elinkxl.c revision 1.115.2.2 1 /* $NetBSD: elinkxl.c,v 1.115.2.2 2017/12/03 11:37:03 jdolecek Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: elinkxl.c,v 1.115.2.2 2017/12/03 11:37:03 jdolecek Exp $");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/callout.h>
38 #include <sys/kernel.h>
39 #include <sys/mbuf.h>
40 #include <sys/socket.h>
41 #include <sys/ioctl.h>
42 #include <sys/errno.h>
43 #include <sys/syslog.h>
44 #include <sys/select.h>
45 #include <sys/device.h>
46 #include <sys/rndsource.h>
47
48 #include <net/if.h>
49 #include <net/if_dl.h>
50 #include <net/if_ether.h>
51 #include <net/if_media.h>
52
53 #include <net/bpf.h>
54 #include <net/bpfdesc.h>
55
56 #include <sys/cpu.h>
57 #include <sys/bus.h>
58 #include <sys/intr.h>
59 #include <machine/endian.h>
60
61 #include <dev/mii/miivar.h>
62 #include <dev/mii/mii.h>
63 #include <dev/mii/mii_bitbang.h>
64
65 #include <dev/ic/elink3reg.h>
66 /* #include <dev/ic/elink3var.h> */
67 #include <dev/ic/elinkxlreg.h>
68 #include <dev/ic/elinkxlvar.h>
69
70 #ifdef DEBUG
71 int exdebug = 0;
72 #endif
73
74 /* ifmedia callbacks */
75 int ex_media_chg(struct ifnet *ifp);
76 void ex_media_stat(struct ifnet *ifp, struct ifmediareq *req);
77
78 static int ex_ifflags_cb(struct ethercom *);
79
80 void ex_probe_media(struct ex_softc *);
81 void ex_set_filter(struct ex_softc *);
82 void ex_set_media(struct ex_softc *);
83 void ex_set_xcvr(struct ex_softc *, uint16_t);
84 struct mbuf *ex_get(struct ex_softc *, int);
85 uint16_t ex_read_eeprom(struct ex_softc *, int);
86 int ex_init(struct ifnet *);
87 void ex_read(struct ex_softc *);
88 void ex_reset(struct ex_softc *);
89 void ex_set_mc(struct ex_softc *);
90 void ex_getstats(struct ex_softc *);
91 void ex_printstats(struct ex_softc *);
92 void ex_tick(void *);
93
94 static int ex_eeprom_busy(struct ex_softc *);
95 static int ex_add_rxbuf(struct ex_softc *, struct ex_rxdesc *);
96 static void ex_init_txdescs(struct ex_softc *);
97
98 static void ex_setup_tx(struct ex_softc *);
99 static bool ex_shutdown(device_t, int);
100 static void ex_start(struct ifnet *);
101 static void ex_txstat(struct ex_softc *);
102
103 int ex_mii_readreg(device_t, int, int);
104 void ex_mii_writereg(device_t, int, int, int);
105 void ex_mii_statchg(struct ifnet *);
106
107 void ex_probemedia(struct ex_softc *);
108
109 /*
110 * Structure to map media-present bits in boards to ifmedia codes and
111 * printable media names. Used for table-driven ifmedia initialization.
112 */
113 struct ex_media {
114 int exm_mpbit; /* media present bit */
115 const char *exm_name; /* name of medium */
116 int exm_ifmedia; /* ifmedia word for medium */
117 int exm_epmedia; /* ELINKMEDIA_* constant */
118 };
119
120 /*
121 * Media table for 3c90x chips. Note that chips with MII have no
122 * `native' media.
123 */
124 struct ex_media ex_native_media[] = {
125 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
126 ELINKMEDIA_10BASE_T },
127 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
128 ELINKMEDIA_10BASE_T },
129 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
130 ELINKMEDIA_AUI },
131 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
132 ELINKMEDIA_10BASE_2 },
133 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
134 ELINKMEDIA_100BASE_TX },
135 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
136 ELINKMEDIA_100BASE_TX },
137 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
138 ELINKMEDIA_100BASE_FX },
139 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
140 ELINKMEDIA_MII },
141 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
142 ELINKMEDIA_100BASE_T4 },
143 { 0, NULL, 0,
144 0 },
145 };
146
147 /*
148 * MII bit-bang glue.
149 */
150 uint32_t ex_mii_bitbang_read(device_t);
151 void ex_mii_bitbang_write(device_t, uint32_t);
152
153 const struct mii_bitbang_ops ex_mii_bitbang_ops = {
154 ex_mii_bitbang_read,
155 ex_mii_bitbang_write,
156 {
157 ELINK_PHY_DATA, /* MII_BIT_MDO */
158 ELINK_PHY_DATA, /* MII_BIT_MDI */
159 ELINK_PHY_CLK, /* MII_BIT_MDC */
160 ELINK_PHY_DIR, /* MII_BIT_DIR_HOST_PHY */
161 0, /* MII_BIT_DIR_PHY_HOST */
162 }
163 };
164
165 /*
166 * Back-end attach and configure.
167 */
168 void
169 ex_config(struct ex_softc *sc)
170 {
171 struct ifnet *ifp;
172 uint16_t val;
173 uint8_t macaddr[ETHER_ADDR_LEN] = {0};
174 bus_space_tag_t iot = sc->sc_iot;
175 bus_space_handle_t ioh = sc->sc_ioh;
176 int i, error, attach_stage;
177
178 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
179
180 callout_init(&sc->ex_mii_callout, 0);
181
182 ex_reset(sc);
183
184 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR0);
185 macaddr[0] = val >> 8;
186 macaddr[1] = val & 0xff;
187 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR1);
188 macaddr[2] = val >> 8;
189 macaddr[3] = val & 0xff;
190 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR2);
191 macaddr[4] = val >> 8;
192 macaddr[5] = val & 0xff;
193
194 aprint_normal_dev(sc->sc_dev, "MAC address %s\n", ether_sprintf(macaddr));
195
196 if (sc->ex_conf & (EX_CONF_INV_LED_POLARITY|EX_CONF_PHY_POWER)) {
197 GO_WINDOW(2);
198 val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
199 if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
200 val |= ELINK_RESET_OPT_LEDPOLAR;
201 if (sc->ex_conf & EX_CONF_PHY_POWER)
202 val |= ELINK_RESET_OPT_PHYPOWER;
203 bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
204 }
205 if (sc->ex_conf & EX_CONF_NO_XCVR_PWR) {
206 GO_WINDOW(0);
207 bus_space_write_2(iot, ioh, ELINK_W0_MFG_ID,
208 EX_XCVR_PWR_MAGICBITS);
209 }
210
211 attach_stage = 0;
212
213 /*
214 * Allocate the upload descriptors, and create and load the DMA
215 * map for them.
216 */
217 if ((error = bus_dmamem_alloc(sc->sc_dmat,
218 EX_NUPD * sizeof (struct ex_upd), PAGE_SIZE, 0, &sc->sc_useg, 1,
219 &sc->sc_urseg, BUS_DMA_NOWAIT)) != 0) {
220 aprint_error_dev(sc->sc_dev,
221 "can't allocate upload descriptors, error = %d\n", error);
222 goto fail;
223 }
224
225 attach_stage = 1;
226
227 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg,
228 EX_NUPD * sizeof (struct ex_upd), (void **)&sc->sc_upd,
229 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
230 aprint_error_dev(sc->sc_dev,
231 "can't map upload descriptors, error = %d\n", error);
232 goto fail;
233 }
234
235 attach_stage = 2;
236
237 if ((error = bus_dmamap_create(sc->sc_dmat,
238 EX_NUPD * sizeof (struct ex_upd), 1,
239 EX_NUPD * sizeof (struct ex_upd), 0, BUS_DMA_NOWAIT,
240 &sc->sc_upd_dmamap)) != 0) {
241 aprint_error_dev(sc->sc_dev,
242 "can't create upload desc. DMA map, error = %d\n", error);
243 goto fail;
244 }
245
246 attach_stage = 3;
247
248 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_upd_dmamap,
249 sc->sc_upd, EX_NUPD * sizeof (struct ex_upd), NULL,
250 BUS_DMA_NOWAIT)) != 0) {
251 aprint_error_dev(sc->sc_dev,
252 "can't load upload desc. DMA map, error = %d\n", error);
253 goto fail;
254 }
255
256 attach_stage = 4;
257
258 /*
259 * Allocate the download descriptors, and create and load the DMA
260 * map for them.
261 */
262 if ((error = bus_dmamem_alloc(sc->sc_dmat,
263 DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, PAGE_SIZE, 0, &sc->sc_dseg, 1,
264 &sc->sc_drseg, BUS_DMA_NOWAIT)) != 0) {
265 aprint_error_dev(sc->sc_dev,
266 "can't allocate download descriptors, error = %d\n", error);
267 goto fail;
268 }
269
270 attach_stage = 5;
271
272 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg,
273 DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, (void **)&sc->sc_dpd,
274 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
275 aprint_error_dev(sc->sc_dev,
276 "can't map download descriptors, error = %d\n", error);
277 goto fail;
278 }
279 memset(sc->sc_dpd, 0, DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN);
280
281 attach_stage = 6;
282
283 if ((error = bus_dmamap_create(sc->sc_dmat,
284 DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, 1,
285 DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, 0, BUS_DMA_NOWAIT,
286 &sc->sc_dpd_dmamap)) != 0) {
287 aprint_error_dev(sc->sc_dev,
288 "can't create download desc. DMA map, error = %d\n", error);
289 goto fail;
290 }
291
292 attach_stage = 7;
293
294 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dpd_dmamap,
295 sc->sc_dpd, DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, NULL,
296 BUS_DMA_NOWAIT)) != 0) {
297 aprint_error_dev(sc->sc_dev,
298 "can't load download desc. DMA map, error = %d\n", error);
299 goto fail;
300 }
301 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
302 DPDMEMPAD_OFF, EX_IP4CSUMTX_PADLEN, BUS_DMASYNC_PREWRITE);
303
304 attach_stage = 8;
305
306
307 /*
308 * Create the transmit buffer DMA maps.
309 */
310 for (i = 0; i < EX_NDPD; i++) {
311 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
312 EX_NTFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
313 &sc->sc_tx_dmamaps[i])) != 0) {
314 aprint_error_dev(sc->sc_dev,
315 "can't create tx DMA map %d, error = %d\n",
316 i, error);
317 goto fail;
318 }
319 }
320
321 attach_stage = 9;
322
323 /*
324 * Create the receive buffer DMA maps.
325 */
326 for (i = 0; i < EX_NUPD; i++) {
327 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
328 EX_NRFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
329 &sc->sc_rx_dmamaps[i])) != 0) {
330 aprint_error_dev(sc->sc_dev,
331 "can't create rx DMA map %d, error = %d\n",
332 i, error);
333 goto fail;
334 }
335 }
336
337 attach_stage = 10;
338
339 /*
340 * Create ring of upload descriptors, only once. The DMA engine
341 * will loop over this when receiving packets, stalling if it
342 * hits an UPD with a finished receive.
343 */
344 for (i = 0; i < EX_NUPD; i++) {
345 sc->sc_rxdescs[i].rx_dmamap = sc->sc_rx_dmamaps[i];
346 sc->sc_rxdescs[i].rx_upd = &sc->sc_upd[i];
347 sc->sc_upd[i].upd_frags[0].fr_len =
348 htole32((MCLBYTES - 2) | EX_FR_LAST);
349 if (ex_add_rxbuf(sc, &sc->sc_rxdescs[i]) != 0) {
350 aprint_error_dev(sc->sc_dev,
351 "can't allocate or map rx buffers\n");
352 goto fail;
353 }
354 }
355
356 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap, 0,
357 EX_NUPD * sizeof (struct ex_upd),
358 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
359
360 ex_init_txdescs(sc);
361
362 attach_stage = 11;
363
364
365 GO_WINDOW(3);
366 val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
367 if (val & ELINK_MEDIACAP_MII)
368 sc->ex_conf |= EX_CONF_MII;
369
370 ifp = &sc->sc_ethercom.ec_if;
371
372 /*
373 * Initialize our media structures and MII info. We'll
374 * probe the MII if we discover that we have one.
375 */
376 sc->ex_mii.mii_ifp = ifp;
377 sc->ex_mii.mii_readreg = ex_mii_readreg;
378 sc->ex_mii.mii_writereg = ex_mii_writereg;
379 sc->ex_mii.mii_statchg = ex_mii_statchg;
380 ifmedia_init(&sc->ex_mii.mii_media, IFM_IMASK, ex_media_chg,
381 ex_media_stat);
382
383 if (sc->ex_conf & EX_CONF_MII) {
384 /*
385 * Find PHY, extract media information from it.
386 * First, select the right transceiver.
387 */
388 ex_set_xcvr(sc, val);
389
390 mii_attach(sc->sc_dev, &sc->ex_mii, 0xffffffff,
391 MII_PHY_ANY, MII_OFFSET_ANY, 0);
392 if (LIST_FIRST(&sc->ex_mii.mii_phys) == NULL) {
393 ifmedia_add(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE,
394 0, NULL);
395 ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE);
396 } else {
397 ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_AUTO);
398 }
399 } else
400 ex_probemedia(sc);
401
402 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
403 ifp->if_softc = sc;
404 ifp->if_start = ex_start;
405 ifp->if_ioctl = ex_ioctl;
406 ifp->if_watchdog = ex_watchdog;
407 ifp->if_init = ex_init;
408 ifp->if_stop = ex_stop;
409 ifp->if_flags =
410 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
411 sc->sc_if_flags = ifp->if_flags;
412 IFQ_SET_READY(&ifp->if_snd);
413
414 /*
415 * We can support 802.1Q VLAN-sized frames.
416 */
417 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
418
419 /*
420 * The 3c90xB has hardware IPv4/TCPv4/UDPv4 checksum support.
421 */
422 if (sc->ex_conf & EX_CONF_90XB)
423 sc->sc_ethercom.ec_if.if_capabilities |=
424 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
425 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
426 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
427
428 if_attach(ifp);
429 if_deferred_start_init(ifp, NULL);
430 ether_ifattach(ifp, macaddr);
431 ether_set_ifflags_cb(&sc->sc_ethercom, ex_ifflags_cb);
432
433 GO_WINDOW(1);
434
435 sc->tx_start_thresh = 20;
436 sc->tx_succ_ok = 0;
437
438 /* TODO: set queues to 0 */
439
440 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
441 RND_TYPE_NET, RND_FLAG_DEFAULT);
442
443 if (pmf_device_register1(sc->sc_dev, NULL, NULL, ex_shutdown))
444 pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
445 else
446 aprint_error_dev(sc->sc_dev,
447 "couldn't establish power handler\n");
448
449 /* The attach is successful. */
450 sc->ex_flags |= EX_FLAGS_ATTACHED;
451 return;
452
453 fail:
454 /*
455 * Free any resources we've allocated during the failed attach
456 * attempt. Do this in reverse order and fall though.
457 */
458 switch (attach_stage) {
459 case 11:
460 {
461 struct ex_rxdesc *rxd;
462
463 for (i = 0; i < EX_NUPD; i++) {
464 rxd = &sc->sc_rxdescs[i];
465 if (rxd->rx_mbhead != NULL) {
466 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
467 m_freem(rxd->rx_mbhead);
468 }
469 }
470 }
471 /* FALLTHROUGH */
472
473 case 10:
474 for (i = 0; i < EX_NUPD; i++)
475 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
476 /* FALLTHROUGH */
477
478 case 9:
479 for (i = 0; i < EX_NDPD; i++)
480 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
481 /* FALLTHROUGH */
482 case 8:
483 bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
484 /* FALLTHROUGH */
485
486 case 7:
487 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
488 /* FALLTHROUGH */
489
490 case 6:
491 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_dpd,
492 EX_NDPD * sizeof (struct ex_dpd));
493 /* FALLTHROUGH */
494
495 case 5:
496 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
497 break;
498
499 case 4:
500 bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
501 /* FALLTHROUGH */
502
503 case 3:
504 bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
505 /* FALLTHROUGH */
506
507 case 2:
508 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_upd,
509 EX_NUPD * sizeof (struct ex_upd));
510 /* FALLTHROUGH */
511
512 case 1:
513 bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
514 break;
515 }
516
517 }
518
519 /*
520 * Find the media present on non-MII chips.
521 */
522 void
523 ex_probemedia(struct ex_softc *sc)
524 {
525 bus_space_tag_t iot = sc->sc_iot;
526 bus_space_handle_t ioh = sc->sc_ioh;
527 struct ifmedia *ifm = &sc->ex_mii.mii_media;
528 struct ex_media *exm;
529 uint16_t config1, reset_options, default_media;
530 int defmedia = 0;
531 const char *sep = "", *defmedianame = NULL;
532
533 GO_WINDOW(3);
534 config1 = bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
535 reset_options = bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
536 GO_WINDOW(0);
537
538 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
539
540 /* Sanity check that there are any media! */
541 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
542 aprint_error_dev(sc->sc_dev, "no media present!\n");
543 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
544 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
545 return;
546 }
547
548 aprint_normal_dev(sc->sc_dev, "");
549
550 #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", "
551
552 for (exm = ex_native_media; exm->exm_name != NULL; exm++) {
553 if (reset_options & exm->exm_mpbit) {
554 /*
555 * Default media is a little complicated. We
556 * support full-duplex which uses the same
557 * reset options bit.
558 *
559 * XXX Check EEPROM for default to FDX?
560 */
561 if (exm->exm_epmedia == default_media) {
562 if ((exm->exm_ifmedia & IFM_FDX) == 0) {
563 defmedia = exm->exm_ifmedia;
564 defmedianame = exm->exm_name;
565 }
566 } else if (defmedia == 0) {
567 defmedia = exm->exm_ifmedia;
568 defmedianame = exm->exm_name;
569 }
570 ifmedia_add(ifm, exm->exm_ifmedia, exm->exm_epmedia,
571 NULL);
572 PRINT(exm->exm_name);
573 }
574 }
575
576 #undef PRINT
577
578 #ifdef DIAGNOSTIC
579 if (defmedia == 0)
580 panic("ex_probemedia: impossible");
581 #endif
582
583 aprint_normal(", default %s\n", defmedianame);
584 ifmedia_set(ifm, defmedia);
585 }
586
587 /*
588 * Setup transmitter parameters.
589 */
590 static void
591 ex_setup_tx(struct ex_softc *sc)
592 {
593 bus_space_tag_t iot = sc->sc_iot;
594 bus_space_handle_t ioh = sc->sc_ioh;
595
596 /*
597 * Disable reclaim threshold for 90xB, set free threshold to
598 * 6 * 256 = 1536 for 90x.
599 */
600 if (sc->ex_conf & EX_CONF_90XB)
601 bus_space_write_2(iot, ioh, ELINK_COMMAND,
602 ELINK_TXRECLTHRESH | 255);
603 else
604 bus_space_write_1(iot, ioh, ELINK_TXFREETHRESH, 6);
605
606 /* Setup early transmission start threshold. */
607 bus_space_write_2(iot, ioh, ELINK_COMMAND,
608 ELINK_TXSTARTTHRESH | sc->tx_start_thresh);
609 }
610
611 /*
612 * Bring device up.
613 */
614 int
615 ex_init(struct ifnet *ifp)
616 {
617 struct ex_softc *sc = ifp->if_softc;
618 bus_space_tag_t iot = sc->sc_iot;
619 bus_space_handle_t ioh = sc->sc_ioh;
620 int i;
621 uint16_t val;
622 int error = 0;
623
624 if ((error = ex_enable(sc)) != 0)
625 goto out;
626
627 ex_waitcmd(sc);
628 ex_stop(ifp, 0);
629
630 GO_WINDOW(2);
631
632 /* Turn on PHY power. */
633 if (sc->ex_conf & (EX_CONF_PHY_POWER | EX_CONF_INV_LED_POLARITY)) {
634 val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
635 if (sc->ex_conf & EX_CONF_PHY_POWER)
636 val |= ELINK_RESET_OPT_PHYPOWER; /* turn on PHY power */
637 if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
638 val |= ELINK_RESET_OPT_LEDPOLAR; /* invert LED polarity */
639 bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
640 }
641
642 /*
643 * Set the station address and clear the station mask. The latter
644 * is needed for 90x cards, 0 is the default for 90xB cards.
645 */
646 for (i = 0; i < ETHER_ADDR_LEN; i++) {
647 bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
648 CLLADDR(ifp->if_sadl)[i]);
649 bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
650 }
651
652 GO_WINDOW(3);
653
654 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_RESET);
655 ex_waitcmd(sc);
656 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
657 ex_waitcmd(sc);
658
659 /* Load Tx parameters. */
660 ex_setup_tx(sc);
661
662 bus_space_write_2(iot, ioh, ELINK_COMMAND,
663 SET_RX_EARLY_THRESH | ELINK_THRESH_DISABLE);
664
665 bus_space_write_4(iot, ioh, ELINK_DMACTRL,
666 bus_space_read_4(iot, ioh, ELINK_DMACTRL) | ELINK_DMAC_UPRXEAREN);
667
668 bus_space_write_2(iot, ioh, ELINK_COMMAND,
669 SET_RD_0_MASK | XL_WATCHED_INTERRUPTS);
670 bus_space_write_2(iot, ioh, ELINK_COMMAND,
671 SET_INTR_MASK | XL_WATCHED_INTERRUPTS);
672
673 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
674 if (sc->intr_ack)
675 (* sc->intr_ack)(sc);
676 ex_set_media(sc);
677 ex_set_mc(sc);
678
679
680 bus_space_write_2(iot, ioh, ELINK_COMMAND, STATS_ENABLE);
681 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
682 bus_space_write_4(iot, ioh, ELINK_UPLISTPTR, sc->sc_upddma);
683 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
684 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_UPUNSTALL);
685
686 ifp->if_flags |= IFF_RUNNING;
687 ifp->if_flags &= ~IFF_OACTIVE;
688 ex_start(ifp);
689 sc->sc_if_flags = ifp->if_flags;
690
691 GO_WINDOW(1);
692
693 callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
694
695 out:
696 if (error) {
697 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
698 ifp->if_timer = 0;
699 aprint_error_dev(sc->sc_dev, "interface not running\n");
700 }
701 return (error);
702 }
703
704 #define MCHASHSIZE 256
705 #define ex_mchash(addr) (ether_crc32_be((addr), ETHER_ADDR_LEN) & \
706 (MCHASHSIZE - 1))
707
708 /*
709 * Set multicast receive filter. Also take care of promiscuous mode
710 * here (XXX).
711 */
712 void
713 ex_set_mc(struct ex_softc *sc)
714 {
715 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
716 struct ethercom *ec = &sc->sc_ethercom;
717 struct ether_multi *enm;
718 struct ether_multistep estep;
719 int i;
720 uint16_t mask = FIL_INDIVIDUAL | FIL_BRDCST;
721
722 if (ifp->if_flags & IFF_PROMISC) {
723 mask |= FIL_PROMISC;
724 goto allmulti;
725 }
726
727 ETHER_FIRST_MULTI(estep, ec, enm);
728 if (enm == NULL)
729 goto nomulti;
730
731 if ((sc->ex_conf & EX_CONF_90XB) == 0)
732 /* No multicast hash filtering. */
733 goto allmulti;
734
735 for (i = 0; i < MCHASHSIZE; i++)
736 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
737 ELINK_COMMAND, ELINK_CLEARHASHFILBIT | i);
738
739 do {
740 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
741 ETHER_ADDR_LEN) != 0)
742 goto allmulti;
743
744 i = ex_mchash(enm->enm_addrlo);
745 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
746 ELINK_COMMAND, ELINK_SETHASHFILBIT | i);
747 ETHER_NEXT_MULTI(estep, enm);
748 } while (enm != NULL);
749 mask |= FIL_MULTIHASH;
750
751 nomulti:
752 ifp->if_flags &= ~IFF_ALLMULTI;
753 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
754 SET_RX_FILTER | mask);
755 return;
756
757 allmulti:
758 ifp->if_flags |= IFF_ALLMULTI;
759 mask |= FIL_MULTICAST;
760 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
761 SET_RX_FILTER | mask);
762 }
763
764
765 /*
766 * The Tx Complete interrupts occur only on errors,
767 * and this is the error handler.
768 */
769 static void
770 ex_txstat(struct ex_softc *sc)
771 {
772 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
773 bus_space_tag_t iot = sc->sc_iot;
774 bus_space_handle_t ioh = sc->sc_ioh;
775 int i, err = 0;
776
777 /*
778 * We need to read+write TX_STATUS until we get a 0 status
779 * in order to turn off the interrupt flag.
780 * ELINK_TXSTATUS is in the upper byte of 2 with ELINK_TIMER.
781 */
782 for (;;) {
783 i = bus_space_read_2(iot, ioh, ELINK_TIMER);
784 if ((i & TXS_COMPLETE) == 0)
785 break;
786 bus_space_write_2(iot, ioh, ELINK_TIMER, 0x0);
787 err |= i;
788 }
789 err &= ~TXS_TIMER;
790
791 if ((err & (TXS_UNDERRUN | TXS_JABBER | TXS_RECLAIM))
792 || err == 0 /* should not happen, just in case */) {
793 /*
794 * Make sure the transmission is stopped.
795 */
796 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNSTALL);
797 for (i = 1000; i > 0; i--)
798 if ((bus_space_read_4(iot, ioh, ELINK_DMACTRL) &
799 ELINK_DMAC_DNINPROG) == 0)
800 break;
801
802 /*
803 * Reset the transmitter.
804 */
805 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
806
807 /* Resetting takes a while and we will do more than wait. */
808
809 ifp->if_flags &= ~IFF_OACTIVE;
810 ++sc->sc_ethercom.ec_if.if_oerrors;
811 aprint_error_dev(sc->sc_dev, "%s%s%s",
812 (err & TXS_UNDERRUN) ? " transmit underrun" : "",
813 (err & TXS_JABBER) ? " jabber" : "",
814 (err & TXS_RECLAIM) ? " reclaim" : "");
815 if (err == 0)
816 aprint_error(" unknown Tx error");
817 printf(" (%x)", err);
818 if (err & TXS_UNDERRUN) {
819 aprint_error(" @%d", sc->tx_start_thresh);
820 if (sc->tx_succ_ok < 256 &&
821 (i = min(ETHER_MAX_LEN, sc->tx_start_thresh + 20))
822 > sc->tx_start_thresh) {
823 aprint_error(", new threshold is %d", i);
824 sc->tx_start_thresh = i;
825 }
826 sc->tx_succ_ok = 0;
827 }
828 aprint_error("\n");
829 if (err & TXS_MAX_COLLISION)
830 ++sc->sc_ethercom.ec_if.if_collisions;
831
832 /* Wait for TX_RESET to finish. */
833 ex_waitcmd(sc);
834
835 /* Reload Tx parameters. */
836 ex_setup_tx(sc);
837 } else {
838 if (err & TXS_MAX_COLLISION)
839 ++sc->sc_ethercom.ec_if.if_collisions;
840 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
841 }
842
843 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
844
845 /* Retransmit current packet if any. */
846 if (sc->tx_head) {
847 ifp->if_flags |= IFF_OACTIVE;
848 bus_space_write_2(iot, ioh, ELINK_COMMAND,
849 ELINK_DNUNSTALL);
850 bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
851 DPD_DMADDR(sc, sc->tx_head));
852
853 /* Retrigger watchdog if stopped. */
854 if (ifp->if_timer == 0)
855 ifp->if_timer = 1;
856 }
857 }
858
859 int
860 ex_media_chg(struct ifnet *ifp)
861 {
862
863 if (ifp->if_flags & IFF_UP)
864 ex_init(ifp);
865 return 0;
866 }
867
868 void
869 ex_set_xcvr(struct ex_softc *sc, const uint16_t media)
870 {
871 bus_space_tag_t iot = sc->sc_iot;
872 bus_space_handle_t ioh = sc->sc_ioh;
873 uint32_t icfg;
874
875 /*
876 * We're already in Window 3
877 */
878 icfg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
879 icfg &= ~(CONFIG_XCVR_SEL << 16);
880 if (media & (ELINK_MEDIACAP_MII | ELINK_MEDIACAP_100BASET4))
881 icfg |= ELINKMEDIA_MII << (CONFIG_XCVR_SEL_SHIFT + 16);
882 if (media & ELINK_MEDIACAP_100BASETX)
883 icfg |= ELINKMEDIA_AUTO << (CONFIG_XCVR_SEL_SHIFT + 16);
884 if (media & ELINK_MEDIACAP_100BASEFX)
885 icfg |= ELINKMEDIA_100BASE_FX
886 << (CONFIG_XCVR_SEL_SHIFT + 16);
887 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, icfg);
888 }
889
890 void
891 ex_set_media(struct ex_softc *sc)
892 {
893 bus_space_tag_t iot = sc->sc_iot;
894 bus_space_handle_t ioh = sc->sc_ioh;
895 uint32_t configreg;
896
897 if (((sc->ex_conf & EX_CONF_MII) &&
898 (sc->ex_mii.mii_media_active & IFM_FDX))
899 || (!(sc->ex_conf & EX_CONF_MII) &&
900 (sc->ex_mii.mii_media.ifm_media & IFM_FDX))) {
901 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL,
902 MAC_CONTROL_FDX);
903 } else {
904 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, 0);
905 }
906
907 /*
908 * If the device has MII, select it, and then tell the
909 * PHY which media to use.
910 */
911 if (sc->ex_conf & EX_CONF_MII) {
912 uint16_t val;
913
914 GO_WINDOW(3);
915 val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
916 ex_set_xcvr(sc, val);
917 mii_mediachg(&sc->ex_mii);
918 return;
919 }
920
921 GO_WINDOW(4);
922 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0);
923 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
924 delay(800);
925
926 /*
927 * Now turn on the selected media/transceiver.
928 */
929 switch (IFM_SUBTYPE(sc->ex_mii.mii_media.ifm_cur->ifm_media)) {
930 case IFM_10_T:
931 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
932 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
933 break;
934
935 case IFM_10_2:
936 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
937 DELAY(800);
938 break;
939
940 case IFM_100_TX:
941 case IFM_100_FX:
942 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
943 LINKBEAT_ENABLE);
944 DELAY(800);
945 break;
946
947 case IFM_10_5:
948 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
949 SQE_ENABLE);
950 DELAY(800);
951 break;
952
953 case IFM_MANUAL:
954 break;
955
956 case IFM_NONE:
957 return;
958
959 default:
960 panic("ex_set_media: impossible");
961 }
962
963 GO_WINDOW(3);
964 configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
965
966 configreg &= ~(CONFIG_MEDIAMASK << 16);
967 configreg |= (sc->ex_mii.mii_media.ifm_cur->ifm_data <<
968 (CONFIG_MEDIAMASK_SHIFT + 16));
969
970 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
971 }
972
973 /*
974 * Get currently-selected media from card.
975 * (if_media callback, may be called before interface is brought up).
976 */
977 void
978 ex_media_stat(struct ifnet *ifp, struct ifmediareq *req)
979 {
980 struct ex_softc *sc = ifp->if_softc;
981 uint16_t help;
982
983 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING)) {
984 if (sc->ex_conf & EX_CONF_MII) {
985 mii_pollstat(&sc->ex_mii);
986 req->ifm_status = sc->ex_mii.mii_media_status;
987 req->ifm_active = sc->ex_mii.mii_media_active;
988 } else {
989 GO_WINDOW(4);
990 req->ifm_status = IFM_AVALID;
991 req->ifm_active =
992 sc->ex_mii.mii_media.ifm_cur->ifm_media;
993 help = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
994 ELINK_W4_MEDIA_TYPE);
995 if (help & LINKBEAT_DETECT)
996 req->ifm_status |= IFM_ACTIVE;
997 GO_WINDOW(1);
998 }
999 }
1000 }
1001
1002
1003
1004 /*
1005 * Start outputting on the interface.
1006 */
1007 static void
1008 ex_start(struct ifnet *ifp)
1009 {
1010 struct ex_softc *sc = ifp->if_softc;
1011 bus_space_tag_t iot = sc->sc_iot;
1012 bus_space_handle_t ioh = sc->sc_ioh;
1013 volatile struct ex_fraghdr *fr = NULL;
1014 volatile struct ex_dpd *dpd = NULL, *prevdpd = NULL;
1015 struct ex_txdesc *txp;
1016 struct mbuf *mb_head;
1017 bus_dmamap_t dmamap;
1018 int m_csumflags, offset, seglen, totlen, segment, error;
1019 uint32_t csum_flags;
1020
1021 if (sc->tx_head || sc->tx_free == NULL)
1022 return;
1023
1024 txp = NULL;
1025
1026 /*
1027 * We're finished if there is nothing more to add to the list or if
1028 * we're all filled up with buffers to transmit.
1029 */
1030 while (sc->tx_free != NULL) {
1031 /*
1032 * Grab a packet to transmit.
1033 */
1034 IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1035 if (mb_head == NULL)
1036 break;
1037
1038 /*
1039 * mb_head might be updated later,
1040 * so preserve csum_flags here.
1041 */
1042 m_csumflags = mb_head->m_pkthdr.csum_flags;
1043
1044 /*
1045 * Get pointer to next available tx desc.
1046 */
1047 txp = sc->tx_free;
1048 dmamap = txp->tx_dmamap;
1049
1050 /*
1051 * Go through each of the mbufs in the chain and initialize
1052 * the transmit buffer descriptors with the physical address
1053 * and size of the mbuf.
1054 */
1055 reload:
1056 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1057 mb_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1058 switch (error) {
1059 case 0:
1060 /* Success. */
1061 break;
1062
1063 case EFBIG:
1064 {
1065 struct mbuf *mn;
1066
1067 /*
1068 * We ran out of segments. We have to recopy this
1069 * mbuf chain first. Bail out if we can't get the
1070 * new buffers.
1071 */
1072 aprint_error_dev(sc->sc_dev, "too many segments, ");
1073
1074 MGETHDR(mn, M_DONTWAIT, MT_DATA);
1075 if (mn == NULL) {
1076 m_freem(mb_head);
1077 aprint_error("aborting\n");
1078 goto out;
1079 }
1080 if (mb_head->m_pkthdr.len > MHLEN) {
1081 MCLGET(mn, M_DONTWAIT);
1082 if ((mn->m_flags & M_EXT) == 0) {
1083 m_freem(mn);
1084 m_freem(mb_head);
1085 aprint_error("aborting\n");
1086 goto out;
1087 }
1088 }
1089 m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1090 mtod(mn, void *));
1091 mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1092 m_freem(mb_head);
1093 mb_head = mn;
1094 aprint_error("retrying\n");
1095 goto reload;
1096 }
1097
1098 default:
1099 /*
1100 * Some other problem; report it.
1101 */
1102 aprint_error_dev(sc->sc_dev,
1103 "can't load mbuf chain, error = %d\n", error);
1104 m_freem(mb_head);
1105 goto out;
1106 }
1107
1108 /*
1109 * remove our tx desc from freelist.
1110 */
1111 sc->tx_free = txp->tx_next;
1112 txp->tx_next = NULL;
1113
1114 fr = &txp->tx_dpd->dpd_frags[0];
1115 totlen = 0;
1116 for (segment = 0; segment < dmamap->dm_nsegs; segment++, fr++) {
1117 fr->fr_addr = htole32(dmamap->dm_segs[segment].ds_addr);
1118 seglen = dmamap->dm_segs[segment].ds_len;
1119 fr->fr_len = htole32(seglen);
1120 totlen += seglen;
1121 }
1122 if (__predict_false(totlen <= EX_IP4CSUMTX_PADLEN &&
1123 (m_csumflags & M_CSUM_IPv4) != 0)) {
1124 /*
1125 * Pad short packets to avoid ip4csum-tx bug.
1126 *
1127 * XXX Should we still consider if such short
1128 * (36 bytes or less) packets might already
1129 * occupy EX_NTFRAG (== 32) fragments here?
1130 */
1131 KASSERT(segment < EX_NTFRAGS);
1132 fr->fr_addr = htole32(DPDMEMPAD_DMADDR(sc));
1133 seglen = EX_IP4CSUMTX_PADLEN + 1 - totlen;
1134 fr->fr_len = htole32(EX_FR_LAST | seglen);
1135 totlen += seglen;
1136 } else {
1137 fr--;
1138 fr->fr_len |= htole32(EX_FR_LAST);
1139 }
1140 txp->tx_mbhead = mb_head;
1141
1142 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1143 BUS_DMASYNC_PREWRITE);
1144
1145 dpd = txp->tx_dpd;
1146 dpd->dpd_nextptr = 0;
1147 dpd->dpd_fsh = htole32(totlen);
1148
1149 /* Byte-swap constants so compiler can optimize. */
1150
1151 if (sc->ex_conf & EX_CONF_90XB) {
1152 csum_flags = 0;
1153
1154 if (m_csumflags & M_CSUM_IPv4)
1155 csum_flags |= htole32(EX_DPD_IPCKSUM);
1156
1157 if (m_csumflags & M_CSUM_TCPv4)
1158 csum_flags |= htole32(EX_DPD_TCPCKSUM);
1159 else if (m_csumflags & M_CSUM_UDPv4)
1160 csum_flags |= htole32(EX_DPD_UDPCKSUM);
1161
1162 dpd->dpd_fsh |= csum_flags;
1163 } else {
1164 KDASSERT((mb_head->m_pkthdr.csum_flags &
1165 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) == 0);
1166 }
1167
1168 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1169 ((const char *)(intptr_t)dpd - (const char *)sc->sc_dpd),
1170 sizeof (struct ex_dpd),
1171 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1172
1173 /*
1174 * No need to stall the download engine, we know it's
1175 * not busy right now.
1176 *
1177 * Fix up pointers in both the "soft" tx and the physical
1178 * tx list.
1179 */
1180 if (sc->tx_head != NULL) {
1181 prevdpd = sc->tx_tail->tx_dpd;
1182 offset = ((const char *)(intptr_t)prevdpd - (const char *)sc->sc_dpd);
1183 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1184 offset, sizeof (struct ex_dpd),
1185 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1186 prevdpd->dpd_nextptr = htole32(DPD_DMADDR(sc, txp));
1187 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1188 offset, sizeof (struct ex_dpd),
1189 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1190 sc->tx_tail->tx_next = txp;
1191 sc->tx_tail = txp;
1192 } else {
1193 sc->tx_tail = sc->tx_head = txp;
1194 }
1195
1196 /*
1197 * Pass packet to bpf if there is a listener.
1198 */
1199 bpf_mtap(ifp, mb_head);
1200 }
1201 out:
1202 if (sc->tx_head) {
1203 sc->tx_tail->tx_dpd->dpd_fsh |= htole32(EX_DPD_DNIND);
1204 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1205 ((char *)sc->tx_tail->tx_dpd - (char *)sc->sc_dpd),
1206 sizeof (struct ex_dpd),
1207 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1208 ifp->if_flags |= IFF_OACTIVE;
1209 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNUNSTALL);
1210 bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
1211 DPD_DMADDR(sc, sc->tx_head));
1212
1213 /* trigger watchdog */
1214 ifp->if_timer = 5;
1215 }
1216 }
1217
1218
1219 int
1220 ex_intr(void *arg)
1221 {
1222 struct ex_softc *sc = arg;
1223 bus_space_tag_t iot = sc->sc_iot;
1224 bus_space_handle_t ioh = sc->sc_ioh;
1225 uint16_t stat;
1226 int ret = 0;
1227 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1228
1229 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1230 !device_is_active(sc->sc_dev))
1231 return (0);
1232
1233 for (;;) {
1234 stat = bus_space_read_2(iot, ioh, ELINK_STATUS);
1235
1236 if ((stat & XL_WATCHED_INTERRUPTS) == 0) {
1237 if ((stat & INTR_LATCH) == 0) {
1238 #if 0
1239 aprint_error_dev(sc->sc_dev,
1240 "intr latch cleared\n");
1241 #endif
1242 break;
1243 }
1244 }
1245
1246 ret = 1;
1247
1248 /*
1249 * Acknowledge interrupts.
1250 */
1251 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1252 (stat & (XL_WATCHED_INTERRUPTS | INTR_LATCH)));
1253 if (sc->intr_ack)
1254 (*sc->intr_ack)(sc);
1255
1256 if (stat & HOST_ERROR) {
1257 aprint_error_dev(sc->sc_dev,
1258 "adapter failure (%x)\n", stat);
1259 ex_reset(sc);
1260 ex_init(ifp);
1261 return 1;
1262 }
1263 if (stat & UPD_STATS) {
1264 ex_getstats(sc);
1265 }
1266 if (stat & TX_COMPLETE) {
1267 ex_txstat(sc);
1268 #if 0
1269 if (stat & DN_COMPLETE)
1270 aprint_error_dev(sc->sc_dev,
1271 "Ignoring Dn interrupt (%x)\n", stat);
1272 #endif
1273 /*
1274 * In some rare cases, both Tx Complete and
1275 * Dn Complete bits are set. However, the packet
1276 * has been reloaded in ex_txstat() and should not
1277 * handle the Dn Complete event here.
1278 * Hence the "else" below.
1279 */
1280 } else if (stat & DN_COMPLETE) {
1281 struct ex_txdesc *txp, *ptxp = NULL;
1282 bus_dmamap_t txmap;
1283
1284 /* reset watchdog timer, was set in ex_start() */
1285 ifp->if_timer = 0;
1286
1287 for (txp = sc->tx_head; txp != NULL;
1288 txp = txp->tx_next) {
1289 bus_dmamap_sync(sc->sc_dmat,
1290 sc->sc_dpd_dmamap,
1291 (char *)txp->tx_dpd - (char *)sc->sc_dpd,
1292 sizeof (struct ex_dpd),
1293 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1294 if (txp->tx_mbhead != NULL) {
1295 txmap = txp->tx_dmamap;
1296 bus_dmamap_sync(sc->sc_dmat, txmap,
1297 0, txmap->dm_mapsize,
1298 BUS_DMASYNC_POSTWRITE);
1299 bus_dmamap_unload(sc->sc_dmat, txmap);
1300 m_freem(txp->tx_mbhead);
1301 txp->tx_mbhead = NULL;
1302 }
1303 ptxp = txp;
1304 }
1305
1306 /*
1307 * Move finished tx buffers back to the tx free list.
1308 */
1309 if (sc->tx_free) {
1310 sc->tx_ftail->tx_next = sc->tx_head;
1311 sc->tx_ftail = ptxp;
1312 } else
1313 sc->tx_ftail = sc->tx_free = sc->tx_head;
1314
1315 sc->tx_head = sc->tx_tail = NULL;
1316 ifp->if_flags &= ~IFF_OACTIVE;
1317
1318 if (sc->tx_succ_ok < 256)
1319 sc->tx_succ_ok++;
1320 }
1321
1322 if (stat & UP_COMPLETE) {
1323 struct ex_rxdesc *rxd;
1324 struct mbuf *m;
1325 struct ex_upd *upd;
1326 bus_dmamap_t rxmap;
1327 uint32_t pktstat;
1328
1329 rcvloop:
1330 rxd = sc->rx_head;
1331 rxmap = rxd->rx_dmamap;
1332 m = rxd->rx_mbhead;
1333 upd = rxd->rx_upd;
1334
1335 bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
1336 rxmap->dm_mapsize,
1337 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1338 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1339 ((char *)upd - (char *)sc->sc_upd),
1340 sizeof (struct ex_upd),
1341 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1342 pktstat = le32toh(upd->upd_pktstatus);
1343
1344 if (pktstat & EX_UPD_COMPLETE) {
1345 /*
1346 * Remove first packet from the chain.
1347 */
1348 sc->rx_head = rxd->rx_next;
1349 rxd->rx_next = NULL;
1350
1351 /*
1352 * Add a new buffer to the receive chain.
1353 * If this fails, the old buffer is recycled
1354 * instead.
1355 */
1356 if (ex_add_rxbuf(sc, rxd) == 0) {
1357 uint16_t total_len;
1358
1359 if (pktstat &
1360 ((sc->sc_ethercom.ec_capenable &
1361 ETHERCAP_VLAN_MTU) ?
1362 EX_UPD_ERR_VLAN : EX_UPD_ERR)) {
1363 ifp->if_ierrors++;
1364 m_freem(m);
1365 goto rcvloop;
1366 }
1367
1368 total_len = pktstat & EX_UPD_PKTLENMASK;
1369 if (total_len <
1370 sizeof(struct ether_header)) {
1371 m_freem(m);
1372 goto rcvloop;
1373 }
1374 m_set_rcvif(m, ifp);
1375 m->m_pkthdr.len = m->m_len = total_len;
1376 /*
1377 * Set the incoming checksum information for the packet.
1378 */
1379 if ((sc->ex_conf & EX_CONF_90XB) != 0 &&
1380 (pktstat & EX_UPD_IPCHECKED) != 0) {
1381 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1382 if (pktstat & EX_UPD_IPCKSUMERR)
1383 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1384 if (pktstat & EX_UPD_TCPCHECKED) {
1385 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1386 if (pktstat & EX_UPD_TCPCKSUMERR)
1387 m->m_pkthdr.csum_flags |=
1388 M_CSUM_TCP_UDP_BAD;
1389 } else if (pktstat & EX_UPD_UDPCHECKED) {
1390 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1391 if (pktstat & EX_UPD_UDPCKSUMERR)
1392 m->m_pkthdr.csum_flags |=
1393 M_CSUM_TCP_UDP_BAD;
1394 }
1395 }
1396 if_percpuq_enqueue(ifp->if_percpuq, m);
1397 }
1398 goto rcvloop;
1399 }
1400 /*
1401 * Just in case we filled up all UPDs and the DMA engine
1402 * stalled. We could be more subtle about this.
1403 */
1404 if (bus_space_read_4(iot, ioh, ELINK_UPLISTPTR) == 0) {
1405 aprint_error_dev(sc->sc_dev,
1406 "uplistptr was 0\n");
1407 ex_init(ifp);
1408 } else if (bus_space_read_4(iot, ioh, ELINK_UPPKTSTATUS)
1409 & 0x2000) {
1410 aprint_error_dev(sc->sc_dev,
1411 "receive stalled\n");
1412 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1413 ELINK_UPUNSTALL);
1414 }
1415 }
1416
1417 if (stat)
1418 rnd_add_uint32(&sc->rnd_source, stat);
1419 }
1420
1421 /* no more interrupts */
1422 if (ret)
1423 if_schedule_deferred_start(ifp);
1424 return ret;
1425 }
1426
1427 static int
1428 ex_ifflags_cb(struct ethercom *ec)
1429 {
1430 struct ifnet *ifp = &ec->ec_if;
1431 struct ex_softc *sc = ifp->if_softc;
1432 int change = ifp->if_flags ^ sc->sc_if_flags;
1433
1434 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
1435 return ENETRESET;
1436 else if ((change & IFF_PROMISC) != 0)
1437 ex_set_mc(sc);
1438 return 0;
1439 }
1440
1441 int
1442 ex_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1443 {
1444 struct ex_softc *sc = ifp->if_softc;
1445 struct ifreq *ifr = (struct ifreq *)data;
1446 int s, error;
1447
1448 s = splnet();
1449
1450 switch (cmd) {
1451 case SIOCSIFMEDIA:
1452 case SIOCGIFMEDIA:
1453 error = ifmedia_ioctl(ifp, ifr, &sc->ex_mii.mii_media, cmd);
1454 break;
1455 default:
1456 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1457 break;
1458
1459 error = 0;
1460
1461 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1462 ;
1463 else if (ifp->if_flags & IFF_RUNNING) {
1464 /*
1465 * Multicast list has changed; set the hardware filter
1466 * accordingly.
1467 */
1468 ex_set_mc(sc);
1469 }
1470 break;
1471 }
1472
1473 sc->sc_if_flags = ifp->if_flags;
1474 splx(s);
1475 return (error);
1476 }
1477
1478 void
1479 ex_getstats(struct ex_softc *sc)
1480 {
1481 bus_space_handle_t ioh = sc->sc_ioh;
1482 bus_space_tag_t iot = sc->sc_iot;
1483 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1484 uint8_t upperok;
1485
1486 GO_WINDOW(6);
1487 upperok = bus_space_read_1(iot, ioh, UPPER_FRAMES_OK);
1488 ifp->if_ipackets += bus_space_read_1(iot, ioh, RX_FRAMES_OK);
1489 ifp->if_ipackets += (upperok & 0x03) << 8;
1490 ifp->if_opackets += bus_space_read_1(iot, ioh, TX_FRAMES_OK);
1491 ifp->if_opackets += (upperok & 0x30) << 4;
1492 ifp->if_ierrors += bus_space_read_1(iot, ioh, RX_OVERRUNS);
1493 ifp->if_collisions += bus_space_read_1(iot, ioh, TX_COLLISIONS);
1494 /*
1495 * There seems to be no way to get the exact number of collisions,
1496 * this is the number that occurred at the very least.
1497 */
1498 ifp->if_collisions += 2 * bus_space_read_1(iot, ioh,
1499 TX_AFTER_X_COLLISIONS);
1500 /*
1501 * Interface byte counts are counted by ether_input() and
1502 * ether_output(), so don't accumulate them here. Just
1503 * read the NIC counters so they don't generate overflow interrupts.
1504 * Upper byte counters are latched from reading the totals, so
1505 * they don't need to be read if we don't need their values.
1506 */
1507 (void)bus_space_read_2(iot, ioh, RX_TOTAL_OK);
1508 (void)bus_space_read_2(iot, ioh, TX_TOTAL_OK);
1509
1510 /*
1511 * Clear the following to avoid stats overflow interrupts
1512 */
1513 (void)bus_space_read_1(iot, ioh, TX_DEFERRALS);
1514 (void)bus_space_read_1(iot, ioh, TX_AFTER_1_COLLISION);
1515 (void)bus_space_read_1(iot, ioh, TX_NO_SQE);
1516 (void)bus_space_read_1(iot, ioh, TX_CD_LOST);
1517 GO_WINDOW(4);
1518 (void)bus_space_read_1(iot, ioh, ELINK_W4_BADSSD);
1519 GO_WINDOW(1);
1520 }
1521
1522 void
1523 ex_printstats(struct ex_softc *sc)
1524 {
1525 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1526
1527 ex_getstats(sc);
1528 printf("in %llu out %llu ierror %llu oerror %llu ibytes %llu obytes "
1529 "%llu\n", (unsigned long long)ifp->if_ipackets,
1530 (unsigned long long)ifp->if_opackets,
1531 (unsigned long long)ifp->if_ierrors,
1532 (unsigned long long)ifp->if_oerrors,
1533 (unsigned long long)ifp->if_ibytes,
1534 (unsigned long long)ifp->if_obytes);
1535 }
1536
1537 void
1538 ex_tick(void *arg)
1539 {
1540 struct ex_softc *sc = arg;
1541 int s;
1542
1543 if (!device_is_active(sc->sc_dev))
1544 return;
1545
1546 s = splnet();
1547
1548 if (sc->ex_conf & EX_CONF_MII)
1549 mii_tick(&sc->ex_mii);
1550
1551 if (!(bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, ELINK_STATUS)
1552 & COMMAND_IN_PROGRESS))
1553 ex_getstats(sc);
1554
1555 splx(s);
1556
1557 callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
1558 }
1559
1560 void
1561 ex_reset(struct ex_softc *sc)
1562 {
1563 uint16_t val = GLOBAL_RESET;
1564
1565 if (sc->ex_conf & EX_CONF_RESETHACK)
1566 val |= 0x10;
1567 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, val);
1568 /*
1569 * XXX apparently the command in progress bit can't be trusted
1570 * during a reset, so we just always wait this long. Fortunately
1571 * we normally only reset the chip during autoconfig.
1572 */
1573 delay(100000);
1574 ex_waitcmd(sc);
1575 }
1576
1577 void
1578 ex_watchdog(struct ifnet *ifp)
1579 {
1580 struct ex_softc *sc = ifp->if_softc;
1581
1582 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1583 ++sc->sc_ethercom.ec_if.if_oerrors;
1584
1585 ex_reset(sc);
1586 ex_init(ifp);
1587 }
1588
1589 void
1590 ex_stop(struct ifnet *ifp, int disable)
1591 {
1592 struct ex_softc *sc = ifp->if_softc;
1593 bus_space_tag_t iot = sc->sc_iot;
1594 bus_space_handle_t ioh = sc->sc_ioh;
1595 struct ex_txdesc *tx;
1596 struct ex_rxdesc *rx;
1597 int i;
1598
1599 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1600 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1601 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1602
1603 for (tx = sc->tx_head ; tx != NULL; tx = tx->tx_next) {
1604 if (tx->tx_mbhead == NULL)
1605 continue;
1606 m_freem(tx->tx_mbhead);
1607 tx->tx_mbhead = NULL;
1608 bus_dmamap_unload(sc->sc_dmat, tx->tx_dmamap);
1609 tx->tx_dpd->dpd_fsh = tx->tx_dpd->dpd_nextptr = 0;
1610 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1611 ((char *)tx->tx_dpd - (char *)sc->sc_dpd),
1612 sizeof (struct ex_dpd),
1613 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1614 }
1615 sc->tx_tail = sc->tx_head = NULL;
1616 ex_init_txdescs(sc);
1617
1618 sc->rx_tail = sc->rx_head = 0;
1619 for (i = 0; i < EX_NUPD; i++) {
1620 rx = &sc->sc_rxdescs[i];
1621 if (rx->rx_mbhead != NULL) {
1622 bus_dmamap_unload(sc->sc_dmat, rx->rx_dmamap);
1623 m_freem(rx->rx_mbhead);
1624 rx->rx_mbhead = NULL;
1625 }
1626 ex_add_rxbuf(sc, rx);
1627 }
1628
1629 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1630
1631 callout_stop(&sc->ex_mii_callout);
1632 if (sc->ex_conf & EX_CONF_MII)
1633 mii_down(&sc->ex_mii);
1634
1635 if (disable)
1636 ex_disable(sc);
1637
1638 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1639 sc->sc_if_flags = ifp->if_flags;
1640 ifp->if_timer = 0;
1641 }
1642
1643 static void
1644 ex_init_txdescs(struct ex_softc *sc)
1645 {
1646 int i;
1647
1648 for (i = 0; i < EX_NDPD; i++) {
1649 sc->sc_txdescs[i].tx_dmamap = sc->sc_tx_dmamaps[i];
1650 sc->sc_txdescs[i].tx_dpd = &sc->sc_dpd[i];
1651 if (i < EX_NDPD - 1)
1652 sc->sc_txdescs[i].tx_next = &sc->sc_txdescs[i + 1];
1653 else
1654 sc->sc_txdescs[i].tx_next = NULL;
1655 }
1656 sc->tx_free = &sc->sc_txdescs[0];
1657 sc->tx_ftail = &sc->sc_txdescs[EX_NDPD-1];
1658 }
1659
1660
1661 int
1662 ex_activate(device_t self, enum devact act)
1663 {
1664 struct ex_softc *sc = device_private(self);
1665
1666 switch (act) {
1667 case DVACT_DEACTIVATE:
1668 if_deactivate(&sc->sc_ethercom.ec_if);
1669 return 0;
1670 default:
1671 return EOPNOTSUPP;
1672 }
1673 }
1674
1675 int
1676 ex_detach(struct ex_softc *sc)
1677 {
1678 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1679 struct ex_rxdesc *rxd;
1680 int i, s;
1681
1682 /* Succeed now if there's no work to do. */
1683 if ((sc->ex_flags & EX_FLAGS_ATTACHED) == 0)
1684 return (0);
1685
1686 s = splnet();
1687 /* Stop the interface. Callouts are stopped in it. */
1688 ex_stop(ifp, 1);
1689 splx(s);
1690
1691 /* Destroy our callout. */
1692 callout_destroy(&sc->ex_mii_callout);
1693
1694 if (sc->ex_conf & EX_CONF_MII) {
1695 /* Detach all PHYs */
1696 mii_detach(&sc->ex_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1697 }
1698
1699 /* Delete all remaining media. */
1700 ifmedia_delete_instance(&sc->ex_mii.mii_media, IFM_INST_ANY);
1701
1702 rnd_detach_source(&sc->rnd_source);
1703 ether_ifdetach(ifp);
1704 if_detach(ifp);
1705
1706 for (i = 0; i < EX_NUPD; i++) {
1707 rxd = &sc->sc_rxdescs[i];
1708 if (rxd->rx_mbhead != NULL) {
1709 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1710 m_freem(rxd->rx_mbhead);
1711 rxd->rx_mbhead = NULL;
1712 }
1713 }
1714 for (i = 0; i < EX_NUPD; i++)
1715 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
1716 for (i = 0; i < EX_NDPD; i++)
1717 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
1718 bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
1719 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
1720 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_dpd,
1721 EX_NDPD * sizeof (struct ex_dpd));
1722 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
1723 bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
1724 bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
1725 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_upd,
1726 EX_NUPD * sizeof (struct ex_upd));
1727 bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
1728
1729 pmf_device_deregister(sc->sc_dev);
1730
1731 return (0);
1732 }
1733
1734 /*
1735 * Before reboots, reset card completely.
1736 */
1737 static bool
1738 ex_shutdown(device_t self, int flags)
1739 {
1740 struct ex_softc *sc = device_private(self);
1741
1742 ex_stop(&sc->sc_ethercom.ec_if, 1);
1743 /*
1744 * Make sure the interface is powered up when we reboot,
1745 * otherwise firmware on some systems gets really confused.
1746 */
1747 (void) ex_enable(sc);
1748 return true;
1749 }
1750
1751 /*
1752 * Read EEPROM data.
1753 * XXX what to do if EEPROM doesn't unbusy?
1754 */
1755 uint16_t
1756 ex_read_eeprom(struct ex_softc *sc, int offset)
1757 {
1758 bus_space_tag_t iot = sc->sc_iot;
1759 bus_space_handle_t ioh = sc->sc_ioh;
1760 uint16_t data = 0, cmd = READ_EEPROM;
1761 int off;
1762
1763 off = sc->ex_conf & EX_CONF_EEPROM_OFF ? 0x30 : 0;
1764 cmd = sc->ex_conf & EX_CONF_EEPROM_8BIT ? READ_EEPROM8 : READ_EEPROM;
1765
1766 GO_WINDOW(0);
1767 if (ex_eeprom_busy(sc))
1768 goto out;
1769 bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
1770 cmd | (off + (offset & 0x3f)));
1771 if (ex_eeprom_busy(sc))
1772 goto out;
1773 data = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
1774 out:
1775 return data;
1776 }
1777
1778 static int
1779 ex_eeprom_busy(struct ex_softc *sc)
1780 {
1781 bus_space_tag_t iot = sc->sc_iot;
1782 bus_space_handle_t ioh = sc->sc_ioh;
1783 int i = 100;
1784
1785 while (i--) {
1786 if (!(bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND) &
1787 EEPROM_BUSY))
1788 return 0;
1789 delay(100);
1790 }
1791 aprint_error_dev(sc->sc_dev, "eeprom stays busy.\n");
1792 return (1);
1793 }
1794
1795 /*
1796 * Create a new rx buffer and add it to the 'soft' rx list.
1797 */
1798 static int
1799 ex_add_rxbuf(struct ex_softc *sc, struct ex_rxdesc *rxd)
1800 {
1801 struct mbuf *m, *oldm;
1802 bus_dmamap_t rxmap;
1803 int error, rval = 0;
1804
1805 oldm = rxd->rx_mbhead;
1806 rxmap = rxd->rx_dmamap;
1807
1808 MGETHDR(m, M_DONTWAIT, MT_DATA);
1809 if (m != NULL) {
1810 MCLGET(m, M_DONTWAIT);
1811 if ((m->m_flags & M_EXT) == 0) {
1812 m_freem(m);
1813 if (oldm == NULL)
1814 return 1;
1815 m = oldm;
1816 MRESETDATA(m);
1817 rval = 1;
1818 }
1819 } else {
1820 if (oldm == NULL)
1821 return 1;
1822 m = oldm;
1823 MRESETDATA(m);
1824 rval = 1;
1825 }
1826
1827 /*
1828 * Setup the DMA map for this receive buffer.
1829 */
1830 if (m != oldm) {
1831 if (oldm != NULL)
1832 bus_dmamap_unload(sc->sc_dmat, rxmap);
1833 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1834 m->m_ext.ext_buf, MCLBYTES, NULL,
1835 BUS_DMA_READ|BUS_DMA_NOWAIT);
1836 if (error) {
1837 aprint_error_dev(sc->sc_dev, "can't load rx buffer, error = %d\n",
1838 error);
1839 panic("ex_add_rxbuf"); /* XXX */
1840 }
1841 }
1842
1843 /*
1844 * Align for data after 14 byte header.
1845 */
1846 m->m_data += 2;
1847
1848 rxd->rx_mbhead = m;
1849 rxd->rx_upd->upd_pktstatus = htole32(MCLBYTES - 2);
1850 rxd->rx_upd->upd_frags[0].fr_addr =
1851 htole32(rxmap->dm_segs[0].ds_addr + 2);
1852 rxd->rx_upd->upd_nextptr = 0;
1853
1854 /*
1855 * Attach it to the end of the list.
1856 */
1857 if (sc->rx_head != NULL) {
1858 sc->rx_tail->rx_next = rxd;
1859 sc->rx_tail->rx_upd->upd_nextptr = htole32(sc->sc_upddma +
1860 ((char *)rxd->rx_upd - (char *)sc->sc_upd));
1861 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1862 (char *)sc->rx_tail->rx_upd - (char *)sc->sc_upd,
1863 sizeof (struct ex_upd),
1864 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1865 } else {
1866 sc->rx_head = rxd;
1867 }
1868 sc->rx_tail = rxd;
1869
1870 bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
1871 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1872 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1873 ((char *)rxd->rx_upd - (char *)sc->sc_upd),
1874 sizeof (struct ex_upd), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1875 return (rval);
1876 }
1877
1878 uint32_t
1879 ex_mii_bitbang_read(device_t self)
1880 {
1881 struct ex_softc *sc = device_private(self);
1882
1883 /* We're already in Window 4. */
1884 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT));
1885 }
1886
1887 void
1888 ex_mii_bitbang_write(device_t self, uint32_t val)
1889 {
1890 struct ex_softc *sc = device_private(self);
1891
1892 /* We're already in Window 4. */
1893 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT, val);
1894 }
1895
1896 int
1897 ex_mii_readreg(device_t v, int phy, int reg)
1898 {
1899 struct ex_softc *sc = device_private(v);
1900 int val;
1901
1902 if ((sc->ex_conf & EX_CONF_INTPHY) && phy != ELINK_INTPHY_ID)
1903 return 0;
1904
1905 GO_WINDOW(4);
1906
1907 val = mii_bitbang_readreg(v, &ex_mii_bitbang_ops, phy, reg);
1908
1909 GO_WINDOW(1);
1910
1911 return (val);
1912 }
1913
1914 void
1915 ex_mii_writereg(device_t v, int phy, int reg, int data)
1916 {
1917 struct ex_softc *sc = device_private(v);
1918
1919 GO_WINDOW(4);
1920
1921 mii_bitbang_writereg(v, &ex_mii_bitbang_ops, phy, reg, data);
1922
1923 GO_WINDOW(1);
1924 }
1925
1926 void
1927 ex_mii_statchg(struct ifnet *ifp)
1928 {
1929 struct ex_softc *sc = ifp->if_softc;
1930 bus_space_tag_t iot = sc->sc_iot;
1931 bus_space_handle_t ioh = sc->sc_ioh;
1932 int mctl;
1933
1934 GO_WINDOW(3);
1935 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1936 if (sc->ex_mii.mii_media_active & IFM_FDX)
1937 mctl |= MAC_CONTROL_FDX;
1938 else
1939 mctl &= ~MAC_CONTROL_FDX;
1940 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1941 GO_WINDOW(1); /* back to operating window */
1942 }
1943
1944 int
1945 ex_enable(struct ex_softc *sc)
1946 {
1947 if (sc->enabled == 0 && sc->enable != NULL) {
1948 if ((*sc->enable)(sc) != 0) {
1949 aprint_error_dev(sc->sc_dev, "device enable failed\n");
1950 return (EIO);
1951 }
1952 sc->enabled = 1;
1953 }
1954 return (0);
1955 }
1956
1957 void
1958 ex_disable(struct ex_softc *sc)
1959 {
1960 if (sc->enabled == 1 && sc->disable != NULL) {
1961 (*sc->disable)(sc);
1962 sc->enabled = 0;
1963 }
1964 }
1965
1966