elinkxl.c revision 1.63.4.1 1 /* $NetBSD: elinkxl.c,v 1.63.4.1 2002/12/12 21:34:39 he Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: elinkxl.c,v 1.63.4.1 2002/12/12 21:34:39 he Exp $");
41
42 #include "bpfilter.h"
43 #include "rnd.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/kernel.h>
49 #include <sys/mbuf.h>
50 #include <sys/socket.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/syslog.h>
54 #include <sys/select.h>
55 #include <sys/device.h>
56 #if NRND > 0
57 #include <sys/rnd.h>
58 #endif
59
60 #include <uvm/uvm_extern.h>
61
62 #include <net/if.h>
63 #include <net/if_dl.h>
64 #include <net/if_ether.h>
65 #include <net/if_media.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #include <net/bpfdesc.h>
70 #endif
71
72 #include <machine/cpu.h>
73 #include <machine/bus.h>
74 #include <machine/intr.h>
75 #include <machine/endian.h>
76
77 #include <dev/mii/miivar.h>
78 #include <dev/mii/mii.h>
79 #include <dev/mii/mii_bitbang.h>
80
81 #include <dev/ic/elink3reg.h>
82 /* #include <dev/ic/elink3var.h> */
83 #include <dev/ic/elinkxlreg.h>
84 #include <dev/ic/elinkxlvar.h>
85
86 #ifdef DEBUG
87 int exdebug = 0;
88 #endif
89
90 /* ifmedia callbacks */
91 int ex_media_chg __P((struct ifnet *ifp));
92 void ex_media_stat __P((struct ifnet *ifp, struct ifmediareq *req));
93
94 void ex_probe_media __P((struct ex_softc *));
95 void ex_set_filter __P((struct ex_softc *));
96 void ex_set_media __P((struct ex_softc *));
97 struct mbuf *ex_get __P((struct ex_softc *, int));
98 u_int16_t ex_read_eeprom __P((struct ex_softc *, int));
99 int ex_init __P((struct ifnet *));
100 void ex_read __P((struct ex_softc *));
101 void ex_reset __P((struct ex_softc *));
102 void ex_set_mc __P((struct ex_softc *));
103 void ex_getstats __P((struct ex_softc *));
104 void ex_printstats __P((struct ex_softc *));
105 void ex_tick __P((void *));
106
107 int ex_enable __P((struct ex_softc *));
108 void ex_disable __P((struct ex_softc *));
109 void ex_power __P((int, void *));
110
111 static int ex_eeprom_busy __P((struct ex_softc *));
112 static int ex_add_rxbuf __P((struct ex_softc *, struct ex_rxdesc *));
113 static void ex_init_txdescs __P((struct ex_softc *));
114
115 static void ex_shutdown __P((void *));
116 static void ex_start __P((struct ifnet *));
117 static void ex_txstat __P((struct ex_softc *));
118
119 int ex_mii_readreg __P((struct device *, int, int));
120 void ex_mii_writereg __P((struct device *, int, int, int));
121 void ex_mii_statchg __P((struct device *));
122
123 void ex_probemedia __P((struct ex_softc *));
124
125 /*
126 * Structure to map media-present bits in boards to ifmedia codes and
127 * printable media names. Used for table-driven ifmedia initialization.
128 */
129 struct ex_media {
130 int exm_mpbit; /* media present bit */
131 const char *exm_name; /* name of medium */
132 int exm_ifmedia; /* ifmedia word for medium */
133 int exm_epmedia; /* ELINKMEDIA_* constant */
134 };
135
136 /*
137 * Media table for 3c90x chips. Note that chips with MII have no
138 * `native' media.
139 */
140 struct ex_media ex_native_media[] = {
141 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
142 ELINKMEDIA_10BASE_T },
143 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
144 ELINKMEDIA_10BASE_T },
145 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
146 ELINKMEDIA_AUI },
147 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
148 ELINKMEDIA_10BASE_2 },
149 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
150 ELINKMEDIA_100BASE_TX },
151 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
152 ELINKMEDIA_100BASE_TX },
153 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
154 ELINKMEDIA_100BASE_FX },
155 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
156 ELINKMEDIA_MII },
157 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
158 ELINKMEDIA_100BASE_T4 },
159 { 0, NULL, 0,
160 0 },
161 };
162
163 /*
164 * MII bit-bang glue.
165 */
166 u_int32_t ex_mii_bitbang_read __P((struct device *));
167 void ex_mii_bitbang_write __P((struct device *, u_int32_t));
168
169 const struct mii_bitbang_ops ex_mii_bitbang_ops = {
170 ex_mii_bitbang_read,
171 ex_mii_bitbang_write,
172 {
173 ELINK_PHY_DATA, /* MII_BIT_MDO */
174 ELINK_PHY_DATA, /* MII_BIT_MDI */
175 ELINK_PHY_CLK, /* MII_BIT_MDC */
176 ELINK_PHY_DIR, /* MII_BIT_DIR_HOST_PHY */
177 0, /* MII_BIT_DIR_PHY_HOST */
178 }
179 };
180
181 /*
182 * Back-end attach and configure.
183 */
184 void
185 ex_config(sc)
186 struct ex_softc *sc;
187 {
188 struct ifnet *ifp;
189 u_int16_t val;
190 u_int8_t macaddr[ETHER_ADDR_LEN] = {0};
191 bus_space_tag_t iot = sc->sc_iot;
192 bus_space_handle_t ioh = sc->sc_ioh;
193 int i, error, attach_stage;
194
195 callout_init(&sc->ex_mii_callout);
196
197 ex_reset(sc);
198
199 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR0);
200 macaddr[0] = val >> 8;
201 macaddr[1] = val & 0xff;
202 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR1);
203 macaddr[2] = val >> 8;
204 macaddr[3] = val & 0xff;
205 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR2);
206 macaddr[4] = val >> 8;
207 macaddr[5] = val & 0xff;
208
209 printf("%s: MAC address %s\n", sc->sc_dev.dv_xname,
210 ether_sprintf(macaddr));
211
212 if (sc->ex_conf & (EX_CONF_INV_LED_POLARITY|EX_CONF_PHY_POWER)) {
213 GO_WINDOW(2);
214 val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
215 if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
216 val |= ELINK_RESET_OPT_LEDPOLAR;
217 if (sc->ex_conf & EX_CONF_PHY_POWER)
218 val |= ELINK_RESET_OPT_PHYPOWER;
219 bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
220 }
221
222 attach_stage = 0;
223
224 /*
225 * Allocate the upload descriptors, and create and load the DMA
226 * map for them.
227 */
228 if ((error = bus_dmamem_alloc(sc->sc_dmat,
229 EX_NUPD * sizeof (struct ex_upd), PAGE_SIZE, 0, &sc->sc_useg, 1,
230 &sc->sc_urseg, BUS_DMA_NOWAIT)) != 0) {
231 printf("%s: can't allocate upload descriptors, error = %d\n",
232 sc->sc_dev.dv_xname, error);
233 goto fail;
234 }
235
236 attach_stage = 1;
237
238 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg,
239 EX_NUPD * sizeof (struct ex_upd), (caddr_t *)&sc->sc_upd,
240 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
241 printf("%s: can't map upload descriptors, error = %d\n",
242 sc->sc_dev.dv_xname, error);
243 goto fail;
244 }
245
246 attach_stage = 2;
247
248 if ((error = bus_dmamap_create(sc->sc_dmat,
249 EX_NUPD * sizeof (struct ex_upd), 1,
250 EX_NUPD * sizeof (struct ex_upd), 0, BUS_DMA_NOWAIT,
251 &sc->sc_upd_dmamap)) != 0) {
252 printf("%s: can't create upload desc. DMA map, error = %d\n",
253 sc->sc_dev.dv_xname, error);
254 goto fail;
255 }
256
257 attach_stage = 3;
258
259 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_upd_dmamap,
260 sc->sc_upd, EX_NUPD * sizeof (struct ex_upd), NULL,
261 BUS_DMA_NOWAIT)) != 0) {
262 printf("%s: can't load upload desc. DMA map, error = %d\n",
263 sc->sc_dev.dv_xname, error);
264 goto fail;
265 }
266
267 attach_stage = 4;
268
269 /*
270 * Allocate the download descriptors, and create and load the DMA
271 * map for them.
272 */
273 if ((error = bus_dmamem_alloc(sc->sc_dmat,
274 EX_NDPD * sizeof (struct ex_dpd), PAGE_SIZE, 0, &sc->sc_dseg, 1,
275 &sc->sc_drseg, BUS_DMA_NOWAIT)) != 0) {
276 printf("%s: can't allocate download descriptors, error = %d\n",
277 sc->sc_dev.dv_xname, error);
278 goto fail;
279 }
280
281 attach_stage = 5;
282
283 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg,
284 EX_NDPD * sizeof (struct ex_dpd), (caddr_t *)&sc->sc_dpd,
285 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
286 printf("%s: can't map download descriptors, error = %d\n",
287 sc->sc_dev.dv_xname, error);
288 goto fail;
289 }
290 memset(sc->sc_dpd, 0, EX_NDPD * sizeof (struct ex_dpd));
291
292 attach_stage = 6;
293
294 if ((error = bus_dmamap_create(sc->sc_dmat,
295 EX_NDPD * sizeof (struct ex_dpd), 1,
296 EX_NDPD * sizeof (struct ex_dpd), 0, BUS_DMA_NOWAIT,
297 &sc->sc_dpd_dmamap)) != 0) {
298 printf("%s: can't create download desc. DMA map, error = %d\n",
299 sc->sc_dev.dv_xname, error);
300 goto fail;
301 }
302
303 attach_stage = 7;
304
305 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dpd_dmamap,
306 sc->sc_dpd, EX_NDPD * sizeof (struct ex_dpd), NULL,
307 BUS_DMA_NOWAIT)) != 0) {
308 printf("%s: can't load download desc. DMA map, error = %d\n",
309 sc->sc_dev.dv_xname, error);
310 goto fail;
311 }
312
313 attach_stage = 8;
314
315
316 /*
317 * Create the transmit buffer DMA maps.
318 */
319 for (i = 0; i < EX_NDPD; i++) {
320 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
321 EX_NTFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
322 &sc->sc_tx_dmamaps[i])) != 0) {
323 printf("%s: can't create tx DMA map %d, error = %d\n",
324 sc->sc_dev.dv_xname, i, error);
325 goto fail;
326 }
327 }
328
329 attach_stage = 9;
330
331 /*
332 * Create the receive buffer DMA maps.
333 */
334 for (i = 0; i < EX_NUPD; i++) {
335 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
336 EX_NRFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
337 &sc->sc_rx_dmamaps[i])) != 0) {
338 printf("%s: can't create rx DMA map %d, error = %d\n",
339 sc->sc_dev.dv_xname, i, error);
340 goto fail;
341 }
342 }
343
344 attach_stage = 10;
345
346 /*
347 * Create ring of upload descriptors, only once. The DMA engine
348 * will loop over this when receiving packets, stalling if it
349 * hits an UPD with a finished receive.
350 */
351 for (i = 0; i < EX_NUPD; i++) {
352 sc->sc_rxdescs[i].rx_dmamap = sc->sc_rx_dmamaps[i];
353 sc->sc_rxdescs[i].rx_upd = &sc->sc_upd[i];
354 sc->sc_upd[i].upd_frags[0].fr_len =
355 htole32((MCLBYTES - 2) | EX_FR_LAST);
356 if (ex_add_rxbuf(sc, &sc->sc_rxdescs[i]) != 0) {
357 printf("%s: can't allocate or map rx buffers\n",
358 sc->sc_dev.dv_xname);
359 goto fail;
360 }
361 }
362
363 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap, 0,
364 EX_NUPD * sizeof (struct ex_upd),
365 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
366
367 ex_init_txdescs(sc);
368
369 attach_stage = 11;
370
371
372 GO_WINDOW(3);
373 val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
374 if (val & ELINK_MEDIACAP_MII)
375 sc->ex_conf |= EX_CONF_MII;
376
377 ifp = &sc->sc_ethercom.ec_if;
378
379 /*
380 * Initialize our media structures and MII info. We'll
381 * probe the MII if we discover that we have one.
382 */
383 sc->ex_mii.mii_ifp = ifp;
384 sc->ex_mii.mii_readreg = ex_mii_readreg;
385 sc->ex_mii.mii_writereg = ex_mii_writereg;
386 sc->ex_mii.mii_statchg = ex_mii_statchg;
387 ifmedia_init(&sc->ex_mii.mii_media, 0, ex_media_chg,
388 ex_media_stat);
389
390 if (sc->ex_conf & EX_CONF_MII) {
391 /*
392 * Find PHY, extract media information from it.
393 * First, select the right transceiver.
394 */
395 u_int32_t icfg;
396
397 GO_WINDOW(3);
398 icfg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
399 icfg &= ~(CONFIG_XCVR_SEL << 16);
400 if (val & (ELINK_MEDIACAP_MII | ELINK_MEDIACAP_100BASET4))
401 icfg |= ELINKMEDIA_MII << (CONFIG_XCVR_SEL_SHIFT + 16);
402 if (val & ELINK_MEDIACAP_100BASETX)
403 icfg |= ELINKMEDIA_AUTO << (CONFIG_XCVR_SEL_SHIFT + 16);
404 if (val & ELINK_MEDIACAP_100BASEFX)
405 icfg |= ELINKMEDIA_100BASE_FX
406 << (CONFIG_XCVR_SEL_SHIFT + 16);
407 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, icfg);
408
409 mii_attach(&sc->sc_dev, &sc->ex_mii, 0xffffffff,
410 MII_PHY_ANY, MII_OFFSET_ANY, 0);
411 if (LIST_FIRST(&sc->ex_mii.mii_phys) == NULL) {
412 ifmedia_add(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE,
413 0, NULL);
414 ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE);
415 } else {
416 ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_AUTO);
417 }
418 } else
419 ex_probemedia(sc);
420
421 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
422 ifp->if_softc = sc;
423 ifp->if_start = ex_start;
424 ifp->if_ioctl = ex_ioctl;
425 ifp->if_watchdog = ex_watchdog;
426 ifp->if_init = ex_init;
427 ifp->if_stop = ex_stop;
428 ifp->if_flags =
429 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
430 IFQ_SET_READY(&ifp->if_snd);
431
432 /*
433 * We can support 802.1Q VLAN-sized frames.
434 */
435 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
436
437 /*
438 * The 3c90xB has hardware IPv4/TCPv4/UDPv4 checksum support.
439 */
440 if (sc->ex_conf & EX_CONF_90XB)
441 sc->sc_ethercom.ec_if.if_capabilities |= IFCAP_CSUM_IPv4 |
442 IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
443
444 if_attach(ifp);
445 ether_ifattach(ifp, macaddr);
446
447 GO_WINDOW(1);
448
449 sc->tx_start_thresh = 20;
450 sc->tx_succ_ok = 0;
451
452 /* TODO: set queues to 0 */
453
454 #if NRND > 0
455 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
456 RND_TYPE_NET, 0);
457 #endif
458
459 /* Establish callback to reset card when we reboot. */
460 sc->sc_sdhook = shutdownhook_establish(ex_shutdown, sc);
461 if (sc->sc_sdhook == NULL)
462 printf("%s: WARNING: unable to establish shutdown hook\n",
463 sc->sc_dev.dv_xname);
464
465 /* Add a suspend hook to make sure we come back up after a resume. */
466 sc->sc_powerhook = powerhook_establish(ex_power, sc);
467 if (sc->sc_powerhook == NULL)
468 printf("%s: WARNING: unable to establish power hook\n",
469 sc->sc_dev.dv_xname);
470
471 /* The attach is successful. */
472 sc->ex_flags |= EX_FLAGS_ATTACHED;
473 return;
474
475 fail:
476 /*
477 * Free any resources we've allocated during the failed attach
478 * attempt. Do this in reverse order and fall though.
479 */
480 switch (attach_stage) {
481 case 11:
482 {
483 struct ex_rxdesc *rxd;
484
485 for (i = 0; i < EX_NUPD; i++) {
486 rxd = &sc->sc_rxdescs[i];
487 if (rxd->rx_mbhead != NULL) {
488 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
489 m_freem(rxd->rx_mbhead);
490 }
491 }
492 }
493 /* FALLTHROUGH */
494
495 case 10:
496 for (i = 0; i < EX_NUPD; i++)
497 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
498 /* FALLTHROUGH */
499
500 case 9:
501 for (i = 0; i < EX_NDPD; i++)
502 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
503 /* FALLTHROUGH */
504 case 8:
505 bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
506 /* FALLTHROUGH */
507
508 case 7:
509 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
510 /* FALLTHROUGH */
511
512 case 6:
513 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
514 EX_NDPD * sizeof (struct ex_dpd));
515 /* FALLTHROUGH */
516
517 case 5:
518 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
519 break;
520
521 case 4:
522 bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
523 /* FALLTHROUGH */
524
525 case 3:
526 bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
527 /* FALLTHROUGH */
528
529 case 2:
530 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
531 EX_NUPD * sizeof (struct ex_upd));
532 /* FALLTHROUGH */
533
534 case 1:
535 bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
536 break;
537 }
538
539 }
540
541 /*
542 * Find the media present on non-MII chips.
543 */
544 void
545 ex_probemedia(sc)
546 struct ex_softc *sc;
547 {
548 bus_space_tag_t iot = sc->sc_iot;
549 bus_space_handle_t ioh = sc->sc_ioh;
550 struct ifmedia *ifm = &sc->ex_mii.mii_media;
551 struct ex_media *exm;
552 u_int16_t config1, reset_options, default_media;
553 int defmedia = 0;
554 const char *sep = "", *defmedianame = NULL;
555
556 GO_WINDOW(3);
557 config1 = bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
558 reset_options = bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
559 GO_WINDOW(0);
560
561 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
562
563 printf("%s: ", sc->sc_dev.dv_xname);
564
565 /* Sanity check that there are any media! */
566 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
567 printf("no media present!\n");
568 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
569 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
570 return;
571 }
572
573 #define PRINT(str) printf("%s%s", sep, str); sep = ", "
574
575 for (exm = ex_native_media; exm->exm_name != NULL; exm++) {
576 if (reset_options & exm->exm_mpbit) {
577 /*
578 * Default media is a little complicated. We
579 * support full-duplex which uses the same
580 * reset options bit.
581 *
582 * XXX Check EEPROM for default to FDX?
583 */
584 if (exm->exm_epmedia == default_media) {
585 if ((exm->exm_ifmedia & IFM_FDX) == 0) {
586 defmedia = exm->exm_ifmedia;
587 defmedianame = exm->exm_name;
588 }
589 } else if (defmedia == 0) {
590 defmedia = exm->exm_ifmedia;
591 defmedianame = exm->exm_name;
592 }
593 ifmedia_add(ifm, exm->exm_ifmedia, exm->exm_epmedia,
594 NULL);
595 PRINT(exm->exm_name);
596 }
597 }
598
599 #undef PRINT
600
601 #ifdef DIAGNOSTIC
602 if (defmedia == 0)
603 panic("ex_probemedia: impossible");
604 #endif
605
606 printf(", default %s\n", defmedianame);
607 ifmedia_set(ifm, defmedia);
608 }
609
610 /*
611 * Bring device up.
612 */
613 int
614 ex_init(ifp)
615 struct ifnet *ifp;
616 {
617 struct ex_softc *sc = ifp->if_softc;
618 bus_space_tag_t iot = sc->sc_iot;
619 bus_space_handle_t ioh = sc->sc_ioh;
620 int i;
621 int error = 0;
622
623 if ((error = ex_enable(sc)) != 0)
624 goto out;
625
626 ex_waitcmd(sc);
627 ex_stop(ifp, 0);
628
629 /*
630 * Set the station address and clear the station mask. The latter
631 * is needed for 90x cards, 0 is the default for 90xB cards.
632 */
633 GO_WINDOW(2);
634 for (i = 0; i < ETHER_ADDR_LEN; i++) {
635 bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
636 LLADDR(ifp->if_sadl)[i]);
637 bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
638 }
639
640 GO_WINDOW(3);
641
642 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_RESET);
643 ex_waitcmd(sc);
644 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
645 ex_waitcmd(sc);
646
647 /*
648 * Disable reclaim threshold for 90xB, set free threshold to
649 * 6 * 256 = 1536 for 90x.
650 */
651 if (sc->ex_conf & EX_CONF_90XB)
652 bus_space_write_2(iot, ioh, ELINK_COMMAND,
653 ELINK_TXRECLTHRESH | 255);
654 else
655 bus_space_write_1(iot, ioh, ELINK_TXFREETHRESH, 6);
656
657 bus_space_write_2(iot, ioh, ELINK_COMMAND,
658 SET_RX_EARLY_THRESH | ELINK_THRESH_DISABLE);
659
660 bus_space_write_4(iot, ioh, ELINK_DMACTRL,
661 bus_space_read_4(iot, ioh, ELINK_DMACTRL) | ELINK_DMAC_UPRXEAREN);
662
663 bus_space_write_2(iot, ioh, ELINK_COMMAND,
664 SET_RD_0_MASK | XL_WATCHED_INTERRUPTS);
665 bus_space_write_2(iot, ioh, ELINK_COMMAND,
666 SET_INTR_MASK | XL_WATCHED_INTERRUPTS);
667
668 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
669 if (sc->intr_ack)
670 (* sc->intr_ack)(sc);
671 ex_set_media(sc);
672 ex_set_mc(sc);
673
674
675 bus_space_write_2(iot, ioh, ELINK_COMMAND, STATS_ENABLE);
676 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
677 bus_space_write_4(iot, ioh, ELINK_UPLISTPTR, sc->sc_upddma);
678 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
679 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_UPUNSTALL);
680
681 if (sc->ex_conf & (EX_CONF_PHY_POWER | EX_CONF_INV_LED_POLARITY)) {
682 u_int16_t cbcard_config;
683
684 GO_WINDOW(2);
685 cbcard_config = bus_space_read_2(sc->sc_iot, sc->sc_ioh, 0x0c);
686 if (sc->ex_conf & EX_CONF_PHY_POWER) {
687 cbcard_config |= 0x4000; /* turn on PHY power */
688 }
689 if (sc->ex_conf & EX_CONF_INV_LED_POLARITY) {
690 cbcard_config |= 0x0010; /* invert LED polarity */
691 }
692 bus_space_write_2(sc->sc_iot, sc->sc_ioh, 0x0c, cbcard_config);
693
694 GO_WINDOW(3);
695 }
696
697 ifp->if_flags |= IFF_RUNNING;
698 ifp->if_flags &= ~IFF_OACTIVE;
699 ex_start(ifp);
700
701 GO_WINDOW(1);
702
703 callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
704
705 out:
706 if (error) {
707 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
708 ifp->if_timer = 0;
709 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
710 }
711 return (error);
712 }
713
714 #define MCHASHSIZE 256
715 #define ex_mchash(addr) (ether_crc32_be((addr), ETHER_ADDR_LEN) & \
716 (MCHASHSIZE - 1))
717
718 /*
719 * Set multicast receive filter. Also take care of promiscuous mode
720 * here (XXX).
721 */
722 void
723 ex_set_mc(sc)
724 struct ex_softc *sc;
725 {
726 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
727 struct ethercom *ec = &sc->sc_ethercom;
728 struct ether_multi *enm;
729 struct ether_multistep estep;
730 int i;
731 u_int16_t mask = FIL_INDIVIDUAL | FIL_BRDCST;
732
733 if (ifp->if_flags & IFF_PROMISC) {
734 mask |= FIL_PROMISC;
735 goto allmulti;
736 }
737
738 ETHER_FIRST_MULTI(estep, ec, enm);
739 if (enm == NULL)
740 goto nomulti;
741
742 if ((sc->ex_conf & EX_CONF_90XB) == 0)
743 /* No multicast hash filtering. */
744 goto allmulti;
745
746 for (i = 0; i < MCHASHSIZE; i++)
747 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
748 ELINK_COMMAND, ELINK_CLEARHASHFILBIT | i);
749
750 do {
751 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
752 ETHER_ADDR_LEN) != 0)
753 goto allmulti;
754
755 i = ex_mchash(enm->enm_addrlo);
756 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
757 ELINK_COMMAND, ELINK_SETHASHFILBIT | i);
758 ETHER_NEXT_MULTI(estep, enm);
759 } while (enm != NULL);
760 mask |= FIL_MULTIHASH;
761
762 nomulti:
763 ifp->if_flags &= ~IFF_ALLMULTI;
764 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
765 SET_RX_FILTER | mask);
766 return;
767
768 allmulti:
769 ifp->if_flags |= IFF_ALLMULTI;
770 mask |= FIL_MULTICAST;
771 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
772 SET_RX_FILTER | mask);
773 }
774
775
776 static void
777 ex_txstat(sc)
778 struct ex_softc *sc;
779 {
780 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
781 bus_space_tag_t iot = sc->sc_iot;
782 bus_space_handle_t ioh = sc->sc_ioh;
783 int i;
784
785 /*
786 * We need to read+write TX_STATUS until we get a 0 status
787 * in order to turn off the interrupt flag.
788 */
789 while ((i = bus_space_read_1(iot, ioh, ELINK_TXSTATUS)) & TXS_COMPLETE) {
790 bus_space_write_1(iot, ioh, ELINK_TXSTATUS, 0x0);
791
792 if (i & TXS_JABBER) {
793 ++sc->sc_ethercom.ec_if.if_oerrors;
794 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
795 printf("%s: jabber (%x)\n",
796 sc->sc_dev.dv_xname, i);
797 ex_init(ifp);
798 /* TODO: be more subtle here */
799 } else if (i & TXS_UNDERRUN) {
800 ++sc->sc_ethercom.ec_if.if_oerrors;
801 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
802 printf("%s: fifo underrun (%x) @%d\n",
803 sc->sc_dev.dv_xname, i,
804 sc->tx_start_thresh);
805 if (sc->tx_succ_ok < 100)
806 sc->tx_start_thresh = min(ETHER_MAX_LEN,
807 sc->tx_start_thresh + 20);
808 sc->tx_succ_ok = 0;
809 ex_init(ifp);
810 /* TODO: be more subtle here */
811 } else if (i & TXS_MAX_COLLISION) {
812 ++sc->sc_ethercom.ec_if.if_collisions;
813 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
814 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
815 } else
816 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
817 }
818 }
819
820 int
821 ex_media_chg(ifp)
822 struct ifnet *ifp;
823 {
824
825 if (ifp->if_flags & IFF_UP)
826 ex_init(ifp);
827 return 0;
828 }
829
830 void
831 ex_set_media(sc)
832 struct ex_softc *sc;
833 {
834 bus_space_tag_t iot = sc->sc_iot;
835 bus_space_handle_t ioh = sc->sc_ioh;
836 u_int32_t configreg;
837
838 if (((sc->ex_conf & EX_CONF_MII) &&
839 (sc->ex_mii.mii_media_active & IFM_FDX))
840 || (!(sc->ex_conf & EX_CONF_MII) &&
841 (sc->ex_mii.mii_media.ifm_media & IFM_FDX))) {
842 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL,
843 MAC_CONTROL_FDX);
844 } else {
845 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, 0);
846 }
847
848 /*
849 * If the device has MII, select it, and then tell the
850 * PHY which media to use.
851 */
852 if (sc->ex_conf & EX_CONF_MII) {
853 GO_WINDOW(3);
854
855 configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
856
857 configreg &= ~(CONFIG_MEDIAMASK << 16);
858 configreg |= (ELINKMEDIA_MII << (CONFIG_MEDIAMASK_SHIFT + 16));
859
860 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
861 mii_mediachg(&sc->ex_mii);
862 return;
863 }
864
865 GO_WINDOW(4);
866 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0);
867 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
868 delay(800);
869
870 /*
871 * Now turn on the selected media/transceiver.
872 */
873 switch (IFM_SUBTYPE(sc->ex_mii.mii_media.ifm_cur->ifm_media)) {
874 case IFM_10_T:
875 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
876 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
877 break;
878
879 case IFM_10_2:
880 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
881 DELAY(800);
882 break;
883
884 case IFM_100_TX:
885 case IFM_100_FX:
886 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
887 LINKBEAT_ENABLE);
888 DELAY(800);
889 break;
890
891 case IFM_10_5:
892 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
893 SQE_ENABLE);
894 DELAY(800);
895 break;
896
897 case IFM_MANUAL:
898 break;
899
900 case IFM_NONE:
901 return;
902
903 default:
904 panic("ex_set_media: impossible");
905 }
906
907 GO_WINDOW(3);
908 configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
909
910 configreg &= ~(CONFIG_MEDIAMASK << 16);
911 configreg |= (sc->ex_mii.mii_media.ifm_cur->ifm_data <<
912 (CONFIG_MEDIAMASK_SHIFT + 16));
913
914 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
915 }
916
917 /*
918 * Get currently-selected media from card.
919 * (if_media callback, may be called before interface is brought up).
920 */
921 void
922 ex_media_stat(ifp, req)
923 struct ifnet *ifp;
924 struct ifmediareq *req;
925 {
926 struct ex_softc *sc = ifp->if_softc;
927
928 if (sc->ex_conf & EX_CONF_MII) {
929 mii_pollstat(&sc->ex_mii);
930 req->ifm_status = sc->ex_mii.mii_media_status;
931 req->ifm_active = sc->ex_mii.mii_media_active;
932 } else {
933 GO_WINDOW(4);
934 req->ifm_status = IFM_AVALID;
935 req->ifm_active = sc->ex_mii.mii_media.ifm_cur->ifm_media;
936 if (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
937 ELINK_W4_MEDIA_TYPE) & LINKBEAT_DETECT)
938 req->ifm_status |= IFM_ACTIVE;
939 GO_WINDOW(1);
940 }
941 }
942
943
944
945 /*
946 * Start outputting on the interface.
947 */
948 static void
949 ex_start(ifp)
950 struct ifnet *ifp;
951 {
952 struct ex_softc *sc = ifp->if_softc;
953 bus_space_tag_t iot = sc->sc_iot;
954 bus_space_handle_t ioh = sc->sc_ioh;
955 volatile struct ex_fraghdr *fr = NULL;
956 volatile struct ex_dpd *dpd = NULL, *prevdpd = NULL;
957 struct ex_txdesc *txp;
958 struct mbuf *mb_head;
959 bus_dmamap_t dmamap;
960 int offset, totlen, segment, error;
961 u_int32_t csum_flags;
962
963 if (sc->tx_head || sc->tx_free == NULL)
964 return;
965
966 txp = NULL;
967
968 /*
969 * We're finished if there is nothing more to add to the list or if
970 * we're all filled up with buffers to transmit.
971 */
972 while (sc->tx_free != NULL) {
973 /*
974 * Grab a packet to transmit.
975 */
976 IFQ_DEQUEUE(&ifp->if_snd, mb_head);
977 if (mb_head == NULL)
978 break;
979
980 /*
981 * Get pointer to next available tx desc.
982 */
983 txp = sc->tx_free;
984 dmamap = txp->tx_dmamap;
985
986 /*
987 * Go through each of the mbufs in the chain and initialize
988 * the transmit buffer descriptors with the physical address
989 * and size of the mbuf.
990 */
991 reload:
992 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
993 mb_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
994 switch (error) {
995 case 0:
996 /* Success. */
997 break;
998
999 case EFBIG:
1000 {
1001 struct mbuf *mn;
1002
1003 /*
1004 * We ran out of segments. We have to recopy this
1005 * mbuf chain first. Bail out if we can't get the
1006 * new buffers.
1007 */
1008 printf("%s: too many segments, ", sc->sc_dev.dv_xname);
1009
1010 MGETHDR(mn, M_DONTWAIT, MT_DATA);
1011 if (mn == NULL) {
1012 m_freem(mb_head);
1013 printf("aborting\n");
1014 goto out;
1015 }
1016 if (mb_head->m_pkthdr.len > MHLEN) {
1017 MCLGET(mn, M_DONTWAIT);
1018 if ((mn->m_flags & M_EXT) == 0) {
1019 m_freem(mn);
1020 m_freem(mb_head);
1021 printf("aborting\n");
1022 goto out;
1023 }
1024 }
1025 m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1026 mtod(mn, caddr_t));
1027 mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1028 m_freem(mb_head);
1029 mb_head = mn;
1030 printf("retrying\n");
1031 goto reload;
1032 }
1033
1034 default:
1035 /*
1036 * Some other problem; report it.
1037 */
1038 printf("%s: can't load mbuf chain, error = %d\n",
1039 sc->sc_dev.dv_xname, error);
1040 m_freem(mb_head);
1041 goto out;
1042 }
1043
1044 /*
1045 * remove our tx desc from freelist.
1046 */
1047 sc->tx_free = txp->tx_next;
1048 txp->tx_next = NULL;
1049
1050 fr = &txp->tx_dpd->dpd_frags[0];
1051 totlen = 0;
1052 for (segment = 0; segment < dmamap->dm_nsegs; segment++, fr++) {
1053 fr->fr_addr = htole32(dmamap->dm_segs[segment].ds_addr);
1054 fr->fr_len = htole32(dmamap->dm_segs[segment].ds_len);
1055 totlen += dmamap->dm_segs[segment].ds_len;
1056 }
1057 fr--;
1058 fr->fr_len |= htole32(EX_FR_LAST);
1059 txp->tx_mbhead = mb_head;
1060
1061 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1062 BUS_DMASYNC_PREWRITE);
1063
1064 dpd = txp->tx_dpd;
1065 dpd->dpd_nextptr = 0;
1066 dpd->dpd_fsh = htole32(totlen);
1067
1068 /* Byte-swap constants so compiler can optimize. */
1069
1070 if (sc->ex_conf & EX_CONF_90XB) {
1071 csum_flags = 0;
1072
1073 if (mb_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1074 csum_flags |= htole32(EX_DPD_IPCKSUM);
1075
1076 if (mb_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1077 csum_flags |= htole32(EX_DPD_TCPCKSUM);
1078 else if (mb_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1079 csum_flags |= htole32(EX_DPD_UDPCKSUM);
1080
1081 dpd->dpd_fsh |= csum_flags;
1082 } else {
1083 KDASSERT((mb_head->m_pkthdr.csum_flags &
1084 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) == 0);
1085 }
1086
1087 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1088 ((caddr_t)dpd - (caddr_t)sc->sc_dpd),
1089 sizeof (struct ex_dpd),
1090 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1091
1092 /*
1093 * No need to stall the download engine, we know it's
1094 * not busy right now.
1095 *
1096 * Fix up pointers in both the "soft" tx and the physical
1097 * tx list.
1098 */
1099 if (sc->tx_head != NULL) {
1100 prevdpd = sc->tx_tail->tx_dpd;
1101 offset = ((caddr_t)prevdpd - (caddr_t)sc->sc_dpd);
1102 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1103 offset, sizeof (struct ex_dpd),
1104 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1105 prevdpd->dpd_nextptr = htole32(DPD_DMADDR(sc, txp));
1106 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1107 offset, sizeof (struct ex_dpd),
1108 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1109 sc->tx_tail->tx_next = txp;
1110 sc->tx_tail = txp;
1111 } else {
1112 sc->tx_tail = sc->tx_head = txp;
1113 }
1114
1115 #if NBPFILTER > 0
1116 /*
1117 * Pass packet to bpf if there is a listener.
1118 */
1119 if (ifp->if_bpf)
1120 bpf_mtap(ifp->if_bpf, mb_head);
1121 #endif
1122 }
1123 out:
1124 if (sc->tx_head) {
1125 sc->tx_tail->tx_dpd->dpd_fsh |= htole32(EX_DPD_DNIND);
1126 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1127 ((caddr_t)sc->tx_tail->tx_dpd - (caddr_t)sc->sc_dpd),
1128 sizeof (struct ex_dpd),
1129 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1130 ifp->if_flags |= IFF_OACTIVE;
1131 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNUNSTALL);
1132 bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
1133 DPD_DMADDR(sc, sc->tx_head));
1134
1135 /* trigger watchdog */
1136 ifp->if_timer = 5;
1137 }
1138 }
1139
1140
1141 int
1142 ex_intr(arg)
1143 void *arg;
1144 {
1145 struct ex_softc *sc = arg;
1146 bus_space_tag_t iot = sc->sc_iot;
1147 bus_space_handle_t ioh = sc->sc_ioh;
1148 u_int16_t stat;
1149 int ret = 0;
1150 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1151
1152 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1153 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1154 return (0);
1155
1156 for (;;) {
1157 stat = bus_space_read_2(iot, ioh, ELINK_STATUS);
1158
1159 if ((stat & XL_WATCHED_INTERRUPTS) == 0) {
1160 if ((stat & INTR_LATCH) == 0) {
1161 #if 0
1162 printf("%s: intr latch cleared\n",
1163 sc->sc_dev.dv_xname);
1164 #endif
1165 break;
1166 }
1167 }
1168
1169 ret = 1;
1170
1171 /*
1172 * Acknowledge interrupts.
1173 */
1174 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1175 (stat & (XL_WATCHED_INTERRUPTS | INTR_LATCH)));
1176 if (sc->intr_ack)
1177 (*sc->intr_ack)(sc);
1178
1179 if (stat & HOST_ERROR) {
1180 printf("%s: adapter failure (%x)\n",
1181 sc->sc_dev.dv_xname, stat);
1182 ex_reset(sc);
1183 ex_init(ifp);
1184 return 1;
1185 }
1186 if (stat & TX_COMPLETE) {
1187 ex_txstat(sc);
1188 }
1189 if (stat & UPD_STATS) {
1190 ex_getstats(sc);
1191 }
1192 if (stat & DN_COMPLETE) {
1193 struct ex_txdesc *txp, *ptxp = NULL;
1194 bus_dmamap_t txmap;
1195
1196 /* reset watchdog timer, was set in ex_start() */
1197 ifp->if_timer = 0;
1198
1199 for (txp = sc->tx_head; txp != NULL;
1200 txp = txp->tx_next) {
1201 bus_dmamap_sync(sc->sc_dmat,
1202 sc->sc_dpd_dmamap,
1203 (caddr_t)txp->tx_dpd - (caddr_t)sc->sc_dpd,
1204 sizeof (struct ex_dpd),
1205 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1206 if (txp->tx_mbhead != NULL) {
1207 txmap = txp->tx_dmamap;
1208 bus_dmamap_sync(sc->sc_dmat, txmap,
1209 0, txmap->dm_mapsize,
1210 BUS_DMASYNC_POSTWRITE);
1211 bus_dmamap_unload(sc->sc_dmat, txmap);
1212 m_freem(txp->tx_mbhead);
1213 txp->tx_mbhead = NULL;
1214 }
1215 ptxp = txp;
1216 }
1217
1218 /*
1219 * Move finished tx buffers back to the tx free list.
1220 */
1221 if (sc->tx_free) {
1222 sc->tx_ftail->tx_next = sc->tx_head;
1223 sc->tx_ftail = ptxp;
1224 } else
1225 sc->tx_ftail = sc->tx_free = sc->tx_head;
1226
1227 sc->tx_head = sc->tx_tail = NULL;
1228 ifp->if_flags &= ~IFF_OACTIVE;
1229 }
1230
1231 if (stat & UP_COMPLETE) {
1232 struct ex_rxdesc *rxd;
1233 struct mbuf *m;
1234 struct ex_upd *upd;
1235 bus_dmamap_t rxmap;
1236 u_int32_t pktstat;
1237
1238 rcvloop:
1239 rxd = sc->rx_head;
1240 rxmap = rxd->rx_dmamap;
1241 m = rxd->rx_mbhead;
1242 upd = rxd->rx_upd;
1243
1244 bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
1245 rxmap->dm_mapsize,
1246 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1247 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1248 ((caddr_t)upd - (caddr_t)sc->sc_upd),
1249 sizeof (struct ex_upd),
1250 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1251 pktstat = le32toh(upd->upd_pktstatus);
1252
1253 if (pktstat & EX_UPD_COMPLETE) {
1254 /*
1255 * Remove first packet from the chain.
1256 */
1257 sc->rx_head = rxd->rx_next;
1258 rxd->rx_next = NULL;
1259
1260 /*
1261 * Add a new buffer to the receive chain.
1262 * If this fails, the old buffer is recycled
1263 * instead.
1264 */
1265 if (ex_add_rxbuf(sc, rxd) == 0) {
1266 u_int16_t total_len;
1267
1268 if (pktstat &
1269 ((sc->sc_ethercom.ec_capenable &
1270 ETHERCAP_VLAN_MTU) ?
1271 EX_UPD_ERR_VLAN : EX_UPD_ERR)) {
1272 ifp->if_ierrors++;
1273 m_freem(m);
1274 goto rcvloop;
1275 }
1276
1277 total_len = pktstat & EX_UPD_PKTLENMASK;
1278 if (total_len <
1279 sizeof(struct ether_header)) {
1280 m_freem(m);
1281 goto rcvloop;
1282 }
1283 m->m_pkthdr.rcvif = ifp;
1284 m->m_pkthdr.len = m->m_len = total_len;
1285 #if NBPFILTER > 0
1286 if (ifp->if_bpf)
1287 bpf_mtap(ifp->if_bpf, m);
1288 #endif
1289 /*
1290 * Set the incoming checksum information for the packet.
1291 */
1292 if ((sc->ex_conf & EX_CONF_90XB) != 0 &&
1293 (pktstat & EX_UPD_IPCHECKED) != 0) {
1294 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1295 if (pktstat & EX_UPD_IPCKSUMERR)
1296 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1297 if (pktstat & EX_UPD_TCPCHECKED) {
1298 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1299 if (pktstat & EX_UPD_TCPCKSUMERR)
1300 m->m_pkthdr.csum_flags |=
1301 M_CSUM_TCP_UDP_BAD;
1302 } else if (pktstat & EX_UPD_UDPCHECKED) {
1303 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1304 if (pktstat & EX_UPD_UDPCKSUMERR)
1305 m->m_pkthdr.csum_flags |=
1306 M_CSUM_TCP_UDP_BAD;
1307 }
1308 }
1309 (*ifp->if_input)(ifp, m);
1310 }
1311 goto rcvloop;
1312 }
1313 /*
1314 * Just in case we filled up all UPDs and the DMA engine
1315 * stalled. We could be more subtle about this.
1316 */
1317 if (bus_space_read_4(iot, ioh, ELINK_UPLISTPTR) == 0) {
1318 printf("%s: uplistptr was 0\n",
1319 sc->sc_dev.dv_xname);
1320 ex_init(ifp);
1321 } else if (bus_space_read_4(iot, ioh, ELINK_UPPKTSTATUS)
1322 & 0x2000) {
1323 printf("%s: receive stalled\n",
1324 sc->sc_dev.dv_xname);
1325 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1326 ELINK_UPUNSTALL);
1327 }
1328 }
1329 }
1330
1331 /* no more interrupts */
1332 if (ret && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1333 ex_start(ifp);
1334 return ret;
1335 }
1336
1337 int
1338 ex_ioctl(ifp, cmd, data)
1339 struct ifnet *ifp;
1340 u_long cmd;
1341 caddr_t data;
1342 {
1343 struct ex_softc *sc = ifp->if_softc;
1344 struct ifreq *ifr = (struct ifreq *)data;
1345 int s, error;
1346
1347 s = splnet();
1348
1349 switch (cmd) {
1350 case SIOCSIFMEDIA:
1351 case SIOCGIFMEDIA:
1352 error = ifmedia_ioctl(ifp, ifr, &sc->ex_mii.mii_media, cmd);
1353 break;
1354
1355 default:
1356 error = ether_ioctl(ifp, cmd, data);
1357 if (error == ENETRESET) {
1358 if (sc->enabled) {
1359 /*
1360 * Multicast list has changed; set the hardware filter
1361 * accordingly.
1362 */
1363 ex_set_mc(sc);
1364 }
1365 error = 0;
1366 }
1367 break;
1368 }
1369
1370 splx(s);
1371 return (error);
1372 }
1373
1374 void
1375 ex_getstats(sc)
1376 struct ex_softc *sc;
1377 {
1378 bus_space_handle_t ioh = sc->sc_ioh;
1379 bus_space_tag_t iot = sc->sc_iot;
1380 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1381 u_int8_t upperok;
1382
1383 GO_WINDOW(6);
1384 upperok = bus_space_read_1(iot, ioh, UPPER_FRAMES_OK);
1385 ifp->if_ipackets += bus_space_read_1(iot, ioh, RX_FRAMES_OK);
1386 ifp->if_ipackets += (upperok & 0x03) << 8;
1387 ifp->if_opackets += bus_space_read_1(iot, ioh, TX_FRAMES_OK);
1388 ifp->if_opackets += (upperok & 0x30) << 4;
1389 ifp->if_ierrors += bus_space_read_1(iot, ioh, RX_OVERRUNS);
1390 ifp->if_collisions += bus_space_read_1(iot, ioh, TX_COLLISIONS);
1391 /*
1392 * There seems to be no way to get the exact number of collisions,
1393 * this is the number that occurred at the very least.
1394 */
1395 ifp->if_collisions += 2 * bus_space_read_1(iot, ioh,
1396 TX_AFTER_X_COLLISIONS);
1397 /*
1398 * Interface byte counts are counted by ether_input() and
1399 * ether_output(), so don't accumulate them here. Just
1400 * read the NIC counters so they don't generate overflow interrupts.
1401 * Upper byte counters are latched from reading the totals, so
1402 * they don't need to be read if we don't need their values.
1403 */
1404 bus_space_read_2(iot, ioh, RX_TOTAL_OK);
1405 bus_space_read_2(iot, ioh, TX_TOTAL_OK);
1406
1407 /*
1408 * Clear the following to avoid stats overflow interrupts
1409 */
1410 bus_space_read_1(iot, ioh, TX_DEFERRALS);
1411 bus_space_read_1(iot, ioh, TX_AFTER_1_COLLISION);
1412 bus_space_read_1(iot, ioh, TX_NO_SQE);
1413 bus_space_read_1(iot, ioh, TX_CD_LOST);
1414 GO_WINDOW(4);
1415 bus_space_read_1(iot, ioh, ELINK_W4_BADSSD);
1416 GO_WINDOW(1);
1417 }
1418
1419 void
1420 ex_printstats(sc)
1421 struct ex_softc *sc;
1422 {
1423 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1424
1425 ex_getstats(sc);
1426 printf("in %llu out %llu ierror %llu oerror %llu ibytes %llu obytes "
1427 "%llu\n", (unsigned long long)ifp->if_ipackets,
1428 (unsigned long long)ifp->if_opackets,
1429 (unsigned long long)ifp->if_ierrors,
1430 (unsigned long long)ifp->if_oerrors,
1431 (unsigned long long)ifp->if_ibytes,
1432 (unsigned long long)ifp->if_obytes);
1433 }
1434
1435 void
1436 ex_tick(arg)
1437 void *arg;
1438 {
1439 struct ex_softc *sc = arg;
1440 int s;
1441
1442 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1443 return;
1444
1445 s = splnet();
1446
1447 if (sc->ex_conf & EX_CONF_MII)
1448 mii_tick(&sc->ex_mii);
1449
1450 if (!(bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, ELINK_STATUS)
1451 & COMMAND_IN_PROGRESS))
1452 ex_getstats(sc);
1453
1454 splx(s);
1455
1456 callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
1457 }
1458
1459 void
1460 ex_reset(sc)
1461 struct ex_softc *sc;
1462 {
1463 u_int16_t val = GLOBAL_RESET;
1464
1465 if (sc->ex_conf & EX_CONF_RESETHACK)
1466 val |= 0x10;
1467 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, val);
1468 /*
1469 * XXX apparently the command in progress bit can't be trusted
1470 * during a reset, so we just always wait this long. Fortunately
1471 * we normally only reset the chip during autoconfig.
1472 */
1473 delay(100000);
1474 ex_waitcmd(sc);
1475 }
1476
1477 void
1478 ex_watchdog(ifp)
1479 struct ifnet *ifp;
1480 {
1481 struct ex_softc *sc = ifp->if_softc;
1482
1483 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1484 ++sc->sc_ethercom.ec_if.if_oerrors;
1485
1486 ex_reset(sc);
1487 ex_init(ifp);
1488 }
1489
1490 void
1491 ex_stop(ifp, disable)
1492 struct ifnet *ifp;
1493 int disable;
1494 {
1495 struct ex_softc *sc = ifp->if_softc;
1496 bus_space_tag_t iot = sc->sc_iot;
1497 bus_space_handle_t ioh = sc->sc_ioh;
1498 struct ex_txdesc *tx;
1499 struct ex_rxdesc *rx;
1500 int i;
1501
1502 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1503 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1504 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1505
1506 for (tx = sc->tx_head ; tx != NULL; tx = tx->tx_next) {
1507 if (tx->tx_mbhead == NULL)
1508 continue;
1509 m_freem(tx->tx_mbhead);
1510 tx->tx_mbhead = NULL;
1511 bus_dmamap_unload(sc->sc_dmat, tx->tx_dmamap);
1512 tx->tx_dpd->dpd_fsh = tx->tx_dpd->dpd_nextptr = 0;
1513 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1514 ((caddr_t)tx->tx_dpd - (caddr_t)sc->sc_dpd),
1515 sizeof (struct ex_dpd),
1516 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1517 }
1518 sc->tx_tail = sc->tx_head = NULL;
1519 ex_init_txdescs(sc);
1520
1521 sc->rx_tail = sc->rx_head = 0;
1522 for (i = 0; i < EX_NUPD; i++) {
1523 rx = &sc->sc_rxdescs[i];
1524 if (rx->rx_mbhead != NULL) {
1525 bus_dmamap_unload(sc->sc_dmat, rx->rx_dmamap);
1526 m_freem(rx->rx_mbhead);
1527 rx->rx_mbhead = NULL;
1528 }
1529 ex_add_rxbuf(sc, rx);
1530 }
1531
1532 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1533
1534 callout_stop(&sc->ex_mii_callout);
1535 if (sc->ex_conf & EX_CONF_MII)
1536 mii_down(&sc->ex_mii);
1537
1538 if (disable)
1539 ex_disable(sc);
1540
1541 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1542 ifp->if_timer = 0;
1543 }
1544
1545 static void
1546 ex_init_txdescs(sc)
1547 struct ex_softc *sc;
1548 {
1549 int i;
1550
1551 for (i = 0; i < EX_NDPD; i++) {
1552 sc->sc_txdescs[i].tx_dmamap = sc->sc_tx_dmamaps[i];
1553 sc->sc_txdescs[i].tx_dpd = &sc->sc_dpd[i];
1554 if (i < EX_NDPD - 1)
1555 sc->sc_txdescs[i].tx_next = &sc->sc_txdescs[i + 1];
1556 else
1557 sc->sc_txdescs[i].tx_next = NULL;
1558 }
1559 sc->tx_free = &sc->sc_txdescs[0];
1560 sc->tx_ftail = &sc->sc_txdescs[EX_NDPD-1];
1561 }
1562
1563
1564 int
1565 ex_activate(self, act)
1566 struct device *self;
1567 enum devact act;
1568 {
1569 struct ex_softc *sc = (void *) self;
1570 int s, error = 0;
1571
1572 s = splnet();
1573 switch (act) {
1574 case DVACT_ACTIVATE:
1575 error = EOPNOTSUPP;
1576 break;
1577
1578 case DVACT_DEACTIVATE:
1579 if (sc->ex_conf & EX_CONF_MII)
1580 mii_activate(&sc->ex_mii, act, MII_PHY_ANY,
1581 MII_OFFSET_ANY);
1582 if_deactivate(&sc->sc_ethercom.ec_if);
1583 break;
1584 }
1585 splx(s);
1586
1587 return (error);
1588 }
1589
1590 int
1591 ex_detach(sc)
1592 struct ex_softc *sc;
1593 {
1594 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1595 struct ex_rxdesc *rxd;
1596 int i;
1597
1598 /* Succeed now if there's no work to do. */
1599 if ((sc->ex_flags & EX_FLAGS_ATTACHED) == 0)
1600 return (0);
1601
1602 /* Unhook our tick handler. */
1603 callout_stop(&sc->ex_mii_callout);
1604
1605 if (sc->ex_conf & EX_CONF_MII) {
1606 /* Detach all PHYs */
1607 mii_detach(&sc->ex_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1608 }
1609
1610 /* Delete all remaining media. */
1611 ifmedia_delete_instance(&sc->ex_mii.mii_media, IFM_INST_ANY);
1612
1613 #if NRND > 0
1614 rnd_detach_source(&sc->rnd_source);
1615 #endif
1616 ether_ifdetach(ifp);
1617 if_detach(ifp);
1618
1619 for (i = 0; i < EX_NUPD; i++) {
1620 rxd = &sc->sc_rxdescs[i];
1621 if (rxd->rx_mbhead != NULL) {
1622 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1623 m_freem(rxd->rx_mbhead);
1624 rxd->rx_mbhead = NULL;
1625 }
1626 }
1627 for (i = 0; i < EX_NUPD; i++)
1628 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
1629 for (i = 0; i < EX_NDPD; i++)
1630 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
1631 bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
1632 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
1633 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
1634 EX_NDPD * sizeof (struct ex_dpd));
1635 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
1636 bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
1637 bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
1638 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
1639 EX_NUPD * sizeof (struct ex_upd));
1640 bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
1641
1642 shutdownhook_disestablish(sc->sc_sdhook);
1643 powerhook_disestablish(sc->sc_powerhook);
1644
1645 return (0);
1646 }
1647
1648 /*
1649 * Before reboots, reset card completely.
1650 */
1651 static void
1652 ex_shutdown(arg)
1653 void *arg;
1654 {
1655 struct ex_softc *sc = arg;
1656
1657 ex_stop(&sc->sc_ethercom.ec_if, 1);
1658 }
1659
1660 /*
1661 * Read EEPROM data.
1662 * XXX what to do if EEPROM doesn't unbusy?
1663 */
1664 u_int16_t
1665 ex_read_eeprom(sc, offset)
1666 struct ex_softc *sc;
1667 int offset;
1668 {
1669 bus_space_tag_t iot = sc->sc_iot;
1670 bus_space_handle_t ioh = sc->sc_ioh;
1671 u_int16_t data = 0, cmd = READ_EEPROM;
1672 int off;
1673
1674 off = sc->ex_conf & EX_CONF_EEPROM_OFF ? 0x30 : 0;
1675 cmd = sc->ex_conf & EX_CONF_EEPROM_8BIT ? READ_EEPROM8 : READ_EEPROM;
1676
1677 GO_WINDOW(0);
1678 if (ex_eeprom_busy(sc))
1679 goto out;
1680 bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
1681 cmd | (off + (offset & 0x3f)));
1682 if (ex_eeprom_busy(sc))
1683 goto out;
1684 data = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
1685 out:
1686 return data;
1687 }
1688
1689 static int
1690 ex_eeprom_busy(sc)
1691 struct ex_softc *sc;
1692 {
1693 bus_space_tag_t iot = sc->sc_iot;
1694 bus_space_handle_t ioh = sc->sc_ioh;
1695 int i = 100;
1696
1697 while (i--) {
1698 if (!(bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND) &
1699 EEPROM_BUSY))
1700 return 0;
1701 delay(100);
1702 }
1703 printf("\n%s: eeprom stays busy.\n", sc->sc_dev.dv_xname);
1704 return (1);
1705 }
1706
1707 /*
1708 * Create a new rx buffer and add it to the 'soft' rx list.
1709 */
1710 static int
1711 ex_add_rxbuf(sc, rxd)
1712 struct ex_softc *sc;
1713 struct ex_rxdesc *rxd;
1714 {
1715 struct mbuf *m, *oldm;
1716 bus_dmamap_t rxmap;
1717 int error, rval = 0;
1718
1719 oldm = rxd->rx_mbhead;
1720 rxmap = rxd->rx_dmamap;
1721
1722 MGETHDR(m, M_DONTWAIT, MT_DATA);
1723 if (m != NULL) {
1724 MCLGET(m, M_DONTWAIT);
1725 if ((m->m_flags & M_EXT) == 0) {
1726 m_freem(m);
1727 if (oldm == NULL)
1728 return 1;
1729 m = oldm;
1730 m->m_data = m->m_ext.ext_buf;
1731 rval = 1;
1732 }
1733 } else {
1734 if (oldm == NULL)
1735 return 1;
1736 m = oldm;
1737 m->m_data = m->m_ext.ext_buf;
1738 rval = 1;
1739 }
1740
1741 /*
1742 * Setup the DMA map for this receive buffer.
1743 */
1744 if (m != oldm) {
1745 if (oldm != NULL)
1746 bus_dmamap_unload(sc->sc_dmat, rxmap);
1747 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1748 m->m_ext.ext_buf, MCLBYTES, NULL,
1749 BUS_DMA_READ|BUS_DMA_NOWAIT);
1750 if (error) {
1751 printf("%s: can't load rx buffer, error = %d\n",
1752 sc->sc_dev.dv_xname, error);
1753 panic("ex_add_rxbuf"); /* XXX */
1754 }
1755 }
1756
1757 /*
1758 * Align for data after 14 byte header.
1759 */
1760 m->m_data += 2;
1761
1762 rxd->rx_mbhead = m;
1763 rxd->rx_upd->upd_pktstatus = htole32(MCLBYTES - 2);
1764 rxd->rx_upd->upd_frags[0].fr_addr =
1765 htole32(rxmap->dm_segs[0].ds_addr + 2);
1766 rxd->rx_upd->upd_nextptr = 0;
1767
1768 /*
1769 * Attach it to the end of the list.
1770 */
1771 if (sc->rx_head != NULL) {
1772 sc->rx_tail->rx_next = rxd;
1773 sc->rx_tail->rx_upd->upd_nextptr = htole32(sc->sc_upddma +
1774 ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd));
1775 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1776 (caddr_t)sc->rx_tail->rx_upd - (caddr_t)sc->sc_upd,
1777 sizeof (struct ex_upd),
1778 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1779 } else {
1780 sc->rx_head = rxd;
1781 }
1782 sc->rx_tail = rxd;
1783
1784 bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
1785 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1786 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1787 ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd),
1788 sizeof (struct ex_upd), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1789 return (rval);
1790 }
1791
1792 u_int32_t
1793 ex_mii_bitbang_read(self)
1794 struct device *self;
1795 {
1796 struct ex_softc *sc = (void *) self;
1797
1798 /* We're already in Window 4. */
1799 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT));
1800 }
1801
1802 void
1803 ex_mii_bitbang_write(self, val)
1804 struct device *self;
1805 u_int32_t val;
1806 {
1807 struct ex_softc *sc = (void *) self;
1808
1809 /* We're already in Window 4. */
1810 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT, val);
1811 }
1812
1813 int
1814 ex_mii_readreg(v, phy, reg)
1815 struct device *v;
1816 int phy, reg;
1817 {
1818 struct ex_softc *sc = (struct ex_softc *)v;
1819 int val;
1820
1821 if ((sc->ex_conf & EX_CONF_INTPHY) && phy != ELINK_INTPHY_ID)
1822 return 0;
1823
1824 GO_WINDOW(4);
1825
1826 val = mii_bitbang_readreg(v, &ex_mii_bitbang_ops, phy, reg);
1827
1828 GO_WINDOW(1);
1829
1830 return (val);
1831 }
1832
1833 void
1834 ex_mii_writereg(v, phy, reg, data)
1835 struct device *v;
1836 int phy;
1837 int reg;
1838 int data;
1839 {
1840 struct ex_softc *sc = (struct ex_softc *)v;
1841
1842 GO_WINDOW(4);
1843
1844 mii_bitbang_writereg(v, &ex_mii_bitbang_ops, phy, reg, data);
1845
1846 GO_WINDOW(1);
1847 }
1848
1849 void
1850 ex_mii_statchg(v)
1851 struct device *v;
1852 {
1853 struct ex_softc *sc = (struct ex_softc *)v;
1854 bus_space_tag_t iot = sc->sc_iot;
1855 bus_space_handle_t ioh = sc->sc_ioh;
1856 int mctl;
1857
1858 GO_WINDOW(3);
1859 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1860 if (sc->ex_mii.mii_media_active & IFM_FDX)
1861 mctl |= MAC_CONTROL_FDX;
1862 else
1863 mctl &= ~MAC_CONTROL_FDX;
1864 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1865 GO_WINDOW(1); /* back to operating window */
1866 }
1867
1868 int
1869 ex_enable(sc)
1870 struct ex_softc *sc;
1871 {
1872 if (sc->enabled == 0 && sc->enable != NULL) {
1873 if ((*sc->enable)(sc) != 0) {
1874 printf("%s: de/vice enable failed\n",
1875 sc->sc_dev.dv_xname);
1876 return (EIO);
1877 }
1878 sc->enabled = 1;
1879 }
1880 return (0);
1881 }
1882
1883 void
1884 ex_disable(sc)
1885 struct ex_softc *sc;
1886 {
1887 if (sc->enabled == 1 && sc->disable != NULL) {
1888 (*sc->disable)(sc);
1889 sc->enabled = 0;
1890 }
1891 }
1892
1893 void
1894 ex_power(why, arg)
1895 int why;
1896 void *arg;
1897 {
1898 struct ex_softc *sc = (void *)arg;
1899 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1900 int s;
1901
1902 s = splnet();
1903 switch (why) {
1904 case PWR_SUSPEND:
1905 case PWR_STANDBY:
1906 ex_stop(ifp, 0);
1907 if (sc->power != NULL)
1908 (*sc->power)(sc, why);
1909 break;
1910 case PWR_RESUME:
1911 if (ifp->if_flags & IFF_UP) {
1912 if (sc->power != NULL)
1913 (*sc->power)(sc, why);
1914 ex_init(ifp);
1915 }
1916 break;
1917 case PWR_SOFTSUSPEND:
1918 case PWR_SOFTSTANDBY:
1919 case PWR_SOFTRESUME:
1920 break;
1921 }
1922 splx(s);
1923 }
1924