elinkxl.c revision 1.57 1 /* $NetBSD: elinkxl.c,v 1.57 2001/10/01 09:26:29 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include "bpfilter.h"
40 #include "rnd.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/callout.h>
45 #include <sys/kernel.h>
46 #include <sys/mbuf.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/syslog.h>
51 #include <sys/select.h>
52 #include <sys/device.h>
53 #if NRND > 0
54 #include <sys/rnd.h>
55 #endif
56
57 #include <uvm/uvm_extern.h>
58
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_ether.h>
62 #include <net/if_media.h>
63
64 #if NBPFILTER > 0
65 #include <net/bpf.h>
66 #include <net/bpfdesc.h>
67 #endif
68
69 #include <machine/cpu.h>
70 #include <machine/bus.h>
71 #include <machine/intr.h>
72 #include <machine/endian.h>
73
74 #include <dev/mii/miivar.h>
75 #include <dev/mii/mii.h>
76 #include <dev/mii/mii_bitbang.h>
77
78 #include <dev/ic/elink3reg.h>
79 /* #include <dev/ic/elink3var.h> */
80 #include <dev/ic/elinkxlreg.h>
81 #include <dev/ic/elinkxlvar.h>
82
83 #ifdef DEBUG
84 int exdebug = 0;
85 #endif
86
87 /* ifmedia callbacks */
88 int ex_media_chg __P((struct ifnet *ifp));
89 void ex_media_stat __P((struct ifnet *ifp, struct ifmediareq *req));
90
91 void ex_probe_media __P((struct ex_softc *));
92 void ex_set_filter __P((struct ex_softc *));
93 void ex_set_media __P((struct ex_softc *));
94 struct mbuf *ex_get __P((struct ex_softc *, int));
95 u_int16_t ex_read_eeprom __P((struct ex_softc *, int));
96 int ex_init __P((struct ifnet *));
97 void ex_read __P((struct ex_softc *));
98 void ex_reset __P((struct ex_softc *));
99 void ex_set_mc __P((struct ex_softc *));
100 void ex_getstats __P((struct ex_softc *));
101 void ex_printstats __P((struct ex_softc *));
102 void ex_tick __P((void *));
103
104 int ex_enable __P((struct ex_softc *));
105 void ex_disable __P((struct ex_softc *));
106 void ex_power __P((int, void *));
107
108 static int ex_eeprom_busy __P((struct ex_softc *));
109 static int ex_add_rxbuf __P((struct ex_softc *, struct ex_rxdesc *));
110 static void ex_init_txdescs __P((struct ex_softc *));
111
112 static void ex_shutdown __P((void *));
113 static void ex_start __P((struct ifnet *));
114 static void ex_txstat __P((struct ex_softc *));
115
116 int ex_mii_readreg __P((struct device *, int, int));
117 void ex_mii_writereg __P((struct device *, int, int, int));
118 void ex_mii_statchg __P((struct device *));
119
120 void ex_probemedia __P((struct ex_softc *));
121
122 /*
123 * Structure to map media-present bits in boards to ifmedia codes and
124 * printable media names. Used for table-driven ifmedia initialization.
125 */
126 struct ex_media {
127 int exm_mpbit; /* media present bit */
128 const char *exm_name; /* name of medium */
129 int exm_ifmedia; /* ifmedia word for medium */
130 int exm_epmedia; /* ELINKMEDIA_* constant */
131 };
132
133 /*
134 * Media table for 3c90x chips. Note that chips with MII have no
135 * `native' media.
136 */
137 struct ex_media ex_native_media[] = {
138 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
139 ELINKMEDIA_10BASE_T },
140 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
141 ELINKMEDIA_10BASE_T },
142 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
143 ELINKMEDIA_AUI },
144 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
145 ELINKMEDIA_10BASE_2 },
146 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
147 ELINKMEDIA_100BASE_TX },
148 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
149 ELINKMEDIA_100BASE_TX },
150 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
151 ELINKMEDIA_100BASE_FX },
152 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
153 ELINKMEDIA_MII },
154 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
155 ELINKMEDIA_100BASE_T4 },
156 { 0, NULL, 0,
157 0 },
158 };
159
160 /*
161 * MII bit-bang glue.
162 */
163 u_int32_t ex_mii_bitbang_read __P((struct device *));
164 void ex_mii_bitbang_write __P((struct device *, u_int32_t));
165
166 const struct mii_bitbang_ops ex_mii_bitbang_ops = {
167 ex_mii_bitbang_read,
168 ex_mii_bitbang_write,
169 {
170 ELINK_PHY_DATA, /* MII_BIT_MDO */
171 ELINK_PHY_DATA, /* MII_BIT_MDI */
172 ELINK_PHY_CLK, /* MII_BIT_MDC */
173 ELINK_PHY_DIR, /* MII_BIT_DIR_HOST_PHY */
174 0, /* MII_BIT_DIR_PHY_HOST */
175 }
176 };
177
178 /*
179 * Back-end attach and configure.
180 */
181 void
182 ex_config(sc)
183 struct ex_softc *sc;
184 {
185 struct ifnet *ifp;
186 u_int16_t val;
187 u_int8_t macaddr[ETHER_ADDR_LEN] = {0};
188 bus_space_tag_t iot = sc->sc_iot;
189 bus_space_handle_t ioh = sc->sc_ioh;
190 int i, error, attach_stage;
191
192 callout_init(&sc->ex_mii_callout);
193
194 ex_reset(sc);
195
196 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR0);
197 macaddr[0] = val >> 8;
198 macaddr[1] = val & 0xff;
199 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR1);
200 macaddr[2] = val >> 8;
201 macaddr[3] = val & 0xff;
202 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR2);
203 macaddr[4] = val >> 8;
204 macaddr[5] = val & 0xff;
205
206 printf("%s: MAC address %s\n", sc->sc_dev.dv_xname,
207 ether_sprintf(macaddr));
208
209 if (sc->ex_conf & (EX_CONF_INV_LED_POLARITY|EX_CONF_PHY_POWER)) {
210 GO_WINDOW(2);
211 val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
212 if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
213 val |= ELINK_RESET_OPT_LEDPOLAR;
214 if (sc->ex_conf & EX_CONF_PHY_POWER)
215 val |= ELINK_RESET_OPT_PHYPOWER;
216 bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
217 }
218
219 attach_stage = 0;
220
221 /*
222 * Allocate the upload descriptors, and create and load the DMA
223 * map for them.
224 */
225 if ((error = bus_dmamem_alloc(sc->sc_dmat,
226 EX_NUPD * sizeof (struct ex_upd), PAGE_SIZE, 0, &sc->sc_useg, 1,
227 &sc->sc_urseg, BUS_DMA_NOWAIT)) != 0) {
228 printf("%s: can't allocate upload descriptors, error = %d\n",
229 sc->sc_dev.dv_xname, error);
230 goto fail;
231 }
232
233 attach_stage = 1;
234
235 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg,
236 EX_NUPD * sizeof (struct ex_upd), (caddr_t *)&sc->sc_upd,
237 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
238 printf("%s: can't map upload descriptors, error = %d\n",
239 sc->sc_dev.dv_xname, error);
240 goto fail;
241 }
242
243 attach_stage = 2;
244
245 if ((error = bus_dmamap_create(sc->sc_dmat,
246 EX_NUPD * sizeof (struct ex_upd), 1,
247 EX_NUPD * sizeof (struct ex_upd), 0, BUS_DMA_NOWAIT,
248 &sc->sc_upd_dmamap)) != 0) {
249 printf("%s: can't create upload desc. DMA map, error = %d\n",
250 sc->sc_dev.dv_xname, error);
251 goto fail;
252 }
253
254 attach_stage = 3;
255
256 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_upd_dmamap,
257 sc->sc_upd, EX_NUPD * sizeof (struct ex_upd), NULL,
258 BUS_DMA_NOWAIT)) != 0) {
259 printf("%s: can't load upload desc. DMA map, error = %d\n",
260 sc->sc_dev.dv_xname, error);
261 goto fail;
262 }
263
264 attach_stage = 4;
265
266 /*
267 * Allocate the download descriptors, and create and load the DMA
268 * map for them.
269 */
270 if ((error = bus_dmamem_alloc(sc->sc_dmat,
271 EX_NDPD * sizeof (struct ex_dpd), PAGE_SIZE, 0, &sc->sc_dseg, 1,
272 &sc->sc_drseg, BUS_DMA_NOWAIT)) != 0) {
273 printf("%s: can't allocate download descriptors, error = %d\n",
274 sc->sc_dev.dv_xname, error);
275 goto fail;
276 }
277
278 attach_stage = 5;
279
280 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg,
281 EX_NDPD * sizeof (struct ex_dpd), (caddr_t *)&sc->sc_dpd,
282 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
283 printf("%s: can't map download descriptors, error = %d\n",
284 sc->sc_dev.dv_xname, error);
285 goto fail;
286 }
287 memset(sc->sc_dpd, 0, EX_NDPD * sizeof (struct ex_dpd));
288
289 attach_stage = 6;
290
291 if ((error = bus_dmamap_create(sc->sc_dmat,
292 EX_NDPD * sizeof (struct ex_dpd), 1,
293 EX_NDPD * sizeof (struct ex_dpd), 0, BUS_DMA_NOWAIT,
294 &sc->sc_dpd_dmamap)) != 0) {
295 printf("%s: can't create download desc. DMA map, error = %d\n",
296 sc->sc_dev.dv_xname, error);
297 goto fail;
298 }
299
300 attach_stage = 7;
301
302 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dpd_dmamap,
303 sc->sc_dpd, EX_NDPD * sizeof (struct ex_dpd), NULL,
304 BUS_DMA_NOWAIT)) != 0) {
305 printf("%s: can't load download desc. DMA map, error = %d\n",
306 sc->sc_dev.dv_xname, error);
307 goto fail;
308 }
309
310 attach_stage = 8;
311
312
313 /*
314 * Create the transmit buffer DMA maps.
315 */
316 for (i = 0; i < EX_NDPD; i++) {
317 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
318 EX_NTFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
319 &sc->sc_tx_dmamaps[i])) != 0) {
320 printf("%s: can't create tx DMA map %d, error = %d\n",
321 sc->sc_dev.dv_xname, i, error);
322 goto fail;
323 }
324 }
325
326 attach_stage = 9;
327
328 /*
329 * Create the receive buffer DMA maps.
330 */
331 for (i = 0; i < EX_NUPD; i++) {
332 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
333 EX_NRFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
334 &sc->sc_rx_dmamaps[i])) != 0) {
335 printf("%s: can't create rx DMA map %d, error = %d\n",
336 sc->sc_dev.dv_xname, i, error);
337 goto fail;
338 }
339 }
340
341 attach_stage = 10;
342
343 /*
344 * Create ring of upload descriptors, only once. The DMA engine
345 * will loop over this when receiving packets, stalling if it
346 * hits an UPD with a finished receive.
347 */
348 for (i = 0; i < EX_NUPD; i++) {
349 sc->sc_rxdescs[i].rx_dmamap = sc->sc_rx_dmamaps[i];
350 sc->sc_rxdescs[i].rx_upd = &sc->sc_upd[i];
351 sc->sc_upd[i].upd_frags[0].fr_len =
352 htole32((MCLBYTES - 2) | EX_FR_LAST);
353 if (ex_add_rxbuf(sc, &sc->sc_rxdescs[i]) != 0) {
354 printf("%s: can't allocate or map rx buffers\n",
355 sc->sc_dev.dv_xname);
356 goto fail;
357 }
358 }
359
360 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap, 0,
361 EX_NUPD * sizeof (struct ex_upd),
362 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
363
364 ex_init_txdescs(sc);
365
366 attach_stage = 11;
367
368
369 GO_WINDOW(3);
370 val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
371 if (val & ELINK_MEDIACAP_MII)
372 sc->ex_conf |= EX_CONF_MII;
373
374 ifp = &sc->sc_ethercom.ec_if;
375
376 /*
377 * Initialize our media structures and MII info. We'll
378 * probe the MII if we discover that we have one.
379 */
380 sc->ex_mii.mii_ifp = ifp;
381 sc->ex_mii.mii_readreg = ex_mii_readreg;
382 sc->ex_mii.mii_writereg = ex_mii_writereg;
383 sc->ex_mii.mii_statchg = ex_mii_statchg;
384 ifmedia_init(&sc->ex_mii.mii_media, 0, ex_media_chg,
385 ex_media_stat);
386
387 if (sc->ex_conf & EX_CONF_MII) {
388 /*
389 * Find PHY, extract media information from it.
390 * First, select the right transceiver.
391 */
392 u_int32_t icfg;
393
394 GO_WINDOW(3);
395 icfg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
396 icfg &= ~(CONFIG_XCVR_SEL << 16);
397 if (val & (ELINK_MEDIACAP_MII | ELINK_MEDIACAP_100BASET4))
398 icfg |= ELINKMEDIA_MII << (CONFIG_XCVR_SEL_SHIFT + 16);
399 if (val & ELINK_MEDIACAP_100BASETX)
400 icfg |= ELINKMEDIA_AUTO << (CONFIG_XCVR_SEL_SHIFT + 16);
401 if (val & ELINK_MEDIACAP_100BASEFX)
402 icfg |= ELINKMEDIA_100BASE_FX
403 << (CONFIG_XCVR_SEL_SHIFT + 16);
404 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, icfg);
405
406 mii_attach(&sc->sc_dev, &sc->ex_mii, 0xffffffff,
407 MII_PHY_ANY, MII_OFFSET_ANY, 0);
408 if (LIST_FIRST(&sc->ex_mii.mii_phys) == NULL) {
409 ifmedia_add(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE,
410 0, NULL);
411 ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE);
412 } else {
413 ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_AUTO);
414 }
415 } else
416 ex_probemedia(sc);
417
418 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
419 ifp->if_softc = sc;
420 ifp->if_start = ex_start;
421 ifp->if_ioctl = ex_ioctl;
422 ifp->if_watchdog = ex_watchdog;
423 ifp->if_init = ex_init;
424 ifp->if_stop = ex_stop;
425 ifp->if_flags =
426 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
427 IFQ_SET_READY(&ifp->if_snd);
428
429 /*
430 * We can support 802.1Q VLAN-sized frames.
431 */
432 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
433
434 /*
435 * The 3c90xB has hardware IPv4/TCPv4/UDPv4 checksum support.
436 */
437 if (sc->ex_conf & EX_CONF_90XB)
438 sc->sc_ethercom.ec_if.if_capabilities |= IFCAP_CSUM_IPv4 |
439 IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
440
441 if_attach(ifp);
442 ether_ifattach(ifp, macaddr);
443
444 GO_WINDOW(1);
445
446 sc->tx_start_thresh = 20;
447 sc->tx_succ_ok = 0;
448
449 /* TODO: set queues to 0 */
450
451 #if NRND > 0
452 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
453 RND_TYPE_NET, 0);
454 #endif
455
456 /* Establish callback to reset card when we reboot. */
457 sc->sc_sdhook = shutdownhook_establish(ex_shutdown, sc);
458 if (sc->sc_sdhook == NULL)
459 printf("%s: WARNING: unable to establish shutdown hook\n",
460 sc->sc_dev.dv_xname);
461
462 /* Add a suspend hook to make sure we come back up after a resume. */
463 sc->sc_powerhook = powerhook_establish(ex_power, sc);
464 if (sc->sc_powerhook == NULL)
465 printf("%s: WARNING: unable to establish power hook\n",
466 sc->sc_dev.dv_xname);
467
468 /* The attach is successful. */
469 sc->ex_flags |= EX_FLAGS_ATTACHED;
470 return;
471
472 fail:
473 /*
474 * Free any resources we've allocated during the failed attach
475 * attempt. Do this in reverse order and fall though.
476 */
477 switch (attach_stage) {
478 case 11:
479 {
480 struct ex_rxdesc *rxd;
481
482 for (i = 0; i < EX_NUPD; i++) {
483 rxd = &sc->sc_rxdescs[i];
484 if (rxd->rx_mbhead != NULL) {
485 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
486 m_freem(rxd->rx_mbhead);
487 }
488 }
489 }
490 /* FALLTHROUGH */
491
492 case 10:
493 for (i = 0; i < EX_NUPD; i++)
494 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
495 /* FALLTHROUGH */
496
497 case 9:
498 for (i = 0; i < EX_NDPD; i++)
499 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
500 /* FALLTHROUGH */
501 case 8:
502 bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
503 /* FALLTHROUGH */
504
505 case 7:
506 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
507 /* FALLTHROUGH */
508
509 case 6:
510 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
511 EX_NDPD * sizeof (struct ex_dpd));
512 /* FALLTHROUGH */
513
514 case 5:
515 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
516 break;
517
518 case 4:
519 bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
520 /* FALLTHROUGH */
521
522 case 3:
523 bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
524 /* FALLTHROUGH */
525
526 case 2:
527 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
528 EX_NUPD * sizeof (struct ex_upd));
529 /* FALLTHROUGH */
530
531 case 1:
532 bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
533 break;
534 }
535
536 }
537
538 /*
539 * Find the media present on non-MII chips.
540 */
541 void
542 ex_probemedia(sc)
543 struct ex_softc *sc;
544 {
545 bus_space_tag_t iot = sc->sc_iot;
546 bus_space_handle_t ioh = sc->sc_ioh;
547 struct ifmedia *ifm = &sc->ex_mii.mii_media;
548 struct ex_media *exm;
549 u_int16_t config1, reset_options, default_media;
550 int defmedia = 0;
551 const char *sep = "", *defmedianame = NULL;
552
553 GO_WINDOW(3);
554 config1 = bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
555 reset_options = bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
556 GO_WINDOW(0);
557
558 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
559
560 printf("%s: ", sc->sc_dev.dv_xname);
561
562 /* Sanity check that there are any media! */
563 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
564 printf("no media present!\n");
565 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
566 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
567 return;
568 }
569
570 #define PRINT(s) printf("%s%s", sep, s); sep = ", "
571
572 for (exm = ex_native_media; exm->exm_name != NULL; exm++) {
573 if (reset_options & exm->exm_mpbit) {
574 /*
575 * Default media is a little complicated. We
576 * support full-duplex which uses the same
577 * reset options bit.
578 *
579 * XXX Check EEPROM for default to FDX?
580 */
581 if (exm->exm_epmedia == default_media) {
582 if ((exm->exm_ifmedia & IFM_FDX) == 0) {
583 defmedia = exm->exm_ifmedia;
584 defmedianame = exm->exm_name;
585 }
586 } else if (defmedia == 0) {
587 defmedia = exm->exm_ifmedia;
588 defmedianame = exm->exm_name;
589 }
590 ifmedia_add(ifm, exm->exm_ifmedia, exm->exm_epmedia,
591 NULL);
592 PRINT(exm->exm_name);
593 }
594 }
595
596 #undef PRINT
597
598 #ifdef DIAGNOSTIC
599 if (defmedia == 0)
600 panic("ex_probemedia: impossible");
601 #endif
602
603 printf(", default %s\n", defmedianame);
604 ifmedia_set(ifm, defmedia);
605 }
606
607 /*
608 * Bring device up.
609 */
610 int
611 ex_init(ifp)
612 struct ifnet *ifp;
613 {
614 struct ex_softc *sc = ifp->if_softc;
615 bus_space_tag_t iot = sc->sc_iot;
616 bus_space_handle_t ioh = sc->sc_ioh;
617 int i;
618 int error = 0;
619
620 if ((error = ex_enable(sc)) != 0)
621 goto out;
622
623 ex_waitcmd(sc);
624 ex_stop(ifp, 0);
625
626 /*
627 * Set the station address and clear the station mask. The latter
628 * is needed for 90x cards, 0 is the default for 90xB cards.
629 */
630 GO_WINDOW(2);
631 for (i = 0; i < ETHER_ADDR_LEN; i++) {
632 bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
633 LLADDR(ifp->if_sadl)[i]);
634 bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
635 }
636
637 GO_WINDOW(3);
638
639 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_RESET);
640 ex_waitcmd(sc);
641 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
642 ex_waitcmd(sc);
643
644 /*
645 * Disable reclaim threshold for 90xB, set free threshold to
646 * 6 * 256 = 1536 for 90x.
647 */
648 if (sc->ex_conf & EX_CONF_90XB)
649 bus_space_write_2(iot, ioh, ELINK_COMMAND,
650 ELINK_TXRECLTHRESH | 255);
651 else
652 bus_space_write_1(iot, ioh, ELINK_TXFREETHRESH, 6);
653
654 bus_space_write_2(iot, ioh, ELINK_COMMAND,
655 SET_RX_EARLY_THRESH | ELINK_THRESH_DISABLE);
656
657 bus_space_write_4(iot, ioh, ELINK_DMACTRL,
658 bus_space_read_4(iot, ioh, ELINK_DMACTRL) | ELINK_DMAC_UPRXEAREN);
659
660 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK | S_MASK);
661 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK | S_MASK);
662
663 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
664 if (sc->intr_ack)
665 (* sc->intr_ack)(sc);
666 ex_set_media(sc);
667 ex_set_mc(sc);
668
669
670 bus_space_write_2(iot, ioh, ELINK_COMMAND, STATS_ENABLE);
671 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
672 bus_space_write_4(iot, ioh, ELINK_UPLISTPTR, sc->sc_upddma);
673 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
674 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_UPUNSTALL);
675
676 if (sc->ex_conf & (EX_CONF_PHY_POWER | EX_CONF_INV_LED_POLARITY)) {
677 u_int16_t cbcard_config;
678
679 GO_WINDOW(2);
680 cbcard_config = bus_space_read_2(sc->sc_iot, sc->sc_ioh, 0x0c);
681 if (sc->ex_conf & EX_CONF_PHY_POWER) {
682 cbcard_config |= 0x4000; /* turn on PHY power */
683 }
684 if (sc->ex_conf & EX_CONF_INV_LED_POLARITY) {
685 cbcard_config |= 0x0010; /* invert LED polarity */
686 }
687 bus_space_write_2(sc->sc_iot, sc->sc_ioh, 0x0c, cbcard_config);
688
689 GO_WINDOW(3);
690 }
691
692 ifp->if_flags |= IFF_RUNNING;
693 ifp->if_flags &= ~IFF_OACTIVE;
694 ex_start(ifp);
695
696 GO_WINDOW(1);
697
698 callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
699
700 out:
701 if (error) {
702 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
703 ifp->if_timer = 0;
704 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
705 }
706 return (error);
707 }
708
709 #define ex_mchash(addr) (ether_crc32_be((addr), ETHER_ADDR_LEN) & 0xff)
710
711 /*
712 * Set multicast receive filter. Also take care of promiscuous mode
713 * here (XXX).
714 */
715 void
716 ex_set_mc(sc)
717 struct ex_softc *sc;
718 {
719 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
720 struct ethercom *ec = &sc->sc_ethercom;
721 struct ether_multi *enm;
722 struct ether_multistep estep;
723 int i;
724 u_int16_t mask = FIL_INDIVIDUAL | FIL_BRDCST;
725
726 if (ifp->if_flags & IFF_PROMISC)
727 mask |= FIL_PROMISC;
728
729 if (!(ifp->if_flags & IFF_MULTICAST))
730 goto out;
731
732 if (!(sc->ex_conf & EX_CONF_90XB) || ifp->if_flags & IFF_ALLMULTI) {
733 mask |= (ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0;
734 } else {
735 ETHER_FIRST_MULTI(estep, ec, enm);
736 while (enm != NULL) {
737 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
738 ETHER_ADDR_LEN) != 0)
739 goto out;
740 i = ex_mchash(enm->enm_addrlo);
741 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
742 ELINK_COMMAND, ELINK_SETHASHFILBIT | i);
743 ETHER_NEXT_MULTI(estep, enm);
744 }
745 mask |= FIL_MULTIHASH;
746 }
747 out:
748 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
749 SET_RX_FILTER | mask);
750 }
751
752
753 static void
754 ex_txstat(sc)
755 struct ex_softc *sc;
756 {
757 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
758 bus_space_tag_t iot = sc->sc_iot;
759 bus_space_handle_t ioh = sc->sc_ioh;
760 int i;
761
762 /*
763 * We need to read+write TX_STATUS until we get a 0 status
764 * in order to turn off the interrupt flag.
765 */
766 while ((i = bus_space_read_1(iot, ioh, ELINK_TXSTATUS)) & TXS_COMPLETE) {
767 bus_space_write_1(iot, ioh, ELINK_TXSTATUS, 0x0);
768
769 if (i & TXS_JABBER) {
770 ++sc->sc_ethercom.ec_if.if_oerrors;
771 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
772 printf("%s: jabber (%x)\n",
773 sc->sc_dev.dv_xname, i);
774 ex_init(ifp);
775 /* TODO: be more subtle here */
776 } else if (i & TXS_UNDERRUN) {
777 ++sc->sc_ethercom.ec_if.if_oerrors;
778 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
779 printf("%s: fifo underrun (%x) @%d\n",
780 sc->sc_dev.dv_xname, i,
781 sc->tx_start_thresh);
782 if (sc->tx_succ_ok < 100)
783 sc->tx_start_thresh = min(ETHER_MAX_LEN,
784 sc->tx_start_thresh + 20);
785 sc->tx_succ_ok = 0;
786 ex_init(ifp);
787 /* TODO: be more subtle here */
788 } else if (i & TXS_MAX_COLLISION) {
789 ++sc->sc_ethercom.ec_if.if_collisions;
790 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
791 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
792 } else
793 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
794 }
795 }
796
797 int
798 ex_media_chg(ifp)
799 struct ifnet *ifp;
800 {
801
802 if (ifp->if_flags & IFF_UP)
803 ex_init(ifp);
804 return 0;
805 }
806
807 void
808 ex_set_media(sc)
809 struct ex_softc *sc;
810 {
811 bus_space_tag_t iot = sc->sc_iot;
812 bus_space_handle_t ioh = sc->sc_ioh;
813 u_int32_t configreg;
814
815 if (((sc->ex_conf & EX_CONF_MII) &&
816 (sc->ex_mii.mii_media_active & IFM_FDX))
817 || (!(sc->ex_conf & EX_CONF_MII) &&
818 (sc->ex_mii.mii_media.ifm_media & IFM_FDX))) {
819 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL,
820 MAC_CONTROL_FDX);
821 } else {
822 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, 0);
823 }
824
825 /*
826 * If the device has MII, select it, and then tell the
827 * PHY which media to use.
828 */
829 if (sc->ex_conf & EX_CONF_MII) {
830 GO_WINDOW(3);
831
832 configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
833
834 configreg &= ~(CONFIG_MEDIAMASK << 16);
835 configreg |= (ELINKMEDIA_MII << (CONFIG_MEDIAMASK_SHIFT + 16));
836
837 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
838 mii_mediachg(&sc->ex_mii);
839 return;
840 }
841
842 GO_WINDOW(4);
843 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0);
844 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
845 delay(800);
846
847 /*
848 * Now turn on the selected media/transceiver.
849 */
850 switch (IFM_SUBTYPE(sc->ex_mii.mii_media.ifm_cur->ifm_media)) {
851 case IFM_10_T:
852 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
853 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
854 break;
855
856 case IFM_10_2:
857 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
858 DELAY(800);
859 break;
860
861 case IFM_100_TX:
862 case IFM_100_FX:
863 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
864 LINKBEAT_ENABLE);
865 DELAY(800);
866 break;
867
868 case IFM_10_5:
869 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
870 SQE_ENABLE);
871 DELAY(800);
872 break;
873
874 case IFM_MANUAL:
875 break;
876
877 case IFM_NONE:
878 return;
879
880 default:
881 panic("ex_set_media: impossible");
882 }
883
884 GO_WINDOW(3);
885 configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
886
887 configreg &= ~(CONFIG_MEDIAMASK << 16);
888 configreg |= (sc->ex_mii.mii_media.ifm_cur->ifm_data <<
889 (CONFIG_MEDIAMASK_SHIFT + 16));
890
891 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
892 }
893
894 /*
895 * Get currently-selected media from card.
896 * (if_media callback, may be called before interface is brought up).
897 */
898 void
899 ex_media_stat(ifp, req)
900 struct ifnet *ifp;
901 struct ifmediareq *req;
902 {
903 struct ex_softc *sc = ifp->if_softc;
904
905 if (sc->ex_conf & EX_CONF_MII) {
906 mii_pollstat(&sc->ex_mii);
907 req->ifm_status = sc->ex_mii.mii_media_status;
908 req->ifm_active = sc->ex_mii.mii_media_active;
909 } else {
910 GO_WINDOW(4);
911 req->ifm_status = IFM_AVALID;
912 req->ifm_active = sc->ex_mii.mii_media.ifm_cur->ifm_media;
913 if (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
914 ELINK_W4_MEDIA_TYPE) & LINKBEAT_DETECT)
915 req->ifm_status |= IFM_ACTIVE;
916 GO_WINDOW(1);
917 }
918 }
919
920
921
922 /*
923 * Start outputting on the interface.
924 */
925 static void
926 ex_start(ifp)
927 struct ifnet *ifp;
928 {
929 struct ex_softc *sc = ifp->if_softc;
930 bus_space_tag_t iot = sc->sc_iot;
931 bus_space_handle_t ioh = sc->sc_ioh;
932 volatile struct ex_fraghdr *fr = NULL;
933 volatile struct ex_dpd *dpd = NULL, *prevdpd = NULL;
934 struct ex_txdesc *txp;
935 struct mbuf *mb_head;
936 bus_dmamap_t dmamap;
937 int offset, totlen, segment, error;
938 u_int32_t csum_flags;
939
940 if (sc->tx_head || sc->tx_free == NULL)
941 return;
942
943 txp = NULL;
944
945 /*
946 * We're finished if there is nothing more to add to the list or if
947 * we're all filled up with buffers to transmit.
948 */
949 while (sc->tx_free != NULL) {
950 /*
951 * Grab a packet to transmit.
952 */
953 IFQ_DEQUEUE(&ifp->if_snd, mb_head);
954 if (mb_head == NULL)
955 break;
956
957 /*
958 * Get pointer to next available tx desc.
959 */
960 txp = sc->tx_free;
961 dmamap = txp->tx_dmamap;
962
963 /*
964 * Go through each of the mbufs in the chain and initialize
965 * the transmit buffer descriptors with the physical address
966 * and size of the mbuf.
967 */
968 reload:
969 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
970 mb_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
971 switch (error) {
972 case 0:
973 /* Success. */
974 break;
975
976 case EFBIG:
977 {
978 struct mbuf *mn;
979
980 /*
981 * We ran out of segments. We have to recopy this
982 * mbuf chain first. Bail out if we can't get the
983 * new buffers.
984 */
985 printf("%s: too many segments, ", sc->sc_dev.dv_xname);
986
987 MGETHDR(mn, M_DONTWAIT, MT_DATA);
988 if (mn == NULL) {
989 m_freem(mb_head);
990 printf("aborting\n");
991 goto out;
992 }
993 if (mb_head->m_pkthdr.len > MHLEN) {
994 MCLGET(mn, M_DONTWAIT);
995 if ((mn->m_flags & M_EXT) == 0) {
996 m_freem(mn);
997 m_freem(mb_head);
998 printf("aborting\n");
999 goto out;
1000 }
1001 }
1002 m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1003 mtod(mn, caddr_t));
1004 mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1005 m_freem(mb_head);
1006 mb_head = mn;
1007 printf("retrying\n");
1008 goto reload;
1009 }
1010
1011 default:
1012 /*
1013 * Some other problem; report it.
1014 */
1015 printf("%s: can't load mbuf chain, error = %d\n",
1016 sc->sc_dev.dv_xname, error);
1017 m_freem(mb_head);
1018 goto out;
1019 }
1020
1021 /*
1022 * remove our tx desc from freelist.
1023 */
1024 sc->tx_free = txp->tx_next;
1025 txp->tx_next = NULL;
1026
1027 fr = &txp->tx_dpd->dpd_frags[0];
1028 totlen = 0;
1029 for (segment = 0; segment < dmamap->dm_nsegs; segment++, fr++) {
1030 fr->fr_addr = htole32(dmamap->dm_segs[segment].ds_addr);
1031 fr->fr_len = htole32(dmamap->dm_segs[segment].ds_len);
1032 totlen += dmamap->dm_segs[segment].ds_len;
1033 }
1034 fr--;
1035 fr->fr_len |= htole32(EX_FR_LAST);
1036 txp->tx_mbhead = mb_head;
1037
1038 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1039 BUS_DMASYNC_PREWRITE);
1040
1041 dpd = txp->tx_dpd;
1042 dpd->dpd_nextptr = 0;
1043 dpd->dpd_fsh = htole32(totlen);
1044
1045 /* Byte-swap constants to compiler can optimize. */
1046
1047 if (sc->ex_conf & EX_CONF_90XB) {
1048 csum_flags = 0;
1049
1050 if (mb_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1051 csum_flags |= htole32(EX_DPD_IPCKSUM);
1052
1053 if (mb_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1054 csum_flags |= htole32(EX_DPD_TCPCKSUM);
1055 else if (mb_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1056 csum_flags |= htole32(EX_DPD_UDPCKSUM);
1057
1058 dpd->dpd_fsh |= csum_flags;
1059 } else {
1060 KDASSERT((mb_head->m_pkthdr.csum_flags &
1061 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) == 0);
1062 }
1063
1064 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1065 ((caddr_t)dpd - (caddr_t)sc->sc_dpd),
1066 sizeof (struct ex_dpd),
1067 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1068
1069 /*
1070 * No need to stall the download engine, we know it's
1071 * not busy right now.
1072 *
1073 * Fix up pointers in both the "soft" tx and the physical
1074 * tx list.
1075 */
1076 if (sc->tx_head != NULL) {
1077 prevdpd = sc->tx_tail->tx_dpd;
1078 offset = ((caddr_t)prevdpd - (caddr_t)sc->sc_dpd);
1079 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1080 offset, sizeof (struct ex_dpd),
1081 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1082 prevdpd->dpd_nextptr = htole32(DPD_DMADDR(sc, txp));
1083 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1084 offset, sizeof (struct ex_dpd),
1085 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1086 sc->tx_tail->tx_next = txp;
1087 sc->tx_tail = txp;
1088 } else {
1089 sc->tx_tail = sc->tx_head = txp;
1090 }
1091
1092 #if NBPFILTER > 0
1093 /*
1094 * Pass packet to bpf if there is a listener.
1095 */
1096 if (ifp->if_bpf)
1097 bpf_mtap(ifp->if_bpf, mb_head);
1098 #endif
1099 }
1100 out:
1101 if (sc->tx_head) {
1102 sc->tx_tail->tx_dpd->dpd_fsh |= htole32(EX_DPD_DNIND);
1103 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1104 ((caddr_t)sc->tx_tail->tx_dpd - (caddr_t)sc->sc_dpd),
1105 sizeof (struct ex_dpd),
1106 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1107 ifp->if_flags |= IFF_OACTIVE;
1108 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNUNSTALL);
1109 bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
1110 DPD_DMADDR(sc, sc->tx_head));
1111
1112 /* trigger watchdog */
1113 ifp->if_timer = 5;
1114 }
1115 }
1116
1117
1118 int
1119 ex_intr(arg)
1120 void *arg;
1121 {
1122 struct ex_softc *sc = arg;
1123 bus_space_tag_t iot = sc->sc_iot;
1124 bus_space_handle_t ioh = sc->sc_ioh;
1125 u_int16_t stat;
1126 int ret = 0;
1127 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1128
1129 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1130 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1131 return (0);
1132
1133 for (;;) {
1134 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1135
1136 stat = bus_space_read_2(iot, ioh, ELINK_STATUS);
1137
1138 if ((stat & S_MASK) == 0) {
1139 if ((stat & S_INTR_LATCH) == 0) {
1140 #if 0
1141 printf("%s: intr latch cleared\n",
1142 sc->sc_dev.dv_xname);
1143 #endif
1144 break;
1145 }
1146 }
1147
1148 ret = 1;
1149
1150 /*
1151 * Acknowledge interrupts.
1152 */
1153 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1154 (stat & S_MASK));
1155 if (sc->intr_ack)
1156 (*sc->intr_ack)(sc);
1157
1158 if (stat & S_HOST_ERROR) {
1159 printf("%s: adapter failure (%x)\n",
1160 sc->sc_dev.dv_xname, stat);
1161 ex_reset(sc);
1162 ex_init(ifp);
1163 return 1;
1164 }
1165 if (stat & S_TX_COMPLETE) {
1166 ex_txstat(sc);
1167 }
1168 if (stat & S_UPD_STATS) {
1169 ex_getstats(sc);
1170 }
1171 if (stat & S_DN_COMPLETE) {
1172 struct ex_txdesc *txp, *ptxp = NULL;
1173 bus_dmamap_t txmap;
1174
1175 /* reset watchdog timer, was set in ex_start() */
1176 ifp->if_timer = 0;
1177
1178 for (txp = sc->tx_head; txp != NULL;
1179 txp = txp->tx_next) {
1180 bus_dmamap_sync(sc->sc_dmat,
1181 sc->sc_dpd_dmamap,
1182 (caddr_t)txp->tx_dpd - (caddr_t)sc->sc_dpd,
1183 sizeof (struct ex_dpd),
1184 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1185 if (txp->tx_mbhead != NULL) {
1186 txmap = txp->tx_dmamap;
1187 bus_dmamap_sync(sc->sc_dmat, txmap,
1188 0, txmap->dm_mapsize,
1189 BUS_DMASYNC_POSTWRITE);
1190 bus_dmamap_unload(sc->sc_dmat, txmap);
1191 m_freem(txp->tx_mbhead);
1192 txp->tx_mbhead = NULL;
1193 }
1194 ptxp = txp;
1195 }
1196
1197 /*
1198 * Move finished tx buffers back to the tx free list.
1199 */
1200 if (sc->tx_free) {
1201 sc->tx_ftail->tx_next = sc->tx_head;
1202 sc->tx_ftail = ptxp;
1203 } else
1204 sc->tx_ftail = sc->tx_free = sc->tx_head;
1205
1206 sc->tx_head = sc->tx_tail = NULL;
1207 ifp->if_flags &= ~IFF_OACTIVE;
1208 }
1209
1210 if (stat & S_UP_COMPLETE) {
1211 struct ex_rxdesc *rxd;
1212 struct mbuf *m;
1213 struct ex_upd *upd;
1214 bus_dmamap_t rxmap;
1215 u_int32_t pktstat;
1216
1217 rcvloop:
1218 rxd = sc->rx_head;
1219 rxmap = rxd->rx_dmamap;
1220 m = rxd->rx_mbhead;
1221 upd = rxd->rx_upd;
1222
1223 bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
1224 rxmap->dm_mapsize,
1225 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1226 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1227 ((caddr_t)upd - (caddr_t)sc->sc_upd),
1228 sizeof (struct ex_upd),
1229 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1230 pktstat = le32toh(upd->upd_pktstatus);
1231
1232 if (pktstat & EX_UPD_COMPLETE) {
1233 /*
1234 * Remove first packet from the chain.
1235 */
1236 sc->rx_head = rxd->rx_next;
1237 rxd->rx_next = NULL;
1238
1239 /*
1240 * Add a new buffer to the receive chain.
1241 * If this fails, the old buffer is recycled
1242 * instead.
1243 */
1244 if (ex_add_rxbuf(sc, rxd) == 0) {
1245 u_int16_t total_len;
1246
1247 if (pktstat &
1248 ((sc->sc_ethercom.ec_capenable &
1249 ETHERCAP_VLAN_MTU) ?
1250 EX_UPD_ERR_VLAN : EX_UPD_ERR)) {
1251 ifp->if_ierrors++;
1252 m_freem(m);
1253 goto rcvloop;
1254 }
1255
1256 total_len = pktstat & EX_UPD_PKTLENMASK;
1257 if (total_len <
1258 sizeof(struct ether_header)) {
1259 m_freem(m);
1260 goto rcvloop;
1261 }
1262 m->m_pkthdr.rcvif = ifp;
1263 m->m_pkthdr.len = m->m_len = total_len;
1264 #if NBPFILTER > 0
1265 if (ifp->if_bpf)
1266 bpf_mtap(ifp->if_bpf, m);
1267 #endif
1268 /*
1269 * Set the incoming checksum information for the packet.
1270 */
1271 if ((sc->ex_conf & EX_CONF_90XB) != 0 &&
1272 (pktstat & EX_UPD_IPCHECKED) != 0) {
1273 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1274 if (pktstat & EX_UPD_IPCKSUMERR)
1275 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1276 if (pktstat & EX_UPD_TCPCHECKED) {
1277 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1278 if (pktstat & EX_UPD_TCPCKSUMERR)
1279 m->m_pkthdr.csum_flags |=
1280 M_CSUM_TCP_UDP_BAD;
1281 } else if (pktstat & EX_UPD_UDPCHECKED) {
1282 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1283 if (pktstat & EX_UPD_UDPCKSUMERR)
1284 m->m_pkthdr.csum_flags |=
1285 M_CSUM_TCP_UDP_BAD;
1286 }
1287 }
1288 (*ifp->if_input)(ifp, m);
1289 }
1290 goto rcvloop;
1291 }
1292 /*
1293 * Just in case we filled up all UPDs and the DMA engine
1294 * stalled. We could be more subtle about this.
1295 */
1296 if (bus_space_read_4(iot, ioh, ELINK_UPLISTPTR) == 0) {
1297 printf("%s: uplistptr was 0\n",
1298 sc->sc_dev.dv_xname);
1299 ex_init(ifp);
1300 } else if (bus_space_read_4(iot, ioh, ELINK_UPPKTSTATUS)
1301 & 0x2000) {
1302 printf("%s: receive stalled\n",
1303 sc->sc_dev.dv_xname);
1304 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1305 ELINK_UPUNSTALL);
1306 }
1307 }
1308 }
1309
1310 /* no more interrupts */
1311 if (ret && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1312 ex_start(ifp);
1313 return ret;
1314 }
1315
1316 int
1317 ex_ioctl(ifp, cmd, data)
1318 struct ifnet *ifp;
1319 u_long cmd;
1320 caddr_t data;
1321 {
1322 struct ex_softc *sc = ifp->if_softc;
1323 struct ifreq *ifr = (struct ifreq *)data;
1324 int s, error;
1325
1326 s = splnet();
1327
1328 switch (cmd) {
1329 case SIOCSIFMEDIA:
1330 case SIOCGIFMEDIA:
1331 error = ifmedia_ioctl(ifp, ifr, &sc->ex_mii.mii_media, cmd);
1332 break;
1333
1334 default:
1335 error = ether_ioctl(ifp, cmd, data);
1336 if (error == ENETRESET) {
1337 if (sc->enabled) {
1338 /*
1339 * Multicast list has changed; set the hardware filter
1340 * accordingly.
1341 */
1342 ex_set_mc(sc);
1343 }
1344 error = 0;
1345 }
1346 break;
1347 }
1348
1349 splx(s);
1350 return (error);
1351 }
1352
1353 void
1354 ex_getstats(sc)
1355 struct ex_softc *sc;
1356 {
1357 bus_space_handle_t ioh = sc->sc_ioh;
1358 bus_space_tag_t iot = sc->sc_iot;
1359 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1360 u_int8_t upperok;
1361
1362 GO_WINDOW(6);
1363 upperok = bus_space_read_1(iot, ioh, UPPER_FRAMES_OK);
1364 ifp->if_ipackets += bus_space_read_1(iot, ioh, RX_FRAMES_OK);
1365 ifp->if_ipackets += (upperok & 0x03) << 8;
1366 ifp->if_opackets += bus_space_read_1(iot, ioh, TX_FRAMES_OK);
1367 ifp->if_opackets += (upperok & 0x30) << 4;
1368 ifp->if_ierrors += bus_space_read_1(iot, ioh, RX_OVERRUNS);
1369 ifp->if_collisions += bus_space_read_1(iot, ioh, TX_COLLISIONS);
1370 /*
1371 * There seems to be no way to get the exact number of collisions,
1372 * this is the number that occurred at the very least.
1373 */
1374 ifp->if_collisions += 2 * bus_space_read_1(iot, ioh,
1375 TX_AFTER_X_COLLISIONS);
1376 ifp->if_ibytes += bus_space_read_2(iot, ioh, RX_TOTAL_OK);
1377 ifp->if_obytes += bus_space_read_2(iot, ioh, TX_TOTAL_OK);
1378
1379 /*
1380 * Clear the following to avoid stats overflow interrupts
1381 */
1382 bus_space_read_1(iot, ioh, TX_DEFERRALS);
1383 bus_space_read_1(iot, ioh, TX_AFTER_1_COLLISION);
1384 bus_space_read_1(iot, ioh, TX_NO_SQE);
1385 bus_space_read_1(iot, ioh, TX_CD_LOST);
1386 GO_WINDOW(4);
1387 bus_space_read_1(iot, ioh, ELINK_W4_BADSSD);
1388 upperok = bus_space_read_1(iot, ioh, ELINK_W4_UBYTESOK);
1389 ifp->if_ibytes += (upperok & 0x0f) << 16;
1390 ifp->if_obytes += (upperok & 0xf0) << 12;
1391 GO_WINDOW(1);
1392 }
1393
1394 void
1395 ex_printstats(sc)
1396 struct ex_softc *sc;
1397 {
1398 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1399
1400 ex_getstats(sc);
1401 printf("in %llu out %llu ierror %llu oerror %llu ibytes %llu obytes "
1402 "%llu\n", (unsigned long long)ifp->if_ipackets,
1403 (unsigned long long)ifp->if_opackets,
1404 (unsigned long long)ifp->if_ierrors,
1405 (unsigned long long)ifp->if_oerrors,
1406 (unsigned long long)ifp->if_ibytes,
1407 (unsigned long long)ifp->if_obytes);
1408 }
1409
1410 void
1411 ex_tick(arg)
1412 void *arg;
1413 {
1414 struct ex_softc *sc = arg;
1415 int s;
1416
1417 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1418 return;
1419
1420 s = splnet();
1421
1422 if (sc->ex_conf & EX_CONF_MII)
1423 mii_tick(&sc->ex_mii);
1424
1425 if (!(bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, ELINK_STATUS)
1426 & S_COMMAND_IN_PROGRESS))
1427 ex_getstats(sc);
1428
1429 splx(s);
1430
1431 callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
1432 }
1433
1434 void
1435 ex_reset(sc)
1436 struct ex_softc *sc;
1437 {
1438 u_int16_t val = GLOBAL_RESET;
1439
1440 if (sc->ex_conf & EX_CONF_RESETHACK)
1441 val |= 0x10;
1442 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, val);
1443 /*
1444 * XXX apparently the command in progress bit can't be trusted
1445 * during a reset, so we just always wait this long. Fortunately
1446 * we normally only reset the chip during autoconfig.
1447 */
1448 delay(100000);
1449 ex_waitcmd(sc);
1450 }
1451
1452 void
1453 ex_watchdog(ifp)
1454 struct ifnet *ifp;
1455 {
1456 struct ex_softc *sc = ifp->if_softc;
1457
1458 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1459 ++sc->sc_ethercom.ec_if.if_oerrors;
1460
1461 ex_reset(sc);
1462 ex_init(ifp);
1463 }
1464
1465 void
1466 ex_stop(ifp, disable)
1467 struct ifnet *ifp;
1468 int disable;
1469 {
1470 struct ex_softc *sc = ifp->if_softc;
1471 bus_space_tag_t iot = sc->sc_iot;
1472 bus_space_handle_t ioh = sc->sc_ioh;
1473 struct ex_txdesc *tx;
1474 struct ex_rxdesc *rx;
1475 int i;
1476
1477 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1478 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1479 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1480
1481 for (tx = sc->tx_head ; tx != NULL; tx = tx->tx_next) {
1482 if (tx->tx_mbhead == NULL)
1483 continue;
1484 m_freem(tx->tx_mbhead);
1485 tx->tx_mbhead = NULL;
1486 bus_dmamap_unload(sc->sc_dmat, tx->tx_dmamap);
1487 tx->tx_dpd->dpd_fsh = tx->tx_dpd->dpd_nextptr = 0;
1488 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1489 ((caddr_t)tx->tx_dpd - (caddr_t)sc->sc_dpd),
1490 sizeof (struct ex_dpd),
1491 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1492 }
1493 sc->tx_tail = sc->tx_head = NULL;
1494 ex_init_txdescs(sc);
1495
1496 sc->rx_tail = sc->rx_head = 0;
1497 for (i = 0; i < EX_NUPD; i++) {
1498 rx = &sc->sc_rxdescs[i];
1499 if (rx->rx_mbhead != NULL) {
1500 bus_dmamap_unload(sc->sc_dmat, rx->rx_dmamap);
1501 m_freem(rx->rx_mbhead);
1502 rx->rx_mbhead = NULL;
1503 }
1504 ex_add_rxbuf(sc, rx);
1505 }
1506
1507 bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
1508
1509 callout_stop(&sc->ex_mii_callout);
1510 if (sc->ex_conf & EX_CONF_MII)
1511 mii_down(&sc->ex_mii);
1512
1513 if (disable)
1514 ex_disable(sc);
1515
1516 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1517 ifp->if_timer = 0;
1518 }
1519
1520 static void
1521 ex_init_txdescs(sc)
1522 struct ex_softc *sc;
1523 {
1524 int i;
1525
1526 for (i = 0; i < EX_NDPD; i++) {
1527 sc->sc_txdescs[i].tx_dmamap = sc->sc_tx_dmamaps[i];
1528 sc->sc_txdescs[i].tx_dpd = &sc->sc_dpd[i];
1529 if (i < EX_NDPD - 1)
1530 sc->sc_txdescs[i].tx_next = &sc->sc_txdescs[i + 1];
1531 else
1532 sc->sc_txdescs[i].tx_next = NULL;
1533 }
1534 sc->tx_free = &sc->sc_txdescs[0];
1535 sc->tx_ftail = &sc->sc_txdescs[EX_NDPD-1];
1536 }
1537
1538
1539 int
1540 ex_activate(self, act)
1541 struct device *self;
1542 enum devact act;
1543 {
1544 struct ex_softc *sc = (void *) self;
1545 int s, error = 0;
1546
1547 s = splnet();
1548 switch (act) {
1549 case DVACT_ACTIVATE:
1550 error = EOPNOTSUPP;
1551 break;
1552
1553 case DVACT_DEACTIVATE:
1554 if (sc->ex_conf & EX_CONF_MII)
1555 mii_activate(&sc->ex_mii, act, MII_PHY_ANY,
1556 MII_OFFSET_ANY);
1557 if_deactivate(&sc->sc_ethercom.ec_if);
1558 break;
1559 }
1560 splx(s);
1561
1562 return (error);
1563 }
1564
1565 int
1566 ex_detach(sc)
1567 struct ex_softc *sc;
1568 {
1569 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1570 struct ex_rxdesc *rxd;
1571 int i;
1572
1573 /* Succeed now if there's no work to do. */
1574 if ((sc->ex_flags & EX_FLAGS_ATTACHED) == 0)
1575 return (0);
1576
1577 /* Unhook our tick handler. */
1578 callout_stop(&sc->ex_mii_callout);
1579
1580 if (sc->ex_conf & EX_CONF_MII) {
1581 /* Detach all PHYs */
1582 mii_detach(&sc->ex_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1583 }
1584
1585 /* Delete all remaining media. */
1586 ifmedia_delete_instance(&sc->ex_mii.mii_media, IFM_INST_ANY);
1587
1588 #if NRND > 0
1589 rnd_detach_source(&sc->rnd_source);
1590 #endif
1591 ether_ifdetach(ifp);
1592 if_detach(ifp);
1593
1594 for (i = 0; i < EX_NUPD; i++) {
1595 rxd = &sc->sc_rxdescs[i];
1596 if (rxd->rx_mbhead != NULL) {
1597 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1598 m_freem(rxd->rx_mbhead);
1599 rxd->rx_mbhead = NULL;
1600 }
1601 }
1602 for (i = 0; i < EX_NUPD; i++)
1603 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
1604 for (i = 0; i < EX_NDPD; i++)
1605 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
1606 bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
1607 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
1608 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
1609 EX_NDPD * sizeof (struct ex_dpd));
1610 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
1611 bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
1612 bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
1613 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
1614 EX_NUPD * sizeof (struct ex_upd));
1615 bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
1616
1617 shutdownhook_disestablish(sc->sc_sdhook);
1618 powerhook_disestablish(sc->sc_powerhook);
1619
1620 return (0);
1621 }
1622
1623 /*
1624 * Before reboots, reset card completely.
1625 */
1626 static void
1627 ex_shutdown(arg)
1628 void *arg;
1629 {
1630 struct ex_softc *sc = arg;
1631
1632 ex_stop(&sc->sc_ethercom.ec_if, 1);
1633 }
1634
1635 /*
1636 * Read EEPROM data.
1637 * XXX what to do if EEPROM doesn't unbusy?
1638 */
1639 u_int16_t
1640 ex_read_eeprom(sc, offset)
1641 struct ex_softc *sc;
1642 int offset;
1643 {
1644 bus_space_tag_t iot = sc->sc_iot;
1645 bus_space_handle_t ioh = sc->sc_ioh;
1646 u_int16_t data = 0, cmd = READ_EEPROM;
1647 int off;
1648
1649 off = sc->ex_conf & EX_CONF_EEPROM_OFF ? 0x30 : 0;
1650 cmd = sc->ex_conf & EX_CONF_EEPROM_8BIT ? READ_EEPROM8 : READ_EEPROM;
1651
1652 GO_WINDOW(0);
1653 if (ex_eeprom_busy(sc))
1654 goto out;
1655 bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
1656 cmd | (off + (offset & 0x3f)));
1657 if (ex_eeprom_busy(sc))
1658 goto out;
1659 data = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
1660 out:
1661 return data;
1662 }
1663
1664 static int
1665 ex_eeprom_busy(sc)
1666 struct ex_softc *sc;
1667 {
1668 bus_space_tag_t iot = sc->sc_iot;
1669 bus_space_handle_t ioh = sc->sc_ioh;
1670 int i = 100;
1671
1672 while (i--) {
1673 if (!(bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND) &
1674 EEPROM_BUSY))
1675 return 0;
1676 delay(100);
1677 }
1678 printf("\n%s: eeprom stays busy.\n", sc->sc_dev.dv_xname);
1679 return (1);
1680 }
1681
1682 /*
1683 * Create a new rx buffer and add it to the 'soft' rx list.
1684 */
1685 static int
1686 ex_add_rxbuf(sc, rxd)
1687 struct ex_softc *sc;
1688 struct ex_rxdesc *rxd;
1689 {
1690 struct mbuf *m, *oldm;
1691 bus_dmamap_t rxmap;
1692 int error, rval = 0;
1693
1694 oldm = rxd->rx_mbhead;
1695 rxmap = rxd->rx_dmamap;
1696
1697 MGETHDR(m, M_DONTWAIT, MT_DATA);
1698 if (m != NULL) {
1699 MCLGET(m, M_DONTWAIT);
1700 if ((m->m_flags & M_EXT) == 0) {
1701 m_freem(m);
1702 if (oldm == NULL)
1703 return 1;
1704 m = oldm;
1705 m->m_data = m->m_ext.ext_buf;
1706 rval = 1;
1707 }
1708 } else {
1709 if (oldm == NULL)
1710 return 1;
1711 m = oldm;
1712 m->m_data = m->m_ext.ext_buf;
1713 rval = 1;
1714 }
1715
1716 /*
1717 * Setup the DMA map for this receive buffer.
1718 */
1719 if (m != oldm) {
1720 if (oldm != NULL)
1721 bus_dmamap_unload(sc->sc_dmat, rxmap);
1722 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1723 m->m_ext.ext_buf, MCLBYTES, NULL,
1724 BUS_DMA_READ|BUS_DMA_NOWAIT);
1725 if (error) {
1726 printf("%s: can't load rx buffer, error = %d\n",
1727 sc->sc_dev.dv_xname, error);
1728 panic("ex_add_rxbuf"); /* XXX */
1729 }
1730 }
1731
1732 /*
1733 * Align for data after 14 byte header.
1734 */
1735 m->m_data += 2;
1736
1737 rxd->rx_mbhead = m;
1738 rxd->rx_upd->upd_pktstatus = htole32(MCLBYTES - 2);
1739 rxd->rx_upd->upd_frags[0].fr_addr =
1740 htole32(rxmap->dm_segs[0].ds_addr + 2);
1741 rxd->rx_upd->upd_nextptr = 0;
1742
1743 /*
1744 * Attach it to the end of the list.
1745 */
1746 if (sc->rx_head != NULL) {
1747 sc->rx_tail->rx_next = rxd;
1748 sc->rx_tail->rx_upd->upd_nextptr = htole32(sc->sc_upddma +
1749 ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd));
1750 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1751 (caddr_t)sc->rx_tail->rx_upd - (caddr_t)sc->sc_upd,
1752 sizeof (struct ex_upd),
1753 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1754 } else {
1755 sc->rx_head = rxd;
1756 }
1757 sc->rx_tail = rxd;
1758
1759 bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
1760 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1761 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1762 ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd),
1763 sizeof (struct ex_upd), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1764 return (rval);
1765 }
1766
1767 u_int32_t
1768 ex_mii_bitbang_read(self)
1769 struct device *self;
1770 {
1771 struct ex_softc *sc = (void *) self;
1772
1773 /* We're already in Window 4. */
1774 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT));
1775 }
1776
1777 void
1778 ex_mii_bitbang_write(self, val)
1779 struct device *self;
1780 u_int32_t val;
1781 {
1782 struct ex_softc *sc = (void *) self;
1783
1784 /* We're already in Window 4. */
1785 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT, val);
1786 }
1787
1788 int
1789 ex_mii_readreg(v, phy, reg)
1790 struct device *v;
1791 int phy, reg;
1792 {
1793 struct ex_softc *sc = (struct ex_softc *)v;
1794 int val;
1795
1796 if ((sc->ex_conf & EX_CONF_INTPHY) && phy != ELINK_INTPHY_ID)
1797 return 0;
1798
1799 GO_WINDOW(4);
1800
1801 val = mii_bitbang_readreg(v, &ex_mii_bitbang_ops, phy, reg);
1802
1803 GO_WINDOW(1);
1804
1805 return (val);
1806 }
1807
1808 void
1809 ex_mii_writereg(v, phy, reg, data)
1810 struct device *v;
1811 int phy;
1812 int reg;
1813 int data;
1814 {
1815 struct ex_softc *sc = (struct ex_softc *)v;
1816
1817 GO_WINDOW(4);
1818
1819 mii_bitbang_writereg(v, &ex_mii_bitbang_ops, phy, reg, data);
1820
1821 GO_WINDOW(1);
1822 }
1823
1824 void
1825 ex_mii_statchg(v)
1826 struct device *v;
1827 {
1828 struct ex_softc *sc = (struct ex_softc *)v;
1829 bus_space_tag_t iot = sc->sc_iot;
1830 bus_space_handle_t ioh = sc->sc_ioh;
1831 int mctl;
1832
1833 GO_WINDOW(3);
1834 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1835 if (sc->ex_mii.mii_media_active & IFM_FDX)
1836 mctl |= MAC_CONTROL_FDX;
1837 else
1838 mctl &= ~MAC_CONTROL_FDX;
1839 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1840 GO_WINDOW(1); /* back to operating window */
1841 }
1842
1843 int
1844 ex_enable(sc)
1845 struct ex_softc *sc;
1846 {
1847 if (sc->enabled == 0 && sc->enable != NULL) {
1848 if ((*sc->enable)(sc) != 0) {
1849 printf("%s: de/vice enable failed\n",
1850 sc->sc_dev.dv_xname);
1851 return (EIO);
1852 }
1853 sc->enabled = 1;
1854 }
1855 return (0);
1856 }
1857
1858 void
1859 ex_disable(sc)
1860 struct ex_softc *sc;
1861 {
1862 if (sc->enabled == 1 && sc->disable != NULL) {
1863 (*sc->disable)(sc);
1864 sc->enabled = 0;
1865 }
1866 }
1867
1868 void
1869 ex_power(why, arg)
1870 int why;
1871 void *arg;
1872 {
1873 struct ex_softc *sc = (void *)arg;
1874 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1875 int s;
1876
1877 s = splnet();
1878 switch (why) {
1879 case PWR_SUSPEND:
1880 case PWR_STANDBY:
1881 ex_stop(ifp, 0);
1882 if (sc->power != NULL)
1883 (*sc->power)(sc, why);
1884 break;
1885 case PWR_RESUME:
1886 if (ifp->if_flags & IFF_UP) {
1887 if (sc->power != NULL)
1888 (*sc->power)(sc, why);
1889 ex_init(ifp);
1890 }
1891 break;
1892 case PWR_SOFTSUSPEND:
1893 case PWR_SOFTSTANDBY:
1894 case PWR_SOFTRESUME:
1895 break;
1896 }
1897 splx(s);
1898 }
1899