();
   2145 	switch (act) {
   2146 	case DVACT_ACTIVATE:
   2147 		error = EOPNOTSUPP;
   2148 		break;
   2149 
   2150 	case DVACT_DEACTIVATE:
   2151 		if (sc->ep_flags & ELINK_FLAGS_MII)
   2152 			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
   2153 			    MII_OFFSET_ANY);
   2154 		if_deactivate(ifp);
   2155 		break;
   2156 	}
   2157 	splx(s);
   2158 	return (error);
   2159 }
   2160 
   2161 /*
   2162  * ep_detach:
   2163  *
   2164  *	Detach a elink3 interface.
   2165  */
   2166 int
   2167 ep_detach(self, flags)
   2168 	struct device *self;
   2169 	int flags;
   2170 {
   2171 	struct ep_softc *sc = (struct ep_softc *)self;
   2172 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2173 
   2174 	/* Succeed now if there's no work to do. */
   2175 	if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0)
   2176 		return (0);
   2177 
   2178 	epdisable(sc);
   2179 
   2180 	callout_stop(&sc->sc_mii_callout);
   2181 	callout_stop(&sc->sc_mbuf_callout);
   2182 
   2183 	if (sc->ep_flags & ELINK_FLAGS_MII) {
   2184 		/* Detach all PHYs */
   2185 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   2186 	}
   2187 
   2188 	/* Delete all remaining media. */
   2189 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
   2190 
   2191 #if NRND > 0
   2192 	rnd_detach_source(&sc->rnd_source);
   2193 #endif
   2194 #if NBPFILTER > 0
   2195 	bpfdetach(ifp);
   2196 #endif
   2197 	ether_ifdetach(ifp);
   2198 	if_detach(ifp);
   2199 
   2200 	shutdownhook_disestablish(sc->sd_hook);
   2201 
   2202 	return (0);
   2203 }
   2204 
   2205 u_int32_t
   2206 ep_mii_bitbang_read(self)
   2207 	struct device *self;
   2208 {
   2209 	struct ep_softc *sc = (void *) self;
   2210 
   2211 	/* We're already in Window 4. */
   2212 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
   2213 	    ELINK_W4_BOOM_PHYSMGMT));
   2214 }
   2215 
   2216 void
   2217 ep_mii_bitbang_write(self, val)
   2218 	struct device *self;
   2219 	u_int32_t val;
   2220 {
   2221 	struct ep_softc *sc = (void *) self;
   2222 
   2223 	/* We're already in Window 4. */
   2224 	bus_space_write_2(sc->sc_iot, sc->sc_ioh,
   2225 	    ELINK_W4_BOOM_PHYSMGMT, val);
   2226 }
   2227 
   2228 int
   2229 ep_mii_readreg(self, phy, reg)
   2230 	struct device *self;
   2231 	int phy, reg;
   2232 {
   2233 	struct ep_softc *sc = (void *) self;
   2234 	int val;
   2235 
   2236 	GO_WINDOW(4);
   2237 
   2238 	val = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg);
   2239 
   2240 	GO_WINDOW(1);
   2241 
   2242 	return (val);
   2243 }
   2244 
   2245 void
   2246 ep_mii_writereg(self, phy, reg, val)
   2247 	struct device *self;
   2248 	int phy, reg, val;
   2249 {
   2250 	struct ep_softc *sc = (void *) self;
   2251 
   2252 	GO_WINDOW(4);
   2253 
   2254 	mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
   2255 
   2256 	GO_WINDOW(1);
   2257 }
   2258 
   2259 void
   2260 ep_statchg(self)
   2261 	struct device *self;
   2262 {
   2263 	struct ep_softc *sc = (struct ep_softc *)self;
   2264 	bus_space_tag_t iot = sc->sc_iot;
   2265 	bus_space_handle_t ioh = sc->sc_ioh;
   2266 	int mctl;
   2267 
   2268 	GO_WINDOW(3);
   2269 	mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
   2270 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   2271 		mctl |= MAC_CONTROL_FDX;
   2272 	else
   2273 		mctl &= ~MAC_CONTROL_FDX;
   2274 	bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
   2275 	GO_WINDOW(1);	/* back to operating window */
   2276 }
   2277