elinkxl.c revision 1.39 1 /* $NetBSD: elinkxl.c,v 1.39 2000/08/31 08:42:29 haya Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include "opt_inet.h"
40 #include "opt_ns.h"
41 #include "bpfilter.h"
42 #include "rnd.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/kernel.h>
48 #include <sys/mbuf.h>
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/syslog.h>
53 #include <sys/select.h>
54 #include <sys/device.h>
55 #if NRND > 0
56 #include <sys/rnd.h>
57 #endif
58
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_ether.h>
62 #include <net/if_media.h>
63
64 #ifdef INET
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_var.h>
68 #include <netinet/ip.h>
69 #include <netinet/if_inarp.h>
70 #endif
71
72 #ifdef NS
73 #include <netns/ns.h>
74 #include <netns/ns_if.h>
75 #endif
76
77 #if NBPFILTER > 0
78 #include <net/bpf.h>
79 #include <net/bpfdesc.h>
80 #endif
81
82 #include <machine/cpu.h>
83 #include <machine/bus.h>
84 #include <machine/intr.h>
85 #include <machine/endian.h>
86
87 #include <dev/mii/miivar.h>
88 #include <dev/mii/mii.h>
89 #include <dev/mii/mii_bitbang.h>
90
91 #include <dev/ic/elink3reg.h>
92 /* #include <dev/ic/elink3var.h> */
93 #include <dev/ic/elinkxlreg.h>
94 #include <dev/ic/elinkxlvar.h>
95
96 #ifdef DEBUG
97 int exdebug = 0;
98 #endif
99
100 /* ifmedia callbacks */
101 int ex_media_chg __P((struct ifnet *ifp));
102 void ex_media_stat __P((struct ifnet *ifp, struct ifmediareq *req));
103
104 void ex_probe_media __P((struct ex_softc *));
105 void ex_set_filter __P((struct ex_softc *));
106 void ex_set_media __P((struct ex_softc *));
107 struct mbuf *ex_get __P((struct ex_softc *, int));
108 u_int16_t ex_read_eeprom __P((struct ex_softc *, int));
109 void ex_init __P((struct ex_softc *));
110 void ex_read __P((struct ex_softc *));
111 void ex_reset __P((struct ex_softc *));
112 void ex_set_mc __P((struct ex_softc *));
113 void ex_getstats __P((struct ex_softc *));
114 void ex_printstats __P((struct ex_softc *));
115 void ex_tick __P((void *));
116
117 static int ex_eeprom_busy __P((struct ex_softc *));
118 static int ex_add_rxbuf __P((struct ex_softc *, struct ex_rxdesc *));
119 static void ex_init_txdescs __P((struct ex_softc *));
120
121 static void ex_shutdown __P((void *));
122 static void ex_start __P((struct ifnet *));
123 static void ex_txstat __P((struct ex_softc *));
124
125 int ex_mii_readreg __P((struct device *, int, int));
126 void ex_mii_writereg __P((struct device *, int, int, int));
127 void ex_mii_statchg __P((struct device *));
128
129 void ex_probemedia __P((struct ex_softc *));
130
131 /*
132 * Structure to map media-present bits in boards to ifmedia codes and
133 * printable media names. Used for table-driven ifmedia initialization.
134 */
135 struct ex_media {
136 int exm_mpbit; /* media present bit */
137 const char *exm_name; /* name of medium */
138 int exm_ifmedia; /* ifmedia word for medium */
139 int exm_epmedia; /* ELINKMEDIA_* constant */
140 };
141
142 /*
143 * Media table for 3c90x chips. Note that chips with MII have no
144 * `native' media.
145 */
146 struct ex_media ex_native_media[] = {
147 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
148 ELINKMEDIA_10BASE_T },
149 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
150 ELINKMEDIA_10BASE_T },
151 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
152 ELINKMEDIA_AUI },
153 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
154 ELINKMEDIA_10BASE_2 },
155 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
156 ELINKMEDIA_100BASE_TX },
157 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
158 ELINKMEDIA_100BASE_TX },
159 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
160 ELINKMEDIA_100BASE_FX },
161 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
162 ELINKMEDIA_MII },
163 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
164 ELINKMEDIA_100BASE_T4 },
165 { 0, NULL, 0,
166 0 },
167 };
168
169 /*
170 * MII bit-bang glue.
171 */
172 u_int32_t ex_mii_bitbang_read __P((struct device *));
173 void ex_mii_bitbang_write __P((struct device *, u_int32_t));
174
175 const struct mii_bitbang_ops ex_mii_bitbang_ops = {
176 ex_mii_bitbang_read,
177 ex_mii_bitbang_write,
178 {
179 ELINK_PHY_DATA, /* MII_BIT_MDO */
180 ELINK_PHY_DATA, /* MII_BIT_MDI */
181 ELINK_PHY_CLK, /* MII_BIT_MDC */
182 ELINK_PHY_DIR, /* MII_BIT_DIR_HOST_PHY */
183 0, /* MII_BIT_DIR_PHY_HOST */
184 }
185 };
186
187 /*
188 * Back-end attach and configure.
189 */
190 void
191 ex_config(sc)
192 struct ex_softc *sc;
193 {
194 struct ifnet *ifp;
195 u_int16_t val;
196 u_int8_t macaddr[ETHER_ADDR_LEN] = {0};
197 bus_space_tag_t iot = sc->sc_iot;
198 bus_space_handle_t ioh = sc->sc_ioh;
199 int i, error, attach_stage;
200
201 callout_init(&sc->ex_mii_callout);
202
203 ex_reset(sc);
204
205 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR0);
206 macaddr[0] = val >> 8;
207 macaddr[1] = val & 0xff;
208 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR1);
209 macaddr[2] = val >> 8;
210 macaddr[3] = val & 0xff;
211 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR2);
212 macaddr[4] = val >> 8;
213 macaddr[5] = val & 0xff;
214
215 printf("%s: MAC address %s\n", sc->sc_dev.dv_xname,
216 ether_sprintf(macaddr));
217
218 if (sc->intr_ack != NULL) { /* CardBus card specific */
219 GO_WINDOW(2);
220 if (sc->ex_conf & EX_CONF_INV_LED_POLARITY) {
221 bus_space_write_2(sc->sc_iot, ioh, 12,
222 0x10|bus_space_read_2(sc->sc_iot, ioh, 12));
223 }
224 if (sc->ex_conf & EX_CONF_PHY_POWER) {
225 bus_space_write_2(sc->sc_iot, ioh, 12,
226 0x4000|bus_space_read_2(sc->sc_iot, ioh, 12));
227 }
228 }
229
230 attach_stage = 0;
231
232 /*
233 * Allocate the upload descriptors, and create and load the DMA
234 * map for them.
235 */
236 if ((error = bus_dmamem_alloc(sc->sc_dmat,
237 EX_NUPD * sizeof (struct ex_upd), NBPG, 0, &sc->sc_useg, 1,
238 &sc->sc_urseg, BUS_DMA_NOWAIT)) != 0) {
239 printf("%s: can't allocate upload descriptors, error = %d\n",
240 sc->sc_dev.dv_xname, error);
241 goto fail;
242 }
243
244 attach_stage = 1;
245
246 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg,
247 EX_NUPD * sizeof (struct ex_upd), (caddr_t *)&sc->sc_upd,
248 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
249 printf("%s: can't map upload descriptors, error = %d\n",
250 sc->sc_dev.dv_xname, error);
251 goto fail;
252 }
253
254 attach_stage = 2;
255
256 if ((error = bus_dmamap_create(sc->sc_dmat,
257 EX_NUPD * sizeof (struct ex_upd), 1,
258 EX_NUPD * sizeof (struct ex_upd), 0, BUS_DMA_NOWAIT,
259 &sc->sc_upd_dmamap)) != 0) {
260 printf("%s: can't create upload desc. DMA map, error = %d\n",
261 sc->sc_dev.dv_xname, error);
262 goto fail;
263 }
264
265 attach_stage = 3;
266
267 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_upd_dmamap,
268 sc->sc_upd, EX_NUPD * sizeof (struct ex_upd), NULL,
269 BUS_DMA_NOWAIT)) != 0) {
270 printf("%s: can't load upload desc. DMA map, error = %d\n",
271 sc->sc_dev.dv_xname, error);
272 goto fail;
273 }
274
275 attach_stage = 4;
276
277 /*
278 * Allocate the download descriptors, and create and load the DMA
279 * map for them.
280 */
281 if ((error = bus_dmamem_alloc(sc->sc_dmat,
282 EX_NDPD * sizeof (struct ex_dpd), NBPG, 0, &sc->sc_dseg, 1,
283 &sc->sc_drseg, BUS_DMA_NOWAIT)) != 0) {
284 printf("%s: can't allocate download descriptors, error = %d\n",
285 sc->sc_dev.dv_xname, error);
286 goto fail;
287 }
288
289 attach_stage = 5;
290
291 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg,
292 EX_NDPD * sizeof (struct ex_dpd), (caddr_t *)&sc->sc_dpd,
293 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
294 printf("%s: can't map download descriptors, error = %d\n",
295 sc->sc_dev.dv_xname, error);
296 goto fail;
297 }
298 bzero(sc->sc_dpd, EX_NDPD * sizeof (struct ex_dpd));
299
300 attach_stage = 6;
301
302 if ((error = bus_dmamap_create(sc->sc_dmat,
303 EX_NDPD * sizeof (struct ex_dpd), 1,
304 EX_NDPD * sizeof (struct ex_dpd), 0, BUS_DMA_NOWAIT,
305 &sc->sc_dpd_dmamap)) != 0) {
306 printf("%s: can't create download desc. DMA map, error = %d\n",
307 sc->sc_dev.dv_xname, error);
308 goto fail;
309 }
310
311 attach_stage = 7;
312
313 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dpd_dmamap,
314 sc->sc_dpd, EX_NDPD * sizeof (struct ex_dpd), NULL,
315 BUS_DMA_NOWAIT)) != 0) {
316 printf("%s: can't load download desc. DMA map, error = %d\n",
317 sc->sc_dev.dv_xname, error);
318 goto fail;
319 }
320
321 attach_stage = 8;
322
323
324 /*
325 * Create the transmit buffer DMA maps.
326 */
327 for (i = 0; i < EX_NDPD; i++) {
328 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
329 EX_NTFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
330 &sc->sc_tx_dmamaps[i])) != 0) {
331 printf("%s: can't create tx DMA map %d, error = %d\n",
332 sc->sc_dev.dv_xname, i, error);
333 goto fail;
334 }
335 }
336
337 attach_stage = 9;
338
339 /*
340 * Create the receive buffer DMA maps.
341 */
342 for (i = 0; i < EX_NUPD; i++) {
343 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
344 EX_NRFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
345 &sc->sc_rx_dmamaps[i])) != 0) {
346 printf("%s: can't create rx DMA map %d, error = %d\n",
347 sc->sc_dev.dv_xname, i, error);
348 goto fail;
349 }
350 }
351
352 attach_stage = 10;
353
354 /*
355 * Create ring of upload descriptors, only once. The DMA engine
356 * will loop over this when receiving packets, stalling if it
357 * hits an UPD with a finished receive.
358 */
359 for (i = 0; i < EX_NUPD; i++) {
360 sc->sc_rxdescs[i].rx_dmamap = sc->sc_rx_dmamaps[i];
361 sc->sc_rxdescs[i].rx_upd = &sc->sc_upd[i];
362 sc->sc_upd[i].upd_frags[0].fr_len =
363 htole32((MCLBYTES - 2) | EX_FR_LAST);
364 if (ex_add_rxbuf(sc, &sc->sc_rxdescs[i]) != 0) {
365 printf("%s: can't allocate or map rx buffers\n",
366 sc->sc_dev.dv_xname);
367 goto fail;
368 }
369 }
370
371 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap, 0,
372 EX_NUPD * sizeof (struct ex_upd),
373 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
374
375 ex_init_txdescs(sc);
376
377 attach_stage = 11;
378
379
380 GO_WINDOW(3);
381 val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
382 if (val & ELINK_MEDIACAP_MII)
383 sc->ex_conf |= EX_CONF_MII;
384
385 ifp = &sc->sc_ethercom.ec_if;
386
387 /*
388 * Initialize our media structures and MII info. We'll
389 * probe the MII if we discover that we have one.
390 */
391 sc->ex_mii.mii_ifp = ifp;
392 sc->ex_mii.mii_readreg = ex_mii_readreg;
393 sc->ex_mii.mii_writereg = ex_mii_writereg;
394 sc->ex_mii.mii_statchg = ex_mii_statchg;
395 ifmedia_init(&sc->ex_mii.mii_media, 0, ex_media_chg,
396 ex_media_stat);
397
398 if (sc->ex_conf & EX_CONF_MII) {
399 /*
400 * Find PHY, extract media information from it.
401 * First, select the right transceiver.
402 */
403 u_int32_t icfg;
404
405 GO_WINDOW(3);
406 icfg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
407 icfg &= ~(CONFIG_XCVR_SEL << 16);
408 if (val & (ELINK_MEDIACAP_MII | ELINK_MEDIACAP_100BASET4))
409 icfg |= ELINKMEDIA_MII << (CONFIG_XCVR_SEL_SHIFT + 16);
410 if (val & ELINK_MEDIACAP_100BASETX)
411 icfg |= ELINKMEDIA_AUTO << (CONFIG_XCVR_SEL_SHIFT + 16);
412 if (val & ELINK_MEDIACAP_100BASEFX)
413 icfg |= ELINKMEDIA_100BASE_FX
414 << (CONFIG_XCVR_SEL_SHIFT + 16);
415 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, icfg);
416
417 mii_attach(&sc->sc_dev, &sc->ex_mii, 0xffffffff,
418 MII_PHY_ANY, MII_OFFSET_ANY, 0);
419 if (LIST_FIRST(&sc->ex_mii.mii_phys) == NULL) {
420 ifmedia_add(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE,
421 0, NULL);
422 ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE);
423 } else {
424 ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_AUTO);
425 }
426 } else
427 ex_probemedia(sc);
428
429 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
430 ifp->if_softc = sc;
431 ifp->if_start = ex_start;
432 ifp->if_ioctl = ex_ioctl;
433 ifp->if_watchdog = ex_watchdog;
434 ifp->if_flags =
435 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
436
437 if_attach(ifp);
438 ether_ifattach(ifp, macaddr);
439
440 GO_WINDOW(1);
441
442 sc->tx_start_thresh = 20;
443 sc->tx_succ_ok = 0;
444
445 /* TODO: set queues to 0 */
446
447 #if NBPFILTER > 0
448 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
449 sizeof(struct ether_header));
450 #endif
451
452 #if NRND > 0
453 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
454 RND_TYPE_NET, 0);
455 #endif
456
457 /* Establish callback to reset card when we reboot. */
458 sc->sc_sdhook = shutdownhook_establish(ex_shutdown, sc);
459
460 /* The attach is successful. */
461 sc->ex_flags |= EX_FLAGS_ATTACHED;
462 return;
463
464 fail:
465 /*
466 * Free any resources we've allocated during the failed attach
467 * attempt. Do this in reverse order and fall though.
468 */
469 switch (attach_stage) {
470 case 11:
471 {
472 struct ex_rxdesc *rxd;
473
474 for (i = 0; i < EX_NUPD; i++) {
475 rxd = &sc->sc_rxdescs[i];
476 if (rxd->rx_mbhead != NULL) {
477 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
478 m_freem(rxd->rx_mbhead);
479 }
480 }
481 }
482 /* FALLTHROUGH */
483
484 case 10:
485 for (i = 0; i < EX_NUPD; i++)
486 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
487 /* FALLTHROUGH */
488
489 case 9:
490 for (i = 0; i < EX_NDPD; i++)
491 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
492 /* FALLTHROUGH */
493 case 8:
494 bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
495 /* FALLTHROUGH */
496
497 case 7:
498 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
499 /* FALLTHROUGH */
500
501 case 6:
502 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
503 EX_NDPD * sizeof (struct ex_dpd));
504 /* FALLTHROUGH */
505
506 case 5:
507 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
508 break;
509
510 case 4:
511 bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
512 /* FALLTHROUGH */
513
514 case 3:
515 bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
516 /* FALLTHROUGH */
517
518 case 2:
519 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
520 EX_NUPD * sizeof (struct ex_upd));
521 /* FALLTHROUGH */
522
523 case 1:
524 bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
525 break;
526 }
527
528 }
529
530 /*
531 * Find the media present on non-MII chips.
532 */
533 void
534 ex_probemedia(sc)
535 struct ex_softc *sc;
536 {
537 bus_space_tag_t iot = sc->sc_iot;
538 bus_space_handle_t ioh = sc->sc_ioh;
539 struct ifmedia *ifm = &sc->ex_mii.mii_media;
540 struct ex_media *exm;
541 u_int16_t config1, reset_options, default_media;
542 int defmedia = 0;
543 const char *sep = "", *defmedianame = NULL;
544
545 GO_WINDOW(3);
546 config1 = bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
547 reset_options = bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
548 GO_WINDOW(0);
549
550 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
551
552 printf("%s: ", sc->sc_dev.dv_xname);
553
554 /* Sanity check that there are any media! */
555 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
556 printf("no media present!\n");
557 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
558 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
559 return;
560 }
561
562 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
563
564 for (exm = ex_native_media; exm->exm_name != NULL; exm++) {
565 if (reset_options & exm->exm_mpbit) {
566 /*
567 * Default media is a little complicated. We
568 * support full-duplex which uses the same
569 * reset options bit.
570 *
571 * XXX Check EEPROM for default to FDX?
572 */
573 if (exm->exm_epmedia == default_media) {
574 if ((exm->exm_ifmedia & IFM_FDX) == 0) {
575 defmedia = exm->exm_ifmedia;
576 defmedianame = exm->exm_name;
577 }
578 } else if (defmedia == 0) {
579 defmedia = exm->exm_ifmedia;
580 defmedianame = exm->exm_name;
581 }
582 ifmedia_add(ifm, exm->exm_ifmedia, exm->exm_epmedia,
583 NULL);
584 PRINT(exm->exm_name);
585 }
586 }
587
588 #undef PRINT
589
590 #ifdef DIAGNOSTIC
591 if (defmedia == 0)
592 panic("ex_probemedia: impossible");
593 #endif
594
595 printf(", default %s\n", defmedianame);
596 ifmedia_set(ifm, defmedia);
597 }
598
599 /*
600 * Bring device up.
601 */
602 void
603 ex_init(sc)
604 struct ex_softc *sc;
605 {
606 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
607 bus_space_tag_t iot = sc->sc_iot;
608 bus_space_handle_t ioh = sc->sc_ioh;
609 int s, i;
610
611 s = splnet();
612
613 ex_waitcmd(sc);
614 ex_stop(sc);
615
616 /*
617 * Set the station address and clear the station mask. The latter
618 * is needed for 90x cards, 0 is the default for 90xB cards.
619 */
620 GO_WINDOW(2);
621 for (i = 0; i < ETHER_ADDR_LEN; i++) {
622 bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
623 LLADDR(ifp->if_sadl)[i]);
624 bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
625 }
626
627 GO_WINDOW(3);
628
629 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_RESET);
630 ex_waitcmd(sc);
631 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
632 ex_waitcmd(sc);
633
634 /*
635 * Disable reclaim threshold for 90xB, set free threshold to
636 * 6 * 256 = 1536 for 90x.
637 */
638 if (sc->ex_conf & EX_CONF_90XB)
639 bus_space_write_2(iot, ioh, ELINK_COMMAND,
640 ELINK_TXRECLTHRESH | 255);
641 else
642 bus_space_write_1(iot, ioh, ELINK_TXFREETHRESH, 6);
643
644 bus_space_write_2(iot, ioh, ELINK_COMMAND,
645 SET_RX_EARLY_THRESH | ELINK_THRESH_DISABLE);
646
647 bus_space_write_4(iot, ioh, ELINK_DMACTRL,
648 bus_space_read_4(iot, ioh, ELINK_DMACTRL) | ELINK_DMAC_UPRXEAREN);
649
650 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK | S_MASK);
651 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK | S_MASK);
652
653 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
654 if (sc->intr_ack)
655 (* sc->intr_ack)(sc);
656 ex_set_media(sc);
657 ex_set_mc(sc);
658
659
660 bus_space_write_2(iot, ioh, ELINK_COMMAND, STATS_ENABLE);
661 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
662 bus_space_write_4(iot, ioh, ELINK_UPLISTPTR, sc->sc_upddma);
663 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
664 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_UPUNSTALL);
665
666 if (sc->ex_conf & (EX_CONF_PHY_POWER | EX_CONF_INV_LED_POLARITY)) {
667 u_int16_t cbcard_config;
668
669 GO_WINDOW(2);
670 cbcard_config = bus_space_read_2(sc->sc_iot, sc->sc_ioh, 0x0c);
671 if (sc->ex_conf & EX_CONF_PHY_POWER) {
672 cbcard_config |= 0x4000; /* turn on PHY power */
673 }
674 if (sc->ex_conf & EX_CONF_INV_LED_POLARITY) {
675 cbcard_config |= 0x0010; /* invert LED polarity */
676 }
677 bus_space_write_2(sc->sc_iot, sc->sc_ioh, 0x0c, cbcard_config);
678
679 GO_WINDOW(3);
680 }
681
682 ifp->if_flags |= IFF_RUNNING;
683 ifp->if_flags &= ~IFF_OACTIVE;
684 ex_start(ifp);
685
686 GO_WINDOW(1);
687
688 splx(s);
689
690 callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
691 }
692
693 #define ex_mchash(addr) (ether_crc32_be((addr), ETHER_ADDR_LEN) & 0xff)
694
695 /*
696 * Set multicast receive filter. Also take care of promiscuous mode
697 * here (XXX).
698 */
699 void
700 ex_set_mc(sc)
701 struct ex_softc *sc;
702 {
703 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
704 struct ethercom *ec = &sc->sc_ethercom;
705 struct ether_multi *enm;
706 struct ether_multistep estep;
707 int i;
708 u_int16_t mask = FIL_INDIVIDUAL | FIL_BRDCST;
709
710 if (ifp->if_flags & IFF_PROMISC)
711 mask |= FIL_PROMISC;
712
713 if (!(ifp->if_flags & IFF_MULTICAST))
714 goto out;
715
716 if (!(sc->ex_conf & EX_CONF_90XB) || ifp->if_flags & IFF_ALLMULTI) {
717 mask |= (ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0;
718 } else {
719 ETHER_FIRST_MULTI(estep, ec, enm);
720 while (enm != NULL) {
721 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
722 ETHER_ADDR_LEN) != 0)
723 goto out;
724 i = ex_mchash(enm->enm_addrlo);
725 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
726 ELINK_COMMAND, ELINK_SETHASHFILBIT | i);
727 ETHER_NEXT_MULTI(estep, enm);
728 }
729 mask |= FIL_MULTIHASH;
730 }
731 out:
732 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
733 SET_RX_FILTER | mask);
734 }
735
736
737 static void
738 ex_txstat(sc)
739 struct ex_softc *sc;
740 {
741 bus_space_tag_t iot = sc->sc_iot;
742 bus_space_handle_t ioh = sc->sc_ioh;
743 int i;
744
745 /*
746 * We need to read+write TX_STATUS until we get a 0 status
747 * in order to turn off the interrupt flag.
748 */
749 while ((i = bus_space_read_1(iot, ioh, ELINK_TXSTATUS)) & TXS_COMPLETE) {
750 bus_space_write_1(iot, ioh, ELINK_TXSTATUS, 0x0);
751
752 if (i & TXS_JABBER) {
753 ++sc->sc_ethercom.ec_if.if_oerrors;
754 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
755 printf("%s: jabber (%x)\n",
756 sc->sc_dev.dv_xname, i);
757 ex_init(sc);
758 /* TODO: be more subtle here */
759 } else if (i & TXS_UNDERRUN) {
760 ++sc->sc_ethercom.ec_if.if_oerrors;
761 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
762 printf("%s: fifo underrun (%x) @%d\n",
763 sc->sc_dev.dv_xname, i,
764 sc->tx_start_thresh);
765 if (sc->tx_succ_ok < 100)
766 sc->tx_start_thresh = min(ETHER_MAX_LEN,
767 sc->tx_start_thresh + 20);
768 sc->tx_succ_ok = 0;
769 ex_init(sc);
770 /* TODO: be more subtle here */
771 } else if (i & TXS_MAX_COLLISION) {
772 ++sc->sc_ethercom.ec_if.if_collisions;
773 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
774 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
775 } else
776 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
777 }
778 }
779
780 int
781 ex_media_chg(ifp)
782 struct ifnet *ifp;
783 {
784 struct ex_softc *sc = ifp->if_softc;
785
786 if (ifp->if_flags & IFF_UP)
787 ex_init(sc);
788 return 0;
789 }
790
791 void
792 ex_set_media(sc)
793 struct ex_softc *sc;
794 {
795 bus_space_tag_t iot = sc->sc_iot;
796 bus_space_handle_t ioh = sc->sc_ioh;
797 u_int32_t configreg;
798
799 if (((sc->ex_conf & EX_CONF_MII) &&
800 (sc->ex_mii.mii_media_active & IFM_FDX))
801 || (!(sc->ex_conf & EX_CONF_MII) &&
802 (sc->ex_mii.mii_media.ifm_media & IFM_FDX))) {
803 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL,
804 MAC_CONTROL_FDX);
805 } else {
806 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, 0);
807 }
808
809 /*
810 * If the device has MII, select it, and then tell the
811 * PHY which media to use.
812 */
813 if (sc->ex_conf & EX_CONF_MII) {
814 GO_WINDOW(3);
815
816 configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
817
818 configreg &= ~(CONFIG_MEDIAMASK << 16);
819 configreg |= (ELINKMEDIA_MII << (CONFIG_MEDIAMASK_SHIFT + 16));
820
821 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
822 mii_mediachg(&sc->ex_mii);
823 return;
824 }
825
826 GO_WINDOW(4);
827 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0);
828 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
829 delay(800);
830
831 /*
832 * Now turn on the selected media/transceiver.
833 */
834 switch (IFM_SUBTYPE(sc->ex_mii.mii_media.ifm_cur->ifm_media)) {
835 case IFM_10_T:
836 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
837 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
838 break;
839
840 case IFM_10_2:
841 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
842 DELAY(800);
843 break;
844
845 case IFM_100_TX:
846 case IFM_100_FX:
847 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
848 LINKBEAT_ENABLE);
849 DELAY(800);
850 break;
851
852 case IFM_10_5:
853 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
854 SQE_ENABLE);
855 DELAY(800);
856 break;
857
858 case IFM_MANUAL:
859 break;
860
861 case IFM_NONE:
862 return;
863
864 default:
865 panic("ex_set_media: impossible");
866 }
867
868 GO_WINDOW(3);
869 configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
870
871 configreg &= ~(CONFIG_MEDIAMASK << 16);
872 configreg |= (sc->ex_mii.mii_media.ifm_cur->ifm_data <<
873 (CONFIG_MEDIAMASK_SHIFT + 16));
874
875 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
876 }
877
878 /*
879 * Get currently-selected media from card.
880 * (if_media callback, may be called before interface is brought up).
881 */
882 void
883 ex_media_stat(ifp, req)
884 struct ifnet *ifp;
885 struct ifmediareq *req;
886 {
887 struct ex_softc *sc = ifp->if_softc;
888
889 if (sc->ex_conf & EX_CONF_MII) {
890 mii_pollstat(&sc->ex_mii);
891 req->ifm_status = sc->ex_mii.mii_media_status;
892 req->ifm_active = sc->ex_mii.mii_media_active;
893 } else {
894 GO_WINDOW(4);
895 req->ifm_status = IFM_AVALID;
896 req->ifm_active = sc->ex_mii.mii_media.ifm_cur->ifm_media;
897 if (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
898 ELINK_W4_MEDIA_TYPE) & LINKBEAT_DETECT)
899 req->ifm_status |= IFM_ACTIVE;
900 GO_WINDOW(1);
901 }
902 }
903
904
905
906 /*
907 * Start outputting on the interface.
908 */
909 static void
910 ex_start(ifp)
911 struct ifnet *ifp;
912 {
913 struct ex_softc *sc = ifp->if_softc;
914 bus_space_tag_t iot = sc->sc_iot;
915 bus_space_handle_t ioh = sc->sc_ioh;
916 volatile struct ex_fraghdr *fr = NULL;
917 volatile struct ex_dpd *dpd = NULL, *prevdpd = NULL;
918 struct ex_txdesc *txp;
919 bus_dmamap_t dmamap;
920 int offset, totlen;
921
922 if (sc->tx_head || sc->tx_free == NULL)
923 return;
924
925 txp = NULL;
926
927 /*
928 * We're finished if there is nothing more to add to the list or if
929 * we're all filled up with buffers to transmit.
930 */
931 while (ifp->if_snd.ifq_head != NULL && sc->tx_free != NULL) {
932 struct mbuf *mb_head;
933 int segment, error;
934
935 /*
936 * Grab a packet to transmit.
937 */
938 IF_DEQUEUE(&ifp->if_snd, mb_head);
939
940 /*
941 * Get pointer to next available tx desc.
942 */
943 txp = sc->tx_free;
944 sc->tx_free = txp->tx_next;
945 txp->tx_next = NULL;
946 dmamap = txp->tx_dmamap;
947
948 /*
949 * Go through each of the mbufs in the chain and initialize
950 * the transmit buffer descriptors with the physical address
951 * and size of the mbuf.
952 */
953 reload:
954 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
955 mb_head, BUS_DMA_NOWAIT);
956 switch (error) {
957 case 0:
958 /* Success. */
959 break;
960
961 case EFBIG:
962 {
963 struct mbuf *mn;
964
965 /*
966 * We ran out of segments. We have to recopy this
967 * mbuf chain first. Bail out if we can't get the
968 * new buffers.
969 */
970 printf("%s: too many segments, ", sc->sc_dev.dv_xname);
971
972 MGETHDR(mn, M_DONTWAIT, MT_DATA);
973 if (mn == NULL) {
974 m_freem(mb_head);
975 printf("aborting\n");
976 goto out;
977 }
978 if (mb_head->m_pkthdr.len > MHLEN) {
979 MCLGET(mn, M_DONTWAIT);
980 if ((mn->m_flags & M_EXT) == 0) {
981 m_freem(mn);
982 m_freem(mb_head);
983 printf("aborting\n");
984 goto out;
985 }
986 }
987 m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
988 mtod(mn, caddr_t));
989 mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
990 m_freem(mb_head);
991 mb_head = mn;
992 printf("retrying\n");
993 goto reload;
994 }
995
996 default:
997 /*
998 * Some other problem; report it.
999 */
1000 printf("%s: can't load mbuf chain, error = %d\n",
1001 sc->sc_dev.dv_xname, error);
1002 m_freem(mb_head);
1003 goto out;
1004 }
1005
1006 fr = &txp->tx_dpd->dpd_frags[0];
1007 totlen = 0;
1008 for (segment = 0; segment < dmamap->dm_nsegs; segment++, fr++) {
1009 fr->fr_addr = htole32(dmamap->dm_segs[segment].ds_addr);
1010 fr->fr_len = htole32(dmamap->dm_segs[segment].ds_len);
1011 totlen += dmamap->dm_segs[segment].ds_len;
1012 }
1013 fr--;
1014 fr->fr_len |= htole32(EX_FR_LAST);
1015 txp->tx_mbhead = mb_head;
1016
1017 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1018 BUS_DMASYNC_PREWRITE);
1019
1020 dpd = txp->tx_dpd;
1021 dpd->dpd_nextptr = 0;
1022 dpd->dpd_fsh = htole32(totlen);
1023
1024 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1025 ((caddr_t)dpd - (caddr_t)sc->sc_dpd),
1026 sizeof (struct ex_dpd),
1027 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1028
1029 /*
1030 * No need to stall the download engine, we know it's
1031 * not busy right now.
1032 *
1033 * Fix up pointers in both the "soft" tx and the physical
1034 * tx list.
1035 */
1036 if (sc->tx_head != NULL) {
1037 prevdpd = sc->tx_tail->tx_dpd;
1038 offset = ((caddr_t)prevdpd - (caddr_t)sc->sc_dpd);
1039 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1040 offset, sizeof (struct ex_dpd),
1041 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1042 prevdpd->dpd_nextptr = htole32(DPD_DMADDR(sc, txp));
1043 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1044 offset, sizeof (struct ex_dpd),
1045 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1046 sc->tx_tail->tx_next = txp;
1047 sc->tx_tail = txp;
1048 } else {
1049 sc->tx_tail = sc->tx_head = txp;
1050 }
1051
1052 #if NBPFILTER > 0
1053 /*
1054 * Pass packet to bpf if there is a listener.
1055 */
1056 if (ifp->if_bpf)
1057 bpf_mtap(ifp->if_bpf, mb_head);
1058 #endif
1059 }
1060 out:
1061 if (sc->tx_head) {
1062 sc->tx_tail->tx_dpd->dpd_fsh |= htole32(EX_DPD_DNIND);
1063 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1064 ((caddr_t)sc->tx_tail->tx_dpd - (caddr_t)sc->sc_dpd),
1065 sizeof (struct ex_dpd),
1066 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1067 ifp->if_flags |= IFF_OACTIVE;
1068 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNUNSTALL);
1069 bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
1070 DPD_DMADDR(sc, sc->tx_head));
1071
1072 /* trigger watchdog */
1073 ifp->if_timer = 5;
1074 }
1075 }
1076
1077
1078 int
1079 ex_intr(arg)
1080 void *arg;
1081 {
1082 struct ex_softc *sc = arg;
1083 bus_space_tag_t iot = sc->sc_iot;
1084 bus_space_handle_t ioh = sc->sc_ioh;
1085 u_int16_t stat;
1086 int ret = 0;
1087 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1088
1089 if (sc->enabled == 0 ||
1090 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1091 return (0);
1092
1093 for (;;) {
1094 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1095
1096 stat = bus_space_read_2(iot, ioh, ELINK_STATUS);
1097
1098 if ((stat & S_MASK) == 0) {
1099 if ((stat & S_INTR_LATCH) == 0) {
1100 #if 0
1101 printf("%s: intr latch cleared\n",
1102 sc->sc_dev.dv_xname);
1103 #endif
1104 break;
1105 }
1106 }
1107
1108 ret = 1;
1109
1110 /*
1111 * Acknowledge interrupts.
1112 */
1113 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1114 (stat & S_MASK));
1115 if (sc->intr_ack)
1116 (*sc->intr_ack)(sc);
1117
1118 if (stat & S_HOST_ERROR) {
1119 printf("%s: adapter failure (%x)\n",
1120 sc->sc_dev.dv_xname, stat);
1121 ex_reset(sc);
1122 ex_init(sc);
1123 return 1;
1124 }
1125 if (stat & S_TX_COMPLETE) {
1126 ex_txstat(sc);
1127 }
1128 if (stat & S_UPD_STATS) {
1129 ex_getstats(sc);
1130 }
1131 if (stat & S_DN_COMPLETE) {
1132 struct ex_txdesc *txp, *ptxp = NULL;
1133 bus_dmamap_t txmap;
1134
1135 /* reset watchdog timer, was set in ex_start() */
1136 ifp->if_timer = 0;
1137
1138 for (txp = sc->tx_head; txp != NULL;
1139 txp = txp->tx_next) {
1140 bus_dmamap_sync(sc->sc_dmat,
1141 sc->sc_dpd_dmamap,
1142 (caddr_t)txp->tx_dpd - (caddr_t)sc->sc_dpd,
1143 sizeof (struct ex_dpd),
1144 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1145 if (txp->tx_mbhead != NULL) {
1146 txmap = txp->tx_dmamap;
1147 bus_dmamap_sync(sc->sc_dmat, txmap,
1148 0, txmap->dm_mapsize,
1149 BUS_DMASYNC_POSTWRITE);
1150 bus_dmamap_unload(sc->sc_dmat, txmap);
1151 m_freem(txp->tx_mbhead);
1152 txp->tx_mbhead = NULL;
1153 }
1154 ptxp = txp;
1155 }
1156
1157 /*
1158 * Move finished tx buffers back to the tx free list.
1159 */
1160 if (sc->tx_free) {
1161 sc->tx_ftail->tx_next = sc->tx_head;
1162 sc->tx_ftail = ptxp;
1163 } else
1164 sc->tx_ftail = sc->tx_free = sc->tx_head;
1165
1166 sc->tx_head = sc->tx_tail = NULL;
1167 ifp->if_flags &= ~IFF_OACTIVE;
1168 }
1169
1170 if (stat & S_UP_COMPLETE) {
1171 struct ex_rxdesc *rxd;
1172 struct mbuf *m;
1173 struct ex_upd *upd;
1174 bus_dmamap_t rxmap;
1175 u_int32_t pktstat;
1176
1177 rcvloop:
1178 rxd = sc->rx_head;
1179 rxmap = rxd->rx_dmamap;
1180 m = rxd->rx_mbhead;
1181 upd = rxd->rx_upd;
1182
1183 bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
1184 rxmap->dm_mapsize,
1185 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1186 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1187 ((caddr_t)upd - (caddr_t)sc->sc_upd),
1188 sizeof (struct ex_upd),
1189 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1190 pktstat = le32toh(upd->upd_pktstatus);
1191
1192 if (pktstat & EX_UPD_COMPLETE) {
1193 /*
1194 * Remove first packet from the chain.
1195 */
1196 sc->rx_head = rxd->rx_next;
1197 rxd->rx_next = NULL;
1198
1199 /*
1200 * Add a new buffer to the receive chain.
1201 * If this fails, the old buffer is recycled
1202 * instead.
1203 */
1204 if (ex_add_rxbuf(sc, rxd) == 0) {
1205 struct ether_header *eh;
1206 u_int16_t total_len;
1207
1208
1209 if (pktstat & EX_UPD_ERR) {
1210 ifp->if_ierrors++;
1211 m_freem(m);
1212 goto rcvloop;
1213 }
1214
1215 total_len = pktstat & EX_UPD_PKTLENMASK;
1216 if (total_len <
1217 sizeof(struct ether_header)) {
1218 m_freem(m);
1219 goto rcvloop;
1220 }
1221 m->m_pkthdr.rcvif = ifp;
1222 m->m_pkthdr.len = m->m_len = total_len;
1223 eh = mtod(m, struct ether_header *);
1224 #if NBPFILTER > 0
1225 if (ifp->if_bpf) {
1226 bpf_tap(ifp->if_bpf,
1227 mtod(m, caddr_t),
1228 total_len);
1229 /*
1230 * Only pass this packet up
1231 * if it is for us.
1232 */
1233 if ((ifp->if_flags &
1234 IFF_PROMISC) &&
1235 (eh->ether_dhost[0] & 1)
1236 == 0 &&
1237 bcmp(eh->ether_dhost,
1238 LLADDR(ifp->if_sadl),
1239 sizeof(eh->ether_dhost))
1240 != 0) {
1241 m_freem(m);
1242 goto rcvloop;
1243 }
1244 }
1245 #endif /* NBPFILTER > 0 */
1246 (*ifp->if_input)(ifp, m);
1247 }
1248 goto rcvloop;
1249 }
1250 /*
1251 * Just in case we filled up all UPDs and the DMA engine
1252 * stalled. We could be more subtle about this.
1253 */
1254 if (bus_space_read_4(iot, ioh, ELINK_UPLISTPTR) == 0) {
1255 printf("%s: uplistptr was 0\n",
1256 sc->sc_dev.dv_xname);
1257 ex_init(sc);
1258 } else if (bus_space_read_4(iot, ioh, ELINK_UPPKTSTATUS)
1259 & 0x2000) {
1260 printf("%s: receive stalled\n",
1261 sc->sc_dev.dv_xname);
1262 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1263 ELINK_UPUNSTALL);
1264 }
1265 }
1266 }
1267
1268 /* no more interrupts */
1269 if (ret && ifp->if_snd.ifq_head)
1270 ex_start(ifp);
1271 return ret;
1272 }
1273
1274 int
1275 ex_ioctl(ifp, cmd, data)
1276 struct ifnet *ifp;
1277 u_long cmd;
1278 caddr_t data;
1279 {
1280 struct ex_softc *sc = ifp->if_softc;
1281 struct ifaddr *ifa = (struct ifaddr *)data;
1282 struct ifreq *ifr = (struct ifreq *)data;
1283 int s, error = 0;
1284
1285 s = splnet();
1286
1287 switch (cmd) {
1288
1289 case SIOCSIFADDR:
1290 ifp->if_flags |= IFF_UP;
1291 switch (ifa->ifa_addr->sa_family) {
1292 #ifdef INET
1293 case AF_INET:
1294 ex_init(sc);
1295 arp_ifinit(&sc->sc_ethercom.ec_if, ifa);
1296 break;
1297 #endif
1298 #ifdef NS
1299 case AF_NS:
1300 {
1301 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1302
1303 if (ns_nullhost(*ina))
1304 ina->x_host = *(union ns_host *)
1305 LLADDR(ifp->if_sadl);
1306 else
1307 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1308 ifp->if_addrlen);
1309 /* Set new address. */
1310 ex_init(sc);
1311 break;
1312 }
1313 #endif
1314 default:
1315 ex_init(sc);
1316 break;
1317 }
1318 break;
1319 case SIOCSIFMEDIA:
1320 case SIOCGIFMEDIA:
1321 error = ifmedia_ioctl(ifp, ifr, &sc->ex_mii.mii_media, cmd);
1322 break;
1323
1324 case SIOCSIFFLAGS:
1325 if ((ifp->if_flags & IFF_UP) == 0 &&
1326 (ifp->if_flags & IFF_RUNNING) != 0) {
1327 /*
1328 * If interface is marked down and it is running, then
1329 * stop it.
1330 */
1331 ex_stop(sc);
1332 ifp->if_flags &= ~IFF_RUNNING;
1333 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1334 (ifp->if_flags & IFF_RUNNING) == 0) {
1335 /*
1336 * If interface is marked up and it is stopped, then
1337 * start it.
1338 */
1339 ex_init(sc);
1340 } else if ((ifp->if_flags & IFF_UP) != 0) {
1341 /*
1342 * Deal with other flags that change hardware
1343 * state, i.e. IFF_PROMISC.
1344 */
1345 ex_set_mc(sc);
1346 }
1347 break;
1348
1349 case SIOCADDMULTI:
1350 case SIOCDELMULTI:
1351 error = (cmd == SIOCADDMULTI) ?
1352 ether_addmulti(ifr, &sc->sc_ethercom) :
1353 ether_delmulti(ifr, &sc->sc_ethercom);
1354
1355 if (error == ENETRESET) {
1356 /*
1357 * Multicast list has changed; set the hardware filter
1358 * accordingly.
1359 */
1360 ex_set_mc(sc);
1361 error = 0;
1362 }
1363 break;
1364
1365 default:
1366 error = EINVAL;
1367 break;
1368 }
1369
1370 splx(s);
1371 return (error);
1372 }
1373
1374 void
1375 ex_getstats(sc)
1376 struct ex_softc *sc;
1377 {
1378 bus_space_handle_t ioh = sc->sc_ioh;
1379 bus_space_tag_t iot = sc->sc_iot;
1380 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1381 u_int8_t upperok;
1382
1383 GO_WINDOW(6);
1384 upperok = bus_space_read_1(iot, ioh, UPPER_FRAMES_OK);
1385 ifp->if_ipackets += bus_space_read_1(iot, ioh, RX_FRAMES_OK);
1386 ifp->if_ipackets += (upperok & 0x03) << 8;
1387 ifp->if_opackets += bus_space_read_1(iot, ioh, TX_FRAMES_OK);
1388 ifp->if_opackets += (upperok & 0x30) << 4;
1389 ifp->if_ierrors += bus_space_read_1(iot, ioh, RX_OVERRUNS);
1390 ifp->if_collisions += bus_space_read_1(iot, ioh, TX_COLLISIONS);
1391 /*
1392 * There seems to be no way to get the exact number of collisions,
1393 * this is the number that occured at the very least.
1394 */
1395 ifp->if_collisions += 2 * bus_space_read_1(iot, ioh,
1396 TX_AFTER_X_COLLISIONS);
1397 ifp->if_ibytes += bus_space_read_2(iot, ioh, RX_TOTAL_OK);
1398 ifp->if_obytes += bus_space_read_2(iot, ioh, TX_TOTAL_OK);
1399
1400 /*
1401 * Clear the following to avoid stats overflow interrupts
1402 */
1403 bus_space_read_1(iot, ioh, TX_DEFERRALS);
1404 bus_space_read_1(iot, ioh, TX_AFTER_1_COLLISION);
1405 bus_space_read_1(iot, ioh, TX_NO_SQE);
1406 bus_space_read_1(iot, ioh, TX_CD_LOST);
1407 GO_WINDOW(4);
1408 bus_space_read_1(iot, ioh, ELINK_W4_BADSSD);
1409 upperok = bus_space_read_1(iot, ioh, ELINK_W4_UBYTESOK);
1410 ifp->if_ibytes += (upperok & 0x0f) << 16;
1411 ifp->if_obytes += (upperok & 0xf0) << 12;
1412 GO_WINDOW(1);
1413 }
1414
1415 void
1416 ex_printstats(sc)
1417 struct ex_softc *sc;
1418 {
1419 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1420
1421 ex_getstats(sc);
1422 printf("in %llu out %llu ierror %llu oerror %llu ibytes %llu obytes "
1423 "%llu\n", (unsigned long long)ifp->if_ipackets,
1424 (unsigned long long)ifp->if_opackets,
1425 (unsigned long long)ifp->if_ierrors,
1426 (unsigned long long)ifp->if_oerrors,
1427 (unsigned long long)ifp->if_ibytes,
1428 (unsigned long long)ifp->if_obytes);
1429 }
1430
1431 void
1432 ex_tick(arg)
1433 void *arg;
1434 {
1435 struct ex_softc *sc = arg;
1436 int s;
1437
1438 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1439 return;
1440
1441 s = splnet();
1442
1443 if (sc->ex_conf & EX_CONF_MII)
1444 mii_tick(&sc->ex_mii);
1445
1446 if (!(bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, ELINK_STATUS)
1447 & S_COMMAND_IN_PROGRESS))
1448 ex_getstats(sc);
1449
1450 splx(s);
1451
1452 callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
1453 }
1454
1455 void
1456 ex_reset(sc)
1457 struct ex_softc *sc;
1458 {
1459 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, GLOBAL_RESET);
1460 delay(400);
1461 ex_waitcmd(sc);
1462 }
1463
1464 void
1465 ex_watchdog(ifp)
1466 struct ifnet *ifp;
1467 {
1468 struct ex_softc *sc = ifp->if_softc;
1469
1470 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1471 ++sc->sc_ethercom.ec_if.if_oerrors;
1472
1473 ex_reset(sc);
1474 ex_init(sc);
1475 }
1476
1477 void
1478 ex_stop(sc)
1479 struct ex_softc *sc;
1480 {
1481 bus_space_tag_t iot = sc->sc_iot;
1482 bus_space_handle_t ioh = sc->sc_ioh;
1483 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1484 struct ex_txdesc *tx;
1485 struct ex_rxdesc *rx;
1486 int i;
1487
1488 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1489 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1490 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1491
1492 for (tx = sc->tx_head ; tx != NULL; tx = tx->tx_next) {
1493 if (tx->tx_mbhead == NULL)
1494 continue;
1495 m_freem(tx->tx_mbhead);
1496 tx->tx_mbhead = NULL;
1497 bus_dmamap_unload(sc->sc_dmat, tx->tx_dmamap);
1498 tx->tx_dpd->dpd_fsh = tx->tx_dpd->dpd_nextptr = 0;
1499 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1500 ((caddr_t)tx->tx_dpd - (caddr_t)sc->sc_dpd),
1501 sizeof (struct ex_dpd),
1502 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1503 }
1504 sc->tx_tail = sc->tx_head = NULL;
1505 ex_init_txdescs(sc);
1506
1507 sc->rx_tail = sc->rx_head = 0;
1508 for (i = 0; i < EX_NUPD; i++) {
1509 rx = &sc->sc_rxdescs[i];
1510 if (rx->rx_mbhead != NULL) {
1511 bus_dmamap_unload(sc->sc_dmat, rx->rx_dmamap);
1512 m_freem(rx->rx_mbhead);
1513 rx->rx_mbhead = NULL;
1514 }
1515 ex_add_rxbuf(sc, rx);
1516 }
1517
1518 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1519
1520 callout_stop(&sc->ex_mii_callout);
1521 if (sc->ex_conf & EX_CONF_MII)
1522 mii_down(&sc->ex_mii);
1523
1524 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1525 ifp->if_timer = 0;
1526 }
1527
1528 static void
1529 ex_init_txdescs(sc)
1530 struct ex_softc *sc;
1531 {
1532 int i;
1533
1534 for (i = 0; i < EX_NDPD; i++) {
1535 sc->sc_txdescs[i].tx_dmamap = sc->sc_tx_dmamaps[i];
1536 sc->sc_txdescs[i].tx_dpd = &sc->sc_dpd[i];
1537 if (i < EX_NDPD - 1)
1538 sc->sc_txdescs[i].tx_next = &sc->sc_txdescs[i + 1];
1539 else
1540 sc->sc_txdescs[i].tx_next = NULL;
1541 }
1542 sc->tx_free = &sc->sc_txdescs[0];
1543 sc->tx_ftail = &sc->sc_txdescs[EX_NDPD-1];
1544 }
1545
1546
1547 int
1548 ex_activate(self, act)
1549 struct device *self;
1550 enum devact act;
1551 {
1552 struct ex_softc *sc = (void *) self;
1553 int s, error = 0;
1554
1555 s = splnet();
1556 switch (act) {
1557 case DVACT_ACTIVATE:
1558 error = EOPNOTSUPP;
1559 break;
1560
1561 case DVACT_DEACTIVATE:
1562 if (sc->ex_conf & EX_CONF_MII)
1563 mii_activate(&sc->ex_mii, act, MII_PHY_ANY,
1564 MII_OFFSET_ANY);
1565 if_deactivate(&sc->sc_ethercom.ec_if);
1566 break;
1567 }
1568 splx(s);
1569
1570 return (error);
1571 }
1572
1573 int
1574 ex_detach(sc)
1575 struct ex_softc *sc;
1576 {
1577 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1578 struct ex_rxdesc *rxd;
1579 int i;
1580
1581 /* Succeed now if there's no work to do. */
1582 if ((sc->ex_flags & EX_FLAGS_ATTACHED) == 0)
1583 return (0);
1584
1585 /* Unhook our tick handler. */
1586 callout_stop(&sc->ex_mii_callout);
1587
1588 if (sc->ex_conf & EX_CONF_MII) {
1589 /* Detach all PHYs */
1590 mii_detach(&sc->ex_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1591 }
1592
1593 /* Delete all remaining media. */
1594 ifmedia_delete_instance(&sc->ex_mii.mii_media, IFM_INST_ANY);
1595
1596 #if NRND > 0
1597 rnd_detach_source(&sc->rnd_source);
1598 #endif
1599 #if NBPFILTER > 0
1600 bpfdetach(ifp);
1601 #endif
1602 ether_ifdetach(ifp);
1603 if_detach(ifp);
1604
1605 for (i = 0; i < EX_NUPD; i++) {
1606 rxd = &sc->sc_rxdescs[i];
1607 if (rxd->rx_mbhead != NULL) {
1608 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1609 m_freem(rxd->rx_mbhead);
1610 rxd->rx_mbhead = NULL;
1611 }
1612 }
1613 for (i = 0; i < EX_NUPD; i++)
1614 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
1615 for (i = 0; i < EX_NDPD; i++)
1616 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
1617 bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
1618 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
1619 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
1620 EX_NDPD * sizeof (struct ex_dpd));
1621 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
1622 bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
1623 bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
1624 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
1625 EX_NUPD * sizeof (struct ex_upd));
1626 bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
1627
1628 shutdownhook_disestablish(sc->sc_sdhook);
1629
1630 return (0);
1631 }
1632
1633 /*
1634 * Before reboots, reset card completely.
1635 */
1636 static void
1637 ex_shutdown(arg)
1638 void *arg;
1639 {
1640 struct ex_softc *sc = arg;
1641
1642 ex_stop(sc);
1643 }
1644
1645 /*
1646 * Read EEPROM data.
1647 * XXX what to do if EEPROM doesn't unbusy?
1648 */
1649 u_int16_t
1650 ex_read_eeprom(sc, offset)
1651 struct ex_softc *sc;
1652 int offset;
1653 {
1654 bus_space_tag_t iot = sc->sc_iot;
1655 bus_space_handle_t ioh = sc->sc_ioh;
1656 u_int16_t data = 0;
1657
1658 GO_WINDOW(0);
1659 if (ex_eeprom_busy(sc))
1660 goto out;
1661 switch (sc->ex_bustype) {
1662 case EX_BUS_PCI:
1663 bus_space_write_1(iot, ioh, ELINK_W0_EEPROM_COMMAND,
1664 READ_EEPROM | (offset & 0x3f));
1665 break;
1666 case EX_BUS_CARDBUS:
1667 bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
1668 0x230 + (offset & 0x3f));
1669 break;
1670 }
1671 if (ex_eeprom_busy(sc))
1672 goto out;
1673 data = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
1674 out:
1675 return data;
1676 }
1677
1678 static int
1679 ex_eeprom_busy(sc)
1680 struct ex_softc *sc;
1681 {
1682 bus_space_tag_t iot = sc->sc_iot;
1683 bus_space_handle_t ioh = sc->sc_ioh;
1684 int i = 100;
1685
1686 while (i--) {
1687 if (!(bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND) &
1688 EEPROM_BUSY))
1689 return 0;
1690 delay(100);
1691 }
1692 printf("\n%s: eeprom stays busy.\n", sc->sc_dev.dv_xname);
1693 return (1);
1694 }
1695
1696 /*
1697 * Create a new rx buffer and add it to the 'soft' rx list.
1698 */
1699 static int
1700 ex_add_rxbuf(sc, rxd)
1701 struct ex_softc *sc;
1702 struct ex_rxdesc *rxd;
1703 {
1704 struct mbuf *m, *oldm;
1705 bus_dmamap_t rxmap;
1706 int error, rval = 0;
1707
1708 oldm = rxd->rx_mbhead;
1709 rxmap = rxd->rx_dmamap;
1710
1711 MGETHDR(m, M_DONTWAIT, MT_DATA);
1712 if (m != NULL) {
1713 MCLGET(m, M_DONTWAIT);
1714 if ((m->m_flags & M_EXT) == 0) {
1715 m_freem(m);
1716 if (oldm == NULL)
1717 return 1;
1718 m = oldm;
1719 m->m_data = m->m_ext.ext_buf;
1720 rval = 1;
1721 }
1722 } else {
1723 if (oldm == NULL)
1724 return 1;
1725 m = oldm;
1726 m->m_data = m->m_ext.ext_buf;
1727 rval = 1;
1728 }
1729
1730 /*
1731 * Setup the DMA map for this receive buffer.
1732 */
1733 if (m != oldm) {
1734 if (oldm != NULL)
1735 bus_dmamap_unload(sc->sc_dmat, rxmap);
1736 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1737 m->m_ext.ext_buf, MCLBYTES, NULL, BUS_DMA_NOWAIT);
1738 if (error) {
1739 printf("%s: can't load rx buffer, error = %d\n",
1740 sc->sc_dev.dv_xname, error);
1741 panic("ex_add_rxbuf"); /* XXX */
1742 }
1743 }
1744
1745 /*
1746 * Align for data after 14 byte header.
1747 */
1748 m->m_data += 2;
1749
1750 rxd->rx_mbhead = m;
1751 rxd->rx_upd->upd_pktstatus = htole32(MCLBYTES - 2);
1752 rxd->rx_upd->upd_frags[0].fr_addr =
1753 htole32(rxmap->dm_segs[0].ds_addr + 2);
1754 rxd->rx_upd->upd_nextptr = 0;
1755
1756 /*
1757 * Attach it to the end of the list.
1758 */
1759 if (sc->rx_head != NULL) {
1760 sc->rx_tail->rx_next = rxd;
1761 sc->rx_tail->rx_upd->upd_nextptr = htole32(sc->sc_upddma +
1762 ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd));
1763 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1764 (caddr_t)sc->rx_tail->rx_upd - (caddr_t)sc->sc_upd,
1765 sizeof (struct ex_upd),
1766 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1767 } else {
1768 sc->rx_head = rxd;
1769 }
1770 sc->rx_tail = rxd;
1771
1772 bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
1773 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1774 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1775 ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd),
1776 sizeof (struct ex_upd), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1777 return (rval);
1778 }
1779
1780 u_int32_t
1781 ex_mii_bitbang_read(self)
1782 struct device *self;
1783 {
1784 struct ex_softc *sc = (void *) self;
1785
1786 /* We're already in Window 4. */
1787 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT));
1788 }
1789
1790 void
1791 ex_mii_bitbang_write(self, val)
1792 struct device *self;
1793 u_int32_t val;
1794 {
1795 struct ex_softc *sc = (void *) self;
1796
1797 /* We're already in Window 4. */
1798 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT, val);
1799 }
1800
1801 int
1802 ex_mii_readreg(v, phy, reg)
1803 struct device *v;
1804 int phy, reg;
1805 {
1806 struct ex_softc *sc = (struct ex_softc *)v;
1807 int val;
1808
1809 if ((sc->ex_conf & EX_CONF_INTPHY) && phy != ELINK_INTPHY_ID)
1810 return 0;
1811
1812 GO_WINDOW(4);
1813
1814 val = mii_bitbang_readreg(v, &ex_mii_bitbang_ops, phy, reg);
1815
1816 GO_WINDOW(1);
1817
1818 return (val);
1819 }
1820
1821 void
1822 ex_mii_writereg(v, phy, reg, data)
1823 struct device *v;
1824 int phy;
1825 int reg;
1826 int data;
1827 {
1828 struct ex_softc *sc = (struct ex_softc *)v;
1829
1830 GO_WINDOW(4);
1831
1832 mii_bitbang_writereg(v, &ex_mii_bitbang_ops, phy, reg, data);
1833
1834 GO_WINDOW(1);
1835 }
1836
1837 void
1838 ex_mii_statchg(v)
1839 struct device *v;
1840 {
1841 struct ex_softc *sc = (struct ex_softc *)v;
1842 bus_space_tag_t iot = sc->sc_iot;
1843 bus_space_handle_t ioh = sc->sc_ioh;
1844 int mctl;
1845
1846 GO_WINDOW(3);
1847 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1848 if (sc->ex_mii.mii_media_active & IFM_FDX)
1849 mctl |= MAC_CONTROL_FDX;
1850 else
1851 mctl &= ~MAC_CONTROL_FDX;
1852 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1853 GO_WINDOW(1); /* back to operating window */
1854 }
1855