Home | History | Annotate | Line # | Download | only in ic
elink3.c revision 1.88
      1 /*	$NetBSD: elink3.c,v 1.88 2001/03/22 12:00:26 jdolecek Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
     42  * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
     43  * All rights reserved.
     44  *
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice, this list of conditions and the following disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  * 3. All advertising materials mentioning features or use of this software
     54  *    must display the following acknowledgement:
     55  *      This product includes software developed by Herb Peyerl.
     56  * 4. The name of Herb Peyerl may not be used to endorse or promote products
     57  *    derived from this software without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     60  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     61  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     63  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     64  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     65  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     66  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     67  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     68  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     69  */
     70 
     71 #include "opt_inet.h"
     72 #include "opt_ns.h"
     73 #include "bpfilter.h"
     74 #include "rnd.h"
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/callout.h>
     79 #include <sys/kernel.h>
     80 #include <sys/mbuf.h>
     81 #include <sys/socket.h>
     82 #include <sys/ioctl.h>
     83 #include <sys/errno.h>
     84 #include <sys/syslog.h>
     85 #include <sys/select.h>
     86 #include <sys/device.h>
     87 #if NRND > 0
     88 #include <sys/rnd.h>
     89 #endif
     90 
     91 #include <net/if.h>
     92 #include <net/if_dl.h>
     93 #include <net/if_ether.h>
     94 #include <net/if_media.h>
     95 
     96 #ifdef INET
     97 #include <netinet/in.h>
     98 #include <netinet/in_systm.h>
     99 #include <netinet/in_var.h>
    100 #include <netinet/ip.h>
    101 #include <netinet/if_inarp.h>
    102 #endif
    103 
    104 #ifdef NS
    105 #include <netns/ns.h>
    106 #include <netns/ns_if.h>
    107 #endif
    108 
    109 #if NBPFILTER > 0
    110 #include <net/bpf.h>
    111 #include <net/bpfdesc.h>
    112 #endif
    113 
    114 #include <machine/cpu.h>
    115 #include <machine/bus.h>
    116 #include <machine/intr.h>
    117 
    118 #include <dev/mii/mii.h>
    119 #include <dev/mii/miivar.h>
    120 #include <dev/mii/mii_bitbang.h>
    121 
    122 #include <dev/ic/elink3var.h>
    123 #include <dev/ic/elink3reg.h>
    124 
    125 #ifdef DEBUG
    126 int epdebug = 0;
    127 #endif
    128 
    129 /*
    130  * XXX endian workaround for big-endian CPUs  with pcmcia:
    131  * if stream methods for bus_space_multi are not provided, define them
    132  * using non-stream bus_space_{read,write}_multi_.
    133  * Assumes host CPU is same endian-ness as bus.
    134  */
    135 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
    136 #define bus_space_read_multi_stream_2	bus_space_read_multi_2
    137 #define bus_space_read_multi_stream_4	bus_space_read_multi_4
    138 #define bus_space_write_multi_stream_2	bus_space_write_multi_2
    139 #define bus_space_write_multi_stream_4	bus_space_write_multi_4
    140 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
    141 
    142 /*
    143  * Structure to map media-present bits in boards to ifmedia codes and
    144  * printable media names. Used for table-driven ifmedia initialization.
    145  */
    146 struct ep_media {
    147 	int	epm_mpbit;		/* media present bit */
    148 	const char *epm_name;		/* name of medium */
    149 	int	epm_ifmedia;		/* ifmedia word for medium */
    150 	int	epm_epmedia;		/* ELINKMEDIA_* constant */
    151 };
    152 
    153 /*
    154  * Media table for the Demon/Vortex/Boomerang chipsets.
    155  *
    156  * Note that MII on the Demon and Vortex (3c59x) indicates an external
    157  * MII connector (for connecting an external PHY) ... I think.  Treat
    158  * it as `manual' on these chips.
    159  *
    160  * Any Boomerang (3c90x) chips with MII really do have an internal
    161  * MII and real PHYs attached; no `native' media.
    162  */
    163 const struct ep_media ep_vortex_media[] = {
    164 	{ ELINK_PCI_10BASE_T,	"10baseT",	IFM_ETHER|IFM_10_T,
    165 	  ELINKMEDIA_10BASE_T },
    166 	{ ELINK_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER|IFM_10_T|IFM_FDX,
    167 	  ELINKMEDIA_10BASE_T },
    168 	{ ELINK_PCI_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
    169 	  ELINKMEDIA_AUI },
    170 	{ ELINK_PCI_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
    171 	  ELINKMEDIA_10BASE_2 },
    172 	{ ELINK_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER|IFM_100_TX,
    173 	  ELINKMEDIA_100BASE_TX },
    174 	{ ELINK_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
    175 	  ELINKMEDIA_100BASE_TX },
    176 	{ ELINK_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER|IFM_100_FX,
    177 	  ELINKMEDIA_100BASE_FX },
    178 	{ ELINK_PCI_100BASE_MII,"manual",	IFM_ETHER|IFM_MANUAL,
    179 	  ELINKMEDIA_MII },
    180 	{ ELINK_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER|IFM_100_T4,
    181 	  ELINKMEDIA_100BASE_T4 },
    182 	{ 0,			NULL,		0,
    183 	  0 },
    184 };
    185 
    186 /*
    187  * Media table for the older 3Com Etherlink III chipset, used
    188  * in the 3c509, 3c579, and 3c589.
    189  */
    190 const struct ep_media ep_509_media[] = {
    191 	{ ELINK_W0_CC_UTP,	"10baseT",	IFM_ETHER|IFM_10_T,
    192 	  ELINKMEDIA_10BASE_T },
    193 	{ ELINK_W0_CC_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
    194 	  ELINKMEDIA_AUI },
    195 	{ ELINK_W0_CC_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
    196 	  ELINKMEDIA_10BASE_2 },
    197 	{ 0,			NULL,		0,
    198 	  0 },
    199 };
    200 
    201 void	ep_internalconfig __P((struct ep_softc *sc));
    202 void	ep_vortex_probemedia __P((struct ep_softc *sc));
    203 void	ep_509_probemedia __P((struct ep_softc *sc));
    204 
    205 static void eptxstat __P((struct ep_softc *));
    206 static int epstatus __P((struct ep_softc *));
    207 int	epinit __P((struct ifnet *));
    208 void	epstop __P((struct ifnet *, int));
    209 int	epioctl __P((struct ifnet *, u_long, caddr_t));
    210 void	epstart __P((struct ifnet *));
    211 void	epwatchdog __P((struct ifnet *));
    212 void	epreset __P((struct ep_softc *));
    213 static void epshutdown __P((void *));
    214 void	epread __P((struct ep_softc *));
    215 struct mbuf *epget __P((struct ep_softc *, int));
    216 void	epmbuffill __P((void *));
    217 void	epmbufempty __P((struct ep_softc *));
    218 void	epsetfilter __P((struct ep_softc *));
    219 void	ep_roadrunner_mii_enable __P((struct ep_softc *));
    220 void	epsetmedia __P((struct ep_softc *));
    221 
    222 /* ifmedia callbacks */
    223 int	ep_media_change __P((struct ifnet *ifp));
    224 void	ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
    225 
    226 /* MII callbacks */
    227 int	ep_mii_readreg __P((struct device *, int, int));
    228 void	ep_mii_writereg __P((struct device *, int, int, int));
    229 void	ep_statchg __P((struct device *));
    230 
    231 void	ep_tick __P((void *));
    232 
    233 static int epbusyeeprom __P((struct ep_softc *));
    234 u_int16_t ep_read_eeprom __P((struct ep_softc *, u_int16_t));
    235 static inline void ep_reset_cmd __P((struct ep_softc *sc,
    236 					u_int cmd, u_int arg));
    237 static inline void ep_finish_reset __P((bus_space_tag_t, bus_space_handle_t));
    238 static inline void ep_discard_rxtop __P((bus_space_tag_t, bus_space_handle_t));
    239 static __inline int ep_w1_reg __P((struct ep_softc *, int));
    240 
    241 /*
    242  * MII bit-bang glue.
    243  */
    244 u_int32_t ep_mii_bitbang_read __P((struct device *));
    245 void ep_mii_bitbang_write __P((struct device *, u_int32_t));
    246 
    247 const struct mii_bitbang_ops ep_mii_bitbang_ops = {
    248 	ep_mii_bitbang_read,
    249 	ep_mii_bitbang_write,
    250 	{
    251 		PHYSMGMT_DATA,		/* MII_BIT_MDO */
    252 		PHYSMGMT_DATA,		/* MII_BIT_MDI */
    253 		PHYSMGMT_CLK,		/* MII_BIT_MDC */
    254 		PHYSMGMT_DIR,		/* MII_BIT_DIR_HOST_PHY */
    255 		0,			/* MII_BIT_DIR_PHY_HOST */
    256 	}
    257 };
    258 
    259 /*
    260  * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
    261  * Window 1 registers offset!
    262  */
    263 static __inline int
    264 ep_w1_reg(sc, reg)
    265 	struct ep_softc *sc;
    266 	int reg;
    267 {
    268 
    269 	switch (sc->ep_chipset) {
    270 	case ELINK_CHIPSET_CORKSCREW:
    271 		return (reg + 0x10);
    272 
    273 	case ELINK_CHIPSET_ROADRUNNER:
    274 		switch (reg) {
    275 		case ELINK_W1_FREE_TX:
    276 		case ELINK_W1_RUNNER_RDCTL:
    277 		case ELINK_W1_RUNNER_WRCTL:
    278 			return (reg);
    279 		}
    280 		return (reg + 0x10);
    281 	}
    282 
    283 	return (reg);
    284 }
    285 
    286 /*
    287  * Wait for any pending reset to complete.
    288  * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
    289  * but older hardware doesn't implement it and we must delay.
    290  */
    291 static inline void
    292 ep_finish_reset(iot, ioh)
    293 	bus_space_tag_t iot;
    294 	bus_space_handle_t ioh;
    295 {
    296 	int i;
    297 
    298 	for (i = 0; i < 10000; i++) {
    299 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
    300 		    S_COMMAND_IN_PROGRESS) == 0)
    301 			break;
    302 		DELAY(10);
    303 	}
    304 }
    305 
    306 /*
    307  * Issue a (reset) command, and be sure it has completed.
    308  * Used for global reset, TX_RESET, RX_RESET.
    309  */
    310 static inline void
    311 ep_reset_cmd(sc, cmd, arg)
    312 	struct ep_softc *sc;
    313 	u_int cmd, arg;
    314 {
    315 	bus_space_tag_t iot = sc->sc_iot;
    316 	bus_space_handle_t ioh = sc->sc_ioh;
    317 
    318 	bus_space_write_2(iot, ioh, cmd, arg);
    319 	ep_finish_reset(iot, ioh);
    320 }
    321 
    322 
    323 static inline void
    324 ep_discard_rxtop(iot, ioh)
    325 	bus_space_tag_t iot;
    326 	bus_space_handle_t ioh;
    327 {
    328 	int i;
    329 
    330 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
    331 
    332         /*
    333 	 * Spin for about 1 msec, to avoid forcing a DELAY() between
    334 	 * every received packet (adding latency and  limiting pkt-recv rate).
    335 	 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
    336 	 * is about right.
    337 	 */
    338 	for (i = 0; i < 8000; i++) {
    339 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
    340 		    S_COMMAND_IN_PROGRESS) == 0)
    341 		    return;
    342 	}
    343 
    344 	/*  Didn't complete in a hurry. Do DELAY()s. */
    345 	ep_finish_reset(iot, ioh);
    346 }
    347 
    348 /*
    349  * Back-end attach and configure.
    350  */
    351 int
    352 epconfig(sc, chipset, enaddr)
    353 	struct ep_softc *sc;
    354 	u_short chipset;
    355 	u_int8_t *enaddr;
    356 {
    357 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    358 	bus_space_tag_t iot = sc->sc_iot;
    359 	bus_space_handle_t ioh = sc->sc_ioh;
    360 	u_int16_t i;
    361 	u_int8_t myla[ETHER_ADDR_LEN];
    362 
    363 	callout_init(&sc->sc_mii_callout);
    364 	callout_init(&sc->sc_mbuf_callout);
    365 
    366 	sc->ep_chipset = chipset;
    367 
    368 	/*
    369 	 * We could have been groveling around in other register
    370 	 * windows in the front-end; make sure we're in window 0
    371 	 * to read the EEPROM.
    372 	 */
    373 	GO_WINDOW(0);
    374 
    375 	if (enaddr == NULL) {
    376 		/*
    377 		 * Read the station address from the eeprom.
    378 		 */
    379 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
    380 			u_int16_t x = ep_read_eeprom(sc, i);
    381 			myla[(i << 1)] = x >> 8;
    382 			myla[(i << 1) + 1] = x;
    383 		}
    384 		enaddr = myla;
    385 	}
    386 
    387 	/*
    388 	 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
    389 	 * allow FDDI-sized (4500) byte packets.  Commands only take an
    390 	 * 11-bit parameter, and  11 bits isn't enough to hold a full-size
    391 	 * packet length.
    392 	 * Commands to these cards implicitly upshift a packet size
    393 	 * or threshold by 2 bits.
    394 	 * To detect  cards with large-packet support, we probe by setting
    395 	 * the transmit threshold register, then change windows and
    396 	 * read back the threshold register directly, and see if the
    397 	 * threshold value was shifted or not.
    398 	 */
    399 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    400 	    SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
    401 	GO_WINDOW(5);
    402 	i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
    403 	GO_WINDOW(1);
    404 	switch (i)  {
    405 	case ELINK_LARGEWIN_PROBE:
    406 	case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
    407 		sc->ep_pktlenshift = 0;
    408 		break;
    409 
    410 	case (ELINK_LARGEWIN_PROBE << 2):
    411 		sc->ep_pktlenshift = 2;
    412 		break;
    413 
    414 	default:
    415 		printf("%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
    416 		    "Interface disabled\n",
    417 		    sc->sc_dev.dv_xname, ELINK_LARGEWIN_PROBE, (int) i);
    418 		return (1);
    419 	}
    420 
    421 	/*
    422 	 * Ensure Tx-available interrupts are enabled for
    423 	 * start the interface.
    424 	 * XXX should be in epinit()?
    425 	 */
    426 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    427 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
    428 
    429 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
    430 	ifp->if_softc = sc;
    431 	ifp->if_start = epstart;
    432 	ifp->if_ioctl = epioctl;
    433 	ifp->if_watchdog = epwatchdog;
    434 	ifp->if_init = epinit;
    435 	ifp->if_stop = epstop;
    436 	ifp->if_flags =
    437 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    438 	IFQ_SET_READY(&ifp->if_snd);
    439 
    440 	if_attach(ifp);
    441 	ether_ifattach(ifp, enaddr);
    442 
    443 	/*
    444 	 * Finish configuration:
    445 	 * determine chipset if the front-end couldn't do so,
    446 	 * show board details, set media.
    447 	 */
    448 
    449 	/*
    450 	 * Print RAM size.  We also print the Ethernet address in here.
    451 	 * It's extracted from the ifp, so we have to make sure it's
    452 	 * been attached first.
    453 	 */
    454 	ep_internalconfig(sc);
    455 	GO_WINDOW(0);
    456 
    457 	/*
    458 	 * Display some additional information, if pertinent.
    459 	 */
    460 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
    461 		printf("%s: RoadRunner FIFO buffer enabled\n",
    462 		    sc->sc_dev.dv_xname);
    463 
    464 	/*
    465 	 * Initialize our media structures and MII info.  We'll
    466 	 * probe the MII if we discover that we have one.
    467 	 */
    468 	sc->sc_mii.mii_ifp = ifp;
    469 	sc->sc_mii.mii_readreg = ep_mii_readreg;
    470 	sc->sc_mii.mii_writereg = ep_mii_writereg;
    471 	sc->sc_mii.mii_statchg = ep_statchg;
    472 	ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
    473 	    ep_media_status);
    474 
    475 	/*
    476 	 * Now, determine which media we have.
    477 	 */
    478 	switch (sc->ep_chipset) {
    479 	case ELINK_CHIPSET_ROADRUNNER:
    480 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    481 			ep_roadrunner_mii_enable(sc);
    482 			GO_WINDOW(0);
    483 		}
    484 		/* FALLTHROUGH */
    485 
    486 	case ELINK_CHIPSET_BOOMERANG:
    487 		/*
    488 		 * If the device has MII, probe it.  We won't be using
    489 		 * any `native' media in this case, only PHYs.  If
    490 		 * we don't, just treat the Boomerang like the Vortex.
    491 		 */
    492 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    493 			mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
    494 			    MII_PHY_ANY, MII_OFFSET_ANY, 0);
    495 			if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    496 				ifmedia_add(&sc->sc_mii.mii_media,
    497 				    IFM_ETHER|IFM_NONE, 0, NULL);
    498 				ifmedia_set(&sc->sc_mii.mii_media,
    499 				    IFM_ETHER|IFM_NONE);
    500 			} else {
    501 				ifmedia_set(&sc->sc_mii.mii_media,
    502 				    IFM_ETHER|IFM_AUTO);
    503 			}
    504 			break;
    505 		}
    506 		/* FALLTHROUGH */
    507 
    508 	case ELINK_CHIPSET_VORTEX:
    509 		ep_vortex_probemedia(sc);
    510 		break;
    511 
    512 	default:
    513 		ep_509_probemedia(sc);
    514 		break;
    515 	}
    516 
    517 	GO_WINDOW(1);		/* Window 1 is operating window */
    518 
    519 #if NRND > 0
    520 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    521 	    RND_TYPE_NET, 0);
    522 #endif
    523 
    524 	sc->tx_start_thresh = 20;	/* probably a good starting point. */
    525 
    526 	/*  Establish callback to reset card when we reboot. */
    527 	sc->sd_hook = shutdownhook_establish(epshutdown, sc);
    528 
    529 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    530 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    531 
    532 	/* The attach is successful. */
    533 	sc->sc_flags |= ELINK_FLAGS_ATTACHED;
    534 	return (0);
    535 }
    536 
    537 
    538 /*
    539  * Show interface-model-independent info from window 3
    540  * internal-configuration register.
    541  */
    542 void
    543 ep_internalconfig(sc)
    544 	struct ep_softc *sc;
    545 {
    546 	bus_space_tag_t iot = sc->sc_iot;
    547 	bus_space_handle_t ioh = sc->sc_ioh;
    548 
    549 	u_int config0;
    550 	u_int config1;
    551 
    552 	int  ram_size, ram_width, ram_speed, rom_size, ram_split;
    553 	/*
    554 	 * NVRAM buffer Rx:Tx config names for busmastering cards
    555 	 * (Demon, Vortex, and later).
    556 	 */
    557 	const char *onboard_ram_config[] = {
    558 		"5:3", "3:1", "1:1", "3:5" };
    559 
    560 	GO_WINDOW(3);
    561 	config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
    562 	config1 = (u_int)bus_space_read_2(iot, ioh,
    563 	    ELINK_W3_INTERNAL_CONFIG + 2);
    564 	GO_WINDOW(0);
    565 
    566 	ram_size  = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
    567 	ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
    568 	ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
    569 	rom_size  = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
    570 
    571 	ram_split  = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
    572 
    573 	printf("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
    574 	       sc->sc_dev.dv_xname,
    575 	       ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
    576 	       8 << ram_size,
    577 	       (ram_width) ? "word" : "byte",
    578 	       onboard_ram_config[ram_split]);
    579 }
    580 
    581 
    582 /*
    583  * Find supported media on 3c509-generation hardware that doesn't have
    584  * a "reset_options" register in window 3.
    585  * Use the config_cntrl register  in window 0 instead.
    586  * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
    587  * that implement  CONFIG_CTRL.  We don't have a good way to set the
    588  * default active mediuim; punt to ifconfig  instead.
    589  */
    590 void
    591 ep_509_probemedia(sc)
    592 	struct ep_softc *sc;
    593 {
    594 	bus_space_tag_t iot = sc->sc_iot;
    595 	bus_space_handle_t ioh = sc->sc_ioh;
    596 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    597 	u_int16_t ep_w0_config, port;
    598 	const struct ep_media *epm;
    599 	const char *sep = "", *defmedianame = NULL;
    600 	int defmedia = 0;
    601 
    602 	GO_WINDOW(0);
    603 	ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
    604 
    605 	printf("%s: ", sc->sc_dev.dv_xname);
    606 
    607 	/* Sanity check that there are any media! */
    608 	if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
    609 		printf("no media present!\n");
    610 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
    611 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
    612 		return;
    613 	}
    614 
    615 	/*
    616 	 * Get the default media from the EEPROM.
    617 	 */
    618 	port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
    619 
    620 #define	PRINT(s)	printf("%s%s", sep, s); sep = ", "
    621 
    622 	for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
    623 		if (ep_w0_config & epm->epm_mpbit) {
    624 			/*
    625 			 * This simple test works because 509 chipsets
    626 			 * don't do full-duplex.
    627 			 */
    628 			if (epm->epm_epmedia == port || defmedia == 0) {
    629 				defmedia = epm->epm_ifmedia;
    630 				defmedianame = epm->epm_name;
    631 			}
    632 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
    633 			    NULL);
    634 			PRINT(epm->epm_name);
    635 		}
    636 	}
    637 
    638 #undef PRINT
    639 
    640 #ifdef DIAGNOSTIC
    641 	if (defmedia == 0)
    642 		panic("ep_509_probemedia: impossible");
    643 #endif
    644 
    645 	printf(" (default %s)\n", defmedianame);
    646 	ifmedia_set(ifm, defmedia);
    647 }
    648 
    649 /*
    650  * Find media present on large-packet-capable elink3 devices.
    651  * Show onboard configuration of large-packet-capable elink3 devices
    652  * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
    653  * Use media and card-version info in window 3 instead.
    654  */
    655 void
    656 ep_vortex_probemedia(sc)
    657 	struct ep_softc *sc;
    658 {
    659 	bus_space_tag_t iot = sc->sc_iot;
    660 	bus_space_handle_t ioh = sc->sc_ioh;
    661 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    662 	const struct ep_media *epm;
    663 	u_int config1;
    664 	int reset_options;
    665 	int default_media;	/* 3-bit encoding of default (EEPROM) media */
    666 	int defmedia = 0;
    667 	const char *sep = "", *defmedianame = NULL;
    668 
    669 	GO_WINDOW(3);
    670 	config1 = (u_int)bus_space_read_2(iot, ioh,
    671 	    ELINK_W3_INTERNAL_CONFIG + 2);
    672 	reset_options = (int)bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
    673 	GO_WINDOW(0);
    674 
    675 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
    676 
    677 	printf("%s: ", sc->sc_dev.dv_xname);
    678 
    679 	/* Sanity check that there are any media! */
    680 	if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
    681 		printf("no media present!\n");
    682 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
    683 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
    684 		return;
    685 	}
    686 
    687 #define	PRINT(s)	printf("%s%s", sep, s); sep = ", "
    688 
    689 	for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
    690 		if (reset_options & epm->epm_mpbit) {
    691 			/*
    692 			 * Default media is a little more complicated
    693 			 * on the Vortex.  We support full-duplex which
    694 			 * uses the same reset options bit.
    695 			 *
    696 			 * XXX Check EEPROM for default to FDX?
    697 			 */
    698 			if (epm->epm_epmedia == default_media) {
    699 				if ((epm->epm_ifmedia & IFM_FDX) == 0) {
    700 					defmedia = epm->epm_ifmedia;
    701 					defmedianame = epm->epm_name;
    702 				}
    703 			} else if (defmedia == 0) {
    704 				defmedia = epm->epm_ifmedia;
    705 				defmedianame = epm->epm_name;
    706 			}
    707 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
    708 			    NULL);
    709 			PRINT(epm->epm_name);
    710 		}
    711 	}
    712 
    713 #undef PRINT
    714 
    715 #ifdef DIAGNOSTIC
    716 	if (defmedia == 0)
    717 		panic("ep_vortex_probemedia: impossible");
    718 #endif
    719 
    720 	printf(" (default %s)\n", defmedianame);
    721 	ifmedia_set(ifm, defmedia);
    722 }
    723 
    724 /*
    725  * One second timer, used to tick the MII.
    726  */
    727 void
    728 ep_tick(arg)
    729 	void *arg;
    730 {
    731 	struct ep_softc *sc = arg;
    732 	int s;
    733 
    734 #ifdef DIAGNOSTIC
    735 	if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
    736 		panic("ep_tick");
    737 #endif
    738 
    739 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
    740 		return;
    741 
    742 	s = splnet();
    743 	mii_tick(&sc->sc_mii);
    744 	splx(s);
    745 
    746 	callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
    747 }
    748 
    749 /*
    750  * Bring device up.
    751  *
    752  * The order in here seems important. Otherwise we may not receive
    753  * interrupts. ?!
    754  */
    755 int
    756 epinit(ifp)
    757 	struct ifnet *ifp;
    758 {
    759 	struct ep_softc *sc = ifp->if_softc;
    760 	bus_space_tag_t iot = sc->sc_iot;
    761 	bus_space_handle_t ioh = sc->sc_ioh;
    762 	int i, error;
    763 
    764 	if (!sc->enabled && (error = epenable(sc)) != 0)
    765 		return (error);
    766 
    767 	/* Make sure any pending reset has completed before touching board */
    768 	ep_finish_reset(iot, ioh);
    769 
    770 	/*
    771 	 * Cancel any pending I/O.
    772 	 */
    773 	epstop(ifp, 0);
    774 
    775 	if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA) {
    776 		GO_WINDOW(0);
    777 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
    778 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
    779 		    ENABLE_DRQ_IRQ);
    780 	}
    781 
    782 	if (sc->bustype == ELINK_BUS_PCMCIA) {
    783 		bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
    784 	}
    785 
    786 	GO_WINDOW(2);
    787 	for (i = 0; i < 6; i++)	/* Reload the ether_addr. */
    788 		bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
    789 		    LLADDR(ifp->if_sadl)[i]);
    790 
    791 	/*
    792 	 * Reset the station-address receive filter.
    793 	 * A bug workaround for busmastering (Vortex, Demon) cards.
    794 	 */
    795 	for (i = 0; i < 6; i++)
    796 		bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
    797 
    798 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    799 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    800 
    801 	GO_WINDOW(1);		/* Window 1 is operating window */
    802 	for (i = 0; i < 31; i++)
    803 		bus_space_read_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS));
    804 
    805 	/* Set threshold for Tx-space available interrupt. */
    806 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    807 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
    808 
    809 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
    810 		/*
    811 		 * Enable options in the PCMCIA LAN COR register, via
    812 		 * RoadRunner Window 1.
    813 		 *
    814 		 * XXX MAGIC CONSTANTS!
    815 		 */
    816 		u_int16_t cor;
    817 
    818 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
    819 
    820 		cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
    821 		if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
    822 			cor |= 0x10;
    823 		if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
    824 			cor |= 0x20;
    825 		bus_space_write_2(iot, ioh, 0, cor);
    826 
    827 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
    828 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
    829 
    830 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    831 			ep_roadrunner_mii_enable(sc);
    832 			GO_WINDOW(1);
    833 		}
    834 	}
    835 
    836 	/* Enable interrupts. */
    837 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    838 	    SET_RD_0_MASK | S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE |
    839 	    S_TX_AVAIL);
    840 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    841 	    SET_INTR_MASK | S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE |
    842 	    S_TX_AVAIL);
    843 
    844 	/*
    845 	 * Attempt to get rid of any stray interrupts that occured during
    846 	 * configuration.  On the i386 this isn't possible because one may
    847 	 * already be queued.  However, a single stray interrupt is
    848 	 * unimportant.
    849 	 */
    850 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
    851 
    852 	epsetfilter(sc);
    853 	epsetmedia(sc);
    854 
    855 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
    856 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
    857 
    858 	epmbuffill(sc);
    859 
    860 	/* Interface is now `running', with no output active. */
    861 	ifp->if_flags |= IFF_RUNNING;
    862 	ifp->if_flags &= ~IFF_OACTIVE;
    863 
    864 	if (sc->ep_flags & ELINK_FLAGS_MII) {
    865 		/* Start the one second clock. */
    866 		callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
    867 	}
    868 
    869 	/* Attempt to start output, if any. */
    870 	epstart(ifp);
    871 
    872 	return (0);
    873 }
    874 
    875 
    876 /*
    877  * Set multicast receive filter.
    878  * elink3 hardware has no selective multicast filter in hardware.
    879  * Enable reception of all multicasts and filter in software.
    880  */
    881 void
    882 epsetfilter(sc)
    883 	struct ep_softc *sc;
    884 {
    885 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    886 
    887 	GO_WINDOW(1);		/* Window 1 is operating window */
    888 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
    889 	    SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
    890 	    ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
    891 	    ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
    892 }
    893 
    894 int
    895 ep_media_change(ifp)
    896 	struct ifnet *ifp;
    897 {
    898 	struct ep_softc *sc = ifp->if_softc;
    899 
    900 	if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
    901 		epreset(sc);
    902 
    903 	return (0);
    904 }
    905 
    906 /*
    907  * Reset and enable the MII on the RoadRunner.
    908  */
    909 void
    910 ep_roadrunner_mii_enable(sc)
    911 	struct ep_softc *sc;
    912 {
    913 	bus_space_tag_t iot = sc->sc_iot;
    914 	bus_space_handle_t ioh = sc->sc_ioh;
    915 
    916 	GO_WINDOW(3);
    917 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    918 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
    919 	delay(1000);
    920 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    921 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
    922 	    ELINK_RUNNER_ENABLE_MII);
    923 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    924 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    925 	delay(1000);
    926 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    927 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
    928 }
    929 
    930 /*
    931  * Set the card to use the specified media.
    932  */
    933 void
    934 epsetmedia(sc)
    935 	struct ep_softc *sc;
    936 {
    937 	bus_space_tag_t iot = sc->sc_iot;
    938 	bus_space_handle_t ioh = sc->sc_ioh;
    939 
    940 	/* Turn everything off.  First turn off linkbeat and UTP. */
    941 	GO_WINDOW(4);
    942 	bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
    943 
    944 	/* Turn off coax */
    945 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
    946 	delay(1000);
    947 
    948 	/*
    949 	 * If the device has MII, select it, and then tell the
    950 	 * PHY which media to use.
    951 	 */
    952 	if (sc->ep_flags & ELINK_FLAGS_MII) {
    953 		int config0, config1;
    954 
    955 		GO_WINDOW(3);
    956 
    957 		if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
    958 			int resopt;
    959 
    960 			resopt = bus_space_read_2(iot, ioh,
    961 			    ELINK_W3_RESET_OPTIONS);
    962 			bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    963 			    resopt | ELINK_RUNNER_ENABLE_MII);
    964 		}
    965 
    966 		config0 = (u_int)bus_space_read_2(iot, ioh,
    967 		    ELINK_W3_INTERNAL_CONFIG);
    968 		config1 = (u_int)bus_space_read_2(iot, ioh,
    969 		    ELINK_W3_INTERNAL_CONFIG + 2);
    970 
    971 		config1 = config1 & ~CONFIG_MEDIAMASK;
    972 		config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
    973 
    974 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
    975 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
    976 		    config1);
    977 		GO_WINDOW(1);	/* back to operating window */
    978 
    979 		mii_mediachg(&sc->sc_mii);
    980 		return;
    981 	}
    982 
    983 	/*
    984 	 * Now turn on the selected media/transceiver.
    985 	 */
    986 	GO_WINDOW(4);
    987 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
    988 	case IFM_10_T:
    989 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
    990 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
    991 		break;
    992 
    993 	case IFM_10_2:
    994 		bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
    995 		DELAY(1000);	/* 50ms not enmough? */
    996 		break;
    997 
    998 	case IFM_100_TX:
    999 	case IFM_100_FX:
   1000 	case IFM_100_T4:		/* XXX check documentation */
   1001 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
   1002 		    LINKBEAT_ENABLE);
   1003 		DELAY(1000);	/* not strictly necessary? */
   1004 		break;
   1005 
   1006 	case IFM_10_5:
   1007 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
   1008 		    SQE_ENABLE);
   1009 		DELAY(1000);	/* not strictly necessary? */
   1010 		break;
   1011 
   1012 	case IFM_MANUAL:
   1013 		/*
   1014 		 * Nothing to do here; we are actually enabling the
   1015 		 * external PHY on the MII port.
   1016 		 */
   1017 		break;
   1018 
   1019 	case IFM_NONE:
   1020 		printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
   1021 		return;
   1022 
   1023 	default:
   1024 		panic("epsetmedia: impossible");
   1025 	}
   1026 
   1027 	/*
   1028 	 * Tell the chip which port to use.
   1029 	 */
   1030 	switch (sc->ep_chipset) {
   1031 	case ELINK_CHIPSET_VORTEX:
   1032 	case ELINK_CHIPSET_BOOMERANG:
   1033 	    {
   1034 		int mctl, config0, config1;
   1035 
   1036 		GO_WINDOW(3);
   1037 		config0 = (u_int)bus_space_read_2(iot, ioh,
   1038 		    ELINK_W3_INTERNAL_CONFIG);
   1039 		config1 = (u_int)bus_space_read_2(iot, ioh,
   1040 		    ELINK_W3_INTERNAL_CONFIG + 2);
   1041 
   1042 		config1 = config1 & ~CONFIG_MEDIAMASK;
   1043 		config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
   1044 		    CONFIG_MEDIAMASK_SHIFT);
   1045 
   1046 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
   1047 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
   1048 		    config1);
   1049 
   1050 		mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
   1051 		if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
   1052 			mctl |= MAC_CONTROL_FDX;
   1053 		else
   1054 			mctl &= ~MAC_CONTROL_FDX;
   1055 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
   1056 		break;
   1057 	    }
   1058 	default:
   1059 	    {
   1060 		int w0_addr_cfg;
   1061 
   1062 		GO_WINDOW(0);
   1063 		w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
   1064 		w0_addr_cfg &= 0x3fff;
   1065 		bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
   1066 		    (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
   1067 		DELAY(1000);
   1068 		break;
   1069 	    }
   1070 	}
   1071 
   1072 	GO_WINDOW(1);		/* Window 1 is operating window */
   1073 }
   1074 
   1075 /*
   1076  * Get currently-selected media from card.
   1077  * (if_media callback, may be called before interface is brought up).
   1078  */
   1079 void
   1080 ep_media_status(ifp, req)
   1081 	struct ifnet *ifp;
   1082 	struct ifmediareq *req;
   1083 {
   1084 	struct ep_softc *sc = ifp->if_softc;
   1085 	bus_space_tag_t iot = sc->sc_iot;
   1086 	bus_space_handle_t ioh = sc->sc_ioh;
   1087 
   1088 	if (sc->enabled == 0) {
   1089 		req->ifm_active = IFM_ETHER|IFM_NONE;
   1090 		req->ifm_status = 0;
   1091 		return;
   1092 	}
   1093 
   1094 	/*
   1095 	 * If we have MII, go ask the PHY what's going on.
   1096 	 */
   1097 	if (sc->ep_flags & ELINK_FLAGS_MII) {
   1098 		mii_pollstat(&sc->sc_mii);
   1099 		req->ifm_active = sc->sc_mii.mii_media_active;
   1100 		req->ifm_status = sc->sc_mii.mii_media_status;
   1101 		return;
   1102 	}
   1103 
   1104 	/*
   1105 	 * Ok, at this point we claim that our active media is
   1106 	 * the currently selected media.  We'll update our status
   1107 	 * if our chipset allows us to detect link.
   1108 	 */
   1109 	req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   1110 	req->ifm_status = 0;
   1111 
   1112 	switch (sc->ep_chipset) {
   1113 	case ELINK_CHIPSET_VORTEX:
   1114 	case ELINK_CHIPSET_BOOMERANG:
   1115 		GO_WINDOW(4);
   1116 		req->ifm_status = IFM_AVALID;
   1117 		if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
   1118 		    LINKBEAT_DETECT)
   1119 			req->ifm_status |= IFM_ACTIVE;
   1120 		GO_WINDOW(1);	/* back to operating window */
   1121 		break;
   1122 	}
   1123 }
   1124 
   1125 
   1126 
   1127 /*
   1128  * Start outputting on the interface.
   1129  * Always called as splnet().
   1130  */
   1131 void
   1132 epstart(ifp)
   1133 	struct ifnet *ifp;
   1134 {
   1135 	struct ep_softc *sc = ifp->if_softc;
   1136 	bus_space_tag_t iot = sc->sc_iot;
   1137 	bus_space_handle_t ioh = sc->sc_ioh;
   1138 	struct mbuf *m, *m0;
   1139 	int sh, len, pad;
   1140 	bus_addr_t txreg;
   1141 
   1142 	/* Don't transmit if interface is busy or not running */
   1143 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1144 		return;
   1145 
   1146 startagain:
   1147 	/* Sneak a peek at the next packet */
   1148 	IFQ_POLL(&ifp->if_snd, m0);
   1149 	if (m0 == 0)
   1150 		return;
   1151 
   1152 	/* We need to use m->m_pkthdr.len, so require the header */
   1153 	if ((m0->m_flags & M_PKTHDR) == 0)
   1154 		panic("epstart: no header mbuf");
   1155 	len = m0->m_pkthdr.len;
   1156 
   1157 	pad = (4 - len) & 3;
   1158 
   1159 	/*
   1160 	 * The 3c509 automatically pads short packets to minimum ethernet
   1161 	 * length, but we drop packets that are too large. Perhaps we should
   1162 	 * truncate them instead?
   1163 	 */
   1164 	if (len + pad > ETHER_MAX_LEN) {
   1165 		/* packet is obviously too large: toss it */
   1166 		++ifp->if_oerrors;
   1167 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1168 		m_freem(m0);
   1169 		goto readcheck;
   1170 	}
   1171 
   1172 	if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
   1173 	    len + pad + 4) {
   1174 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
   1175 		    SET_TX_AVAIL_THRESH |
   1176 		    ((len + pad + 4) >> sc->ep_pktlenshift));
   1177 		/* not enough room in FIFO */
   1178 		ifp->if_flags |= IFF_OACTIVE;
   1179 		return;
   1180 	} else {
   1181 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
   1182 		    SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
   1183 	}
   1184 
   1185 	IFQ_DEQUEUE(&ifp->if_snd, m0);
   1186 	if (m0 == 0)		/* not really needed */
   1187 		return;
   1188 
   1189 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
   1190 	    ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
   1191 
   1192 #if NBPFILTER > 0
   1193 	if (ifp->if_bpf)
   1194 		bpf_mtap(ifp->if_bpf, m0);
   1195 #endif
   1196 
   1197 	/*
   1198 	 * Do the output at a high interrupt priority level so that an
   1199 	 * interrupt from another device won't cause a FIFO underrun.
   1200 	 * We choose splsched() since that blocks essentially everything
   1201 	 * except for interrupts from serial devices (which typically
   1202 	 * lose data if their interrupt isn't serviced fast enough).
   1203 	 *
   1204 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
   1205 	 */
   1206 	sh = splsched();
   1207 
   1208 	txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
   1209 
   1210 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
   1211 		/*
   1212 		 * Prime the FIFO buffer counter (number of 16-bit
   1213 		 * words about to be written to the FIFO).
   1214 		 *
   1215 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
   1216 		 * COUNTER IS NON-ZERO!
   1217 		 */
   1218 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
   1219 		    (len + pad) >> 1);
   1220 	}
   1221 
   1222 	bus_space_write_2(iot, ioh, txreg, len);
   1223 	bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
   1224 	if (ELINK_IS_BUS_32(sc->bustype)) {
   1225 		for (m = m0; m;) {
   1226 			if (m->m_len > 3)  {
   1227 				/* align our reads from core */
   1228 				if (mtod(m, u_long) & 3)  {
   1229 					u_long count =
   1230 					    4 - (mtod(m, u_long) & 3);
   1231 					bus_space_write_multi_1(iot, ioh,
   1232 					    txreg, mtod(m, u_int8_t *), count);
   1233 					m->m_data =
   1234 					    (void *)(mtod(m, u_long) + count);
   1235 					m->m_len -= count;
   1236 				}
   1237 				bus_space_write_multi_stream_4(iot, ioh,
   1238 				    txreg, mtod(m, u_int32_t *), m->m_len >> 2);
   1239 				m->m_data = (void *)(mtod(m, u_long) +
   1240 					(u_long)(m->m_len & ~3));
   1241 				m->m_len -= m->m_len & ~3;
   1242 			}
   1243 			if (m->m_len)  {
   1244 				bus_space_write_multi_1(iot, ioh,
   1245 				    txreg, mtod(m, u_int8_t *), m->m_len);
   1246 			}
   1247 			MFREE(m, m0);
   1248 			m = m0;
   1249 		}
   1250 	} else {
   1251 		for (m = m0; m;) {
   1252 			if (m->m_len > 1)  {
   1253 				if (mtod(m, u_long) & 1)  {
   1254 					bus_space_write_1(iot, ioh,
   1255 					    txreg, *(mtod(m, u_int8_t *)));
   1256 					m->m_data =
   1257 					    (void *)(mtod(m, u_long) + 1);
   1258 					m->m_len -= 1;
   1259 				}
   1260 				bus_space_write_multi_stream_2(iot, ioh,
   1261 				    txreg, mtod(m, u_int16_t *),
   1262 				    m->m_len >> 1);
   1263 			}
   1264 			if (m->m_len & 1)  {
   1265 				bus_space_write_1(iot, ioh, txreg,
   1266 				     *(mtod(m, u_int8_t *) + m->m_len - 1));
   1267 			}
   1268 			MFREE(m, m0);
   1269 			m = m0;
   1270 		}
   1271 	}
   1272 	while (pad--)
   1273 		bus_space_write_1(iot, ioh, txreg, 0);
   1274 
   1275 	splx(sh);
   1276 
   1277 	++ifp->if_opackets;
   1278 
   1279 readcheck:
   1280 	if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
   1281 	    ERR_INCOMPLETE) == 0) {
   1282 		/* We received a complete packet. */
   1283 		u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1284 
   1285 		if ((status & S_INTR_LATCH) == 0) {
   1286 			/*
   1287 			 * No interrupt, read the packet and continue
   1288 			 * Is  this supposed to happen? Is my motherboard
   1289 			 * completely busted?
   1290 			 */
   1291 			epread(sc);
   1292 		} else {
   1293 			/* Got an interrupt, return so that it gets serviced. */
   1294 			return;
   1295 		}
   1296 	} else {
   1297 		/* Check if we are stuck and reset [see XXX comment] */
   1298 		if (epstatus(sc)) {
   1299 			if (ifp->if_flags & IFF_DEBUG)
   1300 				printf("%s: adapter reset\n",
   1301 				    sc->sc_dev.dv_xname);
   1302 			epreset(sc);
   1303 		}
   1304 	}
   1305 
   1306 	goto startagain;
   1307 }
   1308 
   1309 
   1310 /*
   1311  * XXX: The 3c509 card can get in a mode where both the fifo status bit
   1312  *	FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
   1313  *	We detect this situation and we reset the adapter.
   1314  *	It happens at times when there is a lot of broadcast traffic
   1315  *	on the cable (once in a blue moon).
   1316  */
   1317 static int
   1318 epstatus(sc)
   1319 	struct ep_softc *sc;
   1320 {
   1321 	bus_space_tag_t iot = sc->sc_iot;
   1322 	bus_space_handle_t ioh = sc->sc_ioh;
   1323 	u_int16_t fifost;
   1324 
   1325 	/*
   1326 	 * Check the FIFO status and act accordingly
   1327 	 */
   1328 	GO_WINDOW(4);
   1329 	fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
   1330 	GO_WINDOW(1);
   1331 
   1332 	if (fifost & FIFOS_RX_UNDERRUN) {
   1333 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1334 			printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
   1335 		epreset(sc);
   1336 		return 0;
   1337 	}
   1338 
   1339 	if (fifost & FIFOS_RX_STATUS_OVERRUN) {
   1340 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1341 			printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
   1342 		return 1;
   1343 	}
   1344 
   1345 	if (fifost & FIFOS_RX_OVERRUN) {
   1346 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1347 			printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
   1348 		return 1;
   1349 	}
   1350 
   1351 	if (fifost & FIFOS_TX_OVERRUN) {
   1352 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1353 			printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
   1354 		epreset(sc);
   1355 		return 0;
   1356 	}
   1357 
   1358 	return 0;
   1359 }
   1360 
   1361 
   1362 static void
   1363 eptxstat(sc)
   1364 	struct ep_softc *sc;
   1365 {
   1366 	bus_space_tag_t iot = sc->sc_iot;
   1367 	bus_space_handle_t ioh = sc->sc_ioh;
   1368 	int i;
   1369 
   1370 	/*
   1371 	 * We need to read+write TX_STATUS until we get a 0 status
   1372 	 * in order to turn off the interrupt flag.
   1373 	 */
   1374 	while ((i = bus_space_read_1(iot, ioh,
   1375 	     ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
   1376 		bus_space_write_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
   1377 		    0x0);
   1378 
   1379 		if (i & TXS_JABBER) {
   1380 			++sc->sc_ethercom.ec_if.if_oerrors;
   1381 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1382 				printf("%s: jabber (%x)\n",
   1383 				       sc->sc_dev.dv_xname, i);
   1384 			epreset(sc);
   1385 		} else if (i & TXS_UNDERRUN) {
   1386 			++sc->sc_ethercom.ec_if.if_oerrors;
   1387 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1388 				printf("%s: fifo underrun (%x) @%d\n",
   1389 				       sc->sc_dev.dv_xname, i,
   1390 				       sc->tx_start_thresh);
   1391 			if (sc->tx_succ_ok < 100)
   1392 				    sc->tx_start_thresh = min(ETHER_MAX_LEN,
   1393 					    sc->tx_start_thresh + 20);
   1394 			sc->tx_succ_ok = 0;
   1395 			epreset(sc);
   1396 		} else if (i & TXS_MAX_COLLISION) {
   1397 			++sc->sc_ethercom.ec_if.if_collisions;
   1398 			bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
   1399 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
   1400 		} else
   1401 			sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
   1402 	}
   1403 }
   1404 
   1405 int
   1406 epintr(arg)
   1407 	void *arg;
   1408 {
   1409 	struct ep_softc *sc = arg;
   1410 	bus_space_tag_t iot = sc->sc_iot;
   1411 	bus_space_handle_t ioh = sc->sc_ioh;
   1412 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1413 	u_int16_t status;
   1414 	int ret = 0;
   1415 	int addrandom = 0;
   1416 
   1417 	if (sc->enabled == 0 ||
   1418 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   1419 		return (0);
   1420 
   1421 	for (;;) {
   1422 		bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
   1423 
   1424 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1425 
   1426 		if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
   1427 			       S_RX_COMPLETE | S_CARD_FAILURE)) == 0) {
   1428 			if ((status & S_INTR_LATCH) == 0) {
   1429 #if 0
   1430 				printf("%s: intr latch cleared %d\n",
   1431 				       sc->sc_dev.dv_xname, status);
   1432 #endif
   1433 				break;
   1434 			}
   1435 		}
   1436 
   1437 		ret = 1;
   1438 
   1439 		/*
   1440 		 * Acknowledge any interrupts.  It's important that we do this
   1441 		 * first, since there would otherwise be a race condition.
   1442 		 * Due to the i386 interrupt queueing, we may get spurious
   1443 		 * interrupts occasionally.
   1444 		 */
   1445 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
   1446 				  (status & (C_INTR_LATCH |
   1447 					     C_CARD_FAILURE |
   1448 					     C_TX_COMPLETE |
   1449 					     C_TX_AVAIL |
   1450 					     C_RX_COMPLETE |
   1451 					     C_RX_EARLY |
   1452 					     C_INT_RQD |
   1453 					     C_UPD_STATS)));
   1454 
   1455 #if 0
   1456 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1457 
   1458 		printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
   1459 		       (status & S_RX_COMPLETE)?" RX_COMPLETE":"",
   1460 		       (status & S_TX_COMPLETE)?" TX_COMPLETE":"",
   1461 		       (status & S_TX_AVAIL)?" TX_AVAIL":"",
   1462 		       (status & S_CARD_FAILURE)?" CARD_FAILURE":"");
   1463 #endif
   1464 
   1465 		if (status & S_RX_COMPLETE) {
   1466 			epread(sc);
   1467 			addrandom = 1;
   1468 		}
   1469 		if (status & S_TX_AVAIL) {
   1470 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
   1471 			epstart(&sc->sc_ethercom.ec_if);
   1472 			addrandom = 1;
   1473 		}
   1474 		if (status & S_CARD_FAILURE) {
   1475 			printf("%s: adapter failure (%x)\n",
   1476 			    sc->sc_dev.dv_xname, status);
   1477 #if 1
   1478 			epinit(ifp);
   1479 #else
   1480 			epreset(sc);
   1481 #endif
   1482 			return (1);
   1483 		}
   1484 		if (status & S_TX_COMPLETE) {
   1485 			eptxstat(sc);
   1486 			epstart(ifp);
   1487 			addrandom = 1;
   1488 		}
   1489 
   1490 #if NRND > 0
   1491 		if (status)
   1492 			rnd_add_uint32(&sc->rnd_source, status);
   1493 #endif
   1494 	}
   1495 
   1496 	/* no more interrupts */
   1497 	return (ret);
   1498 }
   1499 
   1500 void
   1501 epread(sc)
   1502 	struct ep_softc *sc;
   1503 {
   1504 	bus_space_tag_t iot = sc->sc_iot;
   1505 	bus_space_handle_t ioh = sc->sc_ioh;
   1506 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1507 	struct mbuf *m;
   1508 	int len;
   1509 
   1510 	len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
   1511 
   1512 again:
   1513 	if (ifp->if_flags & IFF_DEBUG) {
   1514 		int err = len & ERR_MASK;
   1515 		char *s = NULL;
   1516 
   1517 		if (len & ERR_INCOMPLETE)
   1518 			s = "incomplete packet";
   1519 		else if (err == ERR_OVERRUN)
   1520 			s = "packet overrun";
   1521 		else if (err == ERR_RUNT)
   1522 			s = "runt packet";
   1523 		else if (err == ERR_ALIGNMENT)
   1524 			s = "bad alignment";
   1525 		else if (err == ERR_CRC)
   1526 			s = "bad crc";
   1527 		else if (err == ERR_OVERSIZE)
   1528 			s = "oversized packet";
   1529 		else if (err == ERR_DRIBBLE)
   1530 			s = "dribble bits";
   1531 
   1532 		if (s)
   1533 			printf("%s: %s\n", sc->sc_dev.dv_xname, s);
   1534 	}
   1535 
   1536 	if (len & ERR_INCOMPLETE)
   1537 		return;
   1538 
   1539 	if (len & ERR_RX) {
   1540 		++ifp->if_ierrors;
   1541 		goto abort;
   1542 	}
   1543 
   1544 	len &= RX_BYTES_MASK;	/* Lower 11 bits = RX bytes. */
   1545 
   1546 	/* Pull packet off interface. */
   1547 	m = epget(sc, len);
   1548 	if (m == 0) {
   1549 		ifp->if_ierrors++;
   1550 		goto abort;
   1551 	}
   1552 
   1553 	++ifp->if_ipackets;
   1554 
   1555 #if NBPFILTER > 0
   1556 	/*
   1557 	 * Check if there's a BPF listener on this interface.
   1558 	 * If so, hand off the raw packet to BPF.
   1559 	 */
   1560 	if (ifp->if_bpf)
   1561 		bpf_mtap(ifp->if_bpf, m);
   1562 #endif
   1563 
   1564 	(*ifp->if_input)(ifp, m);
   1565 
   1566 	/*
   1567 	 * In periods of high traffic we can actually receive enough
   1568 	 * packets so that the fifo overrun bit will be set at this point,
   1569 	 * even though we just read a packet. In this case we
   1570 	 * are not going to receive any more interrupts. We check for
   1571 	 * this condition and read again until the fifo is not full.
   1572 	 * We could simplify this test by not using epstatus(), but
   1573 	 * rechecking the RX_STATUS register directly. This test could
   1574 	 * result in unnecessary looping in cases where there is a new
   1575 	 * packet but the fifo is not full, but it will not fix the
   1576 	 * stuck behavior.
   1577 	 *
   1578 	 * Even with this improvement, we still get packet overrun errors
   1579 	 * which are hurting performance. Maybe when I get some more time
   1580 	 * I'll modify epread() so that it can handle RX_EARLY interrupts.
   1581 	 */
   1582 	if (epstatus(sc)) {
   1583 		len = bus_space_read_2(iot, ioh,
   1584 		    ep_w1_reg(sc, ELINK_W1_RX_STATUS));
   1585 		/* Check if we are stuck and reset [see XXX comment] */
   1586 		if (len & ERR_INCOMPLETE) {
   1587 			if (ifp->if_flags & IFF_DEBUG)
   1588 				printf("%s: adapter reset\n",
   1589 				    sc->sc_dev.dv_xname);
   1590 			epreset(sc);
   1591 			return;
   1592 		}
   1593 		goto again;
   1594 	}
   1595 
   1596 	return;
   1597 
   1598 abort:
   1599 	ep_discard_rxtop(iot, ioh);
   1600 
   1601 }
   1602 
   1603 struct mbuf *
   1604 epget(sc, totlen)
   1605 	struct ep_softc *sc;
   1606 	int totlen;
   1607 {
   1608 	bus_space_tag_t iot = sc->sc_iot;
   1609 	bus_space_handle_t ioh = sc->sc_ioh;
   1610 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1611 	struct mbuf *top, **mp, *m, *rv = NULL;
   1612 	bus_addr_t rxreg;
   1613 	int len, remaining;
   1614 	int sh;
   1615 
   1616 	m = sc->mb[sc->next_mb];
   1617 	sc->mb[sc->next_mb] = 0;
   1618 	if (m == 0) {
   1619 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1620 		if (m == 0)
   1621 			return 0;
   1622 	} else {
   1623 		/* If the queue is no longer full, refill. */
   1624 		if (sc->last_mb == sc->next_mb)
   1625 			callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
   1626 		/* Convert one of our saved mbuf's. */
   1627 		sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
   1628 		m->m_data = m->m_pktdat;
   1629 		m->m_flags = M_PKTHDR;
   1630 		bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
   1631 	}
   1632 	m->m_pkthdr.rcvif = ifp;
   1633 	m->m_pkthdr.len = totlen;
   1634 	len = MHLEN;
   1635 	top = 0;
   1636 	mp = &top;
   1637 
   1638 	/*
   1639 	 * We read the packet at a high interrupt priority level so that
   1640 	 * an interrupt from another device won't cause the card's packet
   1641 	 * buffer to overflow.  We choose splsched() since that blocks
   1642 	 * essentially everything except for interrupts from serial
   1643 	 * devices (which typically lose data of their interrupt isn't
   1644 	 * serviced fast enough).
   1645 	 *
   1646 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
   1647 	 */
   1648 	sh = splsched();
   1649 
   1650 	rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
   1651 
   1652 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
   1653 		/*
   1654 		 * Prime the FIFO buffer counter (number of 16-bit
   1655 		 * words about to be read from the FIFO).
   1656 		 *
   1657 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
   1658 		 * COUNTER IS NON-ZERO!
   1659 		 */
   1660 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
   1661 	}
   1662 
   1663 	while (totlen > 0) {
   1664 		if (top) {
   1665 			m = sc->mb[sc->next_mb];
   1666 			sc->mb[sc->next_mb] = 0;
   1667 			if (m == 0) {
   1668 				MGET(m, M_DONTWAIT, MT_DATA);
   1669 				if (m == 0) {
   1670 					m_freem(top);
   1671 					goto out;
   1672 				}
   1673 			} else {
   1674 				sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
   1675 			}
   1676 			len = MLEN;
   1677 		}
   1678 		if (totlen >= MINCLSIZE) {
   1679 			MCLGET(m, M_DONTWAIT);
   1680 			if ((m->m_flags & M_EXT) == 0) {
   1681 				m_free(m);
   1682 				m_freem(top);
   1683 				goto out;
   1684 			}
   1685 			len = MCLBYTES;
   1686 		}
   1687 		if (top == 0)  {
   1688 			/* align the struct ip header */
   1689 			caddr_t newdata = (caddr_t)
   1690 			    ALIGN(m->m_data + sizeof(struct ether_header))
   1691 			    - sizeof(struct ether_header);
   1692 			len -= newdata - m->m_data;
   1693 			m->m_data = newdata;
   1694 		}
   1695 		remaining = len = min(totlen, len);
   1696 		if (ELINK_IS_BUS_32(sc->bustype)) {
   1697 			u_long offset = mtod(m, u_long);
   1698 			/*
   1699 			 * Read bytes up to the point where we are aligned.
   1700 			 * (We can align to 4 bytes, rather than ALIGNBYTES,
   1701 			 * here because we're later reading 4-byte chunks.)
   1702 			 */
   1703 			if ((remaining > 3) && (offset & 3))  {
   1704 				int count = (4 - (offset & 3));
   1705 				bus_space_read_multi_1(iot, ioh,
   1706 				    rxreg, (u_int8_t *) offset, count);
   1707 				offset += count;
   1708 				remaining -= count;
   1709 			}
   1710 			if (remaining > 3) {
   1711 				bus_space_read_multi_stream_4(iot, ioh,
   1712 				    rxreg, (u_int32_t *) offset,
   1713 				    remaining >> 2);
   1714 				offset += remaining & ~3;
   1715 				remaining &= 3;
   1716 			}
   1717 			if (remaining)  {
   1718 				bus_space_read_multi_1(iot, ioh,
   1719 				    rxreg, (u_int8_t *) offset, remaining);
   1720 			}
   1721 		} else {
   1722 			u_long offset = mtod(m, u_long);
   1723 			if ((remaining > 1) && (offset & 1))  {
   1724 				bus_space_read_multi_1(iot, ioh,
   1725 				    rxreg, (u_int8_t *) offset, 1);
   1726 				remaining -= 1;
   1727 				offset += 1;
   1728 			}
   1729 			if (remaining > 1) {
   1730 				bus_space_read_multi_stream_2(iot, ioh,
   1731 				    rxreg, (u_int16_t *) offset,
   1732 				    remaining >> 1);
   1733 				offset += remaining & ~1;
   1734 			}
   1735 			if (remaining & 1)  {
   1736 				bus_space_read_multi_1(iot, ioh,
   1737 				    rxreg, (u_int8_t *) offset, remaining & 1);
   1738 			}
   1739 		}
   1740 		m->m_len = len;
   1741 		totlen -= len;
   1742 		*mp = m;
   1743 		mp = &m->m_next;
   1744 	}
   1745 
   1746 	rv = top;
   1747 
   1748 	ep_discard_rxtop(iot, ioh);
   1749 
   1750  out:
   1751 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
   1752 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
   1753 	splx(sh);
   1754 
   1755 	return rv;
   1756 }
   1757 
   1758 int
   1759 epioctl(ifp, cmd, data)
   1760 	struct ifnet *ifp;
   1761 	u_long cmd;
   1762 	caddr_t data;
   1763 {
   1764 	struct ep_softc *sc = ifp->if_softc;
   1765 	struct ifreq *ifr = (struct ifreq *)data;
   1766 	int s, error = 0;
   1767 
   1768 	s = splnet();
   1769 
   1770 	switch (cmd) {
   1771 
   1772 	case SIOCSIFMEDIA:
   1773 	case SIOCGIFMEDIA:
   1774 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1775 		break;
   1776 
   1777 	case SIOCADDMULTI:
   1778 	case SIOCDELMULTI:
   1779 		if (sc->enabled == 0) {
   1780 			error = EIO;
   1781 			break;
   1782 		}
   1783 
   1784 	default:
   1785 		error = ether_ioctl(ifp, cmd, data);
   1786 
   1787 		if (error == ENETRESET) {
   1788 			/*
   1789 			 * Multicast list has changed; set the hardware filter
   1790 			 * accordingly.
   1791 			 */
   1792 			epreset(sc);
   1793 			error = 0;
   1794 		}
   1795 		break;
   1796 	}
   1797 
   1798 	splx(s);
   1799 	return (error);
   1800 }
   1801 
   1802 void
   1803 epreset(sc)
   1804 	struct ep_softc *sc;
   1805 {
   1806 	int s;
   1807 
   1808 	s = splnet();
   1809 	epinit(&sc->sc_ethercom.ec_if);
   1810 	splx(s);
   1811 }
   1812 
   1813 void
   1814 epwatchdog(ifp)
   1815 	struct ifnet *ifp;
   1816 {
   1817 	struct ep_softc *sc = ifp->if_softc;
   1818 
   1819 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1820 	++sc->sc_ethercom.ec_if.if_oerrors;
   1821 
   1822 	epreset(sc);
   1823 }
   1824 
   1825 void
   1826 epstop(ifp, disable)
   1827 	struct ifnet *ifp;
   1828 	int disable;
   1829 {
   1830 	struct ep_softc *sc = ifp->if_softc;
   1831 	bus_space_tag_t iot = sc->sc_iot;
   1832 	bus_space_handle_t ioh = sc->sc_ioh;
   1833 
   1834 	if (sc->ep_flags & ELINK_FLAGS_MII) {
   1835 		/* Stop the one second clock. */
   1836 		callout_stop(&sc->sc_mbuf_callout);
   1837 
   1838 		/* Down the MII. */
   1839 		mii_down(&sc->sc_mii);
   1840 	}
   1841 
   1842 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
   1843 		/*
   1844 		 * Clear the FIFO buffer count, thus halting
   1845 		 * any currently-running transactions.
   1846 		 */
   1847 		GO_WINDOW(1);		/* sanity */
   1848 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
   1849 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
   1850 	}
   1851 
   1852 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
   1853 	ep_discard_rxtop(iot, ioh);
   1854 
   1855 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
   1856 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
   1857 
   1858 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
   1859 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
   1860 
   1861 	bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
   1862 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
   1863 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
   1864 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
   1865 
   1866 	epmbufempty(sc);
   1867 
   1868 	if (disable)
   1869 		epdisable(sc);
   1870 
   1871 	ifp->if_flags &= ~IFF_RUNNING;
   1872 }
   1873 
   1874 
   1875 /*
   1876  * Before reboots, reset card completely.
   1877  */
   1878 static void
   1879 epshutdown(arg)
   1880 	void *arg;
   1881 {
   1882 	struct ep_softc *sc = arg;
   1883 	int s = splnet();
   1884 
   1885 	if (sc->enabled) {
   1886 		epstop(&sc->sc_ethercom.ec_if, 1);
   1887 		ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
   1888 		sc->enabled = 0;
   1889 	}
   1890 	splx(s);
   1891 }
   1892 
   1893 /*
   1894  * We get eeprom data from the id_port given an offset into the
   1895  * eeprom.  Basically; after the ID_sequence is sent to all of
   1896  * the cards; they enter the ID_CMD state where they will accept
   1897  * command requests. 0x80-0xbf loads the eeprom data.  We then
   1898  * read the port 16 times and with every read; the cards check
   1899  * for contention (ie: if one card writes a 0 bit and another
   1900  * writes a 1 bit then the host sees a 0. At the end of the cycle;
   1901  * each card compares the data on the bus; if there is a difference
   1902  * then that card goes into ID_WAIT state again). In the meantime;
   1903  * one bit of data is returned in the AX register which is conveniently
   1904  * returned to us by bus_space_read_1().  Hence; we read 16 times getting one
   1905  * bit of data with each read.
   1906  *
   1907  * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
   1908  */
   1909 u_int16_t
   1910 epreadeeprom(iot, ioh, offset)
   1911 	bus_space_tag_t iot;
   1912 	bus_space_handle_t ioh;
   1913 	int offset;
   1914 {
   1915 	u_int16_t data = 0;
   1916 	int i;
   1917 
   1918 	bus_space_write_1(iot, ioh, 0, 0x80 + offset);
   1919 	delay(1000);
   1920 	for (i = 0; i < 16; i++)
   1921 		data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
   1922 	return (data);
   1923 }
   1924 
   1925 static int
   1926 epbusyeeprom(sc)
   1927 	struct ep_softc *sc;
   1928 {
   1929 	bus_space_tag_t iot = sc->sc_iot;
   1930 	bus_space_handle_t ioh = sc->sc_ioh;
   1931 	int i = 100, j;
   1932 
   1933 	if (sc->bustype == ELINK_BUS_PCMCIA) {
   1934 		delay(1000);
   1935 		return 0;
   1936 	}
   1937 
   1938 	j = 0;		/* bad GCC flow analysis */
   1939 	while (i--) {
   1940 		j = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND);
   1941 		if (j & EEPROM_BUSY)
   1942 			delay(100);
   1943 		else
   1944 			break;
   1945 	}
   1946 	if (!i) {
   1947 		printf("\n%s: eeprom failed to come ready\n",
   1948 		    sc->sc_dev.dv_xname);
   1949 		return (1);
   1950 	}
   1951 	if (j & EEPROM_TST_MODE) {
   1952 		/* XXX PnP mode? */
   1953 		printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
   1954 		return (1);
   1955 	}
   1956 	return (0);
   1957 }
   1958 
   1959 u_int16_t
   1960 ep_read_eeprom(sc, offset)
   1961 	struct ep_softc *sc;
   1962 	u_int16_t offset;
   1963 {
   1964 	u_int16_t readcmd;
   1965 
   1966 	/*
   1967 	 * RoadRunner has a larger EEPROM, so a different read command
   1968 	 * is required.
   1969 	 */
   1970 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
   1971 		readcmd = READ_EEPROM_RR;
   1972 	else
   1973 		readcmd = READ_EEPROM;
   1974 
   1975 	if (epbusyeeprom(sc))
   1976 		return (0);		/* XXX why is eeprom busy? */
   1977 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W0_EEPROM_COMMAND,
   1978 	    readcmd | offset);
   1979 	if (epbusyeeprom(sc))
   1980 		return (0);		/* XXX why is eeprom busy? */
   1981 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W0_EEPROM_DATA));
   1982 }
   1983 
   1984 void
   1985 epmbuffill(v)
   1986 	void *v;
   1987 {
   1988 	struct ep_softc *sc = v;
   1989 	struct mbuf *m;
   1990 	int s, i;
   1991 
   1992 	s = splnet();
   1993 	i = sc->last_mb;
   1994 	do {
   1995 		if (sc->mb[i] == 0) {
   1996 			MGET(m, M_DONTWAIT, MT_DATA);
   1997 			if (m == 0)
   1998 				break;
   1999 			sc->mb[i] = m;
   2000 		}
   2001 		i = (i + 1) % MAX_MBS;
   2002 	} while (i != sc->next_mb);
   2003 	sc->last_mb = i;
   2004 	/* If the queue was not filled, try again. */
   2005 	if (sc->last_mb != sc->next_mb)
   2006 		callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
   2007 	splx(s);
   2008 }
   2009 
   2010 void
   2011 epmbufempty(sc)
   2012 	struct ep_softc *sc;
   2013 {
   2014 	int s, i;
   2015 
   2016 	s = splnet();
   2017 	for (i = 0; i<MAX_MBS; i++) {
   2018 		if (sc->mb[i]) {
   2019 			m_freem(sc->mb[i]);
   2020 			sc->mb[i] = NULL;
   2021 		}
   2022 	}
   2023 	sc->last_mb = sc->next_mb = 0;
   2024 	callout_stop(&sc->sc_mbuf_callout);
   2025 	splx(s);
   2026 }
   2027 
   2028 int
   2029 epenable(sc)
   2030 	struct ep_softc *sc;
   2031 {
   2032 
   2033 	if (sc->enabled == 0 && sc->enable != NULL) {
   2034 		if ((*sc->enable)(sc) != 0) {
   2035 			printf("%s: device enable failed\n",
   2036 			    sc->sc_dev.dv_xname);
   2037 			return (EIO);
   2038 		}
   2039 	}
   2040 
   2041 	sc->enabled = 1;
   2042 	return (0);
   2043 }
   2044 
   2045 void
   2046 epdisable(sc)
   2047 	struct ep_softc *sc;
   2048 {
   2049 
   2050 	if (sc->enabled != 0 && sc->disable != NULL) {
   2051 		(*sc->disable)(sc);
   2052 		sc->enabled = 0;
   2053 	}
   2054 }
   2055 
   2056 /*
   2057  * ep_activate:
   2058  *
   2059  *	Handle device activation/deactivation requests.
   2060  */
   2061 int
   2062 ep_activate(self, act)
   2063 	struct device *self;
   2064 	enum devact act;
   2065 {
   2066 	struct ep_softc *sc = (struct ep_softc *)self;
   2067 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2068 	int error = 0, s;
   2069 
   2070 	s = splnet();
   2071 	switch (act) {
   2072 	case DVACT_ACTIVATE:
   2073 		error = EOPNOTSUPP;
   2074 		break;
   2075 
   2076 	case DVACT_DEACTIVATE:
   2077 		if (sc->ep_flags & ELINK_FLAGS_MII)
   2078 			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
   2079 			    MII_OFFSET_ANY);
   2080 		if_deactivate(ifp);
   2081 		break;
   2082 	}
   2083 	splx(s);
   2084 	return (error);
   2085 }
   2086 
   2087 /*
   2088  * ep_detach:
   2089  *
   2090  *	Detach a elink3 interface.
   2091  */
   2092 int
   2093 ep_detach(self, flags)
   2094 	struct device *self;
   2095 	int flags;
   2096 {
   2097 	struct ep_softc *sc = (struct ep_softc *)self;
   2098 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2099 
   2100 	/* Succeed now if there's no work to do. */
   2101 	if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0)
   2102 		return (0);
   2103 
   2104 	epdisable(sc);
   2105 
   2106 	callout_stop(&sc->sc_mii_callout);
   2107 	callout_stop(&sc->sc_mbuf_callout);
   2108 
   2109 	if (sc->ep_flags & ELINK_FLAGS_MII) {
   2110 		/* Detach all PHYs */
   2111 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   2112 	}
   2113 
   2114 	/* Delete all remaining media. */
   2115 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
   2116 
   2117 #if NRND > 0
   2118 	rnd_detach_source(&sc->rnd_source);
   2119 #endif
   2120 	ether_ifdetach(ifp);
   2121 	if_detach(ifp);
   2122 
   2123 	shutdownhook_disestablish(sc->sd_hook);
   2124 
   2125 	return (0);
   2126 }
   2127 
   2128 u_int32_t
   2129 ep_mii_bitbang_read(self)
   2130 	struct device *self;
   2131 {
   2132 	struct ep_softc *sc = (void *) self;
   2133 
   2134 	/* We're already in Window 4. */
   2135 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
   2136 	    ELINK_W4_BOOM_PHYSMGMT));
   2137 }
   2138 
   2139 void
   2140 ep_mii_bitbang_write(self, val)
   2141 	struct device *self;
   2142 	u_int32_t val;
   2143 {
   2144 	struct ep_softc *sc = (void *) self;
   2145 
   2146 	/* We're already in Window 4. */
   2147 	bus_space_write_2(sc->sc_iot, sc->sc_ioh,
   2148 	    ELINK_W4_BOOM_PHYSMGMT, val);
   2149 }
   2150 
   2151 int
   2152 ep_mii_readreg(self, phy, reg)
   2153 	struct device *self;
   2154 	int phy, reg;
   2155 {
   2156 	struct ep_softc *sc = (void *) self;
   2157 	int val;
   2158 
   2159 	GO_WINDOW(4);
   2160 
   2161 	val = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg);
   2162 
   2163 	GO_WINDOW(1);
   2164 
   2165 	return (val);
   2166 }
   2167 
   2168 void
   2169 ep_mii_writereg(self, phy, reg, val)
   2170 	struct device *self;
   2171 	int phy, reg, val;
   2172 {
   2173 	struct ep_softc *sc = (void *) self;
   2174 
   2175 	GO_WINDOW(4);
   2176 
   2177 	mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
   2178 
   2179 	GO_WINDOW(1);
   2180 }
   2181 
   2182 void
   2183 ep_statchg(self)
   2184 	struct device *self;
   2185 {
   2186 	struct ep_softc *sc = (struct ep_softc *)self;
   2187 	bus_space_tag_t iot = sc->sc_iot;
   2188 	bus_space_handle_t ioh = sc->sc_ioh;
   2189 	int mctl;
   2190 
   2191 	GO_WINDOW(3);
   2192 	mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
   2193 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   2194 		mctl |= MAC_CONTROL_FDX;
   2195 	else
   2196 		mctl &= ~MAC_CONTROL_FDX;
   2197 	bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
   2198 	GO_WINDOW(1);	/* back to operating window */
   2199 }
   2200