elink3.c revision 1.94 1 /* $NetBSD: elink3.c,v 1.94 2001/07/07 15:57:50 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
42 * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 * must display the following acknowledgement:
55 * This product includes software developed by Herb Peyerl.
56 * 4. The name of Herb Peyerl may not be used to endorse or promote products
57 * derived from this software without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
60 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
61 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
63 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
64 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
65 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
66 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
67 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
68 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 #include "opt_inet.h"
72 #include "opt_ns.h"
73 #include "bpfilter.h"
74 #include "rnd.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/callout.h>
79 #include <sys/kernel.h>
80 #include <sys/mbuf.h>
81 #include <sys/socket.h>
82 #include <sys/ioctl.h>
83 #include <sys/errno.h>
84 #include <sys/syslog.h>
85 #include <sys/select.h>
86 #include <sys/device.h>
87 #if NRND > 0
88 #include <sys/rnd.h>
89 #endif
90
91 #include <net/if.h>
92 #include <net/if_dl.h>
93 #include <net/if_ether.h>
94 #include <net/if_media.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/cpu.h>
102 #include <machine/bus.h>
103 #include <machine/intr.h>
104
105 #include <dev/mii/mii.h>
106 #include <dev/mii/miivar.h>
107 #include <dev/mii/mii_bitbang.h>
108
109 #include <dev/ic/elink3var.h>
110 #include <dev/ic/elink3reg.h>
111
112 #ifdef DEBUG
113 int epdebug = 0;
114 #endif
115
116 /*
117 * XXX endian workaround for big-endian CPUs with pcmcia:
118 * if stream methods for bus_space_multi are not provided, define them
119 * using non-stream bus_space_{read,write}_multi_.
120 * Assumes host CPU is same endian-ness as bus.
121 */
122 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
123 #define bus_space_read_multi_stream_2 bus_space_read_multi_2
124 #define bus_space_read_multi_stream_4 bus_space_read_multi_4
125 #define bus_space_write_multi_stream_2 bus_space_write_multi_2
126 #define bus_space_write_multi_stream_4 bus_space_write_multi_4
127 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
128
129 /*
130 * Structure to map media-present bits in boards to ifmedia codes and
131 * printable media names. Used for table-driven ifmedia initialization.
132 */
133 struct ep_media {
134 int epm_mpbit; /* media present bit */
135 const char *epm_name; /* name of medium */
136 int epm_ifmedia; /* ifmedia word for medium */
137 int epm_epmedia; /* ELINKMEDIA_* constant */
138 };
139
140 /*
141 * Media table for the Demon/Vortex/Boomerang chipsets.
142 *
143 * Note that MII on the Demon and Vortex (3c59x) indicates an external
144 * MII connector (for connecting an external PHY) ... I think. Treat
145 * it as `manual' on these chips.
146 *
147 * Any Boomerang (3c90x) chips with MII really do have an internal
148 * MII and real PHYs attached; no `native' media.
149 */
150 const struct ep_media ep_vortex_media[] = {
151 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
152 ELINKMEDIA_10BASE_T },
153 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
154 ELINKMEDIA_10BASE_T },
155 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
156 ELINKMEDIA_AUI },
157 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
158 ELINKMEDIA_10BASE_2 },
159 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
160 ELINKMEDIA_100BASE_TX },
161 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
162 ELINKMEDIA_100BASE_TX },
163 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
164 ELINKMEDIA_100BASE_FX },
165 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
166 ELINKMEDIA_MII },
167 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
168 ELINKMEDIA_100BASE_T4 },
169 { 0, NULL, 0,
170 0 },
171 };
172
173 /*
174 * Media table for the older 3Com Etherlink III chipset, used
175 * in the 3c509, 3c579, and 3c589.
176 */
177 const struct ep_media ep_509_media[] = {
178 { ELINK_W0_CC_UTP, "10baseT", IFM_ETHER|IFM_10_T,
179 ELINKMEDIA_10BASE_T },
180 { ELINK_W0_CC_AUI, "10base5", IFM_ETHER|IFM_10_5,
181 ELINKMEDIA_AUI },
182 { ELINK_W0_CC_BNC, "10base2", IFM_ETHER|IFM_10_2,
183 ELINKMEDIA_10BASE_2 },
184 { 0, NULL, 0,
185 0 },
186 };
187
188 void ep_internalconfig __P((struct ep_softc *sc));
189 void ep_vortex_probemedia __P((struct ep_softc *sc));
190 void ep_509_probemedia __P((struct ep_softc *sc));
191
192 static void eptxstat __P((struct ep_softc *));
193 static int epstatus __P((struct ep_softc *));
194 int epinit __P((struct ifnet *));
195 void epstop __P((struct ifnet *, int));
196 int epioctl __P((struct ifnet *, u_long, caddr_t));
197 void epstart __P((struct ifnet *));
198 void epwatchdog __P((struct ifnet *));
199 void epreset __P((struct ep_softc *));
200 static void epshutdown __P((void *));
201 void epread __P((struct ep_softc *));
202 struct mbuf *epget __P((struct ep_softc *, int));
203 void epmbuffill __P((void *));
204 void epmbufempty __P((struct ep_softc *));
205 void epsetfilter __P((struct ep_softc *));
206 void ep_roadrunner_mii_enable __P((struct ep_softc *));
207 void epsetmedia __P((struct ep_softc *));
208
209 /* ifmedia callbacks */
210 int ep_media_change __P((struct ifnet *ifp));
211 void ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
212
213 /* MII callbacks */
214 int ep_mii_readreg __P((struct device *, int, int));
215 void ep_mii_writereg __P((struct device *, int, int, int));
216 void ep_statchg __P((struct device *));
217
218 void ep_tick __P((void *));
219
220 static int epbusyeeprom __P((struct ep_softc *));
221 u_int16_t ep_read_eeprom __P((struct ep_softc *, u_int16_t));
222 static inline void ep_reset_cmd __P((struct ep_softc *sc,
223 u_int cmd, u_int arg));
224 static inline void ep_finish_reset __P((bus_space_tag_t, bus_space_handle_t));
225 static inline void ep_discard_rxtop __P((bus_space_tag_t, bus_space_handle_t));
226 static __inline int ep_w1_reg __P((struct ep_softc *, int));
227
228 /*
229 * MII bit-bang glue.
230 */
231 u_int32_t ep_mii_bitbang_read __P((struct device *));
232 void ep_mii_bitbang_write __P((struct device *, u_int32_t));
233
234 const struct mii_bitbang_ops ep_mii_bitbang_ops = {
235 ep_mii_bitbang_read,
236 ep_mii_bitbang_write,
237 {
238 PHYSMGMT_DATA, /* MII_BIT_MDO */
239 PHYSMGMT_DATA, /* MII_BIT_MDI */
240 PHYSMGMT_CLK, /* MII_BIT_MDC */
241 PHYSMGMT_DIR, /* MII_BIT_DIR_HOST_PHY */
242 0, /* MII_BIT_DIR_PHY_HOST */
243 }
244 };
245
246 /*
247 * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
248 * Window 1 registers offset!
249 */
250 static __inline int
251 ep_w1_reg(sc, reg)
252 struct ep_softc *sc;
253 int reg;
254 {
255
256 switch (sc->ep_chipset) {
257 case ELINK_CHIPSET_CORKSCREW:
258 return (reg + 0x10);
259
260 case ELINK_CHIPSET_ROADRUNNER:
261 switch (reg) {
262 case ELINK_W1_FREE_TX:
263 case ELINK_W1_RUNNER_RDCTL:
264 case ELINK_W1_RUNNER_WRCTL:
265 return (reg);
266 }
267 return (reg + 0x10);
268 }
269
270 return (reg);
271 }
272
273 /*
274 * Wait for any pending reset to complete.
275 * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
276 * but older hardware doesn't implement it and we must delay.
277 */
278 static inline void
279 ep_finish_reset(iot, ioh)
280 bus_space_tag_t iot;
281 bus_space_handle_t ioh;
282 {
283 int i;
284
285 for (i = 0; i < 10000; i++) {
286 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
287 S_COMMAND_IN_PROGRESS) == 0)
288 break;
289 DELAY(10);
290 }
291 }
292
293 /*
294 * Issue a (reset) command, and be sure it has completed.
295 * Used for global reset, TX_RESET, RX_RESET.
296 */
297 static inline void
298 ep_reset_cmd(sc, cmd, arg)
299 struct ep_softc *sc;
300 u_int cmd, arg;
301 {
302 bus_space_tag_t iot = sc->sc_iot;
303 bus_space_handle_t ioh = sc->sc_ioh;
304
305 bus_space_write_2(iot, ioh, cmd, arg);
306 ep_finish_reset(iot, ioh);
307 }
308
309
310 static inline void
311 ep_discard_rxtop(iot, ioh)
312 bus_space_tag_t iot;
313 bus_space_handle_t ioh;
314 {
315 int i;
316
317 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
318
319 /*
320 * Spin for about 1 msec, to avoid forcing a DELAY() between
321 * every received packet (adding latency and limiting pkt-recv rate).
322 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
323 * is about right.
324 */
325 for (i = 0; i < 8000; i++) {
326 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
327 S_COMMAND_IN_PROGRESS) == 0)
328 return;
329 }
330
331 /* Didn't complete in a hurry. Do DELAY()s. */
332 ep_finish_reset(iot, ioh);
333 }
334
335 /*
336 * Back-end attach and configure.
337 */
338 int
339 epconfig(sc, chipset, enaddr)
340 struct ep_softc *sc;
341 u_short chipset;
342 u_int8_t *enaddr;
343 {
344 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
345 bus_space_tag_t iot = sc->sc_iot;
346 bus_space_handle_t ioh = sc->sc_ioh;
347 u_int16_t i;
348 u_int8_t myla[ETHER_ADDR_LEN];
349
350 callout_init(&sc->sc_mii_callout);
351 callout_init(&sc->sc_mbuf_callout);
352
353 sc->ep_chipset = chipset;
354
355 /*
356 * We could have been groveling around in other register
357 * windows in the front-end; make sure we're in window 0
358 * to read the EEPROM.
359 */
360 GO_WINDOW(0);
361
362 if (enaddr == NULL) {
363 /*
364 * Read the station address from the eeprom.
365 */
366 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
367 u_int16_t x = ep_read_eeprom(sc, i);
368 myla[(i << 1)] = x >> 8;
369 myla[(i << 1) + 1] = x;
370 }
371 enaddr = myla;
372 }
373
374 /*
375 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
376 * allow FDDI-sized (4500) byte packets. Commands only take an
377 * 11-bit parameter, and 11 bits isn't enough to hold a full-size
378 * packet length.
379 * Commands to these cards implicitly upshift a packet size
380 * or threshold by 2 bits.
381 * To detect cards with large-packet support, we probe by setting
382 * the transmit threshold register, then change windows and
383 * read back the threshold register directly, and see if the
384 * threshold value was shifted or not.
385 */
386 bus_space_write_2(iot, ioh, ELINK_COMMAND,
387 SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
388 GO_WINDOW(5);
389 i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
390 GO_WINDOW(1);
391 switch (i) {
392 case ELINK_LARGEWIN_PROBE:
393 case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
394 sc->ep_pktlenshift = 0;
395 break;
396
397 case (ELINK_LARGEWIN_PROBE << 2):
398 sc->ep_pktlenshift = 2;
399 break;
400
401 default:
402 printf("%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
403 "Interface disabled\n",
404 sc->sc_dev.dv_xname, ELINK_LARGEWIN_PROBE, (int) i);
405 return (1);
406 }
407
408 /*
409 * Ensure Tx-available interrupts are enabled for
410 * start the interface.
411 * XXX should be in epinit()?
412 */
413 bus_space_write_2(iot, ioh, ELINK_COMMAND,
414 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
415
416 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
417 ifp->if_softc = sc;
418 ifp->if_start = epstart;
419 ifp->if_ioctl = epioctl;
420 ifp->if_watchdog = epwatchdog;
421 ifp->if_init = epinit;
422 ifp->if_stop = epstop;
423 ifp->if_flags =
424 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
425 IFQ_SET_READY(&ifp->if_snd);
426
427 if_attach(ifp);
428 ether_ifattach(ifp, enaddr);
429
430 /*
431 * Finish configuration:
432 * determine chipset if the front-end couldn't do so,
433 * show board details, set media.
434 */
435
436 /*
437 * Print RAM size. We also print the Ethernet address in here.
438 * It's extracted from the ifp, so we have to make sure it's
439 * been attached first.
440 */
441 ep_internalconfig(sc);
442 GO_WINDOW(0);
443
444 /*
445 * Display some additional information, if pertinent.
446 */
447 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
448 printf("%s: RoadRunner FIFO buffer enabled\n",
449 sc->sc_dev.dv_xname);
450
451 /*
452 * Initialize our media structures and MII info. We'll
453 * probe the MII if we discover that we have one.
454 */
455 sc->sc_mii.mii_ifp = ifp;
456 sc->sc_mii.mii_readreg = ep_mii_readreg;
457 sc->sc_mii.mii_writereg = ep_mii_writereg;
458 sc->sc_mii.mii_statchg = ep_statchg;
459 ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
460 ep_media_status);
461
462 /*
463 * Now, determine which media we have.
464 */
465 switch (sc->ep_chipset) {
466 case ELINK_CHIPSET_ROADRUNNER:
467 if (sc->ep_flags & ELINK_FLAGS_MII) {
468 ep_roadrunner_mii_enable(sc);
469 GO_WINDOW(0);
470 }
471 /* FALLTHROUGH */
472
473 case ELINK_CHIPSET_BOOMERANG:
474 /*
475 * If the device has MII, probe it. We won't be using
476 * any `native' media in this case, only PHYs. If
477 * we don't, just treat the Boomerang like the Vortex.
478 */
479 if (sc->ep_flags & ELINK_FLAGS_MII) {
480 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
481 MII_PHY_ANY, MII_OFFSET_ANY, 0);
482 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
483 ifmedia_add(&sc->sc_mii.mii_media,
484 IFM_ETHER|IFM_NONE, 0, NULL);
485 ifmedia_set(&sc->sc_mii.mii_media,
486 IFM_ETHER|IFM_NONE);
487 } else {
488 ifmedia_set(&sc->sc_mii.mii_media,
489 IFM_ETHER|IFM_AUTO);
490 }
491 break;
492 }
493 /* FALLTHROUGH */
494
495 case ELINK_CHIPSET_VORTEX:
496 ep_vortex_probemedia(sc);
497 break;
498
499 default:
500 ep_509_probemedia(sc);
501 break;
502 }
503
504 GO_WINDOW(1); /* Window 1 is operating window */
505
506 #if NRND > 0
507 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
508 RND_TYPE_NET, 0);
509 #endif
510
511 sc->tx_start_thresh = 20; /* probably a good starting point. */
512
513 /* Establish callback to reset card when we reboot. */
514 sc->sd_hook = shutdownhook_establish(epshutdown, sc);
515
516 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
517 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
518
519 /* The attach is successful. */
520 sc->sc_flags |= ELINK_FLAGS_ATTACHED;
521 return (0);
522 }
523
524
525 /*
526 * Show interface-model-independent info from window 3
527 * internal-configuration register.
528 */
529 void
530 ep_internalconfig(sc)
531 struct ep_softc *sc;
532 {
533 bus_space_tag_t iot = sc->sc_iot;
534 bus_space_handle_t ioh = sc->sc_ioh;
535
536 u_int config0;
537 u_int config1;
538
539 int ram_size, ram_width, ram_speed, rom_size, ram_split;
540 /*
541 * NVRAM buffer Rx:Tx config names for busmastering cards
542 * (Demon, Vortex, and later).
543 */
544 const char *onboard_ram_config[] = {
545 "5:3", "3:1", "1:1", "3:5" };
546
547 GO_WINDOW(3);
548 config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
549 config1 = (u_int)bus_space_read_2(iot, ioh,
550 ELINK_W3_INTERNAL_CONFIG + 2);
551 GO_WINDOW(0);
552
553 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
554 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
555 ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
556 rom_size = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
557
558 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
559
560 printf("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
561 sc->sc_dev.dv_xname,
562 ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
563 8 << ram_size,
564 (ram_width) ? "word" : "byte",
565 onboard_ram_config[ram_split]);
566 }
567
568
569 /*
570 * Find supported media on 3c509-generation hardware that doesn't have
571 * a "reset_options" register in window 3.
572 * Use the config_cntrl register in window 0 instead.
573 * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
574 * that implement CONFIG_CTRL. We don't have a good way to set the
575 * default active medium; punt to ifconfig instead.
576 */
577 void
578 ep_509_probemedia(sc)
579 struct ep_softc *sc;
580 {
581 bus_space_tag_t iot = sc->sc_iot;
582 bus_space_handle_t ioh = sc->sc_ioh;
583 struct ifmedia *ifm = &sc->sc_mii.mii_media;
584 u_int16_t ep_w0_config, port;
585 const struct ep_media *epm;
586 const char *sep = "", *defmedianame = NULL;
587 int defmedia = 0;
588
589 GO_WINDOW(0);
590 ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
591
592 printf("%s: ", sc->sc_dev.dv_xname);
593
594 /* Sanity check that there are any media! */
595 if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
596 printf("no media present!\n");
597 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
598 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
599 return;
600 }
601
602 /*
603 * Get the default media from the EEPROM.
604 */
605 port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
606
607 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
608
609 for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
610 if (ep_w0_config & epm->epm_mpbit) {
611 /*
612 * This simple test works because 509 chipsets
613 * don't do full-duplex.
614 */
615 if (epm->epm_epmedia == port || defmedia == 0) {
616 defmedia = epm->epm_ifmedia;
617 defmedianame = epm->epm_name;
618 }
619 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
620 NULL);
621 PRINT(epm->epm_name);
622 }
623 }
624
625 #undef PRINT
626
627 #ifdef DIAGNOSTIC
628 if (defmedia == 0)
629 panic("ep_509_probemedia: impossible");
630 #endif
631
632 printf(" (default %s)\n", defmedianame);
633 ifmedia_set(ifm, defmedia);
634 }
635
636 /*
637 * Find media present on large-packet-capable elink3 devices.
638 * Show onboard configuration of large-packet-capable elink3 devices
639 * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
640 * Use media and card-version info in window 3 instead.
641 */
642 void
643 ep_vortex_probemedia(sc)
644 struct ep_softc *sc;
645 {
646 bus_space_tag_t iot = sc->sc_iot;
647 bus_space_handle_t ioh = sc->sc_ioh;
648 struct ifmedia *ifm = &sc->sc_mii.mii_media;
649 const struct ep_media *epm;
650 u_int config1;
651 int reset_options;
652 int default_media; /* 3-bit encoding of default (EEPROM) media */
653 int defmedia = 0;
654 const char *sep = "", *defmedianame = NULL;
655
656 GO_WINDOW(3);
657 config1 = (u_int)bus_space_read_2(iot, ioh,
658 ELINK_W3_INTERNAL_CONFIG + 2);
659 reset_options = (int)bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
660 GO_WINDOW(0);
661
662 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
663
664 printf("%s: ", sc->sc_dev.dv_xname);
665
666 /* Sanity check that there are any media! */
667 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
668 printf("no media present!\n");
669 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
670 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
671 return;
672 }
673
674 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
675
676 for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
677 if (reset_options & epm->epm_mpbit) {
678 /*
679 * Default media is a little more complicated
680 * on the Vortex. We support full-duplex which
681 * uses the same reset options bit.
682 *
683 * XXX Check EEPROM for default to FDX?
684 */
685 if (epm->epm_epmedia == default_media) {
686 if ((epm->epm_ifmedia & IFM_FDX) == 0) {
687 defmedia = epm->epm_ifmedia;
688 defmedianame = epm->epm_name;
689 }
690 } else if (defmedia == 0) {
691 defmedia = epm->epm_ifmedia;
692 defmedianame = epm->epm_name;
693 }
694 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
695 NULL);
696 PRINT(epm->epm_name);
697 }
698 }
699
700 #undef PRINT
701
702 #ifdef DIAGNOSTIC
703 if (defmedia == 0)
704 panic("ep_vortex_probemedia: impossible");
705 #endif
706
707 printf(" (default %s)\n", defmedianame);
708 ifmedia_set(ifm, defmedia);
709 }
710
711 /*
712 * One second timer, used to tick the MII.
713 */
714 void
715 ep_tick(arg)
716 void *arg;
717 {
718 struct ep_softc *sc = arg;
719 int s;
720
721 #ifdef DIAGNOSTIC
722 if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
723 panic("ep_tick");
724 #endif
725
726 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
727 return;
728
729 s = splnet();
730 mii_tick(&sc->sc_mii);
731 splx(s);
732
733 callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
734 }
735
736 /*
737 * Bring device up.
738 *
739 * The order in here seems important. Otherwise we may not receive
740 * interrupts. ?!
741 */
742 int
743 epinit(ifp)
744 struct ifnet *ifp;
745 {
746 struct ep_softc *sc = ifp->if_softc;
747 bus_space_tag_t iot = sc->sc_iot;
748 bus_space_handle_t ioh = sc->sc_ioh;
749 int i, error;
750
751 if (!sc->enabled && (error = epenable(sc)) != 0)
752 return (error);
753
754 /* Make sure any pending reset has completed before touching board */
755 ep_finish_reset(iot, ioh);
756
757 /*
758 * Cancel any pending I/O.
759 */
760 epstop(ifp, 0);
761
762 if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA
763 && sc->bustype != ELINK_BUS_MCA) {
764 GO_WINDOW(0);
765 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
766 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
767 ENABLE_DRQ_IRQ);
768 }
769
770 if (sc->bustype == ELINK_BUS_PCMCIA) {
771 bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
772 }
773
774 GO_WINDOW(2);
775 for (i = 0; i < 6; i++) /* Reload the ether_addr. */
776 bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
777 LLADDR(ifp->if_sadl)[i]);
778
779 /*
780 * Reset the station-address receive filter.
781 * A bug workaround for busmastering (Vortex, Demon) cards.
782 */
783 for (i = 0; i < 6; i++)
784 bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
785
786 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
787 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
788
789 GO_WINDOW(1); /* Window 1 is operating window */
790 for (i = 0; i < 31; i++)
791 bus_space_read_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS));
792
793 /* Set threshold for Tx-space available interrupt. */
794 bus_space_write_2(iot, ioh, ELINK_COMMAND,
795 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
796
797 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
798 /*
799 * Enable options in the PCMCIA LAN COR register, via
800 * RoadRunner Window 1.
801 *
802 * XXX MAGIC CONSTANTS!
803 */
804 u_int16_t cor;
805
806 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
807
808 cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
809 if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
810 cor |= 0x10;
811 if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
812 cor |= 0x20;
813 bus_space_write_2(iot, ioh, 0, cor);
814
815 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
816 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
817
818 if (sc->ep_flags & ELINK_FLAGS_MII) {
819 ep_roadrunner_mii_enable(sc);
820 GO_WINDOW(1);
821 }
822 }
823
824 /* Enable interrupts. */
825 bus_space_write_2(iot, ioh, ELINK_COMMAND,
826 SET_RD_0_MASK | S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE |
827 S_TX_AVAIL);
828 bus_space_write_2(iot, ioh, ELINK_COMMAND,
829 SET_INTR_MASK | S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE |
830 S_TX_AVAIL);
831
832 /*
833 * Attempt to get rid of any stray interrupts that occured during
834 * configuration. On the i386 this isn't possible because one may
835 * already be queued. However, a single stray interrupt is
836 * unimportant.
837 */
838 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
839
840 epsetfilter(sc);
841 epsetmedia(sc);
842
843 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
844 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
845
846 epmbuffill(sc);
847
848 /* Interface is now `running', with no output active. */
849 ifp->if_flags |= IFF_RUNNING;
850 ifp->if_flags &= ~IFF_OACTIVE;
851
852 if (sc->ep_flags & ELINK_FLAGS_MII) {
853 /* Start the one second clock. */
854 callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
855 }
856
857 /* Attempt to start output, if any. */
858 epstart(ifp);
859
860 return (0);
861 }
862
863
864 /*
865 * Set multicast receive filter.
866 * elink3 hardware has no selective multicast filter in hardware.
867 * Enable reception of all multicasts and filter in software.
868 */
869 void
870 epsetfilter(sc)
871 struct ep_softc *sc;
872 {
873 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
874
875 GO_WINDOW(1); /* Window 1 is operating window */
876 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
877 SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
878 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
879 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
880 }
881
882 int
883 ep_media_change(ifp)
884 struct ifnet *ifp;
885 {
886 struct ep_softc *sc = ifp->if_softc;
887
888 if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
889 epreset(sc);
890
891 return (0);
892 }
893
894 /*
895 * Reset and enable the MII on the RoadRunner.
896 */
897 void
898 ep_roadrunner_mii_enable(sc)
899 struct ep_softc *sc;
900 {
901 bus_space_tag_t iot = sc->sc_iot;
902 bus_space_handle_t ioh = sc->sc_ioh;
903
904 GO_WINDOW(3);
905 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
906 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
907 delay(1000);
908 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
909 ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
910 ELINK_RUNNER_ENABLE_MII);
911 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
912 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
913 delay(1000);
914 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
915 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
916 }
917
918 /*
919 * Set the card to use the specified media.
920 */
921 void
922 epsetmedia(sc)
923 struct ep_softc *sc;
924 {
925 bus_space_tag_t iot = sc->sc_iot;
926 bus_space_handle_t ioh = sc->sc_ioh;
927
928 /* Turn everything off. First turn off linkbeat and UTP. */
929 GO_WINDOW(4);
930 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
931
932 /* Turn off coax */
933 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
934 delay(1000);
935
936 /*
937 * If the device has MII, select it, and then tell the
938 * PHY which media to use.
939 */
940 if (sc->ep_flags & ELINK_FLAGS_MII) {
941 int config0, config1;
942
943 GO_WINDOW(3);
944
945 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
946 int resopt;
947
948 resopt = bus_space_read_2(iot, ioh,
949 ELINK_W3_RESET_OPTIONS);
950 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
951 resopt | ELINK_RUNNER_ENABLE_MII);
952 }
953
954 config0 = (u_int)bus_space_read_2(iot, ioh,
955 ELINK_W3_INTERNAL_CONFIG);
956 config1 = (u_int)bus_space_read_2(iot, ioh,
957 ELINK_W3_INTERNAL_CONFIG + 2);
958
959 config1 = config1 & ~CONFIG_MEDIAMASK;
960 config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
961
962 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
963 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
964 config1);
965 GO_WINDOW(1); /* back to operating window */
966
967 mii_mediachg(&sc->sc_mii);
968 return;
969 }
970
971 /*
972 * Now turn on the selected media/transceiver.
973 */
974 GO_WINDOW(4);
975 switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
976 case IFM_10_T:
977 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
978 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
979 break;
980
981 case IFM_10_2:
982 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
983 DELAY(1000); /* 50ms not enmough? */
984 break;
985
986 case IFM_100_TX:
987 case IFM_100_FX:
988 case IFM_100_T4: /* XXX check documentation */
989 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
990 LINKBEAT_ENABLE);
991 DELAY(1000); /* not strictly necessary? */
992 break;
993
994 case IFM_10_5:
995 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
996 SQE_ENABLE);
997 DELAY(1000); /* not strictly necessary? */
998 break;
999
1000 case IFM_MANUAL:
1001 /*
1002 * Nothing to do here; we are actually enabling the
1003 * external PHY on the MII port.
1004 */
1005 break;
1006
1007 case IFM_NONE:
1008 printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
1009 return;
1010
1011 default:
1012 panic("epsetmedia: impossible");
1013 }
1014
1015 /*
1016 * Tell the chip which port to use.
1017 */
1018 switch (sc->ep_chipset) {
1019 case ELINK_CHIPSET_VORTEX:
1020 case ELINK_CHIPSET_BOOMERANG:
1021 {
1022 int mctl, config0, config1;
1023
1024 GO_WINDOW(3);
1025 config0 = (u_int)bus_space_read_2(iot, ioh,
1026 ELINK_W3_INTERNAL_CONFIG);
1027 config1 = (u_int)bus_space_read_2(iot, ioh,
1028 ELINK_W3_INTERNAL_CONFIG + 2);
1029
1030 config1 = config1 & ~CONFIG_MEDIAMASK;
1031 config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
1032 CONFIG_MEDIAMASK_SHIFT);
1033
1034 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
1035 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
1036 config1);
1037
1038 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1039 if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
1040 mctl |= MAC_CONTROL_FDX;
1041 else
1042 mctl &= ~MAC_CONTROL_FDX;
1043 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1044 break;
1045 }
1046 default:
1047 {
1048 int w0_addr_cfg;
1049
1050 GO_WINDOW(0);
1051 w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
1052 w0_addr_cfg &= 0x3fff;
1053 bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
1054 (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
1055 DELAY(1000);
1056 break;
1057 }
1058 }
1059
1060 GO_WINDOW(1); /* Window 1 is operating window */
1061 }
1062
1063 /*
1064 * Get currently-selected media from card.
1065 * (if_media callback, may be called before interface is brought up).
1066 */
1067 void
1068 ep_media_status(ifp, req)
1069 struct ifnet *ifp;
1070 struct ifmediareq *req;
1071 {
1072 struct ep_softc *sc = ifp->if_softc;
1073 bus_space_tag_t iot = sc->sc_iot;
1074 bus_space_handle_t ioh = sc->sc_ioh;
1075
1076 if (sc->enabled == 0) {
1077 req->ifm_active = IFM_ETHER|IFM_NONE;
1078 req->ifm_status = 0;
1079 return;
1080 }
1081
1082 /*
1083 * If we have MII, go ask the PHY what's going on.
1084 */
1085 if (sc->ep_flags & ELINK_FLAGS_MII) {
1086 mii_pollstat(&sc->sc_mii);
1087 req->ifm_active = sc->sc_mii.mii_media_active;
1088 req->ifm_status = sc->sc_mii.mii_media_status;
1089 return;
1090 }
1091
1092 /*
1093 * Ok, at this point we claim that our active media is
1094 * the currently selected media. We'll update our status
1095 * if our chipset allows us to detect link.
1096 */
1097 req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1098 req->ifm_status = 0;
1099
1100 switch (sc->ep_chipset) {
1101 case ELINK_CHIPSET_VORTEX:
1102 case ELINK_CHIPSET_BOOMERANG:
1103 GO_WINDOW(4);
1104 req->ifm_status = IFM_AVALID;
1105 if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
1106 LINKBEAT_DETECT)
1107 req->ifm_status |= IFM_ACTIVE;
1108 GO_WINDOW(1); /* back to operating window */
1109 break;
1110 }
1111 }
1112
1113
1114
1115 /*
1116 * Start outputting on the interface.
1117 * Always called as splnet().
1118 */
1119 void
1120 epstart(ifp)
1121 struct ifnet *ifp;
1122 {
1123 struct ep_softc *sc = ifp->if_softc;
1124 bus_space_tag_t iot = sc->sc_iot;
1125 bus_space_handle_t ioh = sc->sc_ioh;
1126 struct mbuf *m, *m0;
1127 int sh, len, pad;
1128 bus_addr_t txreg;
1129
1130 /* Don't transmit if interface is busy or not running */
1131 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1132 return;
1133
1134 startagain:
1135 /* Sneak a peek at the next packet */
1136 IFQ_POLL(&ifp->if_snd, m0);
1137 if (m0 == 0)
1138 return;
1139
1140 /* We need to use m->m_pkthdr.len, so require the header */
1141 if ((m0->m_flags & M_PKTHDR) == 0)
1142 panic("epstart: no header mbuf");
1143 len = m0->m_pkthdr.len;
1144
1145 pad = (4 - len) & 3;
1146
1147 /*
1148 * The 3c509 automatically pads short packets to minimum ethernet
1149 * length, but we drop packets that are too large. Perhaps we should
1150 * truncate them instead?
1151 */
1152 if (len + pad > ETHER_MAX_LEN) {
1153 /* packet is obviously too large: toss it */
1154 ++ifp->if_oerrors;
1155 IFQ_DEQUEUE(&ifp->if_snd, m0);
1156 m_freem(m0);
1157 goto readcheck;
1158 }
1159
1160 if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
1161 len + pad + 4) {
1162 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1163 SET_TX_AVAIL_THRESH |
1164 ((len + pad + 4) >> sc->ep_pktlenshift));
1165 /* not enough room in FIFO */
1166 ifp->if_flags |= IFF_OACTIVE;
1167 return;
1168 } else {
1169 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1170 SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
1171 }
1172
1173 IFQ_DEQUEUE(&ifp->if_snd, m0);
1174 if (m0 == 0) /* not really needed */
1175 return;
1176
1177 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
1178 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
1179
1180 #if NBPFILTER > 0
1181 if (ifp->if_bpf)
1182 bpf_mtap(ifp->if_bpf, m0);
1183 #endif
1184
1185 /*
1186 * Do the output at a high interrupt priority level so that an
1187 * interrupt from another device won't cause a FIFO underrun.
1188 * We choose splsched() since that blocks essentially everything
1189 * except for interrupts from serial devices (which typically
1190 * lose data if their interrupt isn't serviced fast enough).
1191 *
1192 * XXX THIS CAN CAUSE CLOCK DRIFT!
1193 */
1194 sh = splsched();
1195
1196 txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
1197
1198 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1199 /*
1200 * Prime the FIFO buffer counter (number of 16-bit
1201 * words about to be written to the FIFO).
1202 *
1203 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1204 * COUNTER IS NON-ZERO!
1205 */
1206 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
1207 (len + pad) >> 1);
1208 }
1209
1210 bus_space_write_2(iot, ioh, txreg, len);
1211 bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1212 if (ELINK_IS_BUS_32(sc->bustype)) {
1213 for (m = m0; m;) {
1214 if (m->m_len > 3) {
1215 /* align our reads from core */
1216 if (mtod(m, u_long) & 3) {
1217 u_long count =
1218 4 - (mtod(m, u_long) & 3);
1219 bus_space_write_multi_1(iot, ioh,
1220 txreg, mtod(m, u_int8_t *), count);
1221 m->m_data =
1222 (void *)(mtod(m, u_long) + count);
1223 m->m_len -= count;
1224 }
1225 bus_space_write_multi_stream_4(iot, ioh,
1226 txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1227 m->m_data = (void *)(mtod(m, u_long) +
1228 (u_long)(m->m_len & ~3));
1229 m->m_len -= m->m_len & ~3;
1230 }
1231 if (m->m_len) {
1232 bus_space_write_multi_1(iot, ioh,
1233 txreg, mtod(m, u_int8_t *), m->m_len);
1234 }
1235 MFREE(m, m0);
1236 m = m0;
1237 }
1238 } else {
1239 for (m = m0; m;) {
1240 if (m->m_len > 1) {
1241 if (mtod(m, u_long) & 1) {
1242 bus_space_write_1(iot, ioh,
1243 txreg, *(mtod(m, u_int8_t *)));
1244 m->m_data =
1245 (void *)(mtod(m, u_long) + 1);
1246 m->m_len -= 1;
1247 }
1248 bus_space_write_multi_stream_2(iot, ioh,
1249 txreg, mtod(m, u_int16_t *),
1250 m->m_len >> 1);
1251 }
1252 if (m->m_len & 1) {
1253 bus_space_write_1(iot, ioh, txreg,
1254 *(mtod(m, u_int8_t *) + m->m_len - 1));
1255 }
1256 MFREE(m, m0);
1257 m = m0;
1258 }
1259 }
1260 while (pad--)
1261 bus_space_write_1(iot, ioh, txreg, 0);
1262
1263 splx(sh);
1264
1265 ++ifp->if_opackets;
1266
1267 readcheck:
1268 if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
1269 ERR_INCOMPLETE) == 0) {
1270 /* We received a complete packet. */
1271 u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1272
1273 if ((status & S_INTR_LATCH) == 0) {
1274 /*
1275 * No interrupt, read the packet and continue
1276 * Is this supposed to happen? Is my motherboard
1277 * completely busted?
1278 */
1279 epread(sc);
1280 } else {
1281 /* Got an interrupt, return so that it gets serviced. */
1282 return;
1283 }
1284 } else {
1285 /* Check if we are stuck and reset [see XXX comment] */
1286 if (epstatus(sc)) {
1287 if (ifp->if_flags & IFF_DEBUG)
1288 printf("%s: adapter reset\n",
1289 sc->sc_dev.dv_xname);
1290 epreset(sc);
1291 }
1292 }
1293
1294 goto startagain;
1295 }
1296
1297
1298 /*
1299 * XXX: The 3c509 card can get in a mode where both the fifo status bit
1300 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1301 * We detect this situation and we reset the adapter.
1302 * It happens at times when there is a lot of broadcast traffic
1303 * on the cable (once in a blue moon).
1304 */
1305 static int
1306 epstatus(sc)
1307 struct ep_softc *sc;
1308 {
1309 bus_space_tag_t iot = sc->sc_iot;
1310 bus_space_handle_t ioh = sc->sc_ioh;
1311 u_int16_t fifost;
1312
1313 /*
1314 * Check the FIFO status and act accordingly
1315 */
1316 GO_WINDOW(4);
1317 fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
1318 GO_WINDOW(1);
1319
1320 if (fifost & FIFOS_RX_UNDERRUN) {
1321 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1322 printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
1323 epreset(sc);
1324 return 0;
1325 }
1326
1327 if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1328 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1329 printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
1330 return 1;
1331 }
1332
1333 if (fifost & FIFOS_RX_OVERRUN) {
1334 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1335 printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
1336 return 1;
1337 }
1338
1339 if (fifost & FIFOS_TX_OVERRUN) {
1340 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1341 printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
1342 epreset(sc);
1343 return 0;
1344 }
1345
1346 return 0;
1347 }
1348
1349
1350 static void
1351 eptxstat(sc)
1352 struct ep_softc *sc;
1353 {
1354 bus_space_tag_t iot = sc->sc_iot;
1355 bus_space_handle_t ioh = sc->sc_ioh;
1356 int i;
1357
1358 /*
1359 * We need to read+write TX_STATUS until we get a 0 status
1360 * in order to turn off the interrupt flag.
1361 */
1362 while ((i = bus_space_read_1(iot, ioh,
1363 ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
1364 bus_space_write_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
1365 0x0);
1366
1367 if (i & TXS_JABBER) {
1368 ++sc->sc_ethercom.ec_if.if_oerrors;
1369 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1370 printf("%s: jabber (%x)\n",
1371 sc->sc_dev.dv_xname, i);
1372 epreset(sc);
1373 } else if (i & TXS_UNDERRUN) {
1374 ++sc->sc_ethercom.ec_if.if_oerrors;
1375 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1376 printf("%s: fifo underrun (%x) @%d\n",
1377 sc->sc_dev.dv_xname, i,
1378 sc->tx_start_thresh);
1379 if (sc->tx_succ_ok < 100)
1380 sc->tx_start_thresh = min(ETHER_MAX_LEN,
1381 sc->tx_start_thresh + 20);
1382 sc->tx_succ_ok = 0;
1383 epreset(sc);
1384 } else if (i & TXS_MAX_COLLISION) {
1385 ++sc->sc_ethercom.ec_if.if_collisions;
1386 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
1387 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1388 } else
1389 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1390 }
1391 }
1392
1393 int
1394 epintr(arg)
1395 void *arg;
1396 {
1397 struct ep_softc *sc = arg;
1398 bus_space_tag_t iot = sc->sc_iot;
1399 bus_space_handle_t ioh = sc->sc_ioh;
1400 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1401 u_int16_t status;
1402 int ret = 0;
1403
1404 if (sc->enabled == 0 ||
1405 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1406 return (0);
1407
1408 for (;;) {
1409 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1410
1411 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1412
1413 if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
1414 S_RX_COMPLETE | S_CARD_FAILURE)) == 0) {
1415 if ((status & S_INTR_LATCH) == 0) {
1416 #if 0
1417 printf("%s: intr latch cleared %d\n",
1418 sc->sc_dev.dv_xname, status);
1419 #endif
1420 break;
1421 }
1422 }
1423
1424 ret = 1;
1425
1426 /*
1427 * Acknowledge any interrupts. It's important that we do this
1428 * first, since there would otherwise be a race condition.
1429 * Due to the i386 interrupt queueing, we may get spurious
1430 * interrupts occasionally.
1431 */
1432 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1433 (status & (C_INTR_LATCH |
1434 C_CARD_FAILURE |
1435 C_TX_COMPLETE |
1436 C_TX_AVAIL |
1437 C_RX_COMPLETE |
1438 C_RX_EARLY |
1439 C_INT_RQD |
1440 C_UPD_STATS)));
1441
1442 #if 0
1443 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1444
1445 printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
1446 (status & S_RX_COMPLETE)?" RX_COMPLETE":"",
1447 (status & S_TX_COMPLETE)?" TX_COMPLETE":"",
1448 (status & S_TX_AVAIL)?" TX_AVAIL":"",
1449 (status & S_CARD_FAILURE)?" CARD_FAILURE":"");
1450 #endif
1451
1452 if (status & S_RX_COMPLETE) {
1453 epread(sc);
1454 }
1455 if (status & S_TX_AVAIL) {
1456 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1457 epstart(&sc->sc_ethercom.ec_if);
1458 }
1459 if (status & S_CARD_FAILURE) {
1460 printf("%s: adapter failure (%x)\n",
1461 sc->sc_dev.dv_xname, status);
1462 #if 1
1463 epinit(ifp);
1464 #else
1465 epreset(sc);
1466 #endif
1467 return (1);
1468 }
1469 if (status & S_TX_COMPLETE) {
1470 eptxstat(sc);
1471 epstart(ifp);
1472 }
1473
1474 #if NRND > 0
1475 if (status)
1476 rnd_add_uint32(&sc->rnd_source, status);
1477 #endif
1478 }
1479
1480 /* no more interrupts */
1481 return (ret);
1482 }
1483
1484 void
1485 epread(sc)
1486 struct ep_softc *sc;
1487 {
1488 bus_space_tag_t iot = sc->sc_iot;
1489 bus_space_handle_t ioh = sc->sc_ioh;
1490 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1491 struct mbuf *m;
1492 int len;
1493
1494 len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1495
1496 again:
1497 if (ifp->if_flags & IFF_DEBUG) {
1498 int err = len & ERR_MASK;
1499 char *s = NULL;
1500
1501 if (len & ERR_INCOMPLETE)
1502 s = "incomplete packet";
1503 else if (err == ERR_OVERRUN)
1504 s = "packet overrun";
1505 else if (err == ERR_RUNT)
1506 s = "runt packet";
1507 else if (err == ERR_ALIGNMENT)
1508 s = "bad alignment";
1509 else if (err == ERR_CRC)
1510 s = "bad crc";
1511 else if (err == ERR_OVERSIZE)
1512 s = "oversized packet";
1513 else if (err == ERR_DRIBBLE)
1514 s = "dribble bits";
1515
1516 if (s)
1517 printf("%s: %s\n", sc->sc_dev.dv_xname, s);
1518 }
1519
1520 if (len & ERR_INCOMPLETE)
1521 return;
1522
1523 if (len & ERR_RX) {
1524 ++ifp->if_ierrors;
1525 goto abort;
1526 }
1527
1528 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
1529
1530 /* Pull packet off interface. */
1531 m = epget(sc, len);
1532 if (m == 0) {
1533 ifp->if_ierrors++;
1534 goto abort;
1535 }
1536
1537 ++ifp->if_ipackets;
1538
1539 #if NBPFILTER > 0
1540 /*
1541 * Check if there's a BPF listener on this interface.
1542 * If so, hand off the raw packet to BPF.
1543 */
1544 if (ifp->if_bpf)
1545 bpf_mtap(ifp->if_bpf, m);
1546 #endif
1547
1548 (*ifp->if_input)(ifp, m);
1549
1550 /*
1551 * In periods of high traffic we can actually receive enough
1552 * packets so that the fifo overrun bit will be set at this point,
1553 * even though we just read a packet. In this case we
1554 * are not going to receive any more interrupts. We check for
1555 * this condition and read again until the fifo is not full.
1556 * We could simplify this test by not using epstatus(), but
1557 * rechecking the RX_STATUS register directly. This test could
1558 * result in unnecessary looping in cases where there is a new
1559 * packet but the fifo is not full, but it will not fix the
1560 * stuck behavior.
1561 *
1562 * Even with this improvement, we still get packet overrun errors
1563 * which are hurting performance. Maybe when I get some more time
1564 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1565 */
1566 if (epstatus(sc)) {
1567 len = bus_space_read_2(iot, ioh,
1568 ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1569 /* Check if we are stuck and reset [see XXX comment] */
1570 if (len & ERR_INCOMPLETE) {
1571 if (ifp->if_flags & IFF_DEBUG)
1572 printf("%s: adapter reset\n",
1573 sc->sc_dev.dv_xname);
1574 epreset(sc);
1575 return;
1576 }
1577 goto again;
1578 }
1579
1580 return;
1581
1582 abort:
1583 ep_discard_rxtop(iot, ioh);
1584
1585 }
1586
1587 struct mbuf *
1588 epget(sc, totlen)
1589 struct ep_softc *sc;
1590 int totlen;
1591 {
1592 bus_space_tag_t iot = sc->sc_iot;
1593 bus_space_handle_t ioh = sc->sc_ioh;
1594 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1595 struct mbuf *m;
1596 bus_addr_t rxreg;
1597 int len, remaining;
1598 int s;
1599 caddr_t newdata;
1600 u_long offset;
1601
1602 m = sc->mb[sc->next_mb];
1603 sc->mb[sc->next_mb] = 0;
1604 if (m == 0) {
1605 MGETHDR(m, M_DONTWAIT, MT_DATA);
1606 if (m == 0)
1607 return 0;
1608 } else {
1609 /* If the queue is no longer full, refill. */
1610 if (sc->last_mb == sc->next_mb)
1611 callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1612
1613 /* Convert one of our saved mbuf's. */
1614 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1615 m->m_data = m->m_pktdat;
1616 m->m_flags = M_PKTHDR;
1617 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
1618 }
1619 m->m_pkthdr.rcvif = ifp;
1620 m->m_pkthdr.len = totlen;
1621 len = MHLEN;
1622
1623 /*
1624 * Allocate big enough space to hold whole packet, to avoid
1625 * allocating new mbufs on splsched().
1626 */
1627 if (totlen + ALIGNBYTES > len) {
1628 if (totlen + ALIGNBYTES > MCLBYTES) {
1629 len = ALIGN(totlen + ALIGNBYTES);
1630 MEXTMALLOC(m, len, M_DONTWAIT);
1631 } else {
1632 len = MCLBYTES;
1633 MCLGET(m, M_DONTWAIT);
1634 }
1635 if ((m->m_flags & M_EXT) == 0) {
1636 m_free(m);
1637 return 0;
1638 }
1639 }
1640
1641 /* align the struct ip header */
1642 newdata = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
1643 - sizeof(struct ether_header);
1644 m->m_data = newdata;
1645 m->m_len = totlen;
1646
1647 rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
1648 remaining = totlen;
1649 offset = mtod(m, u_long);
1650
1651 /*
1652 * We read the packet at a high interrupt priority level so that
1653 * an interrupt from another device won't cause the card's packet
1654 * buffer to overflow. We choose splsched() since that blocks
1655 * essentially everything except for interrupts from serial
1656 * devices (which typically lose data if their interrupt isn't
1657 * serviced fast enough).
1658 *
1659 * XXX THIS CAN CAUSE CLOCK DRIFT!
1660 */
1661 s = splsched();
1662
1663 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1664 /*
1665 * Prime the FIFO buffer counter (number of 16-bit
1666 * words about to be read from the FIFO).
1667 *
1668 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1669 * COUNTER IS NON-ZERO!
1670 */
1671 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
1672 }
1673
1674 if (ELINK_IS_BUS_32(sc->bustype)) {
1675 /*
1676 * Read bytes up to the point where we are aligned.
1677 * (We can align to 4 bytes, rather than ALIGNBYTES,
1678 * here because we're later reading 4-byte chunks.)
1679 */
1680 if ((remaining > 3) && (offset & 3)) {
1681 int count = (4 - (offset & 3));
1682 bus_space_read_multi_1(iot, ioh,
1683 rxreg, (u_int8_t *) offset, count);
1684 offset += count;
1685 remaining -= count;
1686 }
1687 if (remaining > 3) {
1688 bus_space_read_multi_stream_4(iot, ioh,
1689 rxreg, (u_int32_t *) offset,
1690 remaining >> 2);
1691 offset += remaining & ~3;
1692 remaining &= 3;
1693 }
1694 if (remaining) {
1695 bus_space_read_multi_1(iot, ioh,
1696 rxreg, (u_int8_t *) offset, remaining);
1697 }
1698 } else {
1699 if ((remaining > 1) && (offset & 1)) {
1700 bus_space_read_multi_1(iot, ioh,
1701 rxreg, (u_int8_t *) offset, 1);
1702 remaining -= 1;
1703 offset += 1;
1704 }
1705 if (remaining > 1) {
1706 bus_space_read_multi_stream_2(iot, ioh,
1707 rxreg, (u_int16_t *) offset,
1708 remaining >> 1);
1709 offset += remaining & ~1;
1710 }
1711 if (remaining & 1) {
1712 bus_space_read_multi_1(iot, ioh,
1713 rxreg, (u_int8_t *) offset, remaining & 1);
1714 }
1715 }
1716
1717 ep_discard_rxtop(iot, ioh);
1718
1719 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
1720 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1721 splx(s);
1722
1723 return (m);
1724 }
1725
1726 int
1727 epioctl(ifp, cmd, data)
1728 struct ifnet *ifp;
1729 u_long cmd;
1730 caddr_t data;
1731 {
1732 struct ep_softc *sc = ifp->if_softc;
1733 struct ifreq *ifr = (struct ifreq *)data;
1734 int s, error = 0;
1735
1736 s = splnet();
1737
1738 switch (cmd) {
1739
1740 case SIOCSIFMEDIA:
1741 case SIOCGIFMEDIA:
1742 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1743 break;
1744
1745 case SIOCADDMULTI:
1746 case SIOCDELMULTI:
1747 if (sc->enabled == 0) {
1748 error = EIO;
1749 break;
1750 }
1751
1752 default:
1753 error = ether_ioctl(ifp, cmd, data);
1754
1755 if (error == ENETRESET) {
1756 /*
1757 * Multicast list has changed; set the hardware filter
1758 * accordingly.
1759 */
1760 epreset(sc);
1761 error = 0;
1762 }
1763 break;
1764 }
1765
1766 splx(s);
1767 return (error);
1768 }
1769
1770 void
1771 epreset(sc)
1772 struct ep_softc *sc;
1773 {
1774 int s;
1775
1776 s = splnet();
1777 epinit(&sc->sc_ethercom.ec_if);
1778 splx(s);
1779 }
1780
1781 void
1782 epwatchdog(ifp)
1783 struct ifnet *ifp;
1784 {
1785 struct ep_softc *sc = ifp->if_softc;
1786
1787 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1788 ++sc->sc_ethercom.ec_if.if_oerrors;
1789
1790 epreset(sc);
1791 }
1792
1793 void
1794 epstop(ifp, disable)
1795 struct ifnet *ifp;
1796 int disable;
1797 {
1798 struct ep_softc *sc = ifp->if_softc;
1799 bus_space_tag_t iot = sc->sc_iot;
1800 bus_space_handle_t ioh = sc->sc_ioh;
1801
1802 if (sc->ep_flags & ELINK_FLAGS_MII) {
1803 /* Stop the one second clock. */
1804 callout_stop(&sc->sc_mbuf_callout);
1805
1806 /* Down the MII. */
1807 mii_down(&sc->sc_mii);
1808 }
1809
1810 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
1811 /*
1812 * Clear the FIFO buffer count, thus halting
1813 * any currently-running transactions.
1814 */
1815 GO_WINDOW(1); /* sanity */
1816 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
1817 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1818 }
1819
1820 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1821 ep_discard_rxtop(iot, ioh);
1822
1823 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1824 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1825
1826 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
1827 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1828
1829 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1830 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
1831 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
1832 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
1833
1834 epmbufempty(sc);
1835
1836 if (disable)
1837 epdisable(sc);
1838
1839 ifp->if_flags &= ~IFF_RUNNING;
1840 }
1841
1842
1843 /*
1844 * Before reboots, reset card completely.
1845 */
1846 static void
1847 epshutdown(arg)
1848 void *arg;
1849 {
1850 struct ep_softc *sc = arg;
1851 int s = splnet();
1852
1853 if (sc->enabled) {
1854 epstop(&sc->sc_ethercom.ec_if, 1);
1855 ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
1856 sc->enabled = 0;
1857 }
1858 splx(s);
1859 }
1860
1861 /*
1862 * We get eeprom data from the id_port given an offset into the
1863 * eeprom. Basically; after the ID_sequence is sent to all of
1864 * the cards; they enter the ID_CMD state where they will accept
1865 * command requests. 0x80-0xbf loads the eeprom data. We then
1866 * read the port 16 times and with every read; the cards check
1867 * for contention (ie: if one card writes a 0 bit and another
1868 * writes a 1 bit then the host sees a 0. At the end of the cycle;
1869 * each card compares the data on the bus; if there is a difference
1870 * then that card goes into ID_WAIT state again). In the meantime;
1871 * one bit of data is returned in the AX register which is conveniently
1872 * returned to us by bus_space_read_1(). Hence; we read 16 times getting one
1873 * bit of data with each read.
1874 *
1875 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1876 */
1877 u_int16_t
1878 epreadeeprom(iot, ioh, offset)
1879 bus_space_tag_t iot;
1880 bus_space_handle_t ioh;
1881 int offset;
1882 {
1883 u_int16_t data = 0;
1884 int i;
1885
1886 bus_space_write_1(iot, ioh, 0, 0x80 + offset);
1887 delay(1000);
1888 for (i = 0; i < 16; i++)
1889 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1890 return (data);
1891 }
1892
1893 static int
1894 epbusyeeprom(sc)
1895 struct ep_softc *sc;
1896 {
1897 bus_space_tag_t iot = sc->sc_iot;
1898 bus_space_handle_t ioh = sc->sc_ioh;
1899 int i = 100, j;
1900
1901 if (sc->bustype == ELINK_BUS_PCMCIA) {
1902 delay(1000);
1903 return 0;
1904 }
1905
1906 j = 0; /* bad GCC flow analysis */
1907 while (i--) {
1908 j = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND);
1909 if (j & EEPROM_BUSY)
1910 delay(100);
1911 else
1912 break;
1913 }
1914 if (!i) {
1915 printf("\n%s: eeprom failed to come ready\n",
1916 sc->sc_dev.dv_xname);
1917 return (1);
1918 }
1919 if (j & EEPROM_TST_MODE) {
1920 /* XXX PnP mode? */
1921 printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
1922 return (1);
1923 }
1924 return (0);
1925 }
1926
1927 u_int16_t
1928 ep_read_eeprom(sc, offset)
1929 struct ep_softc *sc;
1930 u_int16_t offset;
1931 {
1932 u_int16_t readcmd;
1933
1934 /*
1935 * RoadRunner has a larger EEPROM, so a different read command
1936 * is required.
1937 */
1938 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
1939 readcmd = READ_EEPROM_RR;
1940 else
1941 readcmd = READ_EEPROM;
1942
1943 if (epbusyeeprom(sc))
1944 return (0); /* XXX why is eeprom busy? */
1945 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W0_EEPROM_COMMAND,
1946 readcmd | offset);
1947 if (epbusyeeprom(sc))
1948 return (0); /* XXX why is eeprom busy? */
1949 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W0_EEPROM_DATA));
1950 }
1951
1952 void
1953 epmbuffill(v)
1954 void *v;
1955 {
1956 struct ep_softc *sc = v;
1957 struct mbuf *m;
1958 int s, i;
1959
1960 s = splnet();
1961 i = sc->last_mb;
1962 do {
1963 if (sc->mb[i] == 0) {
1964 MGET(m, M_DONTWAIT, MT_DATA);
1965 if (m == 0)
1966 break;
1967 sc->mb[i] = m;
1968 }
1969 i = (i + 1) % MAX_MBS;
1970 } while (i != sc->next_mb);
1971 sc->last_mb = i;
1972 /* If the queue was not filled, try again. */
1973 if (sc->last_mb != sc->next_mb)
1974 callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1975 splx(s);
1976 }
1977
1978 void
1979 epmbufempty(sc)
1980 struct ep_softc *sc;
1981 {
1982 int s, i;
1983
1984 s = splnet();
1985 for (i = 0; i<MAX_MBS; i++) {
1986 if (sc->mb[i]) {
1987 m_freem(sc->mb[i]);
1988 sc->mb[i] = NULL;
1989 }
1990 }
1991 sc->last_mb = sc->next_mb = 0;
1992 callout_stop(&sc->sc_mbuf_callout);
1993 splx(s);
1994 }
1995
1996 int
1997 epenable(sc)
1998 struct ep_softc *sc;
1999 {
2000
2001 if (sc->enabled == 0 && sc->enable != NULL) {
2002 if ((*sc->enable)(sc) != 0) {
2003 printf("%s: device enable failed\n",
2004 sc->sc_dev.dv_xname);
2005 return (EIO);
2006 }
2007 }
2008
2009 sc->enabled = 1;
2010 return (0);
2011 }
2012
2013 void
2014 epdisable(sc)
2015 struct ep_softc *sc;
2016 {
2017
2018 if (sc->enabled != 0 && sc->disable != NULL) {
2019 (*sc->disable)(sc);
2020 sc->enabled = 0;
2021 }
2022 }
2023
2024 /*
2025 * ep_activate:
2026 *
2027 * Handle device activation/deactivation requests.
2028 */
2029 int
2030 ep_activate(self, act)
2031 struct device *self;
2032 enum devact act;
2033 {
2034 struct ep_softc *sc = (struct ep_softc *)self;
2035 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2036 int error = 0, s;
2037
2038 s = splnet();
2039 switch (act) {
2040 case DVACT_ACTIVATE:
2041 error = EOPNOTSUPP;
2042 break;
2043
2044 case DVACT_DEACTIVATE:
2045 if (sc->ep_flags & ELINK_FLAGS_MII)
2046 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2047 MII_OFFSET_ANY);
2048 if_deactivate(ifp);
2049 break;
2050 }
2051 splx(s);
2052 return (error);
2053 }
2054
2055 /*
2056 * ep_detach:
2057 *
2058 * Detach a elink3 interface.
2059 */
2060 int
2061 ep_detach(self, flags)
2062 struct device *self;
2063 int flags;
2064 {
2065 struct ep_softc *sc = (struct ep_softc *)self;
2066 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2067
2068 /* Succeed now if there's no work to do. */
2069 if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0)
2070 return (0);
2071
2072 epdisable(sc);
2073
2074 callout_stop(&sc->sc_mii_callout);
2075 callout_stop(&sc->sc_mbuf_callout);
2076
2077 if (sc->ep_flags & ELINK_FLAGS_MII) {
2078 /* Detach all PHYs */
2079 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2080 }
2081
2082 /* Delete all remaining media. */
2083 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2084
2085 #if NRND > 0
2086 rnd_detach_source(&sc->rnd_source);
2087 #endif
2088 ether_ifdetach(ifp);
2089 if_detach(ifp);
2090
2091 shutdownhook_disestablish(sc->sd_hook);
2092
2093 return (0);
2094 }
2095
2096 u_int32_t
2097 ep_mii_bitbang_read(self)
2098 struct device *self;
2099 {
2100 struct ep_softc *sc = (void *) self;
2101
2102 /* We're already in Window 4. */
2103 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
2104 ELINK_W4_BOOM_PHYSMGMT));
2105 }
2106
2107 void
2108 ep_mii_bitbang_write(self, val)
2109 struct device *self;
2110 u_int32_t val;
2111 {
2112 struct ep_softc *sc = (void *) self;
2113
2114 /* We're already in Window 4. */
2115 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
2116 ELINK_W4_BOOM_PHYSMGMT, val);
2117 }
2118
2119 int
2120 ep_mii_readreg(self, phy, reg)
2121 struct device *self;
2122 int phy, reg;
2123 {
2124 struct ep_softc *sc = (void *) self;
2125 int val;
2126
2127 GO_WINDOW(4);
2128
2129 val = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg);
2130
2131 GO_WINDOW(1);
2132
2133 return (val);
2134 }
2135
2136 void
2137 ep_mii_writereg(self, phy, reg, val)
2138 struct device *self;
2139 int phy, reg, val;
2140 {
2141 struct ep_softc *sc = (void *) self;
2142
2143 GO_WINDOW(4);
2144
2145 mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
2146
2147 GO_WINDOW(1);
2148 }
2149
2150 void
2151 ep_statchg(self)
2152 struct device *self;
2153 {
2154 struct ep_softc *sc = (struct ep_softc *)self;
2155 bus_space_tag_t iot = sc->sc_iot;
2156 bus_space_handle_t ioh = sc->sc_ioh;
2157 int mctl;
2158
2159 GO_WINDOW(3);
2160 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
2161 if (sc->sc_mii.mii_media_active & IFM_FDX)
2162 mctl |= MAC_CONTROL_FDX;
2163 else
2164 mctl &= ~MAC_CONTROL_FDX;
2165 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
2166 GO_WINDOW(1); /* back to operating window */
2167 }
2168