elinkxl.c revision 1.70 1 /* $NetBSD: elinkxl.c,v 1.70 2003/06/05 22:11:21 dogcow Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: elinkxl.c,v 1.70 2003/06/05 22:11:21 dogcow Exp $");
41
42 #include "bpfilter.h"
43 #include "rnd.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/kernel.h>
49 #include <sys/mbuf.h>
50 #include <sys/socket.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/syslog.h>
54 #include <sys/select.h>
55 #include <sys/device.h>
56 #if NRND > 0
57 #include <sys/rnd.h>
58 #endif
59
60 #include <uvm/uvm_extern.h>
61
62 #include <net/if.h>
63 #include <net/if_dl.h>
64 #include <net/if_ether.h>
65 #include <net/if_media.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #include <net/bpfdesc.h>
70 #endif
71
72 #include <machine/cpu.h>
73 #include <machine/bus.h>
74 #include <machine/intr.h>
75 #include <machine/endian.h>
76
77 #include <dev/mii/miivar.h>
78 #include <dev/mii/mii.h>
79 #include <dev/mii/mii_bitbang.h>
80
81 #include <dev/ic/elink3reg.h>
82 /* #include <dev/ic/elink3var.h> */
83 #include <dev/ic/elinkxlreg.h>
84 #include <dev/ic/elinkxlvar.h>
85
86 #ifdef DEBUG
87 int exdebug = 0;
88 #endif
89
90 /* ifmedia callbacks */
91 int ex_media_chg __P((struct ifnet *ifp));
92 void ex_media_stat __P((struct ifnet *ifp, struct ifmediareq *req));
93
94 void ex_probe_media __P((struct ex_softc *));
95 void ex_set_filter __P((struct ex_softc *));
96 void ex_set_media __P((struct ex_softc *));
97 void ex_set_xcvr __P((struct ex_softc *, u_int16_t));
98 struct mbuf *ex_get __P((struct ex_softc *, int));
99 u_int16_t ex_read_eeprom __P((struct ex_softc *, int));
100 int ex_init __P((struct ifnet *));
101 void ex_read __P((struct ex_softc *));
102 void ex_reset __P((struct ex_softc *));
103 void ex_set_mc __P((struct ex_softc *));
104 void ex_getstats __P((struct ex_softc *));
105 void ex_printstats __P((struct ex_softc *));
106 void ex_tick __P((void *));
107
108 void ex_power __P((int, void *));
109
110 static int ex_eeprom_busy __P((struct ex_softc *));
111 static int ex_add_rxbuf __P((struct ex_softc *, struct ex_rxdesc *));
112 static void ex_init_txdescs __P((struct ex_softc *));
113
114 static void ex_shutdown __P((void *));
115 static void ex_start __P((struct ifnet *));
116 static void ex_txstat __P((struct ex_softc *));
117
118 int ex_mii_readreg __P((struct device *, int, int));
119 void ex_mii_writereg __P((struct device *, int, int, int));
120 void ex_mii_statchg __P((struct device *));
121
122 void ex_probemedia __P((struct ex_softc *));
123
124 /*
125 * Structure to map media-present bits in boards to ifmedia codes and
126 * printable media names. Used for table-driven ifmedia initialization.
127 */
128 struct ex_media {
129 int exm_mpbit; /* media present bit */
130 const char *exm_name; /* name of medium */
131 int exm_ifmedia; /* ifmedia word for medium */
132 int exm_epmedia; /* ELINKMEDIA_* constant */
133 };
134
135 /*
136 * Media table for 3c90x chips. Note that chips with MII have no
137 * `native' media.
138 */
139 struct ex_media ex_native_media[] = {
140 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
141 ELINKMEDIA_10BASE_T },
142 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
143 ELINKMEDIA_10BASE_T },
144 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
145 ELINKMEDIA_AUI },
146 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
147 ELINKMEDIA_10BASE_2 },
148 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
149 ELINKMEDIA_100BASE_TX },
150 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
151 ELINKMEDIA_100BASE_TX },
152 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
153 ELINKMEDIA_100BASE_FX },
154 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
155 ELINKMEDIA_MII },
156 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
157 ELINKMEDIA_100BASE_T4 },
158 { 0, NULL, 0,
159 0 },
160 };
161
162 /*
163 * MII bit-bang glue.
164 */
165 u_int32_t ex_mii_bitbang_read __P((struct device *));
166 void ex_mii_bitbang_write __P((struct device *, u_int32_t));
167
168 const struct mii_bitbang_ops ex_mii_bitbang_ops = {
169 ex_mii_bitbang_read,
170 ex_mii_bitbang_write,
171 {
172 ELINK_PHY_DATA, /* MII_BIT_MDO */
173 ELINK_PHY_DATA, /* MII_BIT_MDI */
174 ELINK_PHY_CLK, /* MII_BIT_MDC */
175 ELINK_PHY_DIR, /* MII_BIT_DIR_HOST_PHY */
176 0, /* MII_BIT_DIR_PHY_HOST */
177 }
178 };
179
180 /*
181 * Back-end attach and configure.
182 */
183 void
184 ex_config(sc)
185 struct ex_softc *sc;
186 {
187 struct ifnet *ifp;
188 u_int16_t val;
189 u_int8_t macaddr[ETHER_ADDR_LEN] = {0};
190 bus_space_tag_t iot = sc->sc_iot;
191 bus_space_handle_t ioh = sc->sc_ioh;
192 int i, error, attach_stage;
193
194 callout_init(&sc->ex_mii_callout);
195
196 ex_reset(sc);
197
198 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR0);
199 macaddr[0] = val >> 8;
200 macaddr[1] = val & 0xff;
201 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR1);
202 macaddr[2] = val >> 8;
203 macaddr[3] = val & 0xff;
204 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR2);
205 macaddr[4] = val >> 8;
206 macaddr[5] = val & 0xff;
207
208 aprint_normal("%s: MAC address %s\n", sc->sc_dev.dv_xname,
209 ether_sprintf(macaddr));
210
211 if (sc->ex_conf & (EX_CONF_INV_LED_POLARITY|EX_CONF_PHY_POWER)) {
212 GO_WINDOW(2);
213 val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
214 if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
215 val |= ELINK_RESET_OPT_LEDPOLAR;
216 if (sc->ex_conf & EX_CONF_PHY_POWER)
217 val |= ELINK_RESET_OPT_PHYPOWER;
218 bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
219 }
220 if (sc->ex_conf & EX_CONF_NO_XCVR_PWR) {
221 GO_WINDOW(0);
222 bus_space_write_2(iot, ioh, ELINK_W0_MFG_ID,
223 EX_XCVR_PWR_MAGICBITS);
224 }
225
226 attach_stage = 0;
227
228 /*
229 * Allocate the upload descriptors, and create and load the DMA
230 * map for them.
231 */
232 if ((error = bus_dmamem_alloc(sc->sc_dmat,
233 EX_NUPD * sizeof (struct ex_upd), PAGE_SIZE, 0, &sc->sc_useg, 1,
234 &sc->sc_urseg, BUS_DMA_NOWAIT)) != 0) {
235 aprint_error(
236 "%s: can't allocate upload descriptors, error = %d\n",
237 sc->sc_dev.dv_xname, error);
238 goto fail;
239 }
240
241 attach_stage = 1;
242
243 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg,
244 EX_NUPD * sizeof (struct ex_upd), (caddr_t *)&sc->sc_upd,
245 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
246 aprint_error("%s: can't map upload descriptors, error = %d\n",
247 sc->sc_dev.dv_xname, error);
248 goto fail;
249 }
250
251 attach_stage = 2;
252
253 if ((error = bus_dmamap_create(sc->sc_dmat,
254 EX_NUPD * sizeof (struct ex_upd), 1,
255 EX_NUPD * sizeof (struct ex_upd), 0, BUS_DMA_NOWAIT,
256 &sc->sc_upd_dmamap)) != 0) {
257 aprint_error(
258 "%s: can't create upload desc. DMA map, error = %d\n",
259 sc->sc_dev.dv_xname, error);
260 goto fail;
261 }
262
263 attach_stage = 3;
264
265 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_upd_dmamap,
266 sc->sc_upd, EX_NUPD * sizeof (struct ex_upd), NULL,
267 BUS_DMA_NOWAIT)) != 0) {
268 aprint_error(
269 "%s: can't load upload desc. DMA map, error = %d\n",
270 sc->sc_dev.dv_xname, error);
271 goto fail;
272 }
273
274 attach_stage = 4;
275
276 /*
277 * Allocate the download descriptors, and create and load the DMA
278 * map for them.
279 */
280 if ((error = bus_dmamem_alloc(sc->sc_dmat,
281 EX_NDPD * sizeof (struct ex_dpd), PAGE_SIZE, 0, &sc->sc_dseg, 1,
282 &sc->sc_drseg, BUS_DMA_NOWAIT)) != 0) {
283 aprint_error(
284 "%s: can't allocate download descriptors, error = %d\n",
285 sc->sc_dev.dv_xname, error);
286 goto fail;
287 }
288
289 attach_stage = 5;
290
291 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg,
292 EX_NDPD * sizeof (struct ex_dpd), (caddr_t *)&sc->sc_dpd,
293 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
294 aprint_error("%s: can't map download descriptors, error = %d\n",
295 sc->sc_dev.dv_xname, error);
296 goto fail;
297 }
298 memset(sc->sc_dpd, 0, EX_NDPD * sizeof (struct ex_dpd));
299
300 attach_stage = 6;
301
302 if ((error = bus_dmamap_create(sc->sc_dmat,
303 EX_NDPD * sizeof (struct ex_dpd), 1,
304 EX_NDPD * sizeof (struct ex_dpd), 0, BUS_DMA_NOWAIT,
305 &sc->sc_dpd_dmamap)) != 0) {
306 aprint_error(
307 "%s: can't create download desc. DMA map, error = %d\n",
308 sc->sc_dev.dv_xname, error);
309 goto fail;
310 }
311
312 attach_stage = 7;
313
314 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dpd_dmamap,
315 sc->sc_dpd, EX_NDPD * sizeof (struct ex_dpd), NULL,
316 BUS_DMA_NOWAIT)) != 0) {
317 aprint_error(
318 "%s: can't load download desc. DMA map, error = %d\n",
319 sc->sc_dev.dv_xname, error);
320 goto fail;
321 }
322
323 attach_stage = 8;
324
325
326 /*
327 * Create the transmit buffer DMA maps.
328 */
329 for (i = 0; i < EX_NDPD; i++) {
330 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
331 EX_NTFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
332 &sc->sc_tx_dmamaps[i])) != 0) {
333 aprint_error(
334 "%s: can't create tx DMA map %d, error = %d\n",
335 sc->sc_dev.dv_xname, i, error);
336 goto fail;
337 }
338 }
339
340 attach_stage = 9;
341
342 /*
343 * Create the receive buffer DMA maps.
344 */
345 for (i = 0; i < EX_NUPD; i++) {
346 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
347 EX_NRFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
348 &sc->sc_rx_dmamaps[i])) != 0) {
349 aprint_error(
350 "%s: can't create rx DMA map %d, error = %d\n",
351 sc->sc_dev.dv_xname, i, error);
352 goto fail;
353 }
354 }
355
356 attach_stage = 10;
357
358 /*
359 * Create ring of upload descriptors, only once. The DMA engine
360 * will loop over this when receiving packets, stalling if it
361 * hits an UPD with a finished receive.
362 */
363 for (i = 0; i < EX_NUPD; i++) {
364 sc->sc_rxdescs[i].rx_dmamap = sc->sc_rx_dmamaps[i];
365 sc->sc_rxdescs[i].rx_upd = &sc->sc_upd[i];
366 sc->sc_upd[i].upd_frags[0].fr_len =
367 htole32((MCLBYTES - 2) | EX_FR_LAST);
368 if (ex_add_rxbuf(sc, &sc->sc_rxdescs[i]) != 0) {
369 aprint_error("%s: can't allocate or map rx buffers\n",
370 sc->sc_dev.dv_xname);
371 goto fail;
372 }
373 }
374
375 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap, 0,
376 EX_NUPD * sizeof (struct ex_upd),
377 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
378
379 ex_init_txdescs(sc);
380
381 attach_stage = 11;
382
383
384 GO_WINDOW(3);
385 val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
386 if (val & ELINK_MEDIACAP_MII)
387 sc->ex_conf |= EX_CONF_MII;
388
389 ifp = &sc->sc_ethercom.ec_if;
390
391 /*
392 * Initialize our media structures and MII info. We'll
393 * probe the MII if we discover that we have one.
394 */
395 sc->ex_mii.mii_ifp = ifp;
396 sc->ex_mii.mii_readreg = ex_mii_readreg;
397 sc->ex_mii.mii_writereg = ex_mii_writereg;
398 sc->ex_mii.mii_statchg = ex_mii_statchg;
399 ifmedia_init(&sc->ex_mii.mii_media, IFM_IMASK, ex_media_chg,
400 ex_media_stat);
401
402 if (sc->ex_conf & EX_CONF_MII) {
403 /*
404 * Find PHY, extract media information from it.
405 * First, select the right transceiver.
406 */
407 ex_set_xcvr(sc, val);
408
409 mii_attach(&sc->sc_dev, &sc->ex_mii, 0xffffffff,
410 MII_PHY_ANY, MII_OFFSET_ANY, 0);
411 if (LIST_FIRST(&sc->ex_mii.mii_phys) == NULL) {
412 ifmedia_add(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE,
413 0, NULL);
414 ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE);
415 } else {
416 ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_AUTO);
417 }
418 } else
419 ex_probemedia(sc);
420
421 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
422 ifp->if_softc = sc;
423 ifp->if_start = ex_start;
424 ifp->if_ioctl = ex_ioctl;
425 ifp->if_watchdog = ex_watchdog;
426 ifp->if_init = ex_init;
427 ifp->if_stop = ex_stop;
428 ifp->if_flags =
429 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
430 IFQ_SET_READY(&ifp->if_snd);
431
432 /*
433 * We can support 802.1Q VLAN-sized frames.
434 */
435 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
436
437 /*
438 * The 3c90xB has hardware IPv4/TCPv4/UDPv4 checksum support.
439 */
440 if (sc->ex_conf & EX_CONF_90XB)
441 sc->sc_ethercom.ec_if.if_capabilities |= IFCAP_CSUM_IPv4 |
442 IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
443
444 if_attach(ifp);
445 ether_ifattach(ifp, macaddr);
446
447 GO_WINDOW(1);
448
449 sc->tx_start_thresh = 20;
450 sc->tx_succ_ok = 0;
451
452 /* TODO: set queues to 0 */
453
454 #if NRND > 0
455 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
456 RND_TYPE_NET, 0);
457 #endif
458
459 /* Establish callback to reset card when we reboot. */
460 sc->sc_sdhook = shutdownhook_establish(ex_shutdown, sc);
461 if (sc->sc_sdhook == NULL)
462 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
463 sc->sc_dev.dv_xname);
464
465 /* Add a suspend hook to make sure we come back up after a resume. */
466 sc->sc_powerhook = powerhook_establish(ex_power, sc);
467 if (sc->sc_powerhook == NULL)
468 aprint_error("%s: WARNING: unable to establish power hook\n",
469 sc->sc_dev.dv_xname);
470
471 /* The attach is successful. */
472 sc->ex_flags |= EX_FLAGS_ATTACHED;
473 return;
474
475 fail:
476 /*
477 * Free any resources we've allocated during the failed attach
478 * attempt. Do this in reverse order and fall though.
479 */
480 switch (attach_stage) {
481 case 11:
482 {
483 struct ex_rxdesc *rxd;
484
485 for (i = 0; i < EX_NUPD; i++) {
486 rxd = &sc->sc_rxdescs[i];
487 if (rxd->rx_mbhead != NULL) {
488 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
489 m_freem(rxd->rx_mbhead);
490 }
491 }
492 }
493 /* FALLTHROUGH */
494
495 case 10:
496 for (i = 0; i < EX_NUPD; i++)
497 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
498 /* FALLTHROUGH */
499
500 case 9:
501 for (i = 0; i < EX_NDPD; i++)
502 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
503 /* FALLTHROUGH */
504 case 8:
505 bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
506 /* FALLTHROUGH */
507
508 case 7:
509 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
510 /* FALLTHROUGH */
511
512 case 6:
513 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
514 EX_NDPD * sizeof (struct ex_dpd));
515 /* FALLTHROUGH */
516
517 case 5:
518 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
519 break;
520
521 case 4:
522 bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
523 /* FALLTHROUGH */
524
525 case 3:
526 bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
527 /* FALLTHROUGH */
528
529 case 2:
530 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
531 EX_NUPD * sizeof (struct ex_upd));
532 /* FALLTHROUGH */
533
534 case 1:
535 bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
536 break;
537 }
538
539 }
540
541 /*
542 * Find the media present on non-MII chips.
543 */
544 void
545 ex_probemedia(sc)
546 struct ex_softc *sc;
547 {
548 bus_space_tag_t iot = sc->sc_iot;
549 bus_space_handle_t ioh = sc->sc_ioh;
550 struct ifmedia *ifm = &sc->ex_mii.mii_media;
551 struct ex_media *exm;
552 u_int16_t config1, reset_options, default_media;
553 int defmedia = 0;
554 const char *sep = "", *defmedianame = NULL;
555
556 GO_WINDOW(3);
557 config1 = bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
558 reset_options = bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
559 GO_WINDOW(0);
560
561 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
562
563 aprint_normal("%s: ", sc->sc_dev.dv_xname);
564
565 /* Sanity check that there are any media! */
566 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
567 aprint_error("no media present!\n");
568 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
569 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
570 return;
571 }
572
573 #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", "
574
575 for (exm = ex_native_media; exm->exm_name != NULL; exm++) {
576 if (reset_options & exm->exm_mpbit) {
577 /*
578 * Default media is a little complicated. We
579 * support full-duplex which uses the same
580 * reset options bit.
581 *
582 * XXX Check EEPROM for default to FDX?
583 */
584 if (exm->exm_epmedia == default_media) {
585 if ((exm->exm_ifmedia & IFM_FDX) == 0) {
586 defmedia = exm->exm_ifmedia;
587 defmedianame = exm->exm_name;
588 }
589 } else if (defmedia == 0) {
590 defmedia = exm->exm_ifmedia;
591 defmedianame = exm->exm_name;
592 }
593 ifmedia_add(ifm, exm->exm_ifmedia, exm->exm_epmedia,
594 NULL);
595 PRINT(exm->exm_name);
596 }
597 }
598
599 #undef PRINT
600
601 #ifdef DIAGNOSTIC
602 if (defmedia == 0)
603 panic("ex_probemedia: impossible");
604 #endif
605
606 aprint_normal(", default %s\n", defmedianame);
607 ifmedia_set(ifm, defmedia);
608 }
609
610 /*
611 * Bring device up.
612 */
613 int
614 ex_init(ifp)
615 struct ifnet *ifp;
616 {
617 struct ex_softc *sc = ifp->if_softc;
618 bus_space_tag_t iot = sc->sc_iot;
619 bus_space_handle_t ioh = sc->sc_ioh;
620 int i;
621 int error = 0;
622
623 if ((error = ex_enable(sc)) != 0)
624 goto out;
625
626 ex_waitcmd(sc);
627 ex_stop(ifp, 0);
628
629 /*
630 * Set the station address and clear the station mask. The latter
631 * is needed for 90x cards, 0 is the default for 90xB cards.
632 */
633 GO_WINDOW(2);
634 for (i = 0; i < ETHER_ADDR_LEN; i++) {
635 bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
636 LLADDR(ifp->if_sadl)[i]);
637 bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
638 }
639
640 GO_WINDOW(3);
641
642 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_RESET);
643 ex_waitcmd(sc);
644 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
645 ex_waitcmd(sc);
646
647 /*
648 * Disable reclaim threshold for 90xB, set free threshold to
649 * 6 * 256 = 1536 for 90x.
650 */
651 if (sc->ex_conf & EX_CONF_90XB)
652 bus_space_write_2(iot, ioh, ELINK_COMMAND,
653 ELINK_TXRECLTHRESH | 255);
654 else
655 bus_space_write_1(iot, ioh, ELINK_TXFREETHRESH, 6);
656
657 bus_space_write_2(iot, ioh, ELINK_COMMAND,
658 SET_RX_EARLY_THRESH | ELINK_THRESH_DISABLE);
659
660 bus_space_write_4(iot, ioh, ELINK_DMACTRL,
661 bus_space_read_4(iot, ioh, ELINK_DMACTRL) | ELINK_DMAC_UPRXEAREN);
662
663 bus_space_write_2(iot, ioh, ELINK_COMMAND,
664 SET_RD_0_MASK | XL_WATCHED_INTERRUPTS);
665 bus_space_write_2(iot, ioh, ELINK_COMMAND,
666 SET_INTR_MASK | XL_WATCHED_INTERRUPTS);
667
668 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
669 if (sc->intr_ack)
670 (* sc->intr_ack)(sc);
671 ex_set_media(sc);
672 ex_set_mc(sc);
673
674
675 bus_space_write_2(iot, ioh, ELINK_COMMAND, STATS_ENABLE);
676 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
677 bus_space_write_4(iot, ioh, ELINK_UPLISTPTR, sc->sc_upddma);
678 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
679 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_UPUNSTALL);
680
681 if (sc->ex_conf & (EX_CONF_PHY_POWER | EX_CONF_INV_LED_POLARITY)) {
682 u_int16_t cbcard_config;
683
684 GO_WINDOW(2);
685 cbcard_config = bus_space_read_2(sc->sc_iot, sc->sc_ioh, 0x0c);
686 if (sc->ex_conf & EX_CONF_PHY_POWER) {
687 cbcard_config |= 0x4000; /* turn on PHY power */
688 }
689 if (sc->ex_conf & EX_CONF_INV_LED_POLARITY) {
690 cbcard_config |= 0x0010; /* invert LED polarity */
691 }
692 bus_space_write_2(sc->sc_iot, sc->sc_ioh, 0x0c, cbcard_config);
693
694 GO_WINDOW(3);
695 }
696
697 ifp->if_flags |= IFF_RUNNING;
698 ifp->if_flags &= ~IFF_OACTIVE;
699 ex_start(ifp);
700
701 GO_WINDOW(1);
702
703 callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
704
705 out:
706 if (error) {
707 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
708 ifp->if_timer = 0;
709 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
710 }
711 return (error);
712 }
713
714 #define MCHASHSIZE 256
715 #define ex_mchash(addr) (ether_crc32_be((addr), ETHER_ADDR_LEN) & \
716 (MCHASHSIZE - 1))
717
718 /*
719 * Set multicast receive filter. Also take care of promiscuous mode
720 * here (XXX).
721 */
722 void
723 ex_set_mc(sc)
724 struct ex_softc *sc;
725 {
726 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
727 struct ethercom *ec = &sc->sc_ethercom;
728 struct ether_multi *enm;
729 struct ether_multistep estep;
730 int i;
731 u_int16_t mask = FIL_INDIVIDUAL | FIL_BRDCST;
732
733 if (ifp->if_flags & IFF_PROMISC) {
734 mask |= FIL_PROMISC;
735 goto allmulti;
736 }
737
738 ETHER_FIRST_MULTI(estep, ec, enm);
739 if (enm == NULL)
740 goto nomulti;
741
742 if ((sc->ex_conf & EX_CONF_90XB) == 0)
743 /* No multicast hash filtering. */
744 goto allmulti;
745
746 for (i = 0; i < MCHASHSIZE; i++)
747 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
748 ELINK_COMMAND, ELINK_CLEARHASHFILBIT | i);
749
750 do {
751 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
752 ETHER_ADDR_LEN) != 0)
753 goto allmulti;
754
755 i = ex_mchash(enm->enm_addrlo);
756 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
757 ELINK_COMMAND, ELINK_SETHASHFILBIT | i);
758 ETHER_NEXT_MULTI(estep, enm);
759 } while (enm != NULL);
760 mask |= FIL_MULTIHASH;
761
762 nomulti:
763 ifp->if_flags &= ~IFF_ALLMULTI;
764 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
765 SET_RX_FILTER | mask);
766 return;
767
768 allmulti:
769 ifp->if_flags |= IFF_ALLMULTI;
770 mask |= FIL_MULTICAST;
771 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
772 SET_RX_FILTER | mask);
773 }
774
775
776 static void
777 ex_txstat(sc)
778 struct ex_softc *sc;
779 {
780 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
781 bus_space_tag_t iot = sc->sc_iot;
782 bus_space_handle_t ioh = sc->sc_ioh;
783 int i;
784
785 /*
786 * We need to read+write TX_STATUS until we get a 0 status
787 * in order to turn off the interrupt flag.
788 */
789 while ((i = bus_space_read_1(iot, ioh, ELINK_TXSTATUS)) & TXS_COMPLETE) {
790 bus_space_write_1(iot, ioh, ELINK_TXSTATUS, 0x0);
791
792 if (i & TXS_JABBER) {
793 ++sc->sc_ethercom.ec_if.if_oerrors;
794 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
795 printf("%s: jabber (%x)\n",
796 sc->sc_dev.dv_xname, i);
797 ex_init(ifp);
798 /* TODO: be more subtle here */
799 } else if (i & TXS_UNDERRUN) {
800 ++sc->sc_ethercom.ec_if.if_oerrors;
801 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
802 printf("%s: fifo underrun (%x) @%d\n",
803 sc->sc_dev.dv_xname, i,
804 sc->tx_start_thresh);
805 if (sc->tx_succ_ok < 100)
806 sc->tx_start_thresh = min(ETHER_MAX_LEN,
807 sc->tx_start_thresh + 20);
808 sc->tx_succ_ok = 0;
809 ex_init(ifp);
810 /* TODO: be more subtle here */
811 } else if (i & TXS_MAX_COLLISION) {
812 ++sc->sc_ethercom.ec_if.if_collisions;
813 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
814 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
815 } else
816 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
817 }
818 }
819
820 int
821 ex_media_chg(ifp)
822 struct ifnet *ifp;
823 {
824
825 if (ifp->if_flags & IFF_UP)
826 ex_init(ifp);
827 return 0;
828 }
829
830 void
831 ex_set_xcvr(sc, media)
832 struct ex_softc *sc;
833 const u_int16_t media;
834 {
835 bus_space_tag_t iot = sc->sc_iot;
836 bus_space_handle_t ioh = sc->sc_ioh;
837 u_int32_t icfg;
838
839 /*
840 * We're already in Window 3
841 */
842 icfg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
843 icfg &= ~(CONFIG_XCVR_SEL << 16);
844 if (media & (ELINK_MEDIACAP_MII | ELINK_MEDIACAP_100BASET4))
845 icfg |= ELINKMEDIA_MII << (CONFIG_XCVR_SEL_SHIFT + 16);
846 if (media & ELINK_MEDIACAP_100BASETX)
847 icfg |= ELINKMEDIA_AUTO << (CONFIG_XCVR_SEL_SHIFT + 16);
848 if (media & ELINK_MEDIACAP_100BASEFX)
849 icfg |= ELINKMEDIA_100BASE_FX
850 << (CONFIG_XCVR_SEL_SHIFT + 16);
851 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, icfg);
852 }
853
854 void
855 ex_set_media(sc)
856 struct ex_softc *sc;
857 {
858 bus_space_tag_t iot = sc->sc_iot;
859 bus_space_handle_t ioh = sc->sc_ioh;
860 u_int32_t configreg;
861
862 if (((sc->ex_conf & EX_CONF_MII) &&
863 (sc->ex_mii.mii_media_active & IFM_FDX))
864 || (!(sc->ex_conf & EX_CONF_MII) &&
865 (sc->ex_mii.mii_media.ifm_media & IFM_FDX))) {
866 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL,
867 MAC_CONTROL_FDX);
868 } else {
869 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, 0);
870 }
871
872 /*
873 * If the device has MII, select it, and then tell the
874 * PHY which media to use.
875 */
876 if (sc->ex_conf & EX_CONF_MII) {
877 u_int16_t val;
878
879 GO_WINDOW(3);
880 val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
881 ex_set_xcvr(sc, val);
882 mii_mediachg(&sc->ex_mii);
883 return;
884 }
885
886 GO_WINDOW(4);
887 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0);
888 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
889 delay(800);
890
891 /*
892 * Now turn on the selected media/transceiver.
893 */
894 switch (IFM_SUBTYPE(sc->ex_mii.mii_media.ifm_cur->ifm_media)) {
895 case IFM_10_T:
896 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
897 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
898 break;
899
900 case IFM_10_2:
901 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
902 DELAY(800);
903 break;
904
905 case IFM_100_TX:
906 case IFM_100_FX:
907 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
908 LINKBEAT_ENABLE);
909 DELAY(800);
910 break;
911
912 case IFM_10_5:
913 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
914 SQE_ENABLE);
915 DELAY(800);
916 break;
917
918 case IFM_MANUAL:
919 break;
920
921 case IFM_NONE:
922 return;
923
924 default:
925 panic("ex_set_media: impossible");
926 }
927
928 GO_WINDOW(3);
929 configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
930
931 configreg &= ~(CONFIG_MEDIAMASK << 16);
932 configreg |= (sc->ex_mii.mii_media.ifm_cur->ifm_data <<
933 (CONFIG_MEDIAMASK_SHIFT + 16));
934
935 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
936 }
937
938 /*
939 * Get currently-selected media from card.
940 * (if_media callback, may be called before interface is brought up).
941 */
942 void
943 ex_media_stat(ifp, req)
944 struct ifnet *ifp;
945 struct ifmediareq *req;
946 {
947 struct ex_softc *sc = ifp->if_softc;
948
949 if (sc->ex_conf & EX_CONF_MII) {
950 mii_pollstat(&sc->ex_mii);
951 req->ifm_status = sc->ex_mii.mii_media_status;
952 req->ifm_active = sc->ex_mii.mii_media_active;
953 } else {
954 GO_WINDOW(4);
955 req->ifm_status = IFM_AVALID;
956 req->ifm_active = sc->ex_mii.mii_media.ifm_cur->ifm_media;
957 if (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
958 ELINK_W4_MEDIA_TYPE) & LINKBEAT_DETECT)
959 req->ifm_status |= IFM_ACTIVE;
960 GO_WINDOW(1);
961 }
962 }
963
964
965
966 /*
967 * Start outputting on the interface.
968 */
969 static void
970 ex_start(ifp)
971 struct ifnet *ifp;
972 {
973 struct ex_softc *sc = ifp->if_softc;
974 bus_space_tag_t iot = sc->sc_iot;
975 bus_space_handle_t ioh = sc->sc_ioh;
976 volatile struct ex_fraghdr *fr = NULL;
977 volatile struct ex_dpd *dpd = NULL, *prevdpd = NULL;
978 struct ex_txdesc *txp;
979 struct mbuf *mb_head;
980 bus_dmamap_t dmamap;
981 int offset, totlen, segment, error;
982 u_int32_t csum_flags;
983
984 if (sc->tx_head || sc->tx_free == NULL)
985 return;
986
987 txp = NULL;
988
989 /*
990 * We're finished if there is nothing more to add to the list or if
991 * we're all filled up with buffers to transmit.
992 */
993 while (sc->tx_free != NULL) {
994 /*
995 * Grab a packet to transmit.
996 */
997 IFQ_DEQUEUE(&ifp->if_snd, mb_head);
998 if (mb_head == NULL)
999 break;
1000
1001 /*
1002 * Get pointer to next available tx desc.
1003 */
1004 txp = sc->tx_free;
1005 dmamap = txp->tx_dmamap;
1006
1007 /*
1008 * Go through each of the mbufs in the chain and initialize
1009 * the transmit buffer descriptors with the physical address
1010 * and size of the mbuf.
1011 */
1012 reload:
1013 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1014 mb_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1015 switch (error) {
1016 case 0:
1017 /* Success. */
1018 break;
1019
1020 case EFBIG:
1021 {
1022 struct mbuf *mn;
1023
1024 /*
1025 * We ran out of segments. We have to recopy this
1026 * mbuf chain first. Bail out if we can't get the
1027 * new buffers.
1028 */
1029 printf("%s: too many segments, ", sc->sc_dev.dv_xname);
1030
1031 MGETHDR(mn, M_DONTWAIT, MT_DATA);
1032 if (mn == NULL) {
1033 m_freem(mb_head);
1034 printf("aborting\n");
1035 goto out;
1036 }
1037 if (mb_head->m_pkthdr.len > MHLEN) {
1038 MCLGET(mn, M_DONTWAIT);
1039 if ((mn->m_flags & M_EXT) == 0) {
1040 m_freem(mn);
1041 m_freem(mb_head);
1042 printf("aborting\n");
1043 goto out;
1044 }
1045 }
1046 m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1047 mtod(mn, caddr_t));
1048 mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1049 m_freem(mb_head);
1050 mb_head = mn;
1051 printf("retrying\n");
1052 goto reload;
1053 }
1054
1055 default:
1056 /*
1057 * Some other problem; report it.
1058 */
1059 printf("%s: can't load mbuf chain, error = %d\n",
1060 sc->sc_dev.dv_xname, error);
1061 m_freem(mb_head);
1062 goto out;
1063 }
1064
1065 /*
1066 * remove our tx desc from freelist.
1067 */
1068 sc->tx_free = txp->tx_next;
1069 txp->tx_next = NULL;
1070
1071 fr = &txp->tx_dpd->dpd_frags[0];
1072 totlen = 0;
1073 for (segment = 0; segment < dmamap->dm_nsegs; segment++, fr++) {
1074 fr->fr_addr = htole32(dmamap->dm_segs[segment].ds_addr);
1075 fr->fr_len = htole32(dmamap->dm_segs[segment].ds_len);
1076 totlen += dmamap->dm_segs[segment].ds_len;
1077 }
1078 fr--;
1079 fr->fr_len |= htole32(EX_FR_LAST);
1080 txp->tx_mbhead = mb_head;
1081
1082 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1083 BUS_DMASYNC_PREWRITE);
1084
1085 dpd = txp->tx_dpd;
1086 dpd->dpd_nextptr = 0;
1087 dpd->dpd_fsh = htole32(totlen);
1088
1089 /* Byte-swap constants so compiler can optimize. */
1090
1091 if (sc->ex_conf & EX_CONF_90XB) {
1092 csum_flags = 0;
1093
1094 if (mb_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1095 csum_flags |= htole32(EX_DPD_IPCKSUM);
1096
1097 if (mb_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1098 csum_flags |= htole32(EX_DPD_TCPCKSUM);
1099 else if (mb_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1100 csum_flags |= htole32(EX_DPD_UDPCKSUM);
1101
1102 dpd->dpd_fsh |= csum_flags;
1103 } else {
1104 KDASSERT((mb_head->m_pkthdr.csum_flags &
1105 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) == 0);
1106 }
1107
1108 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1109 ((caddr_t)dpd - (caddr_t)sc->sc_dpd),
1110 sizeof (struct ex_dpd),
1111 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1112
1113 /*
1114 * No need to stall the download engine, we know it's
1115 * not busy right now.
1116 *
1117 * Fix up pointers in both the "soft" tx and the physical
1118 * tx list.
1119 */
1120 if (sc->tx_head != NULL) {
1121 prevdpd = sc->tx_tail->tx_dpd;
1122 offset = ((caddr_t)prevdpd - (caddr_t)sc->sc_dpd);
1123 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1124 offset, sizeof (struct ex_dpd),
1125 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1126 prevdpd->dpd_nextptr = htole32(DPD_DMADDR(sc, txp));
1127 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1128 offset, sizeof (struct ex_dpd),
1129 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1130 sc->tx_tail->tx_next = txp;
1131 sc->tx_tail = txp;
1132 } else {
1133 sc->tx_tail = sc->tx_head = txp;
1134 }
1135
1136 #if NBPFILTER > 0
1137 /*
1138 * Pass packet to bpf if there is a listener.
1139 */
1140 if (ifp->if_bpf)
1141 bpf_mtap(ifp->if_bpf, mb_head);
1142 #endif
1143 }
1144 out:
1145 if (sc->tx_head) {
1146 sc->tx_tail->tx_dpd->dpd_fsh |= htole32(EX_DPD_DNIND);
1147 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1148 ((caddr_t)sc->tx_tail->tx_dpd - (caddr_t)sc->sc_dpd),
1149 sizeof (struct ex_dpd),
1150 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1151 ifp->if_flags |= IFF_OACTIVE;
1152 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNUNSTALL);
1153 bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
1154 DPD_DMADDR(sc, sc->tx_head));
1155
1156 /* trigger watchdog */
1157 ifp->if_timer = 5;
1158 }
1159 }
1160
1161
1162 int
1163 ex_intr(arg)
1164 void *arg;
1165 {
1166 struct ex_softc *sc = arg;
1167 bus_space_tag_t iot = sc->sc_iot;
1168 bus_space_handle_t ioh = sc->sc_ioh;
1169 u_int16_t stat;
1170 int ret = 0;
1171 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1172
1173 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1174 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1175 return (0);
1176
1177 for (;;) {
1178 stat = bus_space_read_2(iot, ioh, ELINK_STATUS);
1179
1180 if ((stat & XL_WATCHED_INTERRUPTS) == 0) {
1181 if ((stat & INTR_LATCH) == 0) {
1182 #if 0
1183 printf("%s: intr latch cleared\n",
1184 sc->sc_dev.dv_xname);
1185 #endif
1186 break;
1187 }
1188 }
1189
1190 ret = 1;
1191
1192 /*
1193 * Acknowledge interrupts.
1194 */
1195 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1196 (stat & (XL_WATCHED_INTERRUPTS | INTR_LATCH)));
1197 if (sc->intr_ack)
1198 (*sc->intr_ack)(sc);
1199
1200 if (stat & HOST_ERROR) {
1201 printf("%s: adapter failure (%x)\n",
1202 sc->sc_dev.dv_xname, stat);
1203 ex_reset(sc);
1204 ex_init(ifp);
1205 return 1;
1206 }
1207 if (stat & TX_COMPLETE) {
1208 ex_txstat(sc);
1209 }
1210 if (stat & UPD_STATS) {
1211 ex_getstats(sc);
1212 }
1213 if (stat & DN_COMPLETE) {
1214 struct ex_txdesc *txp, *ptxp = NULL;
1215 bus_dmamap_t txmap;
1216
1217 /* reset watchdog timer, was set in ex_start() */
1218 ifp->if_timer = 0;
1219
1220 for (txp = sc->tx_head; txp != NULL;
1221 txp = txp->tx_next) {
1222 bus_dmamap_sync(sc->sc_dmat,
1223 sc->sc_dpd_dmamap,
1224 (caddr_t)txp->tx_dpd - (caddr_t)sc->sc_dpd,
1225 sizeof (struct ex_dpd),
1226 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1227 if (txp->tx_mbhead != NULL) {
1228 txmap = txp->tx_dmamap;
1229 bus_dmamap_sync(sc->sc_dmat, txmap,
1230 0, txmap->dm_mapsize,
1231 BUS_DMASYNC_POSTWRITE);
1232 bus_dmamap_unload(sc->sc_dmat, txmap);
1233 m_freem(txp->tx_mbhead);
1234 txp->tx_mbhead = NULL;
1235 }
1236 ptxp = txp;
1237 }
1238
1239 /*
1240 * Move finished tx buffers back to the tx free list.
1241 */
1242 if (sc->tx_free) {
1243 sc->tx_ftail->tx_next = sc->tx_head;
1244 sc->tx_ftail = ptxp;
1245 } else
1246 sc->tx_ftail = sc->tx_free = sc->tx_head;
1247
1248 sc->tx_head = sc->tx_tail = NULL;
1249 ifp->if_flags &= ~IFF_OACTIVE;
1250 }
1251
1252 if (stat & UP_COMPLETE) {
1253 struct ex_rxdesc *rxd;
1254 struct mbuf *m;
1255 struct ex_upd *upd;
1256 bus_dmamap_t rxmap;
1257 u_int32_t pktstat;
1258
1259 rcvloop:
1260 rxd = sc->rx_head;
1261 rxmap = rxd->rx_dmamap;
1262 m = rxd->rx_mbhead;
1263 upd = rxd->rx_upd;
1264
1265 bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
1266 rxmap->dm_mapsize,
1267 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1268 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1269 ((caddr_t)upd - (caddr_t)sc->sc_upd),
1270 sizeof (struct ex_upd),
1271 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1272 pktstat = le32toh(upd->upd_pktstatus);
1273
1274 if (pktstat & EX_UPD_COMPLETE) {
1275 /*
1276 * Remove first packet from the chain.
1277 */
1278 sc->rx_head = rxd->rx_next;
1279 rxd->rx_next = NULL;
1280
1281 /*
1282 * Add a new buffer to the receive chain.
1283 * If this fails, the old buffer is recycled
1284 * instead.
1285 */
1286 if (ex_add_rxbuf(sc, rxd) == 0) {
1287 u_int16_t total_len;
1288
1289 if (pktstat &
1290 ((sc->sc_ethercom.ec_capenable &
1291 ETHERCAP_VLAN_MTU) ?
1292 EX_UPD_ERR_VLAN : EX_UPD_ERR)) {
1293 ifp->if_ierrors++;
1294 m_freem(m);
1295 goto rcvloop;
1296 }
1297
1298 total_len = pktstat & EX_UPD_PKTLENMASK;
1299 if (total_len <
1300 sizeof(struct ether_header)) {
1301 m_freem(m);
1302 goto rcvloop;
1303 }
1304 m->m_pkthdr.rcvif = ifp;
1305 m->m_pkthdr.len = m->m_len = total_len;
1306 #if NBPFILTER > 0
1307 if (ifp->if_bpf)
1308 bpf_mtap(ifp->if_bpf, m);
1309 #endif
1310 /*
1311 * Set the incoming checksum information for the packet.
1312 */
1313 if ((sc->ex_conf & EX_CONF_90XB) != 0 &&
1314 (pktstat & EX_UPD_IPCHECKED) != 0) {
1315 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1316 if (pktstat & EX_UPD_IPCKSUMERR)
1317 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1318 if (pktstat & EX_UPD_TCPCHECKED) {
1319 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1320 if (pktstat & EX_UPD_TCPCKSUMERR)
1321 m->m_pkthdr.csum_flags |=
1322 M_CSUM_TCP_UDP_BAD;
1323 } else if (pktstat & EX_UPD_UDPCHECKED) {
1324 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1325 if (pktstat & EX_UPD_UDPCKSUMERR)
1326 m->m_pkthdr.csum_flags |=
1327 M_CSUM_TCP_UDP_BAD;
1328 }
1329 }
1330 (*ifp->if_input)(ifp, m);
1331 }
1332 goto rcvloop;
1333 }
1334 /*
1335 * Just in case we filled up all UPDs and the DMA engine
1336 * stalled. We could be more subtle about this.
1337 */
1338 if (bus_space_read_4(iot, ioh, ELINK_UPLISTPTR) == 0) {
1339 printf("%s: uplistptr was 0\n",
1340 sc->sc_dev.dv_xname);
1341 ex_init(ifp);
1342 } else if (bus_space_read_4(iot, ioh, ELINK_UPPKTSTATUS)
1343 & 0x2000) {
1344 printf("%s: receive stalled\n",
1345 sc->sc_dev.dv_xname);
1346 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1347 ELINK_UPUNSTALL);
1348 }
1349 }
1350 }
1351
1352 /* no more interrupts */
1353 if (ret && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1354 ex_start(ifp);
1355 return ret;
1356 }
1357
1358 int
1359 ex_ioctl(ifp, cmd, data)
1360 struct ifnet *ifp;
1361 u_long cmd;
1362 caddr_t data;
1363 {
1364 struct ex_softc *sc = ifp->if_softc;
1365 struct ifreq *ifr = (struct ifreq *)data;
1366 int s, error;
1367
1368 s = splnet();
1369
1370 switch (cmd) {
1371 case SIOCSIFMEDIA:
1372 case SIOCGIFMEDIA:
1373 error = ifmedia_ioctl(ifp, ifr, &sc->ex_mii.mii_media, cmd);
1374 break;
1375
1376 default:
1377 error = ether_ioctl(ifp, cmd, data);
1378 if (error == ENETRESET) {
1379 if (sc->enabled) {
1380 /*
1381 * Multicast list has changed; set the hardware filter
1382 * accordingly.
1383 */
1384 ex_set_mc(sc);
1385 }
1386 error = 0;
1387 }
1388 break;
1389 }
1390
1391 splx(s);
1392 return (error);
1393 }
1394
1395 void
1396 ex_getstats(sc)
1397 struct ex_softc *sc;
1398 {
1399 bus_space_handle_t ioh = sc->sc_ioh;
1400 bus_space_tag_t iot = sc->sc_iot;
1401 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1402 u_int8_t upperok;
1403
1404 GO_WINDOW(6);
1405 upperok = bus_space_read_1(iot, ioh, UPPER_FRAMES_OK);
1406 ifp->if_ipackets += bus_space_read_1(iot, ioh, RX_FRAMES_OK);
1407 ifp->if_ipackets += (upperok & 0x03) << 8;
1408 ifp->if_opackets += bus_space_read_1(iot, ioh, TX_FRAMES_OK);
1409 ifp->if_opackets += (upperok & 0x30) << 4;
1410 ifp->if_ierrors += bus_space_read_1(iot, ioh, RX_OVERRUNS);
1411 ifp->if_collisions += bus_space_read_1(iot, ioh, TX_COLLISIONS);
1412 /*
1413 * There seems to be no way to get the exact number of collisions,
1414 * this is the number that occurred at the very least.
1415 */
1416 ifp->if_collisions += 2 * bus_space_read_1(iot, ioh,
1417 TX_AFTER_X_COLLISIONS);
1418 /*
1419 * Interface byte counts are counted by ether_input() and
1420 * ether_output(), so don't accumulate them here. Just
1421 * read the NIC counters so they don't generate overflow interrupts.
1422 * Upper byte counters are latched from reading the totals, so
1423 * they don't need to be read if we don't need their values.
1424 */
1425 bus_space_read_2(iot, ioh, RX_TOTAL_OK);
1426 bus_space_read_2(iot, ioh, TX_TOTAL_OK);
1427
1428 /*
1429 * Clear the following to avoid stats overflow interrupts
1430 */
1431 bus_space_read_1(iot, ioh, TX_DEFERRALS);
1432 bus_space_read_1(iot, ioh, TX_AFTER_1_COLLISION);
1433 bus_space_read_1(iot, ioh, TX_NO_SQE);
1434 bus_space_read_1(iot, ioh, TX_CD_LOST);
1435 GO_WINDOW(4);
1436 bus_space_read_1(iot, ioh, ELINK_W4_BADSSD);
1437 GO_WINDOW(1);
1438 }
1439
1440 void
1441 ex_printstats(sc)
1442 struct ex_softc *sc;
1443 {
1444 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1445
1446 ex_getstats(sc);
1447 printf("in %llu out %llu ierror %llu oerror %llu ibytes %llu obytes "
1448 "%llu\n", (unsigned long long)ifp->if_ipackets,
1449 (unsigned long long)ifp->if_opackets,
1450 (unsigned long long)ifp->if_ierrors,
1451 (unsigned long long)ifp->if_oerrors,
1452 (unsigned long long)ifp->if_ibytes,
1453 (unsigned long long)ifp->if_obytes);
1454 }
1455
1456 void
1457 ex_tick(arg)
1458 void *arg;
1459 {
1460 struct ex_softc *sc = arg;
1461 int s;
1462
1463 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1464 return;
1465
1466 s = splnet();
1467
1468 if (sc->ex_conf & EX_CONF_MII)
1469 mii_tick(&sc->ex_mii);
1470
1471 if (!(bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, ELINK_STATUS)
1472 & COMMAND_IN_PROGRESS))
1473 ex_getstats(sc);
1474
1475 splx(s);
1476
1477 callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
1478 }
1479
1480 void
1481 ex_reset(sc)
1482 struct ex_softc *sc;
1483 {
1484 u_int16_t val = GLOBAL_RESET;
1485
1486 if (sc->ex_conf & EX_CONF_RESETHACK)
1487 val |= 0x10;
1488 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, val);
1489 /*
1490 * XXX apparently the command in progress bit can't be trusted
1491 * during a reset, so we just always wait this long. Fortunately
1492 * we normally only reset the chip during autoconfig.
1493 */
1494 delay(100000);
1495 ex_waitcmd(sc);
1496 }
1497
1498 void
1499 ex_watchdog(ifp)
1500 struct ifnet *ifp;
1501 {
1502 struct ex_softc *sc = ifp->if_softc;
1503
1504 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1505 ++sc->sc_ethercom.ec_if.if_oerrors;
1506
1507 ex_reset(sc);
1508 ex_init(ifp);
1509 }
1510
1511 void
1512 ex_stop(ifp, disable)
1513 struct ifnet *ifp;
1514 int disable;
1515 {
1516 struct ex_softc *sc = ifp->if_softc;
1517 bus_space_tag_t iot = sc->sc_iot;
1518 bus_space_handle_t ioh = sc->sc_ioh;
1519 struct ex_txdesc *tx;
1520 struct ex_rxdesc *rx;
1521 int i;
1522
1523 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1524 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1525 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1526
1527 for (tx = sc->tx_head ; tx != NULL; tx = tx->tx_next) {
1528 if (tx->tx_mbhead == NULL)
1529 continue;
1530 m_freem(tx->tx_mbhead);
1531 tx->tx_mbhead = NULL;
1532 bus_dmamap_unload(sc->sc_dmat, tx->tx_dmamap);
1533 tx->tx_dpd->dpd_fsh = tx->tx_dpd->dpd_nextptr = 0;
1534 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1535 ((caddr_t)tx->tx_dpd - (caddr_t)sc->sc_dpd),
1536 sizeof (struct ex_dpd),
1537 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1538 }
1539 sc->tx_tail = sc->tx_head = NULL;
1540 ex_init_txdescs(sc);
1541
1542 sc->rx_tail = sc->rx_head = 0;
1543 for (i = 0; i < EX_NUPD; i++) {
1544 rx = &sc->sc_rxdescs[i];
1545 if (rx->rx_mbhead != NULL) {
1546 bus_dmamap_unload(sc->sc_dmat, rx->rx_dmamap);
1547 m_freem(rx->rx_mbhead);
1548 rx->rx_mbhead = NULL;
1549 }
1550 ex_add_rxbuf(sc, rx);
1551 }
1552
1553 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1554
1555 callout_stop(&sc->ex_mii_callout);
1556 if (sc->ex_conf & EX_CONF_MII)
1557 mii_down(&sc->ex_mii);
1558
1559 if (disable)
1560 ex_disable(sc);
1561
1562 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1563 ifp->if_timer = 0;
1564 }
1565
1566 static void
1567 ex_init_txdescs(sc)
1568 struct ex_softc *sc;
1569 {
1570 int i;
1571
1572 for (i = 0; i < EX_NDPD; i++) {
1573 sc->sc_txdescs[i].tx_dmamap = sc->sc_tx_dmamaps[i];
1574 sc->sc_txdescs[i].tx_dpd = &sc->sc_dpd[i];
1575 if (i < EX_NDPD - 1)
1576 sc->sc_txdescs[i].tx_next = &sc->sc_txdescs[i + 1];
1577 else
1578 sc->sc_txdescs[i].tx_next = NULL;
1579 }
1580 sc->tx_free = &sc->sc_txdescs[0];
1581 sc->tx_ftail = &sc->sc_txdescs[EX_NDPD-1];
1582 }
1583
1584
1585 int
1586 ex_activate(self, act)
1587 struct device *self;
1588 enum devact act;
1589 {
1590 struct ex_softc *sc = (void *) self;
1591 int s, error = 0;
1592
1593 s = splnet();
1594 switch (act) {
1595 case DVACT_ACTIVATE:
1596 error = EOPNOTSUPP;
1597 break;
1598
1599 case DVACT_DEACTIVATE:
1600 if (sc->ex_conf & EX_CONF_MII)
1601 mii_activate(&sc->ex_mii, act, MII_PHY_ANY,
1602 MII_OFFSET_ANY);
1603 if_deactivate(&sc->sc_ethercom.ec_if);
1604 break;
1605 }
1606 splx(s);
1607
1608 return (error);
1609 }
1610
1611 int
1612 ex_detach(sc)
1613 struct ex_softc *sc;
1614 {
1615 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1616 struct ex_rxdesc *rxd;
1617 int i;
1618
1619 /* Succeed now if there's no work to do. */
1620 if ((sc->ex_flags & EX_FLAGS_ATTACHED) == 0)
1621 return (0);
1622
1623 /* Unhook our tick handler. */
1624 callout_stop(&sc->ex_mii_callout);
1625
1626 if (sc->ex_conf & EX_CONF_MII) {
1627 /* Detach all PHYs */
1628 mii_detach(&sc->ex_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1629 }
1630
1631 /* Delete all remaining media. */
1632 ifmedia_delete_instance(&sc->ex_mii.mii_media, IFM_INST_ANY);
1633
1634 #if NRND > 0
1635 rnd_detach_source(&sc->rnd_source);
1636 #endif
1637 ether_ifdetach(ifp);
1638 if_detach(ifp);
1639
1640 for (i = 0; i < EX_NUPD; i++) {
1641 rxd = &sc->sc_rxdescs[i];
1642 if (rxd->rx_mbhead != NULL) {
1643 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1644 m_freem(rxd->rx_mbhead);
1645 rxd->rx_mbhead = NULL;
1646 }
1647 }
1648 for (i = 0; i < EX_NUPD; i++)
1649 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
1650 for (i = 0; i < EX_NDPD; i++)
1651 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
1652 bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
1653 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
1654 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
1655 EX_NDPD * sizeof (struct ex_dpd));
1656 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
1657 bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
1658 bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
1659 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
1660 EX_NUPD * sizeof (struct ex_upd));
1661 bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
1662
1663 shutdownhook_disestablish(sc->sc_sdhook);
1664 powerhook_disestablish(sc->sc_powerhook);
1665
1666 return (0);
1667 }
1668
1669 /*
1670 * Before reboots, reset card completely.
1671 */
1672 static void
1673 ex_shutdown(arg)
1674 void *arg;
1675 {
1676 struct ex_softc *sc = arg;
1677
1678 ex_stop(&sc->sc_ethercom.ec_if, 1);
1679 /*
1680 * Make sure the interface is powered up when we reboot,
1681 * otherwise firmware on some systems gets really confused.
1682 */
1683 (void) ex_enable(sc);
1684 }
1685
1686 /*
1687 * Read EEPROM data.
1688 * XXX what to do if EEPROM doesn't unbusy?
1689 */
1690 u_int16_t
1691 ex_read_eeprom(sc, offset)
1692 struct ex_softc *sc;
1693 int offset;
1694 {
1695 bus_space_tag_t iot = sc->sc_iot;
1696 bus_space_handle_t ioh = sc->sc_ioh;
1697 u_int16_t data = 0, cmd = READ_EEPROM;
1698 int off;
1699
1700 off = sc->ex_conf & EX_CONF_EEPROM_OFF ? 0x30 : 0;
1701 cmd = sc->ex_conf & EX_CONF_EEPROM_8BIT ? READ_EEPROM8 : READ_EEPROM;
1702
1703 GO_WINDOW(0);
1704 if (ex_eeprom_busy(sc))
1705 goto out;
1706 bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
1707 cmd | (off + (offset & 0x3f)));
1708 if (ex_eeprom_busy(sc))
1709 goto out;
1710 data = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
1711 out:
1712 return data;
1713 }
1714
1715 static int
1716 ex_eeprom_busy(sc)
1717 struct ex_softc *sc;
1718 {
1719 bus_space_tag_t iot = sc->sc_iot;
1720 bus_space_handle_t ioh = sc->sc_ioh;
1721 int i = 100;
1722
1723 while (i--) {
1724 if (!(bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND) &
1725 EEPROM_BUSY))
1726 return 0;
1727 delay(100);
1728 }
1729 printf("\n%s: eeprom stays busy.\n", sc->sc_dev.dv_xname);
1730 return (1);
1731 }
1732
1733 /*
1734 * Create a new rx buffer and add it to the 'soft' rx list.
1735 */
1736 static int
1737 ex_add_rxbuf(sc, rxd)
1738 struct ex_softc *sc;
1739 struct ex_rxdesc *rxd;
1740 {
1741 struct mbuf *m, *oldm;
1742 bus_dmamap_t rxmap;
1743 int error, rval = 0;
1744
1745 oldm = rxd->rx_mbhead;
1746 rxmap = rxd->rx_dmamap;
1747
1748 MGETHDR(m, M_DONTWAIT, MT_DATA);
1749 if (m != NULL) {
1750 MCLGET(m, M_DONTWAIT);
1751 if ((m->m_flags & M_EXT) == 0) {
1752 m_freem(m);
1753 if (oldm == NULL)
1754 return 1;
1755 m = oldm;
1756 m->m_data = m->m_ext.ext_buf;
1757 rval = 1;
1758 }
1759 } else {
1760 if (oldm == NULL)
1761 return 1;
1762 m = oldm;
1763 m->m_data = m->m_ext.ext_buf;
1764 rval = 1;
1765 }
1766
1767 /*
1768 * Setup the DMA map for this receive buffer.
1769 */
1770 if (m != oldm) {
1771 if (oldm != NULL)
1772 bus_dmamap_unload(sc->sc_dmat, rxmap);
1773 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1774 m->m_ext.ext_buf, MCLBYTES, NULL,
1775 BUS_DMA_READ|BUS_DMA_NOWAIT);
1776 if (error) {
1777 printf("%s: can't load rx buffer, error = %d\n",
1778 sc->sc_dev.dv_xname, error);
1779 panic("ex_add_rxbuf"); /* XXX */
1780 }
1781 }
1782
1783 /*
1784 * Align for data after 14 byte header.
1785 */
1786 m->m_data += 2;
1787
1788 rxd->rx_mbhead = m;
1789 rxd->rx_upd->upd_pktstatus = htole32(MCLBYTES - 2);
1790 rxd->rx_upd->upd_frags[0].fr_addr =
1791 htole32(rxmap->dm_segs[0].ds_addr + 2);
1792 rxd->rx_upd->upd_nextptr = 0;
1793
1794 /*
1795 * Attach it to the end of the list.
1796 */
1797 if (sc->rx_head != NULL) {
1798 sc->rx_tail->rx_next = rxd;
1799 sc->rx_tail->rx_upd->upd_nextptr = htole32(sc->sc_upddma +
1800 ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd));
1801 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1802 (caddr_t)sc->rx_tail->rx_upd - (caddr_t)sc->sc_upd,
1803 sizeof (struct ex_upd),
1804 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1805 } else {
1806 sc->rx_head = rxd;
1807 }
1808 sc->rx_tail = rxd;
1809
1810 bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
1811 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1812 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1813 ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd),
1814 sizeof (struct ex_upd), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1815 return (rval);
1816 }
1817
1818 u_int32_t
1819 ex_mii_bitbang_read(self)
1820 struct device *self;
1821 {
1822 struct ex_softc *sc = (void *) self;
1823
1824 /* We're already in Window 4. */
1825 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT));
1826 }
1827
1828 void
1829 ex_mii_bitbang_write(self, val)
1830 struct device *self;
1831 u_int32_t val;
1832 {
1833 struct ex_softc *sc = (void *) self;
1834
1835 /* We're already in Window 4. */
1836 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT, val);
1837 }
1838
1839 int
1840 ex_mii_readreg(v, phy, reg)
1841 struct device *v;
1842 int phy, reg;
1843 {
1844 struct ex_softc *sc = (struct ex_softc *)v;
1845 int val;
1846
1847 if ((sc->ex_conf & EX_CONF_INTPHY) && phy != ELINK_INTPHY_ID)
1848 return 0;
1849
1850 GO_WINDOW(4);
1851
1852 val = mii_bitbang_readreg(v, &ex_mii_bitbang_ops, phy, reg);
1853
1854 GO_WINDOW(1);
1855
1856 return (val);
1857 }
1858
1859 void
1860 ex_mii_writereg(v, phy, reg, data)
1861 struct device *v;
1862 int phy;
1863 int reg;
1864 int data;
1865 {
1866 struct ex_softc *sc = (struct ex_softc *)v;
1867
1868 GO_WINDOW(4);
1869
1870 mii_bitbang_writereg(v, &ex_mii_bitbang_ops, phy, reg, data);
1871
1872 GO_WINDOW(1);
1873 }
1874
1875 void
1876 ex_mii_statchg(v)
1877 struct device *v;
1878 {
1879 struct ex_softc *sc = (struct ex_softc *)v;
1880 bus_space_tag_t iot = sc->sc_iot;
1881 bus_space_handle_t ioh = sc->sc_ioh;
1882 int mctl;
1883
1884 GO_WINDOW(3);
1885 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1886 if (sc->ex_mii.mii_media_active & IFM_FDX)
1887 mctl |= MAC_CONTROL_FDX;
1888 else
1889 mctl &= ~MAC_CONTROL_FDX;
1890 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1891 GO_WINDOW(1); /* back to operating window */
1892 }
1893
1894 int
1895 ex_enable(sc)
1896 struct ex_softc *sc;
1897 {
1898 if (sc->enabled == 0 && sc->enable != NULL) {
1899 if ((*sc->enable)(sc) != 0) {
1900 printf("%s: de/vice enable failed\n",
1901 sc->sc_dev.dv_xname);
1902 return (EIO);
1903 }
1904 sc->enabled = 1;
1905 }
1906 return (0);
1907 }
1908
1909 void
1910 ex_disable(sc)
1911 struct ex_softc *sc;
1912 {
1913 if (sc->enabled == 1 && sc->disable != NULL) {
1914 (*sc->disable)(sc);
1915 sc->enabled = 0;
1916 }
1917 }
1918
1919 void
1920 ex_power(why, arg)
1921 int why;
1922 void *arg;
1923 {
1924 struct ex_softc *sc = (void *)arg;
1925 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1926 int s;
1927
1928 s = splnet();
1929 switch (why) {
1930 case PWR_SUSPEND:
1931 case PWR_STANDBY:
1932 ex_stop(ifp, 0);
1933 if (sc->power != NULL)
1934 (*sc->power)(sc, why);
1935 break;
1936 case PWR_RESUME:
1937 if (ifp->if_flags & IFF_UP) {
1938 if (sc->power != NULL)
1939 (*sc->power)(sc, why);
1940 ex_init(ifp);
1941 }
1942 break;
1943 case PWR_SOFTSUSPEND:
1944 case PWR_SOFTSTANDBY:
1945 case PWR_SOFTRESUME:
1946 break;
1947 }
1948 splx(s);
1949 }
1950