elink3.c revision 1.97 1 /* $NetBSD: elink3.c,v 1.97 2001/07/27 02:33:34 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
42 * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 * must display the following acknowledgement:
55 * This product includes software developed by Herb Peyerl.
56 * 4. The name of Herb Peyerl may not be used to endorse or promote products
57 * derived from this software without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
60 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
61 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
63 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
64 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
65 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
66 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
67 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
68 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 #include "opt_inet.h"
72 #include "opt_ns.h"
73 #include "bpfilter.h"
74 #include "rnd.h"
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/callout.h>
79 #include <sys/kernel.h>
80 #include <sys/mbuf.h>
81 #include <sys/socket.h>
82 #include <sys/ioctl.h>
83 #include <sys/errno.h>
84 #include <sys/syslog.h>
85 #include <sys/select.h>
86 #include <sys/device.h>
87 #if NRND > 0
88 #include <sys/rnd.h>
89 #endif
90
91 #include <net/if.h>
92 #include <net/if_dl.h>
93 #include <net/if_ether.h>
94 #include <net/if_media.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #include <net/bpfdesc.h>
99 #endif
100
101 #include <machine/cpu.h>
102 #include <machine/bus.h>
103 #include <machine/intr.h>
104
105 #include <dev/mii/mii.h>
106 #include <dev/mii/miivar.h>
107 #include <dev/mii/mii_bitbang.h>
108
109 #include <dev/ic/elink3var.h>
110 #include <dev/ic/elink3reg.h>
111
112 #ifdef DEBUG
113 int epdebug = 0;
114 #endif
115
116 /*
117 * XXX endian workaround for big-endian CPUs with pcmcia:
118 * if stream methods for bus_space_multi are not provided, define them
119 * using non-stream bus_space_{read,write}_multi_.
120 * Assumes host CPU is same endian-ness as bus.
121 */
122 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
123 #define bus_space_read_multi_stream_2 bus_space_read_multi_2
124 #define bus_space_read_multi_stream_4 bus_space_read_multi_4
125 #define bus_space_write_multi_stream_2 bus_space_write_multi_2
126 #define bus_space_write_multi_stream_4 bus_space_write_multi_4
127 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
128
129 /*
130 * Structure to map media-present bits in boards to ifmedia codes and
131 * printable media names. Used for table-driven ifmedia initialization.
132 */
133 struct ep_media {
134 int epm_mpbit; /* media present bit */
135 const char *epm_name; /* name of medium */
136 int epm_ifmedia; /* ifmedia word for medium */
137 int epm_epmedia; /* ELINKMEDIA_* constant */
138 };
139
140 /*
141 * Media table for the Demon/Vortex/Boomerang chipsets.
142 *
143 * Note that MII on the Demon and Vortex (3c59x) indicates an external
144 * MII connector (for connecting an external PHY) ... I think. Treat
145 * it as `manual' on these chips.
146 *
147 * Any Boomerang (3c90x) chips with MII really do have an internal
148 * MII and real PHYs attached; no `native' media.
149 */
150 const struct ep_media ep_vortex_media[] = {
151 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
152 ELINKMEDIA_10BASE_T },
153 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
154 ELINKMEDIA_10BASE_T },
155 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
156 ELINKMEDIA_AUI },
157 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
158 ELINKMEDIA_10BASE_2 },
159 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
160 ELINKMEDIA_100BASE_TX },
161 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
162 ELINKMEDIA_100BASE_TX },
163 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
164 ELINKMEDIA_100BASE_FX },
165 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
166 ELINKMEDIA_MII },
167 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
168 ELINKMEDIA_100BASE_T4 },
169 { 0, NULL, 0,
170 0 },
171 };
172
173 /*
174 * Media table for the older 3Com Etherlink III chipset, used
175 * in the 3c509, 3c579, and 3c589.
176 */
177 const struct ep_media ep_509_media[] = {
178 { ELINK_W0_CC_UTP, "10baseT", IFM_ETHER|IFM_10_T,
179 ELINKMEDIA_10BASE_T },
180 { ELINK_W0_CC_AUI, "10base5", IFM_ETHER|IFM_10_5,
181 ELINKMEDIA_AUI },
182 { ELINK_W0_CC_BNC, "10base2", IFM_ETHER|IFM_10_2,
183 ELINKMEDIA_10BASE_2 },
184 { 0, NULL, 0,
185 0 },
186 };
187
188 void ep_internalconfig __P((struct ep_softc *sc));
189 void ep_vortex_probemedia __P((struct ep_softc *sc));
190 void ep_509_probemedia __P((struct ep_softc *sc));
191
192 static void eptxstat __P((struct ep_softc *));
193 static int epstatus __P((struct ep_softc *));
194 int epinit __P((struct ifnet *));
195 void epstop __P((struct ifnet *, int));
196 int epioctl __P((struct ifnet *, u_long, caddr_t));
197 void epstart __P((struct ifnet *));
198 void epwatchdog __P((struct ifnet *));
199 void epreset __P((struct ep_softc *));
200 static void epshutdown __P((void *));
201 void epread __P((struct ep_softc *));
202 struct mbuf *epget __P((struct ep_softc *, int));
203 void epmbuffill __P((void *));
204 void epmbufempty __P((struct ep_softc *));
205 void epsetfilter __P((struct ep_softc *));
206 void ep_roadrunner_mii_enable __P((struct ep_softc *));
207 void epsetmedia __P((struct ep_softc *));
208
209 /* ifmedia callbacks */
210 int ep_media_change __P((struct ifnet *ifp));
211 void ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
212
213 /* MII callbacks */
214 int ep_mii_readreg __P((struct device *, int, int));
215 void ep_mii_writereg __P((struct device *, int, int, int));
216 void ep_statchg __P((struct device *));
217
218 void ep_tick __P((void *));
219
220 static int epbusyeeprom __P((struct ep_softc *));
221 u_int16_t ep_read_eeprom __P((struct ep_softc *, u_int16_t));
222 static inline void ep_reset_cmd __P((struct ep_softc *sc,
223 u_int cmd, u_int arg));
224 static inline void ep_finish_reset __P((bus_space_tag_t, bus_space_handle_t));
225 static inline void ep_discard_rxtop __P((bus_space_tag_t, bus_space_handle_t));
226 static __inline int ep_w1_reg __P((struct ep_softc *, int));
227
228 /*
229 * MII bit-bang glue.
230 */
231 u_int32_t ep_mii_bitbang_read __P((struct device *));
232 void ep_mii_bitbang_write __P((struct device *, u_int32_t));
233
234 const struct mii_bitbang_ops ep_mii_bitbang_ops = {
235 ep_mii_bitbang_read,
236 ep_mii_bitbang_write,
237 {
238 PHYSMGMT_DATA, /* MII_BIT_MDO */
239 PHYSMGMT_DATA, /* MII_BIT_MDI */
240 PHYSMGMT_CLK, /* MII_BIT_MDC */
241 PHYSMGMT_DIR, /* MII_BIT_DIR_HOST_PHY */
242 0, /* MII_BIT_DIR_PHY_HOST */
243 }
244 };
245
246 /*
247 * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
248 * Window 1 registers offset!
249 */
250 static __inline int
251 ep_w1_reg(sc, reg)
252 struct ep_softc *sc;
253 int reg;
254 {
255
256 switch (sc->ep_chipset) {
257 case ELINK_CHIPSET_CORKSCREW:
258 return (reg + 0x10);
259
260 case ELINK_CHIPSET_ROADRUNNER:
261 switch (reg) {
262 case ELINK_W1_FREE_TX:
263 case ELINK_W1_RUNNER_RDCTL:
264 case ELINK_W1_RUNNER_WRCTL:
265 return (reg);
266 }
267 return (reg + 0x10);
268 }
269
270 return (reg);
271 }
272
273 /*
274 * Wait for any pending reset to complete.
275 * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
276 * but older hardware doesn't implement it and we must delay.
277 */
278 static inline void
279 ep_finish_reset(iot, ioh)
280 bus_space_tag_t iot;
281 bus_space_handle_t ioh;
282 {
283 int i;
284
285 for (i = 0; i < 10000; i++) {
286 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
287 S_COMMAND_IN_PROGRESS) == 0)
288 break;
289 DELAY(10);
290 }
291 }
292
293 /*
294 * Issue a (reset) command, and be sure it has completed.
295 * Used for global reset, TX_RESET, RX_RESET.
296 */
297 static inline void
298 ep_reset_cmd(sc, cmd, arg)
299 struct ep_softc *sc;
300 u_int cmd, arg;
301 {
302 bus_space_tag_t iot = sc->sc_iot;
303 bus_space_handle_t ioh = sc->sc_ioh;
304
305 bus_space_write_2(iot, ioh, cmd, arg);
306 ep_finish_reset(iot, ioh);
307 }
308
309
310 static inline void
311 ep_discard_rxtop(iot, ioh)
312 bus_space_tag_t iot;
313 bus_space_handle_t ioh;
314 {
315 int i;
316
317 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
318
319 /*
320 * Spin for about 1 msec, to avoid forcing a DELAY() between
321 * every received packet (adding latency and limiting pkt-recv rate).
322 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
323 * is about right.
324 */
325 for (i = 0; i < 8000; i++) {
326 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
327 S_COMMAND_IN_PROGRESS) == 0)
328 return;
329 }
330
331 /* Didn't complete in a hurry. Do DELAY()s. */
332 ep_finish_reset(iot, ioh);
333 }
334
335 /*
336 * Back-end attach and configure.
337 */
338 int
339 epconfig(sc, chipset, enaddr)
340 struct ep_softc *sc;
341 u_short chipset;
342 u_int8_t *enaddr;
343 {
344 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
345 bus_space_tag_t iot = sc->sc_iot;
346 bus_space_handle_t ioh = sc->sc_ioh;
347 u_int16_t i;
348 u_int8_t myla[ETHER_ADDR_LEN];
349
350 callout_init(&sc->sc_mii_callout);
351 callout_init(&sc->sc_mbuf_callout);
352
353 sc->ep_chipset = chipset;
354
355 /*
356 * We could have been groveling around in other register
357 * windows in the front-end; make sure we're in window 0
358 * to read the EEPROM.
359 */
360 GO_WINDOW(0);
361
362 if (enaddr == NULL) {
363 /*
364 * Read the station address from the eeprom.
365 */
366 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
367 u_int16_t x = ep_read_eeprom(sc, i);
368 myla[(i << 1)] = x >> 8;
369 myla[(i << 1) + 1] = x;
370 }
371 enaddr = myla;
372 }
373
374 /*
375 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
376 * allow FDDI-sized (4500) byte packets. Commands only take an
377 * 11-bit parameter, and 11 bits isn't enough to hold a full-size
378 * packet length.
379 * Commands to these cards implicitly upshift a packet size
380 * or threshold by 2 bits.
381 * To detect cards with large-packet support, we probe by setting
382 * the transmit threshold register, then change windows and
383 * read back the threshold register directly, and see if the
384 * threshold value was shifted or not.
385 */
386 bus_space_write_2(iot, ioh, ELINK_COMMAND,
387 SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
388 GO_WINDOW(5);
389 i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
390 GO_WINDOW(1);
391 switch (i) {
392 case ELINK_LARGEWIN_PROBE:
393 case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
394 sc->ep_pktlenshift = 0;
395 break;
396
397 case (ELINK_LARGEWIN_PROBE << 2):
398 sc->ep_pktlenshift = 2;
399 break;
400
401 default:
402 printf("%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
403 "Interface disabled\n",
404 sc->sc_dev.dv_xname, ELINK_LARGEWIN_PROBE, (int) i);
405 return (1);
406 }
407
408 /*
409 * Ensure Tx-available interrupts are enabled for
410 * start the interface.
411 * XXX should be in epinit()?
412 */
413 bus_space_write_2(iot, ioh, ELINK_COMMAND,
414 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
415
416 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
417 ifp->if_softc = sc;
418 ifp->if_start = epstart;
419 ifp->if_ioctl = epioctl;
420 ifp->if_watchdog = epwatchdog;
421 ifp->if_init = epinit;
422 ifp->if_stop = epstop;
423 ifp->if_flags =
424 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
425 IFQ_SET_READY(&ifp->if_snd);
426
427 if_attach(ifp);
428 ether_ifattach(ifp, enaddr);
429
430 /*
431 * Finish configuration:
432 * determine chipset if the front-end couldn't do so,
433 * show board details, set media.
434 */
435
436 /*
437 * Print RAM size. We also print the Ethernet address in here.
438 * It's extracted from the ifp, so we have to make sure it's
439 * been attached first.
440 */
441 ep_internalconfig(sc);
442 GO_WINDOW(0);
443
444 /*
445 * Display some additional information, if pertinent.
446 */
447 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
448 printf("%s: RoadRunner FIFO buffer enabled\n",
449 sc->sc_dev.dv_xname);
450
451 /*
452 * Initialize our media structures and MII info. We'll
453 * probe the MII if we discover that we have one.
454 */
455 sc->sc_mii.mii_ifp = ifp;
456 sc->sc_mii.mii_readreg = ep_mii_readreg;
457 sc->sc_mii.mii_writereg = ep_mii_writereg;
458 sc->sc_mii.mii_statchg = ep_statchg;
459 ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
460 ep_media_status);
461
462 /*
463 * All CORKSCREW chips have MII.
464 */
465 if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW)
466 sc->ep_flags |= ELINK_FLAGS_MII;
467
468 /*
469 * Now, determine which media we have.
470 */
471 switch (sc->ep_chipset) {
472 case ELINK_CHIPSET_ROADRUNNER:
473 if (sc->ep_flags & ELINK_FLAGS_MII) {
474 ep_roadrunner_mii_enable(sc);
475 GO_WINDOW(0);
476 }
477 /* FALLTHROUGH */
478
479 case ELINK_CHIPSET_CORKSCREW:
480 case ELINK_CHIPSET_BOOMERANG:
481 /*
482 * If the device has MII, probe it. We won't be using
483 * any `native' media in this case, only PHYs. If
484 * we don't, just treat the Boomerang like the Vortex.
485 */
486 if (sc->ep_flags & ELINK_FLAGS_MII) {
487 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
488 MII_PHY_ANY, MII_OFFSET_ANY, 0);
489 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
490 ifmedia_add(&sc->sc_mii.mii_media,
491 IFM_ETHER|IFM_NONE, 0, NULL);
492 ifmedia_set(&sc->sc_mii.mii_media,
493 IFM_ETHER|IFM_NONE);
494 } else {
495 ifmedia_set(&sc->sc_mii.mii_media,
496 IFM_ETHER|IFM_AUTO);
497 }
498 break;
499 }
500 /* FALLTHROUGH */
501
502 case ELINK_CHIPSET_VORTEX:
503 ep_vortex_probemedia(sc);
504 break;
505
506 default:
507 ep_509_probemedia(sc);
508 break;
509 }
510
511 GO_WINDOW(1); /* Window 1 is operating window */
512
513 #if NRND > 0
514 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
515 RND_TYPE_NET, 0);
516 #endif
517
518 sc->tx_start_thresh = 20; /* probably a good starting point. */
519
520 /* Establish callback to reset card when we reboot. */
521 sc->sd_hook = shutdownhook_establish(epshutdown, sc);
522
523 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
524 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
525
526 /* The attach is successful. */
527 sc->sc_flags |= ELINK_FLAGS_ATTACHED;
528 return (0);
529 }
530
531
532 /*
533 * Show interface-model-independent info from window 3
534 * internal-configuration register.
535 */
536 void
537 ep_internalconfig(sc)
538 struct ep_softc *sc;
539 {
540 bus_space_tag_t iot = sc->sc_iot;
541 bus_space_handle_t ioh = sc->sc_ioh;
542
543 u_int config0;
544 u_int config1;
545
546 int ram_size, ram_width, ram_speed, rom_size, ram_split;
547 /*
548 * NVRAM buffer Rx:Tx config names for busmastering cards
549 * (Demon, Vortex, and later).
550 */
551 const char *onboard_ram_config[] = {
552 "5:3", "3:1", "1:1", "3:5" };
553
554 GO_WINDOW(3);
555 config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
556 config1 = (u_int)bus_space_read_2(iot, ioh,
557 ELINK_W3_INTERNAL_CONFIG + 2);
558 GO_WINDOW(0);
559
560 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
561 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
562 ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
563 rom_size = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
564
565 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
566
567 printf("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
568 sc->sc_dev.dv_xname,
569 ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
570 8 << ram_size,
571 (ram_width) ? "word" : "byte",
572 onboard_ram_config[ram_split]);
573 }
574
575
576 /*
577 * Find supported media on 3c509-generation hardware that doesn't have
578 * a "reset_options" register in window 3.
579 * Use the config_cntrl register in window 0 instead.
580 * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
581 * that implement CONFIG_CTRL. We don't have a good way to set the
582 * default active medium; punt to ifconfig instead.
583 */
584 void
585 ep_509_probemedia(sc)
586 struct ep_softc *sc;
587 {
588 bus_space_tag_t iot = sc->sc_iot;
589 bus_space_handle_t ioh = sc->sc_ioh;
590 struct ifmedia *ifm = &sc->sc_mii.mii_media;
591 u_int16_t ep_w0_config, port;
592 const struct ep_media *epm;
593 const char *sep = "", *defmedianame = NULL;
594 int defmedia = 0;
595
596 GO_WINDOW(0);
597 ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
598
599 printf("%s: ", sc->sc_dev.dv_xname);
600
601 /* Sanity check that there are any media! */
602 if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
603 printf("no media present!\n");
604 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
605 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
606 return;
607 }
608
609 /*
610 * Get the default media from the EEPROM.
611 */
612 port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
613
614 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
615
616 for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
617 if (ep_w0_config & epm->epm_mpbit) {
618 /*
619 * This simple test works because 509 chipsets
620 * don't do full-duplex.
621 */
622 if (epm->epm_epmedia == port || defmedia == 0) {
623 defmedia = epm->epm_ifmedia;
624 defmedianame = epm->epm_name;
625 }
626 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
627 NULL);
628 PRINT(epm->epm_name);
629 }
630 }
631
632 #undef PRINT
633
634 #ifdef DIAGNOSTIC
635 if (defmedia == 0)
636 panic("ep_509_probemedia: impossible");
637 #endif
638
639 printf(" (default %s)\n", defmedianame);
640 ifmedia_set(ifm, defmedia);
641 }
642
643 /*
644 * Find media present on large-packet-capable elink3 devices.
645 * Show onboard configuration of large-packet-capable elink3 devices
646 * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
647 * Use media and card-version info in window 3 instead.
648 */
649 void
650 ep_vortex_probemedia(sc)
651 struct ep_softc *sc;
652 {
653 bus_space_tag_t iot = sc->sc_iot;
654 bus_space_handle_t ioh = sc->sc_ioh;
655 struct ifmedia *ifm = &sc->sc_mii.mii_media;
656 const struct ep_media *epm;
657 u_int config1;
658 int reset_options;
659 int default_media; /* 3-bit encoding of default (EEPROM) media */
660 int defmedia = 0;
661 const char *sep = "", *defmedianame = NULL;
662
663 GO_WINDOW(3);
664 config1 = (u_int)bus_space_read_2(iot, ioh,
665 ELINK_W3_INTERNAL_CONFIG + 2);
666 reset_options = (int)bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
667 GO_WINDOW(0);
668
669 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
670
671 printf("%s: ", sc->sc_dev.dv_xname);
672
673 /* Sanity check that there are any media! */
674 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
675 printf("no media present!\n");
676 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
677 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
678 return;
679 }
680
681 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
682
683 for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
684 if (reset_options & epm->epm_mpbit) {
685 /*
686 * Default media is a little more complicated
687 * on the Vortex. We support full-duplex which
688 * uses the same reset options bit.
689 *
690 * XXX Check EEPROM for default to FDX?
691 */
692 if (epm->epm_epmedia == default_media) {
693 if ((epm->epm_ifmedia & IFM_FDX) == 0) {
694 defmedia = epm->epm_ifmedia;
695 defmedianame = epm->epm_name;
696 }
697 } else if (defmedia == 0) {
698 defmedia = epm->epm_ifmedia;
699 defmedianame = epm->epm_name;
700 }
701 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
702 NULL);
703 PRINT(epm->epm_name);
704 }
705 }
706
707 #undef PRINT
708
709 #ifdef DIAGNOSTIC
710 if (defmedia == 0)
711 panic("ep_vortex_probemedia: impossible");
712 #endif
713
714 printf(" (default %s)\n", defmedianame);
715 ifmedia_set(ifm, defmedia);
716 }
717
718 /*
719 * One second timer, used to tick the MII.
720 */
721 void
722 ep_tick(arg)
723 void *arg;
724 {
725 struct ep_softc *sc = arg;
726 int s;
727
728 #ifdef DIAGNOSTIC
729 if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
730 panic("ep_tick");
731 #endif
732
733 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
734 return;
735
736 s = splnet();
737 mii_tick(&sc->sc_mii);
738 splx(s);
739
740 callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
741 }
742
743 /*
744 * Bring device up.
745 *
746 * The order in here seems important. Otherwise we may not receive
747 * interrupts. ?!
748 */
749 int
750 epinit(ifp)
751 struct ifnet *ifp;
752 {
753 struct ep_softc *sc = ifp->if_softc;
754 bus_space_tag_t iot = sc->sc_iot;
755 bus_space_handle_t ioh = sc->sc_ioh;
756 int i, error;
757
758 if (!sc->enabled && (error = epenable(sc)) != 0)
759 return (error);
760
761 /* Make sure any pending reset has completed before touching board */
762 ep_finish_reset(iot, ioh);
763
764 /*
765 * Cancel any pending I/O.
766 */
767 epstop(ifp, 0);
768
769 if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA
770 && sc->bustype != ELINK_BUS_MCA) {
771 GO_WINDOW(0);
772 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
773 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
774 ENABLE_DRQ_IRQ);
775 }
776
777 if (sc->bustype == ELINK_BUS_PCMCIA) {
778 bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
779 }
780
781 GO_WINDOW(2);
782 for (i = 0; i < 6; i++) /* Reload the ether_addr. */
783 bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
784 LLADDR(ifp->if_sadl)[i]);
785
786 /*
787 * Reset the station-address receive filter.
788 * A bug workaround for busmastering (Vortex, Demon) cards.
789 */
790 for (i = 0; i < 6; i++)
791 bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
792
793 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
794 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
795
796 GO_WINDOW(1); /* Window 1 is operating window */
797 for (i = 0; i < 31; i++)
798 bus_space_read_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS));
799
800 /* Set threshold for Tx-space available interrupt. */
801 bus_space_write_2(iot, ioh, ELINK_COMMAND,
802 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
803
804 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
805 /*
806 * Enable options in the PCMCIA LAN COR register, via
807 * RoadRunner Window 1.
808 *
809 * XXX MAGIC CONSTANTS!
810 */
811 u_int16_t cor;
812
813 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
814
815 cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
816 if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
817 cor |= 0x10;
818 if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
819 cor |= 0x20;
820 bus_space_write_2(iot, ioh, 0, cor);
821
822 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
823 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
824
825 if (sc->ep_flags & ELINK_FLAGS_MII) {
826 ep_roadrunner_mii_enable(sc);
827 GO_WINDOW(1);
828 }
829 }
830
831 /* Enable interrupts. */
832 bus_space_write_2(iot, ioh, ELINK_COMMAND,
833 SET_RD_0_MASK | S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE |
834 S_TX_AVAIL);
835 bus_space_write_2(iot, ioh, ELINK_COMMAND,
836 SET_INTR_MASK | S_CARD_FAILURE | S_RX_COMPLETE | S_TX_COMPLETE |
837 S_TX_AVAIL);
838
839 /*
840 * Attempt to get rid of any stray interrupts that occured during
841 * configuration. On the i386 this isn't possible because one may
842 * already be queued. However, a single stray interrupt is
843 * unimportant.
844 */
845 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
846
847 epsetfilter(sc);
848 epsetmedia(sc);
849
850 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
851 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
852
853 epmbuffill(sc);
854
855 /* Interface is now `running', with no output active. */
856 ifp->if_flags |= IFF_RUNNING;
857 ifp->if_flags &= ~IFF_OACTIVE;
858
859 if (sc->ep_flags & ELINK_FLAGS_MII) {
860 /* Start the one second clock. */
861 callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
862 }
863
864 /* Attempt to start output, if any. */
865 epstart(ifp);
866
867 return (0);
868 }
869
870
871 /*
872 * Set multicast receive filter.
873 * elink3 hardware has no selective multicast filter in hardware.
874 * Enable reception of all multicasts and filter in software.
875 */
876 void
877 epsetfilter(sc)
878 struct ep_softc *sc;
879 {
880 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
881
882 GO_WINDOW(1); /* Window 1 is operating window */
883 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
884 SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
885 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
886 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
887 }
888
889 int
890 ep_media_change(ifp)
891 struct ifnet *ifp;
892 {
893 struct ep_softc *sc = ifp->if_softc;
894
895 if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
896 epreset(sc);
897
898 return (0);
899 }
900
901 /*
902 * Reset and enable the MII on the RoadRunner.
903 */
904 void
905 ep_roadrunner_mii_enable(sc)
906 struct ep_softc *sc;
907 {
908 bus_space_tag_t iot = sc->sc_iot;
909 bus_space_handle_t ioh = sc->sc_ioh;
910
911 GO_WINDOW(3);
912 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
913 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
914 delay(1000);
915 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
916 ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
917 ELINK_RUNNER_ENABLE_MII);
918 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
919 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
920 delay(1000);
921 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
922 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
923 }
924
925 /*
926 * Set the card to use the specified media.
927 */
928 void
929 epsetmedia(sc)
930 struct ep_softc *sc;
931 {
932 bus_space_tag_t iot = sc->sc_iot;
933 bus_space_handle_t ioh = sc->sc_ioh;
934
935 /* Turn everything off. First turn off linkbeat and UTP. */
936 GO_WINDOW(4);
937 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
938
939 /* Turn off coax */
940 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
941 delay(1000);
942
943 /*
944 * If the device has MII, select it, and then tell the
945 * PHY which media to use.
946 */
947 if (sc->ep_flags & ELINK_FLAGS_MII) {
948 int config0, config1;
949
950 GO_WINDOW(3);
951
952 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
953 int resopt;
954
955 resopt = bus_space_read_2(iot, ioh,
956 ELINK_W3_RESET_OPTIONS);
957 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
958 resopt | ELINK_RUNNER_ENABLE_MII);
959 }
960
961 config0 = (u_int)bus_space_read_2(iot, ioh,
962 ELINK_W3_INTERNAL_CONFIG);
963 config1 = (u_int)bus_space_read_2(iot, ioh,
964 ELINK_W3_INTERNAL_CONFIG + 2);
965
966 config1 = config1 & ~CONFIG_MEDIAMASK;
967 config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
968
969 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
970 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
971 config1);
972 GO_WINDOW(1); /* back to operating window */
973
974 mii_mediachg(&sc->sc_mii);
975 return;
976 }
977
978 /*
979 * Now turn on the selected media/transceiver.
980 */
981 GO_WINDOW(4);
982 switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
983 case IFM_10_T:
984 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
985 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
986 break;
987
988 case IFM_10_2:
989 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
990 DELAY(1000); /* 50ms not enmough? */
991 break;
992
993 case IFM_100_TX:
994 case IFM_100_FX:
995 case IFM_100_T4: /* XXX check documentation */
996 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
997 LINKBEAT_ENABLE);
998 DELAY(1000); /* not strictly necessary? */
999 break;
1000
1001 case IFM_10_5:
1002 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
1003 SQE_ENABLE);
1004 DELAY(1000); /* not strictly necessary? */
1005 break;
1006
1007 case IFM_MANUAL:
1008 /*
1009 * Nothing to do here; we are actually enabling the
1010 * external PHY on the MII port.
1011 */
1012 break;
1013
1014 case IFM_NONE:
1015 printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
1016 return;
1017
1018 default:
1019 panic("epsetmedia: impossible");
1020 }
1021
1022 /*
1023 * Tell the chip which port to use.
1024 */
1025 switch (sc->ep_chipset) {
1026 case ELINK_CHIPSET_VORTEX:
1027 case ELINK_CHIPSET_BOOMERANG:
1028 {
1029 int mctl, config0, config1;
1030
1031 GO_WINDOW(3);
1032 config0 = (u_int)bus_space_read_2(iot, ioh,
1033 ELINK_W3_INTERNAL_CONFIG);
1034 config1 = (u_int)bus_space_read_2(iot, ioh,
1035 ELINK_W3_INTERNAL_CONFIG + 2);
1036
1037 config1 = config1 & ~CONFIG_MEDIAMASK;
1038 config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
1039 CONFIG_MEDIAMASK_SHIFT);
1040
1041 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
1042 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
1043 config1);
1044
1045 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1046 if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
1047 mctl |= MAC_CONTROL_FDX;
1048 else
1049 mctl &= ~MAC_CONTROL_FDX;
1050 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1051 break;
1052 }
1053 default:
1054 {
1055 int w0_addr_cfg;
1056
1057 GO_WINDOW(0);
1058 w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
1059 w0_addr_cfg &= 0x3fff;
1060 bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
1061 (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
1062 DELAY(1000);
1063 break;
1064 }
1065 }
1066
1067 GO_WINDOW(1); /* Window 1 is operating window */
1068 }
1069
1070 /*
1071 * Get currently-selected media from card.
1072 * (if_media callback, may be called before interface is brought up).
1073 */
1074 void
1075 ep_media_status(ifp, req)
1076 struct ifnet *ifp;
1077 struct ifmediareq *req;
1078 {
1079 struct ep_softc *sc = ifp->if_softc;
1080 bus_space_tag_t iot = sc->sc_iot;
1081 bus_space_handle_t ioh = sc->sc_ioh;
1082
1083 if (sc->enabled == 0) {
1084 req->ifm_active = IFM_ETHER|IFM_NONE;
1085 req->ifm_status = 0;
1086 return;
1087 }
1088
1089 /*
1090 * If we have MII, go ask the PHY what's going on.
1091 */
1092 if (sc->ep_flags & ELINK_FLAGS_MII) {
1093 mii_pollstat(&sc->sc_mii);
1094 req->ifm_active = sc->sc_mii.mii_media_active;
1095 req->ifm_status = sc->sc_mii.mii_media_status;
1096 return;
1097 }
1098
1099 /*
1100 * Ok, at this point we claim that our active media is
1101 * the currently selected media. We'll update our status
1102 * if our chipset allows us to detect link.
1103 */
1104 req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1105 req->ifm_status = 0;
1106
1107 switch (sc->ep_chipset) {
1108 case ELINK_CHIPSET_VORTEX:
1109 case ELINK_CHIPSET_BOOMERANG:
1110 GO_WINDOW(4);
1111 req->ifm_status = IFM_AVALID;
1112 if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
1113 LINKBEAT_DETECT)
1114 req->ifm_status |= IFM_ACTIVE;
1115 GO_WINDOW(1); /* back to operating window */
1116 break;
1117 }
1118 }
1119
1120
1121
1122 /*
1123 * Start outputting on the interface.
1124 * Always called as splnet().
1125 */
1126 void
1127 epstart(ifp)
1128 struct ifnet *ifp;
1129 {
1130 struct ep_softc *sc = ifp->if_softc;
1131 bus_space_tag_t iot = sc->sc_iot;
1132 bus_space_handle_t ioh = sc->sc_ioh;
1133 struct mbuf *m, *m0;
1134 int sh, len, pad;
1135 bus_addr_t txreg;
1136
1137 /* Don't transmit if interface is busy or not running */
1138 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1139 return;
1140
1141 startagain:
1142 /* Sneak a peek at the next packet */
1143 IFQ_POLL(&ifp->if_snd, m0);
1144 if (m0 == 0)
1145 return;
1146
1147 /* We need to use m->m_pkthdr.len, so require the header */
1148 if ((m0->m_flags & M_PKTHDR) == 0)
1149 panic("epstart: no header mbuf");
1150 len = m0->m_pkthdr.len;
1151
1152 pad = (4 - len) & 3;
1153
1154 /*
1155 * The 3c509 automatically pads short packets to minimum ethernet
1156 * length, but we drop packets that are too large. Perhaps we should
1157 * truncate them instead?
1158 */
1159 if (len + pad > ETHER_MAX_LEN) {
1160 /* packet is obviously too large: toss it */
1161 ++ifp->if_oerrors;
1162 IFQ_DEQUEUE(&ifp->if_snd, m0);
1163 m_freem(m0);
1164 goto readcheck;
1165 }
1166
1167 if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
1168 len + pad + 4) {
1169 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1170 SET_TX_AVAIL_THRESH |
1171 ((len + pad + 4) >> sc->ep_pktlenshift));
1172 /* not enough room in FIFO */
1173 ifp->if_flags |= IFF_OACTIVE;
1174 return;
1175 } else {
1176 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1177 SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
1178 }
1179
1180 IFQ_DEQUEUE(&ifp->if_snd, m0);
1181 if (m0 == 0) /* not really needed */
1182 return;
1183
1184 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
1185 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
1186
1187 #if NBPFILTER > 0
1188 if (ifp->if_bpf)
1189 bpf_mtap(ifp->if_bpf, m0);
1190 #endif
1191
1192 /*
1193 * Do the output at a high interrupt priority level so that an
1194 * interrupt from another device won't cause a FIFO underrun.
1195 * We choose splsched() since that blocks essentially everything
1196 * except for interrupts from serial devices (which typically
1197 * lose data if their interrupt isn't serviced fast enough).
1198 *
1199 * XXX THIS CAN CAUSE CLOCK DRIFT!
1200 */
1201 sh = splsched();
1202
1203 txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
1204
1205 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1206 /*
1207 * Prime the FIFO buffer counter (number of 16-bit
1208 * words about to be written to the FIFO).
1209 *
1210 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1211 * COUNTER IS NON-ZERO!
1212 */
1213 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
1214 (len + pad) >> 1);
1215 }
1216
1217 bus_space_write_2(iot, ioh, txreg, len);
1218 bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1219 if (ELINK_IS_BUS_32(sc->bustype)) {
1220 for (m = m0; m;) {
1221 if (m->m_len > 3) {
1222 /* align our reads from core */
1223 if (mtod(m, u_long) & 3) {
1224 u_long count =
1225 4 - (mtod(m, u_long) & 3);
1226 bus_space_write_multi_1(iot, ioh,
1227 txreg, mtod(m, u_int8_t *), count);
1228 m->m_data =
1229 (void *)(mtod(m, u_long) + count);
1230 m->m_len -= count;
1231 }
1232 bus_space_write_multi_stream_4(iot, ioh,
1233 txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1234 m->m_data = (void *)(mtod(m, u_long) +
1235 (u_long)(m->m_len & ~3));
1236 m->m_len -= m->m_len & ~3;
1237 }
1238 if (m->m_len) {
1239 bus_space_write_multi_1(iot, ioh,
1240 txreg, mtod(m, u_int8_t *), m->m_len);
1241 }
1242 MFREE(m, m0);
1243 m = m0;
1244 }
1245 } else {
1246 for (m = m0; m;) {
1247 if (m->m_len > 1) {
1248 if (mtod(m, u_long) & 1) {
1249 bus_space_write_1(iot, ioh,
1250 txreg, *(mtod(m, u_int8_t *)));
1251 m->m_data =
1252 (void *)(mtod(m, u_long) + 1);
1253 m->m_len -= 1;
1254 }
1255 bus_space_write_multi_stream_2(iot, ioh,
1256 txreg, mtod(m, u_int16_t *),
1257 m->m_len >> 1);
1258 }
1259 if (m->m_len & 1) {
1260 bus_space_write_1(iot, ioh, txreg,
1261 *(mtod(m, u_int8_t *) + m->m_len - 1));
1262 }
1263 MFREE(m, m0);
1264 m = m0;
1265 }
1266 }
1267 while (pad--)
1268 bus_space_write_1(iot, ioh, txreg, 0);
1269
1270 splx(sh);
1271
1272 ++ifp->if_opackets;
1273
1274 readcheck:
1275 if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
1276 ERR_INCOMPLETE) == 0) {
1277 /* We received a complete packet. */
1278 u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1279
1280 if ((status & S_INTR_LATCH) == 0) {
1281 /*
1282 * No interrupt, read the packet and continue
1283 * Is this supposed to happen? Is my motherboard
1284 * completely busted?
1285 */
1286 epread(sc);
1287 } else {
1288 /* Got an interrupt, return so that it gets serviced. */
1289 return;
1290 }
1291 } else {
1292 /* Check if we are stuck and reset [see XXX comment] */
1293 if (epstatus(sc)) {
1294 if (ifp->if_flags & IFF_DEBUG)
1295 printf("%s: adapter reset\n",
1296 sc->sc_dev.dv_xname);
1297 epreset(sc);
1298 }
1299 }
1300
1301 goto startagain;
1302 }
1303
1304
1305 /*
1306 * XXX: The 3c509 card can get in a mode where both the fifo status bit
1307 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1308 * We detect this situation and we reset the adapter.
1309 * It happens at times when there is a lot of broadcast traffic
1310 * on the cable (once in a blue moon).
1311 */
1312 static int
1313 epstatus(sc)
1314 struct ep_softc *sc;
1315 {
1316 bus_space_tag_t iot = sc->sc_iot;
1317 bus_space_handle_t ioh = sc->sc_ioh;
1318 u_int16_t fifost;
1319
1320 /*
1321 * Check the FIFO status and act accordingly
1322 */
1323 GO_WINDOW(4);
1324 fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
1325 GO_WINDOW(1);
1326
1327 if (fifost & FIFOS_RX_UNDERRUN) {
1328 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1329 printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
1330 epreset(sc);
1331 return 0;
1332 }
1333
1334 if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1335 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1336 printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
1337 return 1;
1338 }
1339
1340 if (fifost & FIFOS_RX_OVERRUN) {
1341 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1342 printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
1343 return 1;
1344 }
1345
1346 if (fifost & FIFOS_TX_OVERRUN) {
1347 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1348 printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
1349 epreset(sc);
1350 return 0;
1351 }
1352
1353 return 0;
1354 }
1355
1356
1357 static void
1358 eptxstat(sc)
1359 struct ep_softc *sc;
1360 {
1361 bus_space_tag_t iot = sc->sc_iot;
1362 bus_space_handle_t ioh = sc->sc_ioh;
1363 int i;
1364
1365 /*
1366 * We need to read+write TX_STATUS until we get a 0 status
1367 * in order to turn off the interrupt flag.
1368 */
1369 while ((i = bus_space_read_1(iot, ioh,
1370 ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
1371 bus_space_write_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
1372 0x0);
1373
1374 if (i & TXS_JABBER) {
1375 ++sc->sc_ethercom.ec_if.if_oerrors;
1376 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1377 printf("%s: jabber (%x)\n",
1378 sc->sc_dev.dv_xname, i);
1379 epreset(sc);
1380 } else if (i & TXS_UNDERRUN) {
1381 ++sc->sc_ethercom.ec_if.if_oerrors;
1382 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1383 printf("%s: fifo underrun (%x) @%d\n",
1384 sc->sc_dev.dv_xname, i,
1385 sc->tx_start_thresh);
1386 if (sc->tx_succ_ok < 100)
1387 sc->tx_start_thresh = min(ETHER_MAX_LEN,
1388 sc->tx_start_thresh + 20);
1389 sc->tx_succ_ok = 0;
1390 epreset(sc);
1391 } else if (i & TXS_MAX_COLLISION) {
1392 ++sc->sc_ethercom.ec_if.if_collisions;
1393 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
1394 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1395 } else
1396 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1397 }
1398 }
1399
1400 int
1401 epintr(arg)
1402 void *arg;
1403 {
1404 struct ep_softc *sc = arg;
1405 bus_space_tag_t iot = sc->sc_iot;
1406 bus_space_handle_t ioh = sc->sc_ioh;
1407 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1408 u_int16_t status;
1409 int ret = 0;
1410
1411 if (sc->enabled == 0 ||
1412 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1413 return (0);
1414
1415 for (;;) {
1416 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1417
1418 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1419
1420 if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
1421 S_RX_COMPLETE | S_CARD_FAILURE)) == 0) {
1422 if ((status & S_INTR_LATCH) == 0) {
1423 #if 0
1424 printf("%s: intr latch cleared %d\n",
1425 sc->sc_dev.dv_xname, status);
1426 #endif
1427 break;
1428 }
1429 }
1430
1431 ret = 1;
1432
1433 /*
1434 * Acknowledge any interrupts. It's important that we do this
1435 * first, since there would otherwise be a race condition.
1436 * Due to the i386 interrupt queueing, we may get spurious
1437 * interrupts occasionally.
1438 */
1439 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1440 (status & (C_INTR_LATCH |
1441 C_CARD_FAILURE |
1442 C_TX_COMPLETE |
1443 C_TX_AVAIL |
1444 C_RX_COMPLETE |
1445 C_RX_EARLY |
1446 C_INT_RQD |
1447 C_UPD_STATS)));
1448
1449 #if 0
1450 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1451
1452 printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
1453 (status & S_RX_COMPLETE)?" RX_COMPLETE":"",
1454 (status & S_TX_COMPLETE)?" TX_COMPLETE":"",
1455 (status & S_TX_AVAIL)?" TX_AVAIL":"",
1456 (status & S_CARD_FAILURE)?" CARD_FAILURE":"");
1457 #endif
1458
1459 if (status & S_RX_COMPLETE) {
1460 epread(sc);
1461 }
1462 if (status & S_TX_AVAIL) {
1463 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1464 epstart(&sc->sc_ethercom.ec_if);
1465 }
1466 if (status & S_CARD_FAILURE) {
1467 printf("%s: adapter failure (%x)\n",
1468 sc->sc_dev.dv_xname, status);
1469 #if 1
1470 epinit(ifp);
1471 #else
1472 epreset(sc);
1473 #endif
1474 return (1);
1475 }
1476 if (status & S_TX_COMPLETE) {
1477 eptxstat(sc);
1478 epstart(ifp);
1479 }
1480
1481 #if NRND > 0
1482 if (status)
1483 rnd_add_uint32(&sc->rnd_source, status);
1484 #endif
1485 }
1486
1487 /* no more interrupts */
1488 return (ret);
1489 }
1490
1491 void
1492 epread(sc)
1493 struct ep_softc *sc;
1494 {
1495 bus_space_tag_t iot = sc->sc_iot;
1496 bus_space_handle_t ioh = sc->sc_ioh;
1497 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1498 struct mbuf *m;
1499 int len;
1500
1501 len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1502
1503 again:
1504 if (ifp->if_flags & IFF_DEBUG) {
1505 int err = len & ERR_MASK;
1506 char *s = NULL;
1507
1508 if (len & ERR_INCOMPLETE)
1509 s = "incomplete packet";
1510 else if (err == ERR_OVERRUN)
1511 s = "packet overrun";
1512 else if (err == ERR_RUNT)
1513 s = "runt packet";
1514 else if (err == ERR_ALIGNMENT)
1515 s = "bad alignment";
1516 else if (err == ERR_CRC)
1517 s = "bad crc";
1518 else if (err == ERR_OVERSIZE)
1519 s = "oversized packet";
1520 else if (err == ERR_DRIBBLE)
1521 s = "dribble bits";
1522
1523 if (s)
1524 printf("%s: %s\n", sc->sc_dev.dv_xname, s);
1525 }
1526
1527 if (len & ERR_INCOMPLETE)
1528 return;
1529
1530 if (len & ERR_RX) {
1531 ++ifp->if_ierrors;
1532 goto abort;
1533 }
1534
1535 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
1536
1537 /* Pull packet off interface. */
1538 m = epget(sc, len);
1539 if (m == 0) {
1540 ifp->if_ierrors++;
1541 goto abort;
1542 }
1543
1544 ++ifp->if_ipackets;
1545
1546 #if NBPFILTER > 0
1547 /*
1548 * Check if there's a BPF listener on this interface.
1549 * If so, hand off the raw packet to BPF.
1550 */
1551 if (ifp->if_bpf)
1552 bpf_mtap(ifp->if_bpf, m);
1553 #endif
1554
1555 (*ifp->if_input)(ifp, m);
1556
1557 /*
1558 * In periods of high traffic we can actually receive enough
1559 * packets so that the fifo overrun bit will be set at this point,
1560 * even though we just read a packet. In this case we
1561 * are not going to receive any more interrupts. We check for
1562 * this condition and read again until the fifo is not full.
1563 * We could simplify this test by not using epstatus(), but
1564 * rechecking the RX_STATUS register directly. This test could
1565 * result in unnecessary looping in cases where there is a new
1566 * packet but the fifo is not full, but it will not fix the
1567 * stuck behavior.
1568 *
1569 * Even with this improvement, we still get packet overrun errors
1570 * which are hurting performance. Maybe when I get some more time
1571 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1572 */
1573 if (epstatus(sc)) {
1574 len = bus_space_read_2(iot, ioh,
1575 ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1576 /* Check if we are stuck and reset [see XXX comment] */
1577 if (len & ERR_INCOMPLETE) {
1578 if (ifp->if_flags & IFF_DEBUG)
1579 printf("%s: adapter reset\n",
1580 sc->sc_dev.dv_xname);
1581 epreset(sc);
1582 return;
1583 }
1584 goto again;
1585 }
1586
1587 return;
1588
1589 abort:
1590 ep_discard_rxtop(iot, ioh);
1591
1592 }
1593
1594 struct mbuf *
1595 epget(sc, totlen)
1596 struct ep_softc *sc;
1597 int totlen;
1598 {
1599 bus_space_tag_t iot = sc->sc_iot;
1600 bus_space_handle_t ioh = sc->sc_ioh;
1601 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1602 struct mbuf *m;
1603 bus_addr_t rxreg;
1604 int len, remaining;
1605 int s;
1606 caddr_t newdata;
1607 u_long offset;
1608
1609 m = sc->mb[sc->next_mb];
1610 sc->mb[sc->next_mb] = 0;
1611 if (m == 0) {
1612 MGETHDR(m, M_DONTWAIT, MT_DATA);
1613 if (m == 0)
1614 return 0;
1615 } else {
1616 /* If the queue is no longer full, refill. */
1617 if (sc->last_mb == sc->next_mb)
1618 callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1619
1620 /* Convert one of our saved mbuf's. */
1621 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1622 m->m_data = m->m_pktdat;
1623 m->m_flags = M_PKTHDR;
1624 memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr));
1625 }
1626 m->m_pkthdr.rcvif = ifp;
1627 m->m_pkthdr.len = totlen;
1628 len = MHLEN;
1629
1630 /*
1631 * Allocate big enough space to hold whole packet, to avoid
1632 * allocating new mbufs on splsched().
1633 */
1634 if (totlen + ALIGNBYTES > len) {
1635 if (totlen + ALIGNBYTES > MCLBYTES) {
1636 len = ALIGN(totlen + ALIGNBYTES);
1637 MEXTMALLOC(m, len, M_DONTWAIT);
1638 } else {
1639 len = MCLBYTES;
1640 MCLGET(m, M_DONTWAIT);
1641 }
1642 if ((m->m_flags & M_EXT) == 0) {
1643 m_free(m);
1644 return 0;
1645 }
1646 }
1647
1648 /* align the struct ip header */
1649 newdata = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
1650 - sizeof(struct ether_header);
1651 m->m_data = newdata;
1652 m->m_len = totlen;
1653
1654 rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
1655 remaining = totlen;
1656 offset = mtod(m, u_long);
1657
1658 /*
1659 * We read the packet at a high interrupt priority level so that
1660 * an interrupt from another device won't cause the card's packet
1661 * buffer to overflow. We choose splsched() since that blocks
1662 * essentially everything except for interrupts from serial
1663 * devices (which typically lose data if their interrupt isn't
1664 * serviced fast enough).
1665 *
1666 * XXX THIS CAN CAUSE CLOCK DRIFT!
1667 */
1668 s = splsched();
1669
1670 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1671 /*
1672 * Prime the FIFO buffer counter (number of 16-bit
1673 * words about to be read from the FIFO).
1674 *
1675 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1676 * COUNTER IS NON-ZERO!
1677 */
1678 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
1679 }
1680
1681 if (ELINK_IS_BUS_32(sc->bustype)) {
1682 /*
1683 * Read bytes up to the point where we are aligned.
1684 * (We can align to 4 bytes, rather than ALIGNBYTES,
1685 * here because we're later reading 4-byte chunks.)
1686 */
1687 if ((remaining > 3) && (offset & 3)) {
1688 int count = (4 - (offset & 3));
1689 bus_space_read_multi_1(iot, ioh,
1690 rxreg, (u_int8_t *) offset, count);
1691 offset += count;
1692 remaining -= count;
1693 }
1694 if (remaining > 3) {
1695 bus_space_read_multi_stream_4(iot, ioh,
1696 rxreg, (u_int32_t *) offset,
1697 remaining >> 2);
1698 offset += remaining & ~3;
1699 remaining &= 3;
1700 }
1701 if (remaining) {
1702 bus_space_read_multi_1(iot, ioh,
1703 rxreg, (u_int8_t *) offset, remaining);
1704 }
1705 } else {
1706 if ((remaining > 1) && (offset & 1)) {
1707 bus_space_read_multi_1(iot, ioh,
1708 rxreg, (u_int8_t *) offset, 1);
1709 remaining -= 1;
1710 offset += 1;
1711 }
1712 if (remaining > 1) {
1713 bus_space_read_multi_stream_2(iot, ioh,
1714 rxreg, (u_int16_t *) offset,
1715 remaining >> 1);
1716 offset += remaining & ~1;
1717 }
1718 if (remaining & 1) {
1719 bus_space_read_multi_1(iot, ioh,
1720 rxreg, (u_int8_t *) offset, remaining & 1);
1721 }
1722 }
1723
1724 ep_discard_rxtop(iot, ioh);
1725
1726 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
1727 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1728 splx(s);
1729
1730 return (m);
1731 }
1732
1733 int
1734 epioctl(ifp, cmd, data)
1735 struct ifnet *ifp;
1736 u_long cmd;
1737 caddr_t data;
1738 {
1739 struct ep_softc *sc = ifp->if_softc;
1740 struct ifreq *ifr = (struct ifreq *)data;
1741 int s, error = 0;
1742
1743 s = splnet();
1744
1745 switch (cmd) {
1746
1747 case SIOCSIFMEDIA:
1748 case SIOCGIFMEDIA:
1749 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1750 break;
1751
1752 case SIOCADDMULTI:
1753 case SIOCDELMULTI:
1754 if (sc->enabled == 0) {
1755 error = EIO;
1756 break;
1757 }
1758
1759 default:
1760 error = ether_ioctl(ifp, cmd, data);
1761
1762 if (error == ENETRESET) {
1763 /*
1764 * Multicast list has changed; set the hardware filter
1765 * accordingly.
1766 */
1767 epreset(sc);
1768 error = 0;
1769 }
1770 break;
1771 }
1772
1773 splx(s);
1774 return (error);
1775 }
1776
1777 void
1778 epreset(sc)
1779 struct ep_softc *sc;
1780 {
1781 int s;
1782
1783 s = splnet();
1784 epinit(&sc->sc_ethercom.ec_if);
1785 splx(s);
1786 }
1787
1788 void
1789 epwatchdog(ifp)
1790 struct ifnet *ifp;
1791 {
1792 struct ep_softc *sc = ifp->if_softc;
1793
1794 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1795 ++sc->sc_ethercom.ec_if.if_oerrors;
1796
1797 epreset(sc);
1798 }
1799
1800 void
1801 epstop(ifp, disable)
1802 struct ifnet *ifp;
1803 int disable;
1804 {
1805 struct ep_softc *sc = ifp->if_softc;
1806 bus_space_tag_t iot = sc->sc_iot;
1807 bus_space_handle_t ioh = sc->sc_ioh;
1808
1809 if (sc->ep_flags & ELINK_FLAGS_MII) {
1810 /* Stop the one second clock. */
1811 callout_stop(&sc->sc_mbuf_callout);
1812
1813 /* Down the MII. */
1814 mii_down(&sc->sc_mii);
1815 }
1816
1817 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
1818 /*
1819 * Clear the FIFO buffer count, thus halting
1820 * any currently-running transactions.
1821 */
1822 GO_WINDOW(1); /* sanity */
1823 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
1824 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1825 }
1826
1827 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1828 ep_discard_rxtop(iot, ioh);
1829
1830 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1831 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1832
1833 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
1834 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1835
1836 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1837 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
1838 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
1839 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
1840
1841 epmbufempty(sc);
1842
1843 if (disable)
1844 epdisable(sc);
1845
1846 ifp->if_flags &= ~IFF_RUNNING;
1847 }
1848
1849
1850 /*
1851 * Before reboots, reset card completely.
1852 */
1853 static void
1854 epshutdown(arg)
1855 void *arg;
1856 {
1857 struct ep_softc *sc = arg;
1858 int s = splnet();
1859
1860 if (sc->enabled) {
1861 epstop(&sc->sc_ethercom.ec_if, 1);
1862 ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
1863 sc->enabled = 0;
1864 }
1865 splx(s);
1866 }
1867
1868 /*
1869 * We get eeprom data from the id_port given an offset into the
1870 * eeprom. Basically; after the ID_sequence is sent to all of
1871 * the cards; they enter the ID_CMD state where they will accept
1872 * command requests. 0x80-0xbf loads the eeprom data. We then
1873 * read the port 16 times and with every read; the cards check
1874 * for contention (ie: if one card writes a 0 bit and another
1875 * writes a 1 bit then the host sees a 0. At the end of the cycle;
1876 * each card compares the data on the bus; if there is a difference
1877 * then that card goes into ID_WAIT state again). In the meantime;
1878 * one bit of data is returned in the AX register which is conveniently
1879 * returned to us by bus_space_read_1(). Hence; we read 16 times getting one
1880 * bit of data with each read.
1881 *
1882 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1883 */
1884 u_int16_t
1885 epreadeeprom(iot, ioh, offset)
1886 bus_space_tag_t iot;
1887 bus_space_handle_t ioh;
1888 int offset;
1889 {
1890 u_int16_t data = 0;
1891 int i;
1892
1893 bus_space_write_1(iot, ioh, 0, 0x80 + offset);
1894 delay(1000);
1895 for (i = 0; i < 16; i++)
1896 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1897 return (data);
1898 }
1899
1900 static int
1901 epbusyeeprom(sc)
1902 struct ep_softc *sc;
1903 {
1904 bus_space_tag_t iot = sc->sc_iot;
1905 bus_space_handle_t ioh = sc->sc_ioh;
1906 bus_addr_t eecmd;
1907 int i = 100, j;
1908 uint16_t busybit;
1909
1910 if (sc->bustype == ELINK_BUS_PCMCIA) {
1911 delay(1000);
1912 return 0;
1913 }
1914
1915 if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1916 eecmd = CORK_ASIC_EEPROM_COMMAND;
1917 busybit = CORK_EEPROM_BUSY;
1918 } else {
1919 eecmd = ELINK_W0_EEPROM_COMMAND;
1920 busybit = EEPROM_BUSY;
1921 }
1922
1923 j = 0; /* bad GCC flow analysis */
1924 while (i--) {
1925 j = bus_space_read_2(iot, ioh, eecmd);
1926 if (j & busybit)
1927 delay(100);
1928 else
1929 break;
1930 }
1931 if (i == 0) {
1932 printf("\n%s: eeprom failed to come ready\n",
1933 sc->sc_dev.dv_xname);
1934 return (1);
1935 }
1936 if (sc->ep_chipset != ELINK_CHIPSET_CORKSCREW &&
1937 (j & EEPROM_TST_MODE) != 0) {
1938 /* XXX PnP mode? */
1939 printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
1940 return (1);
1941 }
1942 return (0);
1943 }
1944
1945 u_int16_t
1946 ep_read_eeprom(sc, offset)
1947 struct ep_softc *sc;
1948 u_int16_t offset;
1949 {
1950 bus_addr_t eecmd, eedata;
1951 u_int16_t readcmd;
1952
1953 if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1954 eecmd = CORK_ASIC_EEPROM_COMMAND;
1955 eedata = CORK_ASIC_EEPROM_DATA;
1956 } else {
1957 eecmd = ELINK_W0_EEPROM_COMMAND;
1958 eedata = ELINK_W0_EEPROM_DATA;
1959 }
1960
1961 /*
1962 * RoadRunner has a larger EEPROM, so a different read command
1963 * is required.
1964 */
1965 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
1966 readcmd = READ_EEPROM_RR;
1967 else
1968 readcmd = READ_EEPROM;
1969
1970 if (epbusyeeprom(sc))
1971 return (0); /* XXX why is eeprom busy? */
1972
1973 bus_space_write_2(sc->sc_iot, sc->sc_ioh, eecmd, readcmd | offset);
1974
1975 if (epbusyeeprom(sc))
1976 return (0); /* XXX why is eeprom busy? */
1977
1978 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, eedata));
1979 }
1980
1981 void
1982 epmbuffill(v)
1983 void *v;
1984 {
1985 struct ep_softc *sc = v;
1986 struct mbuf *m;
1987 int s, i;
1988
1989 s = splnet();
1990 i = sc->last_mb;
1991 do {
1992 if (sc->mb[i] == 0) {
1993 MGET(m, M_DONTWAIT, MT_DATA);
1994 if (m == 0)
1995 break;
1996 sc->mb[i] = m;
1997 }
1998 i = (i + 1) % MAX_MBS;
1999 } while (i != sc->next_mb);
2000 sc->last_mb = i;
2001 /* If the queue was not filled, try again. */
2002 if (sc->last_mb != sc->next_mb)
2003 callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
2004 splx(s);
2005 }
2006
2007 void
2008 epmbufempty(sc)
2009 struct ep_softc *sc;
2010 {
2011 int s, i;
2012
2013 s = splnet();
2014 for (i = 0; i<MAX_MBS; i++) {
2015 if (sc->mb[i]) {
2016 m_freem(sc->mb[i]);
2017 sc->mb[i] = NULL;
2018 }
2019 }
2020 sc->last_mb = sc->next_mb = 0;
2021 callout_stop(&sc->sc_mbuf_callout);
2022 splx(s);
2023 }
2024
2025 int
2026 epenable(sc)
2027 struct ep_softc *sc;
2028 {
2029
2030 if (sc->enabled == 0 && sc->enable != NULL) {
2031 if ((*sc->enable)(sc) != 0) {
2032 printf("%s: device enable failed\n",
2033 sc->sc_dev.dv_xname);
2034 return (EIO);
2035 }
2036 }
2037
2038 sc->enabled = 1;
2039 return (0);
2040 }
2041
2042 void
2043 epdisable(sc)
2044 struct ep_softc *sc;
2045 {
2046
2047 if (sc->enabled != 0 && sc->disable != NULL) {
2048 (*sc->disable)(sc);
2049 sc->enabled = 0;
2050 }
2051 }
2052
2053 /*
2054 * ep_activate:
2055 *
2056 * Handle device activation/deactivation requests.
2057 */
2058 int
2059 ep_activate(self, act)
2060 struct device *self;
2061 enum devact act;
2062 {
2063 struct ep_softc *sc = (struct ep_softc *)self;
2064 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2065 int error = 0, s;
2066
2067 s = splnet();
2068 switch (act) {
2069 case DVACT_ACTIVATE:
2070 error = EOPNOTSUPP;
2071 break;
2072
2073 case DVACT_DEACTIVATE:
2074 if (sc->ep_flags & ELINK_FLAGS_MII)
2075 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2076 MII_OFFSET_ANY);
2077 if_deactivate(ifp);
2078 break;
2079 }
2080 splx(s);
2081 return (error);
2082 }
2083
2084 /*
2085 * ep_detach:
2086 *
2087 * Detach a elink3 interface.
2088 */
2089 int
2090 ep_detach(self, flags)
2091 struct device *self;
2092 int flags;
2093 {
2094 struct ep_softc *sc = (struct ep_softc *)self;
2095 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2096
2097 /* Succeed now if there's no work to do. */
2098 if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0)
2099 return (0);
2100
2101 epdisable(sc);
2102
2103 callout_stop(&sc->sc_mii_callout);
2104 callout_stop(&sc->sc_mbuf_callout);
2105
2106 if (sc->ep_flags & ELINK_FLAGS_MII) {
2107 /* Detach all PHYs */
2108 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2109 }
2110
2111 /* Delete all remaining media. */
2112 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2113
2114 #if NRND > 0
2115 rnd_detach_source(&sc->rnd_source);
2116 #endif
2117 ether_ifdetach(ifp);
2118 if_detach(ifp);
2119
2120 shutdownhook_disestablish(sc->sd_hook);
2121
2122 return (0);
2123 }
2124
2125 u_int32_t
2126 ep_mii_bitbang_read(self)
2127 struct device *self;
2128 {
2129 struct ep_softc *sc = (void *) self;
2130
2131 /* We're already in Window 4. */
2132 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
2133 ELINK_W4_BOOM_PHYSMGMT));
2134 }
2135
2136 void
2137 ep_mii_bitbang_write(self, val)
2138 struct device *self;
2139 u_int32_t val;
2140 {
2141 struct ep_softc *sc = (void *) self;
2142
2143 /* We're already in Window 4. */
2144 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
2145 ELINK_W4_BOOM_PHYSMGMT, val);
2146 }
2147
2148 int
2149 ep_mii_readreg(self, phy, reg)
2150 struct device *self;
2151 int phy, reg;
2152 {
2153 struct ep_softc *sc = (void *) self;
2154 int val;
2155
2156 GO_WINDOW(4);
2157
2158 val = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg);
2159
2160 GO_WINDOW(1);
2161
2162 return (val);
2163 }
2164
2165 void
2166 ep_mii_writereg(self, phy, reg, val)
2167 struct device *self;
2168 int phy, reg, val;
2169 {
2170 struct ep_softc *sc = (void *) self;
2171
2172 GO_WINDOW(4);
2173
2174 mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
2175
2176 GO_WINDOW(1);
2177 }
2178
2179 void
2180 ep_statchg(self)
2181 struct device *self;
2182 {
2183 struct ep_softc *sc = (struct ep_softc *)self;
2184 bus_space_tag_t iot = sc->sc_iot;
2185 bus_space_handle_t ioh = sc->sc_ioh;
2186 int mctl;
2187
2188 GO_WINDOW(3);
2189 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
2190 if (sc->sc_mii.mii_media_active & IFM_FDX)
2191 mctl |= MAC_CONTROL_FDX;
2192 else
2193 mctl &= ~MAC_CONTROL_FDX;
2194 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
2195 GO_WINDOW(1); /* back to operating window */
2196 }
2197