elinkxl.c revision 1.75.6.1 1 /* $NetBSD: elinkxl.c,v 1.75.6.1 2005/02/12 18:17:43 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: elinkxl.c,v 1.75.6.1 2005/02/12 18:17:43 yamt Exp $");
41
42 #include "bpfilter.h"
43 #include "rnd.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/kernel.h>
49 #include <sys/mbuf.h>
50 #include <sys/socket.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/syslog.h>
54 #include <sys/select.h>
55 #include <sys/device.h>
56 #if NRND > 0
57 #include <sys/rnd.h>
58 #endif
59
60 #include <uvm/uvm_extern.h>
61
62 #include <net/if.h>
63 #include <net/if_dl.h>
64 #include <net/if_ether.h>
65 #include <net/if_media.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #include <net/bpfdesc.h>
70 #endif
71
72 #include <machine/cpu.h>
73 #include <machine/bus.h>
74 #include <machine/intr.h>
75 #include <machine/endian.h>
76
77 #include <dev/mii/miivar.h>
78 #include <dev/mii/mii.h>
79 #include <dev/mii/mii_bitbang.h>
80
81 #include <dev/ic/elink3reg.h>
82 /* #include <dev/ic/elink3var.h> */
83 #include <dev/ic/elinkxlreg.h>
84 #include <dev/ic/elinkxlvar.h>
85
86 #ifdef DEBUG
87 int exdebug = 0;
88 #endif
89
90 /* ifmedia callbacks */
91 int ex_media_chg(struct ifnet *ifp);
92 void ex_media_stat(struct ifnet *ifp, struct ifmediareq *req);
93
94 void ex_probe_media(struct ex_softc *);
95 void ex_set_filter(struct ex_softc *);
96 void ex_set_media(struct ex_softc *);
97 void ex_set_xcvr(struct ex_softc *, u_int16_t);
98 struct mbuf *ex_get(struct ex_softc *, int);
99 u_int16_t ex_read_eeprom(struct ex_softc *, int);
100 int ex_init(struct ifnet *);
101 void ex_read(struct ex_softc *);
102 void ex_reset(struct ex_softc *);
103 void ex_set_mc(struct ex_softc *);
104 void ex_getstats(struct ex_softc *);
105 void ex_printstats(struct ex_softc *);
106 void ex_tick(void *);
107
108 void ex_power(int, void *);
109
110 static int ex_eeprom_busy(struct ex_softc *);
111 static int ex_add_rxbuf(struct ex_softc *, struct ex_rxdesc *);
112 static void ex_init_txdescs(struct ex_softc *);
113
114 static void ex_shutdown(void *);
115 static void ex_start(struct ifnet *);
116 static void ex_txstat(struct ex_softc *);
117
118 int ex_mii_readreg(struct device *, int, int);
119 void ex_mii_writereg(struct device *, int, int, int);
120 void ex_mii_statchg(struct device *);
121
122 void ex_probemedia(struct ex_softc *);
123
124 /*
125 * Structure to map media-present bits in boards to ifmedia codes and
126 * printable media names. Used for table-driven ifmedia initialization.
127 */
128 struct ex_media {
129 int exm_mpbit; /* media present bit */
130 const char *exm_name; /* name of medium */
131 int exm_ifmedia; /* ifmedia word for medium */
132 int exm_epmedia; /* ELINKMEDIA_* constant */
133 };
134
135 /*
136 * Media table for 3c90x chips. Note that chips with MII have no
137 * `native' media.
138 */
139 struct ex_media ex_native_media[] = {
140 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
141 ELINKMEDIA_10BASE_T },
142 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
143 ELINKMEDIA_10BASE_T },
144 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
145 ELINKMEDIA_AUI },
146 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
147 ELINKMEDIA_10BASE_2 },
148 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
149 ELINKMEDIA_100BASE_TX },
150 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
151 ELINKMEDIA_100BASE_TX },
152 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
153 ELINKMEDIA_100BASE_FX },
154 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
155 ELINKMEDIA_MII },
156 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
157 ELINKMEDIA_100BASE_T4 },
158 { 0, NULL, 0,
159 0 },
160 };
161
162 /*
163 * MII bit-bang glue.
164 */
165 u_int32_t ex_mii_bitbang_read(struct device *);
166 void ex_mii_bitbang_write(struct device *, u_int32_t);
167
168 const struct mii_bitbang_ops ex_mii_bitbang_ops = {
169 ex_mii_bitbang_read,
170 ex_mii_bitbang_write,
171 {
172 ELINK_PHY_DATA, /* MII_BIT_MDO */
173 ELINK_PHY_DATA, /* MII_BIT_MDI */
174 ELINK_PHY_CLK, /* MII_BIT_MDC */
175 ELINK_PHY_DIR, /* MII_BIT_DIR_HOST_PHY */
176 0, /* MII_BIT_DIR_PHY_HOST */
177 }
178 };
179
180 /*
181 * Back-end attach and configure.
182 */
183 void
184 ex_config(sc)
185 struct ex_softc *sc;
186 {
187 struct ifnet *ifp;
188 u_int16_t val;
189 u_int8_t macaddr[ETHER_ADDR_LEN] = {0};
190 bus_space_tag_t iot = sc->sc_iot;
191 bus_space_handle_t ioh = sc->sc_ioh;
192 int i, error, attach_stage;
193
194 callout_init(&sc->ex_mii_callout);
195
196 ex_reset(sc);
197
198 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR0);
199 macaddr[0] = val >> 8;
200 macaddr[1] = val & 0xff;
201 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR1);
202 macaddr[2] = val >> 8;
203 macaddr[3] = val & 0xff;
204 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR2);
205 macaddr[4] = val >> 8;
206 macaddr[5] = val & 0xff;
207
208 aprint_normal("%s: MAC address %s\n", sc->sc_dev.dv_xname,
209 ether_sprintf(macaddr));
210
211 if (sc->ex_conf & (EX_CONF_INV_LED_POLARITY|EX_CONF_PHY_POWER)) {
212 GO_WINDOW(2);
213 val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
214 if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
215 val |= ELINK_RESET_OPT_LEDPOLAR;
216 if (sc->ex_conf & EX_CONF_PHY_POWER)
217 val |= ELINK_RESET_OPT_PHYPOWER;
218 bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
219 }
220 if (sc->ex_conf & EX_CONF_NO_XCVR_PWR) {
221 GO_WINDOW(0);
222 bus_space_write_2(iot, ioh, ELINK_W0_MFG_ID,
223 EX_XCVR_PWR_MAGICBITS);
224 }
225
226 attach_stage = 0;
227
228 /*
229 * Allocate the upload descriptors, and create and load the DMA
230 * map for them.
231 */
232 if ((error = bus_dmamem_alloc(sc->sc_dmat,
233 EX_NUPD * sizeof (struct ex_upd), PAGE_SIZE, 0, &sc->sc_useg, 1,
234 &sc->sc_urseg, BUS_DMA_NOWAIT)) != 0) {
235 aprint_error(
236 "%s: can't allocate upload descriptors, error = %d\n",
237 sc->sc_dev.dv_xname, error);
238 goto fail;
239 }
240
241 attach_stage = 1;
242
243 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg,
244 EX_NUPD * sizeof (struct ex_upd), (caddr_t *)&sc->sc_upd,
245 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
246 aprint_error("%s: can't map upload descriptors, error = %d\n",
247 sc->sc_dev.dv_xname, error);
248 goto fail;
249 }
250
251 attach_stage = 2;
252
253 if ((error = bus_dmamap_create(sc->sc_dmat,
254 EX_NUPD * sizeof (struct ex_upd), 1,
255 EX_NUPD * sizeof (struct ex_upd), 0, BUS_DMA_NOWAIT,
256 &sc->sc_upd_dmamap)) != 0) {
257 aprint_error(
258 "%s: can't create upload desc. DMA map, error = %d\n",
259 sc->sc_dev.dv_xname, error);
260 goto fail;
261 }
262
263 attach_stage = 3;
264
265 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_upd_dmamap,
266 sc->sc_upd, EX_NUPD * sizeof (struct ex_upd), NULL,
267 BUS_DMA_NOWAIT)) != 0) {
268 aprint_error(
269 "%s: can't load upload desc. DMA map, error = %d\n",
270 sc->sc_dev.dv_xname, error);
271 goto fail;
272 }
273
274 attach_stage = 4;
275
276 /*
277 * Allocate the download descriptors, and create and load the DMA
278 * map for them.
279 */
280 if ((error = bus_dmamem_alloc(sc->sc_dmat,
281 EX_NDPD * sizeof (struct ex_dpd), PAGE_SIZE, 0, &sc->sc_dseg, 1,
282 &sc->sc_drseg, BUS_DMA_NOWAIT)) != 0) {
283 aprint_error(
284 "%s: can't allocate download descriptors, error = %d\n",
285 sc->sc_dev.dv_xname, error);
286 goto fail;
287 }
288
289 attach_stage = 5;
290
291 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg,
292 EX_NDPD * sizeof (struct ex_dpd), (caddr_t *)&sc->sc_dpd,
293 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
294 aprint_error("%s: can't map download descriptors, error = %d\n",
295 sc->sc_dev.dv_xname, error);
296 goto fail;
297 }
298 memset(sc->sc_dpd, 0, EX_NDPD * sizeof (struct ex_dpd));
299
300 attach_stage = 6;
301
302 if ((error = bus_dmamap_create(sc->sc_dmat,
303 EX_NDPD * sizeof (struct ex_dpd), 1,
304 EX_NDPD * sizeof (struct ex_dpd), 0, BUS_DMA_NOWAIT,
305 &sc->sc_dpd_dmamap)) != 0) {
306 aprint_error(
307 "%s: can't create download desc. DMA map, error = %d\n",
308 sc->sc_dev.dv_xname, error);
309 goto fail;
310 }
311
312 attach_stage = 7;
313
314 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dpd_dmamap,
315 sc->sc_dpd, EX_NDPD * sizeof (struct ex_dpd), NULL,
316 BUS_DMA_NOWAIT)) != 0) {
317 aprint_error(
318 "%s: can't load download desc. DMA map, error = %d\n",
319 sc->sc_dev.dv_xname, error);
320 goto fail;
321 }
322
323 attach_stage = 8;
324
325
326 /*
327 * Create the transmit buffer DMA maps.
328 */
329 for (i = 0; i < EX_NDPD; i++) {
330 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
331 EX_NTFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
332 &sc->sc_tx_dmamaps[i])) != 0) {
333 aprint_error(
334 "%s: can't create tx DMA map %d, error = %d\n",
335 sc->sc_dev.dv_xname, i, error);
336 goto fail;
337 }
338 }
339
340 attach_stage = 9;
341
342 /*
343 * Create the receive buffer DMA maps.
344 */
345 for (i = 0; i < EX_NUPD; i++) {
346 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
347 EX_NRFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
348 &sc->sc_rx_dmamaps[i])) != 0) {
349 aprint_error(
350 "%s: can't create rx DMA map %d, error = %d\n",
351 sc->sc_dev.dv_xname, i, error);
352 goto fail;
353 }
354 }
355
356 attach_stage = 10;
357
358 /*
359 * Create ring of upload descriptors, only once. The DMA engine
360 * will loop over this when receiving packets, stalling if it
361 * hits an UPD with a finished receive.
362 */
363 for (i = 0; i < EX_NUPD; i++) {
364 sc->sc_rxdescs[i].rx_dmamap = sc->sc_rx_dmamaps[i];
365 sc->sc_rxdescs[i].rx_upd = &sc->sc_upd[i];
366 sc->sc_upd[i].upd_frags[0].fr_len =
367 htole32((MCLBYTES - 2) | EX_FR_LAST);
368 if (ex_add_rxbuf(sc, &sc->sc_rxdescs[i]) != 0) {
369 aprint_error("%s: can't allocate or map rx buffers\n",
370 sc->sc_dev.dv_xname);
371 goto fail;
372 }
373 }
374
375 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap, 0,
376 EX_NUPD * sizeof (struct ex_upd),
377 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
378
379 ex_init_txdescs(sc);
380
381 attach_stage = 11;
382
383
384 GO_WINDOW(3);
385 val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
386 if (val & ELINK_MEDIACAP_MII)
387 sc->ex_conf |= EX_CONF_MII;
388
389 ifp = &sc->sc_ethercom.ec_if;
390
391 /*
392 * Initialize our media structures and MII info. We'll
393 * probe the MII if we discover that we have one.
394 */
395 sc->ex_mii.mii_ifp = ifp;
396 sc->ex_mii.mii_readreg = ex_mii_readreg;
397 sc->ex_mii.mii_writereg = ex_mii_writereg;
398 sc->ex_mii.mii_statchg = ex_mii_statchg;
399 ifmedia_init(&sc->ex_mii.mii_media, IFM_IMASK, ex_media_chg,
400 ex_media_stat);
401
402 if (sc->ex_conf & EX_CONF_MII) {
403 /*
404 * Find PHY, extract media information from it.
405 * First, select the right transceiver.
406 */
407 ex_set_xcvr(sc, val);
408
409 mii_attach(&sc->sc_dev, &sc->ex_mii, 0xffffffff,
410 MII_PHY_ANY, MII_OFFSET_ANY, 0);
411 if (LIST_FIRST(&sc->ex_mii.mii_phys) == NULL) {
412 ifmedia_add(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE,
413 0, NULL);
414 ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE);
415 } else {
416 ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_AUTO);
417 }
418 } else
419 ex_probemedia(sc);
420
421 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
422 ifp->if_softc = sc;
423 ifp->if_start = ex_start;
424 ifp->if_ioctl = ex_ioctl;
425 ifp->if_watchdog = ex_watchdog;
426 ifp->if_init = ex_init;
427 ifp->if_stop = ex_stop;
428 ifp->if_flags =
429 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
430 sc->sc_if_flags = ifp->if_flags;
431 IFQ_SET_READY(&ifp->if_snd);
432
433 /*
434 * We can support 802.1Q VLAN-sized frames.
435 */
436 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
437
438 /*
439 * The 3c90xB has hardware IPv4/TCPv4/UDPv4 checksum support.
440 */
441 if (sc->ex_conf & EX_CONF_90XB)
442 sc->sc_ethercom.ec_if.if_capabilities |= IFCAP_CSUM_IPv4 |
443 IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
444
445 if_attach(ifp);
446 ether_ifattach(ifp, macaddr);
447
448 GO_WINDOW(1);
449
450 sc->tx_start_thresh = 20;
451 sc->tx_succ_ok = 0;
452
453 /* TODO: set queues to 0 */
454
455 #if NRND > 0
456 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
457 RND_TYPE_NET, 0);
458 #endif
459
460 /* Establish callback to reset card when we reboot. */
461 sc->sc_sdhook = shutdownhook_establish(ex_shutdown, sc);
462 if (sc->sc_sdhook == NULL)
463 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
464 sc->sc_dev.dv_xname);
465
466 /* Add a suspend hook to make sure we come back up after a resume. */
467 sc->sc_powerhook = powerhook_establish(ex_power, sc);
468 if (sc->sc_powerhook == NULL)
469 aprint_error("%s: WARNING: unable to establish power hook\n",
470 sc->sc_dev.dv_xname);
471
472 /* The attach is successful. */
473 sc->ex_flags |= EX_FLAGS_ATTACHED;
474 return;
475
476 fail:
477 /*
478 * Free any resources we've allocated during the failed attach
479 * attempt. Do this in reverse order and fall though.
480 */
481 switch (attach_stage) {
482 case 11:
483 {
484 struct ex_rxdesc *rxd;
485
486 for (i = 0; i < EX_NUPD; i++) {
487 rxd = &sc->sc_rxdescs[i];
488 if (rxd->rx_mbhead != NULL) {
489 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
490 m_freem(rxd->rx_mbhead);
491 }
492 }
493 }
494 /* FALLTHROUGH */
495
496 case 10:
497 for (i = 0; i < EX_NUPD; i++)
498 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
499 /* FALLTHROUGH */
500
501 case 9:
502 for (i = 0; i < EX_NDPD; i++)
503 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
504 /* FALLTHROUGH */
505 case 8:
506 bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
507 /* FALLTHROUGH */
508
509 case 7:
510 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
511 /* FALLTHROUGH */
512
513 case 6:
514 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
515 EX_NDPD * sizeof (struct ex_dpd));
516 /* FALLTHROUGH */
517
518 case 5:
519 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
520 break;
521
522 case 4:
523 bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
524 /* FALLTHROUGH */
525
526 case 3:
527 bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
528 /* FALLTHROUGH */
529
530 case 2:
531 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
532 EX_NUPD * sizeof (struct ex_upd));
533 /* FALLTHROUGH */
534
535 case 1:
536 bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
537 break;
538 }
539
540 }
541
542 /*
543 * Find the media present on non-MII chips.
544 */
545 void
546 ex_probemedia(sc)
547 struct ex_softc *sc;
548 {
549 bus_space_tag_t iot = sc->sc_iot;
550 bus_space_handle_t ioh = sc->sc_ioh;
551 struct ifmedia *ifm = &sc->ex_mii.mii_media;
552 struct ex_media *exm;
553 u_int16_t config1, reset_options, default_media;
554 int defmedia = 0;
555 const char *sep = "", *defmedianame = NULL;
556
557 GO_WINDOW(3);
558 config1 = bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
559 reset_options = bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
560 GO_WINDOW(0);
561
562 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
563
564 aprint_normal("%s: ", sc->sc_dev.dv_xname);
565
566 /* Sanity check that there are any media! */
567 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
568 aprint_error("no media present!\n");
569 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
570 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
571 return;
572 }
573
574 #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", "
575
576 for (exm = ex_native_media; exm->exm_name != NULL; exm++) {
577 if (reset_options & exm->exm_mpbit) {
578 /*
579 * Default media is a little complicated. We
580 * support full-duplex which uses the same
581 * reset options bit.
582 *
583 * XXX Check EEPROM for default to FDX?
584 */
585 if (exm->exm_epmedia == default_media) {
586 if ((exm->exm_ifmedia & IFM_FDX) == 0) {
587 defmedia = exm->exm_ifmedia;
588 defmedianame = exm->exm_name;
589 }
590 } else if (defmedia == 0) {
591 defmedia = exm->exm_ifmedia;
592 defmedianame = exm->exm_name;
593 }
594 ifmedia_add(ifm, exm->exm_ifmedia, exm->exm_epmedia,
595 NULL);
596 PRINT(exm->exm_name);
597 }
598 }
599
600 #undef PRINT
601
602 #ifdef DIAGNOSTIC
603 if (defmedia == 0)
604 panic("ex_probemedia: impossible");
605 #endif
606
607 aprint_normal(", default %s\n", defmedianame);
608 ifmedia_set(ifm, defmedia);
609 }
610
611 /*
612 * Bring device up.
613 */
614 int
615 ex_init(ifp)
616 struct ifnet *ifp;
617 {
618 struct ex_softc *sc = ifp->if_softc;
619 bus_space_tag_t iot = sc->sc_iot;
620 bus_space_handle_t ioh = sc->sc_ioh;
621 int i;
622 int error = 0;
623
624 if ((error = ex_enable(sc)) != 0)
625 goto out;
626
627 ex_waitcmd(sc);
628 ex_stop(ifp, 0);
629
630 /*
631 * Set the station address and clear the station mask. The latter
632 * is needed for 90x cards, 0 is the default for 90xB cards.
633 */
634 GO_WINDOW(2);
635 for (i = 0; i < ETHER_ADDR_LEN; i++) {
636 bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
637 LLADDR(ifp->if_sadl)[i]);
638 bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
639 }
640
641 GO_WINDOW(3);
642
643 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_RESET);
644 ex_waitcmd(sc);
645 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
646 ex_waitcmd(sc);
647
648 /*
649 * Disable reclaim threshold for 90xB, set free threshold to
650 * 6 * 256 = 1536 for 90x.
651 */
652 if (sc->ex_conf & EX_CONF_90XB)
653 bus_space_write_2(iot, ioh, ELINK_COMMAND,
654 ELINK_TXRECLTHRESH | 255);
655 else
656 bus_space_write_1(iot, ioh, ELINK_TXFREETHRESH, 6);
657
658 bus_space_write_2(iot, ioh, ELINK_COMMAND,
659 SET_RX_EARLY_THRESH | ELINK_THRESH_DISABLE);
660
661 bus_space_write_4(iot, ioh, ELINK_DMACTRL,
662 bus_space_read_4(iot, ioh, ELINK_DMACTRL) | ELINK_DMAC_UPRXEAREN);
663
664 bus_space_write_2(iot, ioh, ELINK_COMMAND,
665 SET_RD_0_MASK | XL_WATCHED_INTERRUPTS);
666 bus_space_write_2(iot, ioh, ELINK_COMMAND,
667 SET_INTR_MASK | XL_WATCHED_INTERRUPTS);
668
669 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
670 if (sc->intr_ack)
671 (* sc->intr_ack)(sc);
672 ex_set_media(sc);
673 ex_set_mc(sc);
674
675
676 bus_space_write_2(iot, ioh, ELINK_COMMAND, STATS_ENABLE);
677 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
678 bus_space_write_4(iot, ioh, ELINK_UPLISTPTR, sc->sc_upddma);
679 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
680 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_UPUNSTALL);
681
682 if (sc->ex_conf & (EX_CONF_PHY_POWER | EX_CONF_INV_LED_POLARITY)) {
683 u_int16_t cbcard_config;
684
685 GO_WINDOW(2);
686 cbcard_config = bus_space_read_2(sc->sc_iot, sc->sc_ioh, 0x0c);
687 if (sc->ex_conf & EX_CONF_PHY_POWER) {
688 cbcard_config |= 0x4000; /* turn on PHY power */
689 }
690 if (sc->ex_conf & EX_CONF_INV_LED_POLARITY) {
691 cbcard_config |= 0x0010; /* invert LED polarity */
692 }
693 bus_space_write_2(sc->sc_iot, sc->sc_ioh, 0x0c, cbcard_config);
694
695 GO_WINDOW(3);
696 }
697
698 ifp->if_flags |= IFF_RUNNING;
699 ifp->if_flags &= ~IFF_OACTIVE;
700 ex_start(ifp);
701 sc->sc_if_flags = ifp->if_flags;
702
703 GO_WINDOW(1);
704
705 callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
706
707 out:
708 if (error) {
709 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
710 ifp->if_timer = 0;
711 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
712 }
713 return (error);
714 }
715
716 #define MCHASHSIZE 256
717 #define ex_mchash(addr) (ether_crc32_be((addr), ETHER_ADDR_LEN) & \
718 (MCHASHSIZE - 1))
719
720 /*
721 * Set multicast receive filter. Also take care of promiscuous mode
722 * here (XXX).
723 */
724 void
725 ex_set_mc(sc)
726 struct ex_softc *sc;
727 {
728 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
729 struct ethercom *ec = &sc->sc_ethercom;
730 struct ether_multi *enm;
731 struct ether_multistep estep;
732 int i;
733 u_int16_t mask = FIL_INDIVIDUAL | FIL_BRDCST;
734
735 if (ifp->if_flags & IFF_PROMISC) {
736 mask |= FIL_PROMISC;
737 goto allmulti;
738 }
739
740 ETHER_FIRST_MULTI(estep, ec, enm);
741 if (enm == NULL)
742 goto nomulti;
743
744 if ((sc->ex_conf & EX_CONF_90XB) == 0)
745 /* No multicast hash filtering. */
746 goto allmulti;
747
748 for (i = 0; i < MCHASHSIZE; i++)
749 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
750 ELINK_COMMAND, ELINK_CLEARHASHFILBIT | i);
751
752 do {
753 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
754 ETHER_ADDR_LEN) != 0)
755 goto allmulti;
756
757 i = ex_mchash(enm->enm_addrlo);
758 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
759 ELINK_COMMAND, ELINK_SETHASHFILBIT | i);
760 ETHER_NEXT_MULTI(estep, enm);
761 } while (enm != NULL);
762 mask |= FIL_MULTIHASH;
763
764 nomulti:
765 ifp->if_flags &= ~IFF_ALLMULTI;
766 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
767 SET_RX_FILTER | mask);
768 return;
769
770 allmulti:
771 ifp->if_flags |= IFF_ALLMULTI;
772 mask |= FIL_MULTICAST;
773 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
774 SET_RX_FILTER | mask);
775 }
776
777
778 static void
779 ex_txstat(sc)
780 struct ex_softc *sc;
781 {
782 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
783 bus_space_tag_t iot = sc->sc_iot;
784 bus_space_handle_t ioh = sc->sc_ioh;
785 int i;
786
787 /*
788 * We need to read+write TX_STATUS until we get a 0 status
789 * in order to turn off the interrupt flag.
790 */
791 while ((i = bus_space_read_1(iot, ioh, ELINK_TXSTATUS)) & TXS_COMPLETE) {
792 bus_space_write_1(iot, ioh, ELINK_TXSTATUS, 0x0);
793
794 if (i & TXS_JABBER) {
795 ++sc->sc_ethercom.ec_if.if_oerrors;
796 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
797 printf("%s: jabber (%x)\n",
798 sc->sc_dev.dv_xname, i);
799 ex_init(ifp);
800 /* TODO: be more subtle here */
801 } else if (i & TXS_UNDERRUN) {
802 ++sc->sc_ethercom.ec_if.if_oerrors;
803 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
804 printf("%s: fifo underrun (%x) @%d\n",
805 sc->sc_dev.dv_xname, i,
806 sc->tx_start_thresh);
807 if (sc->tx_succ_ok < 100)
808 sc->tx_start_thresh = min(ETHER_MAX_LEN,
809 sc->tx_start_thresh + 20);
810 sc->tx_succ_ok = 0;
811 ex_init(ifp);
812 /* TODO: be more subtle here */
813 } else if (i & TXS_MAX_COLLISION) {
814 ++sc->sc_ethercom.ec_if.if_collisions;
815 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
816 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
817 } else
818 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
819 }
820 }
821
822 int
823 ex_media_chg(ifp)
824 struct ifnet *ifp;
825 {
826
827 if (ifp->if_flags & IFF_UP)
828 ex_init(ifp);
829 return 0;
830 }
831
832 void
833 ex_set_xcvr(sc, media)
834 struct ex_softc *sc;
835 const u_int16_t media;
836 {
837 bus_space_tag_t iot = sc->sc_iot;
838 bus_space_handle_t ioh = sc->sc_ioh;
839 u_int32_t icfg;
840
841 /*
842 * We're already in Window 3
843 */
844 icfg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
845 icfg &= ~(CONFIG_XCVR_SEL << 16);
846 if (media & (ELINK_MEDIACAP_MII | ELINK_MEDIACAP_100BASET4))
847 icfg |= ELINKMEDIA_MII << (CONFIG_XCVR_SEL_SHIFT + 16);
848 if (media & ELINK_MEDIACAP_100BASETX)
849 icfg |= ELINKMEDIA_AUTO << (CONFIG_XCVR_SEL_SHIFT + 16);
850 if (media & ELINK_MEDIACAP_100BASEFX)
851 icfg |= ELINKMEDIA_100BASE_FX
852 << (CONFIG_XCVR_SEL_SHIFT + 16);
853 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, icfg);
854 }
855
856 void
857 ex_set_media(sc)
858 struct ex_softc *sc;
859 {
860 bus_space_tag_t iot = sc->sc_iot;
861 bus_space_handle_t ioh = sc->sc_ioh;
862 u_int32_t configreg;
863
864 if (((sc->ex_conf & EX_CONF_MII) &&
865 (sc->ex_mii.mii_media_active & IFM_FDX))
866 || (!(sc->ex_conf & EX_CONF_MII) &&
867 (sc->ex_mii.mii_media.ifm_media & IFM_FDX))) {
868 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL,
869 MAC_CONTROL_FDX);
870 } else {
871 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, 0);
872 }
873
874 /*
875 * If the device has MII, select it, and then tell the
876 * PHY which media to use.
877 */
878 if (sc->ex_conf & EX_CONF_MII) {
879 u_int16_t val;
880
881 GO_WINDOW(3);
882 val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
883 ex_set_xcvr(sc, val);
884 mii_mediachg(&sc->ex_mii);
885 return;
886 }
887
888 GO_WINDOW(4);
889 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0);
890 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
891 delay(800);
892
893 /*
894 * Now turn on the selected media/transceiver.
895 */
896 switch (IFM_SUBTYPE(sc->ex_mii.mii_media.ifm_cur->ifm_media)) {
897 case IFM_10_T:
898 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
899 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
900 break;
901
902 case IFM_10_2:
903 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
904 DELAY(800);
905 break;
906
907 case IFM_100_TX:
908 case IFM_100_FX:
909 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
910 LINKBEAT_ENABLE);
911 DELAY(800);
912 break;
913
914 case IFM_10_5:
915 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
916 SQE_ENABLE);
917 DELAY(800);
918 break;
919
920 case IFM_MANUAL:
921 break;
922
923 case IFM_NONE:
924 return;
925
926 default:
927 panic("ex_set_media: impossible");
928 }
929
930 GO_WINDOW(3);
931 configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
932
933 configreg &= ~(CONFIG_MEDIAMASK << 16);
934 configreg |= (sc->ex_mii.mii_media.ifm_cur->ifm_data <<
935 (CONFIG_MEDIAMASK_SHIFT + 16));
936
937 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
938 }
939
940 /*
941 * Get currently-selected media from card.
942 * (if_media callback, may be called before interface is brought up).
943 */
944 void
945 ex_media_stat(ifp, req)
946 struct ifnet *ifp;
947 struct ifmediareq *req;
948 {
949 struct ex_softc *sc = ifp->if_softc;
950 u_int16_t help;
951
952 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING)) {
953 if (sc->ex_conf & EX_CONF_MII) {
954 mii_pollstat(&sc->ex_mii);
955 req->ifm_status = sc->ex_mii.mii_media_status;
956 req->ifm_active = sc->ex_mii.mii_media_active;
957 } else {
958 GO_WINDOW(4);
959 req->ifm_status = IFM_AVALID;
960 req->ifm_active =
961 sc->ex_mii.mii_media.ifm_cur->ifm_media;
962 help = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
963 ELINK_W4_MEDIA_TYPE);
964 if (help & LINKBEAT_DETECT)
965 req->ifm_status |= IFM_ACTIVE;
966 GO_WINDOW(1);
967 }
968 }
969 }
970
971
972
973 /*
974 * Start outputting on the interface.
975 */
976 static void
977 ex_start(ifp)
978 struct ifnet *ifp;
979 {
980 struct ex_softc *sc = ifp->if_softc;
981 bus_space_tag_t iot = sc->sc_iot;
982 bus_space_handle_t ioh = sc->sc_ioh;
983 volatile struct ex_fraghdr *fr = NULL;
984 volatile struct ex_dpd *dpd = NULL, *prevdpd = NULL;
985 struct ex_txdesc *txp;
986 struct mbuf *mb_head;
987 bus_dmamap_t dmamap;
988 int offset, totlen, segment, error;
989 u_int32_t csum_flags;
990
991 if (sc->tx_head || sc->tx_free == NULL)
992 return;
993
994 txp = NULL;
995
996 /*
997 * We're finished if there is nothing more to add to the list or if
998 * we're all filled up with buffers to transmit.
999 */
1000 while (sc->tx_free != NULL) {
1001 /*
1002 * Grab a packet to transmit.
1003 */
1004 IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1005 if (mb_head == NULL)
1006 break;
1007
1008 /*
1009 * Get pointer to next available tx desc.
1010 */
1011 txp = sc->tx_free;
1012 dmamap = txp->tx_dmamap;
1013
1014 /*
1015 * Go through each of the mbufs in the chain and initialize
1016 * the transmit buffer descriptors with the physical address
1017 * and size of the mbuf.
1018 */
1019 reload:
1020 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1021 mb_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1022 switch (error) {
1023 case 0:
1024 /* Success. */
1025 break;
1026
1027 case EFBIG:
1028 {
1029 struct mbuf *mn;
1030
1031 /*
1032 * We ran out of segments. We have to recopy this
1033 * mbuf chain first. Bail out if we can't get the
1034 * new buffers.
1035 */
1036 printf("%s: too many segments, ", sc->sc_dev.dv_xname);
1037
1038 MGETHDR(mn, M_DONTWAIT, MT_DATA);
1039 if (mn == NULL) {
1040 m_freem(mb_head);
1041 printf("aborting\n");
1042 goto out;
1043 }
1044 if (mb_head->m_pkthdr.len > MHLEN) {
1045 MCLGET(mn, M_DONTWAIT);
1046 if ((mn->m_flags & M_EXT) == 0) {
1047 m_freem(mn);
1048 m_freem(mb_head);
1049 printf("aborting\n");
1050 goto out;
1051 }
1052 }
1053 m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1054 mtod(mn, caddr_t));
1055 mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1056 m_freem(mb_head);
1057 mb_head = mn;
1058 printf("retrying\n");
1059 goto reload;
1060 }
1061
1062 default:
1063 /*
1064 * Some other problem; report it.
1065 */
1066 printf("%s: can't load mbuf chain, error = %d\n",
1067 sc->sc_dev.dv_xname, error);
1068 m_freem(mb_head);
1069 goto out;
1070 }
1071
1072 /*
1073 * remove our tx desc from freelist.
1074 */
1075 sc->tx_free = txp->tx_next;
1076 txp->tx_next = NULL;
1077
1078 fr = &txp->tx_dpd->dpd_frags[0];
1079 totlen = 0;
1080 for (segment = 0; segment < dmamap->dm_nsegs; segment++, fr++) {
1081 fr->fr_addr = htole32(dmamap->dm_segs[segment].ds_addr);
1082 fr->fr_len = htole32(dmamap->dm_segs[segment].ds_len);
1083 totlen += dmamap->dm_segs[segment].ds_len;
1084 }
1085 fr--;
1086 fr->fr_len |= htole32(EX_FR_LAST);
1087 txp->tx_mbhead = mb_head;
1088
1089 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1090 BUS_DMASYNC_PREWRITE);
1091
1092 dpd = txp->tx_dpd;
1093 dpd->dpd_nextptr = 0;
1094 dpd->dpd_fsh = htole32(totlen);
1095
1096 /* Byte-swap constants so compiler can optimize. */
1097
1098 if (sc->ex_conf & EX_CONF_90XB) {
1099 csum_flags = 0;
1100
1101 if (mb_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1102 csum_flags |= htole32(EX_DPD_IPCKSUM);
1103
1104 if (mb_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1105 csum_flags |= htole32(EX_DPD_TCPCKSUM);
1106 else if (mb_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1107 csum_flags |= htole32(EX_DPD_UDPCKSUM);
1108
1109 dpd->dpd_fsh |= csum_flags;
1110 } else {
1111 KDASSERT((mb_head->m_pkthdr.csum_flags &
1112 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) == 0);
1113 }
1114
1115 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1116 ((caddr_t)dpd - (caddr_t)sc->sc_dpd),
1117 sizeof (struct ex_dpd),
1118 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1119
1120 /*
1121 * No need to stall the download engine, we know it's
1122 * not busy right now.
1123 *
1124 * Fix up pointers in both the "soft" tx and the physical
1125 * tx list.
1126 */
1127 if (sc->tx_head != NULL) {
1128 prevdpd = sc->tx_tail->tx_dpd;
1129 offset = ((caddr_t)prevdpd - (caddr_t)sc->sc_dpd);
1130 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1131 offset, sizeof (struct ex_dpd),
1132 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1133 prevdpd->dpd_nextptr = htole32(DPD_DMADDR(sc, txp));
1134 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1135 offset, sizeof (struct ex_dpd),
1136 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1137 sc->tx_tail->tx_next = txp;
1138 sc->tx_tail = txp;
1139 } else {
1140 sc->tx_tail = sc->tx_head = txp;
1141 }
1142
1143 #if NBPFILTER > 0
1144 /*
1145 * Pass packet to bpf if there is a listener.
1146 */
1147 if (ifp->if_bpf)
1148 bpf_mtap(ifp->if_bpf, mb_head);
1149 #endif
1150 }
1151 out:
1152 if (sc->tx_head) {
1153 sc->tx_tail->tx_dpd->dpd_fsh |= htole32(EX_DPD_DNIND);
1154 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1155 ((caddr_t)sc->tx_tail->tx_dpd - (caddr_t)sc->sc_dpd),
1156 sizeof (struct ex_dpd),
1157 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1158 ifp->if_flags |= IFF_OACTIVE;
1159 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNUNSTALL);
1160 bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
1161 DPD_DMADDR(sc, sc->tx_head));
1162
1163 /* trigger watchdog */
1164 ifp->if_timer = 5;
1165 }
1166 }
1167
1168
1169 int
1170 ex_intr(arg)
1171 void *arg;
1172 {
1173 struct ex_softc *sc = arg;
1174 bus_space_tag_t iot = sc->sc_iot;
1175 bus_space_handle_t ioh = sc->sc_ioh;
1176 u_int16_t stat;
1177 int ret = 0;
1178 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1179
1180 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1181 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1182 return (0);
1183
1184 for (;;) {
1185 stat = bus_space_read_2(iot, ioh, ELINK_STATUS);
1186
1187 if ((stat & XL_WATCHED_INTERRUPTS) == 0) {
1188 if ((stat & INTR_LATCH) == 0) {
1189 #if 0
1190 printf("%s: intr latch cleared\n",
1191 sc->sc_dev.dv_xname);
1192 #endif
1193 break;
1194 }
1195 }
1196
1197 ret = 1;
1198
1199 /*
1200 * Acknowledge interrupts.
1201 */
1202 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1203 (stat & (XL_WATCHED_INTERRUPTS | INTR_LATCH)));
1204 if (sc->intr_ack)
1205 (*sc->intr_ack)(sc);
1206
1207 if (stat & HOST_ERROR) {
1208 printf("%s: adapter failure (%x)\n",
1209 sc->sc_dev.dv_xname, stat);
1210 ex_reset(sc);
1211 ex_init(ifp);
1212 return 1;
1213 }
1214 if (stat & TX_COMPLETE) {
1215 ex_txstat(sc);
1216 }
1217 if (stat & UPD_STATS) {
1218 ex_getstats(sc);
1219 }
1220 if (stat & DN_COMPLETE) {
1221 struct ex_txdesc *txp, *ptxp = NULL;
1222 bus_dmamap_t txmap;
1223
1224 /* reset watchdog timer, was set in ex_start() */
1225 ifp->if_timer = 0;
1226
1227 for (txp = sc->tx_head; txp != NULL;
1228 txp = txp->tx_next) {
1229 bus_dmamap_sync(sc->sc_dmat,
1230 sc->sc_dpd_dmamap,
1231 (caddr_t)txp->tx_dpd - (caddr_t)sc->sc_dpd,
1232 sizeof (struct ex_dpd),
1233 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1234 if (txp->tx_mbhead != NULL) {
1235 txmap = txp->tx_dmamap;
1236 bus_dmamap_sync(sc->sc_dmat, txmap,
1237 0, txmap->dm_mapsize,
1238 BUS_DMASYNC_POSTWRITE);
1239 bus_dmamap_unload(sc->sc_dmat, txmap);
1240 m_freem(txp->tx_mbhead);
1241 txp->tx_mbhead = NULL;
1242 }
1243 ptxp = txp;
1244 }
1245
1246 /*
1247 * Move finished tx buffers back to the tx free list.
1248 */
1249 if (sc->tx_free) {
1250 sc->tx_ftail->tx_next = sc->tx_head;
1251 sc->tx_ftail = ptxp;
1252 } else
1253 sc->tx_ftail = sc->tx_free = sc->tx_head;
1254
1255 sc->tx_head = sc->tx_tail = NULL;
1256 ifp->if_flags &= ~IFF_OACTIVE;
1257 }
1258
1259 if (stat & UP_COMPLETE) {
1260 struct ex_rxdesc *rxd;
1261 struct mbuf *m;
1262 struct ex_upd *upd;
1263 bus_dmamap_t rxmap;
1264 u_int32_t pktstat;
1265
1266 rcvloop:
1267 rxd = sc->rx_head;
1268 rxmap = rxd->rx_dmamap;
1269 m = rxd->rx_mbhead;
1270 upd = rxd->rx_upd;
1271
1272 bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
1273 rxmap->dm_mapsize,
1274 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1275 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1276 ((caddr_t)upd - (caddr_t)sc->sc_upd),
1277 sizeof (struct ex_upd),
1278 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1279 pktstat = le32toh(upd->upd_pktstatus);
1280
1281 if (pktstat & EX_UPD_COMPLETE) {
1282 /*
1283 * Remove first packet from the chain.
1284 */
1285 sc->rx_head = rxd->rx_next;
1286 rxd->rx_next = NULL;
1287
1288 /*
1289 * Add a new buffer to the receive chain.
1290 * If this fails, the old buffer is recycled
1291 * instead.
1292 */
1293 if (ex_add_rxbuf(sc, rxd) == 0) {
1294 u_int16_t total_len;
1295
1296 if (pktstat &
1297 ((sc->sc_ethercom.ec_capenable &
1298 ETHERCAP_VLAN_MTU) ?
1299 EX_UPD_ERR_VLAN : EX_UPD_ERR)) {
1300 ifp->if_ierrors++;
1301 m_freem(m);
1302 goto rcvloop;
1303 }
1304
1305 total_len = pktstat & EX_UPD_PKTLENMASK;
1306 if (total_len <
1307 sizeof(struct ether_header)) {
1308 m_freem(m);
1309 goto rcvloop;
1310 }
1311 m->m_pkthdr.rcvif = ifp;
1312 m->m_pkthdr.len = m->m_len = total_len;
1313 #if NBPFILTER > 0
1314 if (ifp->if_bpf)
1315 bpf_mtap(ifp->if_bpf, m);
1316 #endif
1317 /*
1318 * Set the incoming checksum information for the packet.
1319 */
1320 if ((sc->ex_conf & EX_CONF_90XB) != 0 &&
1321 (pktstat & EX_UPD_IPCHECKED) != 0) {
1322 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1323 if (pktstat & EX_UPD_IPCKSUMERR)
1324 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1325 if (pktstat & EX_UPD_TCPCHECKED) {
1326 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1327 if (pktstat & EX_UPD_TCPCKSUMERR)
1328 m->m_pkthdr.csum_flags |=
1329 M_CSUM_TCP_UDP_BAD;
1330 } else if (pktstat & EX_UPD_UDPCHECKED) {
1331 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1332 if (pktstat & EX_UPD_UDPCKSUMERR)
1333 m->m_pkthdr.csum_flags |=
1334 M_CSUM_TCP_UDP_BAD;
1335 }
1336 }
1337 (*ifp->if_input)(ifp, m);
1338 }
1339 goto rcvloop;
1340 }
1341 /*
1342 * Just in case we filled up all UPDs and the DMA engine
1343 * stalled. We could be more subtle about this.
1344 */
1345 if (bus_space_read_4(iot, ioh, ELINK_UPLISTPTR) == 0) {
1346 printf("%s: uplistptr was 0\n",
1347 sc->sc_dev.dv_xname);
1348 ex_init(ifp);
1349 } else if (bus_space_read_4(iot, ioh, ELINK_UPPKTSTATUS)
1350 & 0x2000) {
1351 printf("%s: receive stalled\n",
1352 sc->sc_dev.dv_xname);
1353 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1354 ELINK_UPUNSTALL);
1355 }
1356 }
1357
1358 #if NRND > 0
1359 if (stat)
1360 rnd_add_uint32(&sc->rnd_source, stat);
1361 #endif
1362 }
1363
1364 /* no more interrupts */
1365 if (ret && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1366 ex_start(ifp);
1367 return ret;
1368 }
1369
1370 int
1371 ex_ioctl(ifp, cmd, data)
1372 struct ifnet *ifp;
1373 u_long cmd;
1374 caddr_t data;
1375 {
1376 struct ex_softc *sc = ifp->if_softc;
1377 struct ifreq *ifr = (struct ifreq *)data;
1378 int s, error;
1379
1380 s = splnet();
1381
1382 switch (cmd) {
1383 case SIOCSIFMEDIA:
1384 case SIOCGIFMEDIA:
1385 error = ifmedia_ioctl(ifp, ifr, &sc->ex_mii.mii_media, cmd);
1386 break;
1387 case SIOCSIFFLAGS:
1388 /* If the interface is up and running, only modify the receive
1389 * filter when setting promiscuous or debug mode. Otherwise
1390 * fall through to ether_ioctl, which will reset the chip.
1391 */
1392 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1393 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1394 == (IFF_UP|IFF_RUNNING))
1395 && ((ifp->if_flags & (~RESETIGN))
1396 == (sc->sc_if_flags & (~RESETIGN)))) {
1397 ex_set_mc(sc);
1398 error = 0;
1399 break;
1400 #undef RESETIGN
1401 }
1402 /* FALLTHROUGH */
1403 default:
1404 error = ether_ioctl(ifp, cmd, data);
1405 if (error == ENETRESET) {
1406 /*
1407 * Multicast list has changed; set the hardware filter
1408 * accordingly.
1409 */
1410 if (ifp->if_flags & IFF_RUNNING)
1411 ex_set_mc(sc);
1412 error = 0;
1413 }
1414 break;
1415 }
1416
1417 sc->sc_if_flags = ifp->if_flags;
1418 splx(s);
1419 return (error);
1420 }
1421
1422 void
1423 ex_getstats(sc)
1424 struct ex_softc *sc;
1425 {
1426 bus_space_handle_t ioh = sc->sc_ioh;
1427 bus_space_tag_t iot = sc->sc_iot;
1428 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1429 u_int8_t upperok;
1430
1431 GO_WINDOW(6);
1432 upperok = bus_space_read_1(iot, ioh, UPPER_FRAMES_OK);
1433 ifp->if_ipackets += bus_space_read_1(iot, ioh, RX_FRAMES_OK);
1434 ifp->if_ipackets += (upperok & 0x03) << 8;
1435 ifp->if_opackets += bus_space_read_1(iot, ioh, TX_FRAMES_OK);
1436 ifp->if_opackets += (upperok & 0x30) << 4;
1437 ifp->if_ierrors += bus_space_read_1(iot, ioh, RX_OVERRUNS);
1438 ifp->if_collisions += bus_space_read_1(iot, ioh, TX_COLLISIONS);
1439 /*
1440 * There seems to be no way to get the exact number of collisions,
1441 * this is the number that occurred at the very least.
1442 */
1443 ifp->if_collisions += 2 * bus_space_read_1(iot, ioh,
1444 TX_AFTER_X_COLLISIONS);
1445 /*
1446 * Interface byte counts are counted by ether_input() and
1447 * ether_output(), so don't accumulate them here. Just
1448 * read the NIC counters so they don't generate overflow interrupts.
1449 * Upper byte counters are latched from reading the totals, so
1450 * they don't need to be read if we don't need their values.
1451 */
1452 bus_space_read_2(iot, ioh, RX_TOTAL_OK);
1453 bus_space_read_2(iot, ioh, TX_TOTAL_OK);
1454
1455 /*
1456 * Clear the following to avoid stats overflow interrupts
1457 */
1458 bus_space_read_1(iot, ioh, TX_DEFERRALS);
1459 bus_space_read_1(iot, ioh, TX_AFTER_1_COLLISION);
1460 bus_space_read_1(iot, ioh, TX_NO_SQE);
1461 bus_space_read_1(iot, ioh, TX_CD_LOST);
1462 GO_WINDOW(4);
1463 bus_space_read_1(iot, ioh, ELINK_W4_BADSSD);
1464 GO_WINDOW(1);
1465 }
1466
1467 void
1468 ex_printstats(sc)
1469 struct ex_softc *sc;
1470 {
1471 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1472
1473 ex_getstats(sc);
1474 printf("in %llu out %llu ierror %llu oerror %llu ibytes %llu obytes "
1475 "%llu\n", (unsigned long long)ifp->if_ipackets,
1476 (unsigned long long)ifp->if_opackets,
1477 (unsigned long long)ifp->if_ierrors,
1478 (unsigned long long)ifp->if_oerrors,
1479 (unsigned long long)ifp->if_ibytes,
1480 (unsigned long long)ifp->if_obytes);
1481 }
1482
1483 void
1484 ex_tick(arg)
1485 void *arg;
1486 {
1487 struct ex_softc *sc = arg;
1488 int s;
1489
1490 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1491 return;
1492
1493 s = splnet();
1494
1495 if (sc->ex_conf & EX_CONF_MII)
1496 mii_tick(&sc->ex_mii);
1497
1498 if (!(bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, ELINK_STATUS)
1499 & COMMAND_IN_PROGRESS))
1500 ex_getstats(sc);
1501
1502 splx(s);
1503
1504 callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
1505 }
1506
1507 void
1508 ex_reset(sc)
1509 struct ex_softc *sc;
1510 {
1511 u_int16_t val = GLOBAL_RESET;
1512
1513 if (sc->ex_conf & EX_CONF_RESETHACK)
1514 val |= 0x10;
1515 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, val);
1516 /*
1517 * XXX apparently the command in progress bit can't be trusted
1518 * during a reset, so we just always wait this long. Fortunately
1519 * we normally only reset the chip during autoconfig.
1520 */
1521 delay(100000);
1522 ex_waitcmd(sc);
1523 }
1524
1525 void
1526 ex_watchdog(ifp)
1527 struct ifnet *ifp;
1528 {
1529 struct ex_softc *sc = ifp->if_softc;
1530
1531 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1532 ++sc->sc_ethercom.ec_if.if_oerrors;
1533
1534 ex_reset(sc);
1535 ex_init(ifp);
1536 }
1537
1538 void
1539 ex_stop(ifp, disable)
1540 struct ifnet *ifp;
1541 int disable;
1542 {
1543 struct ex_softc *sc = ifp->if_softc;
1544 bus_space_tag_t iot = sc->sc_iot;
1545 bus_space_handle_t ioh = sc->sc_ioh;
1546 struct ex_txdesc *tx;
1547 struct ex_rxdesc *rx;
1548 int i;
1549
1550 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1551 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1552 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1553
1554 for (tx = sc->tx_head ; tx != NULL; tx = tx->tx_next) {
1555 if (tx->tx_mbhead == NULL)
1556 continue;
1557 m_freem(tx->tx_mbhead);
1558 tx->tx_mbhead = NULL;
1559 bus_dmamap_unload(sc->sc_dmat, tx->tx_dmamap);
1560 tx->tx_dpd->dpd_fsh = tx->tx_dpd->dpd_nextptr = 0;
1561 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1562 ((caddr_t)tx->tx_dpd - (caddr_t)sc->sc_dpd),
1563 sizeof (struct ex_dpd),
1564 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1565 }
1566 sc->tx_tail = sc->tx_head = NULL;
1567 ex_init_txdescs(sc);
1568
1569 sc->rx_tail = sc->rx_head = 0;
1570 for (i = 0; i < EX_NUPD; i++) {
1571 rx = &sc->sc_rxdescs[i];
1572 if (rx->rx_mbhead != NULL) {
1573 bus_dmamap_unload(sc->sc_dmat, rx->rx_dmamap);
1574 m_freem(rx->rx_mbhead);
1575 rx->rx_mbhead = NULL;
1576 }
1577 ex_add_rxbuf(sc, rx);
1578 }
1579
1580 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1581
1582 callout_stop(&sc->ex_mii_callout);
1583 if (sc->ex_conf & EX_CONF_MII)
1584 mii_down(&sc->ex_mii);
1585
1586 if (disable)
1587 ex_disable(sc);
1588
1589 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1590 sc->sc_if_flags = ifp->if_flags;
1591 ifp->if_timer = 0;
1592 }
1593
1594 static void
1595 ex_init_txdescs(sc)
1596 struct ex_softc *sc;
1597 {
1598 int i;
1599
1600 for (i = 0; i < EX_NDPD; i++) {
1601 sc->sc_txdescs[i].tx_dmamap = sc->sc_tx_dmamaps[i];
1602 sc->sc_txdescs[i].tx_dpd = &sc->sc_dpd[i];
1603 if (i < EX_NDPD - 1)
1604 sc->sc_txdescs[i].tx_next = &sc->sc_txdescs[i + 1];
1605 else
1606 sc->sc_txdescs[i].tx_next = NULL;
1607 }
1608 sc->tx_free = &sc->sc_txdescs[0];
1609 sc->tx_ftail = &sc->sc_txdescs[EX_NDPD-1];
1610 }
1611
1612
1613 int
1614 ex_activate(self, act)
1615 struct device *self;
1616 enum devact act;
1617 {
1618 struct ex_softc *sc = (void *) self;
1619 int s, error = 0;
1620
1621 s = splnet();
1622 switch (act) {
1623 case DVACT_ACTIVATE:
1624 error = EOPNOTSUPP;
1625 break;
1626
1627 case DVACT_DEACTIVATE:
1628 if (sc->ex_conf & EX_CONF_MII)
1629 mii_activate(&sc->ex_mii, act, MII_PHY_ANY,
1630 MII_OFFSET_ANY);
1631 if_deactivate(&sc->sc_ethercom.ec_if);
1632 break;
1633 }
1634 splx(s);
1635
1636 return (error);
1637 }
1638
1639 int
1640 ex_detach(sc)
1641 struct ex_softc *sc;
1642 {
1643 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1644 struct ex_rxdesc *rxd;
1645 int i;
1646
1647 /* Succeed now if there's no work to do. */
1648 if ((sc->ex_flags & EX_FLAGS_ATTACHED) == 0)
1649 return (0);
1650
1651 /* Unhook our tick handler. */
1652 callout_stop(&sc->ex_mii_callout);
1653
1654 if (sc->ex_conf & EX_CONF_MII) {
1655 /* Detach all PHYs */
1656 mii_detach(&sc->ex_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1657 }
1658
1659 /* Delete all remaining media. */
1660 ifmedia_delete_instance(&sc->ex_mii.mii_media, IFM_INST_ANY);
1661
1662 #if NRND > 0
1663 rnd_detach_source(&sc->rnd_source);
1664 #endif
1665 ether_ifdetach(ifp);
1666 if_detach(ifp);
1667
1668 for (i = 0; i < EX_NUPD; i++) {
1669 rxd = &sc->sc_rxdescs[i];
1670 if (rxd->rx_mbhead != NULL) {
1671 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1672 m_freem(rxd->rx_mbhead);
1673 rxd->rx_mbhead = NULL;
1674 }
1675 }
1676 for (i = 0; i < EX_NUPD; i++)
1677 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
1678 for (i = 0; i < EX_NDPD; i++)
1679 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
1680 bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
1681 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
1682 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
1683 EX_NDPD * sizeof (struct ex_dpd));
1684 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
1685 bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
1686 bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
1687 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
1688 EX_NUPD * sizeof (struct ex_upd));
1689 bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
1690
1691 shutdownhook_disestablish(sc->sc_sdhook);
1692 powerhook_disestablish(sc->sc_powerhook);
1693
1694 return (0);
1695 }
1696
1697 /*
1698 * Before reboots, reset card completely.
1699 */
1700 static void
1701 ex_shutdown(arg)
1702 void *arg;
1703 {
1704 struct ex_softc *sc = arg;
1705
1706 ex_stop(&sc->sc_ethercom.ec_if, 1);
1707 /*
1708 * Make sure the interface is powered up when we reboot,
1709 * otherwise firmware on some systems gets really confused.
1710 */
1711 (void) ex_enable(sc);
1712 }
1713
1714 /*
1715 * Read EEPROM data.
1716 * XXX what to do if EEPROM doesn't unbusy?
1717 */
1718 u_int16_t
1719 ex_read_eeprom(sc, offset)
1720 struct ex_softc *sc;
1721 int offset;
1722 {
1723 bus_space_tag_t iot = sc->sc_iot;
1724 bus_space_handle_t ioh = sc->sc_ioh;
1725 u_int16_t data = 0, cmd = READ_EEPROM;
1726 int off;
1727
1728 off = sc->ex_conf & EX_CONF_EEPROM_OFF ? 0x30 : 0;
1729 cmd = sc->ex_conf & EX_CONF_EEPROM_8BIT ? READ_EEPROM8 : READ_EEPROM;
1730
1731 GO_WINDOW(0);
1732 if (ex_eeprom_busy(sc))
1733 goto out;
1734 bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
1735 cmd | (off + (offset & 0x3f)));
1736 if (ex_eeprom_busy(sc))
1737 goto out;
1738 data = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
1739 out:
1740 return data;
1741 }
1742
1743 static int
1744 ex_eeprom_busy(sc)
1745 struct ex_softc *sc;
1746 {
1747 bus_space_tag_t iot = sc->sc_iot;
1748 bus_space_handle_t ioh = sc->sc_ioh;
1749 int i = 100;
1750
1751 while (i--) {
1752 if (!(bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND) &
1753 EEPROM_BUSY))
1754 return 0;
1755 delay(100);
1756 }
1757 printf("\n%s: eeprom stays busy.\n", sc->sc_dev.dv_xname);
1758 return (1);
1759 }
1760
1761 /*
1762 * Create a new rx buffer and add it to the 'soft' rx list.
1763 */
1764 static int
1765 ex_add_rxbuf(sc, rxd)
1766 struct ex_softc *sc;
1767 struct ex_rxdesc *rxd;
1768 {
1769 struct mbuf *m, *oldm;
1770 bus_dmamap_t rxmap;
1771 int error, rval = 0;
1772
1773 oldm = rxd->rx_mbhead;
1774 rxmap = rxd->rx_dmamap;
1775
1776 MGETHDR(m, M_DONTWAIT, MT_DATA);
1777 if (m != NULL) {
1778 MCLGET(m, M_DONTWAIT);
1779 if ((m->m_flags & M_EXT) == 0) {
1780 m_freem(m);
1781 if (oldm == NULL)
1782 return 1;
1783 m = oldm;
1784 MRESETDATA(m);
1785 rval = 1;
1786 }
1787 } else {
1788 if (oldm == NULL)
1789 return 1;
1790 m = oldm;
1791 MRESETDATA(m);
1792 rval = 1;
1793 }
1794
1795 /*
1796 * Setup the DMA map for this receive buffer.
1797 */
1798 if (m != oldm) {
1799 if (oldm != NULL)
1800 bus_dmamap_unload(sc->sc_dmat, rxmap);
1801 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1802 m->m_ext.ext_buf, MCLBYTES, NULL,
1803 BUS_DMA_READ|BUS_DMA_NOWAIT);
1804 if (error) {
1805 printf("%s: can't load rx buffer, error = %d\n",
1806 sc->sc_dev.dv_xname, error);
1807 panic("ex_add_rxbuf"); /* XXX */
1808 }
1809 }
1810
1811 /*
1812 * Align for data after 14 byte header.
1813 */
1814 m->m_data += 2;
1815
1816 rxd->rx_mbhead = m;
1817 rxd->rx_upd->upd_pktstatus = htole32(MCLBYTES - 2);
1818 rxd->rx_upd->upd_frags[0].fr_addr =
1819 htole32(rxmap->dm_segs[0].ds_addr + 2);
1820 rxd->rx_upd->upd_nextptr = 0;
1821
1822 /*
1823 * Attach it to the end of the list.
1824 */
1825 if (sc->rx_head != NULL) {
1826 sc->rx_tail->rx_next = rxd;
1827 sc->rx_tail->rx_upd->upd_nextptr = htole32(sc->sc_upddma +
1828 ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd));
1829 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1830 (caddr_t)sc->rx_tail->rx_upd - (caddr_t)sc->sc_upd,
1831 sizeof (struct ex_upd),
1832 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1833 } else {
1834 sc->rx_head = rxd;
1835 }
1836 sc->rx_tail = rxd;
1837
1838 bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
1839 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1840 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1841 ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd),
1842 sizeof (struct ex_upd), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1843 return (rval);
1844 }
1845
1846 u_int32_t
1847 ex_mii_bitbang_read(self)
1848 struct device *self;
1849 {
1850 struct ex_softc *sc = (void *) self;
1851
1852 /* We're already in Window 4. */
1853 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT));
1854 }
1855
1856 void
1857 ex_mii_bitbang_write(self, val)
1858 struct device *self;
1859 u_int32_t val;
1860 {
1861 struct ex_softc *sc = (void *) self;
1862
1863 /* We're already in Window 4. */
1864 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT, val);
1865 }
1866
1867 int
1868 ex_mii_readreg(v, phy, reg)
1869 struct device *v;
1870 int phy, reg;
1871 {
1872 struct ex_softc *sc = (struct ex_softc *)v;
1873 int val;
1874
1875 if ((sc->ex_conf & EX_CONF_INTPHY) && phy != ELINK_INTPHY_ID)
1876 return 0;
1877
1878 GO_WINDOW(4);
1879
1880 val = mii_bitbang_readreg(v, &ex_mii_bitbang_ops, phy, reg);
1881
1882 GO_WINDOW(1);
1883
1884 return (val);
1885 }
1886
1887 void
1888 ex_mii_writereg(v, phy, reg, data)
1889 struct device *v;
1890 int phy;
1891 int reg;
1892 int data;
1893 {
1894 struct ex_softc *sc = (struct ex_softc *)v;
1895
1896 GO_WINDOW(4);
1897
1898 mii_bitbang_writereg(v, &ex_mii_bitbang_ops, phy, reg, data);
1899
1900 GO_WINDOW(1);
1901 }
1902
1903 void
1904 ex_mii_statchg(v)
1905 struct device *v;
1906 {
1907 struct ex_softc *sc = (struct ex_softc *)v;
1908 bus_space_tag_t iot = sc->sc_iot;
1909 bus_space_handle_t ioh = sc->sc_ioh;
1910 int mctl;
1911
1912 GO_WINDOW(3);
1913 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1914 if (sc->ex_mii.mii_media_active & IFM_FDX)
1915 mctl |= MAC_CONTROL_FDX;
1916 else
1917 mctl &= ~MAC_CONTROL_FDX;
1918 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1919 GO_WINDOW(1); /* back to operating window */
1920 }
1921
1922 int
1923 ex_enable(sc)
1924 struct ex_softc *sc;
1925 {
1926 if (sc->enabled == 0 && sc->enable != NULL) {
1927 if ((*sc->enable)(sc) != 0) {
1928 printf("%s: de/vice enable failed\n",
1929 sc->sc_dev.dv_xname);
1930 return (EIO);
1931 }
1932 sc->enabled = 1;
1933 }
1934 return (0);
1935 }
1936
1937 void
1938 ex_disable(sc)
1939 struct ex_softc *sc;
1940 {
1941 if (sc->enabled == 1 && sc->disable != NULL) {
1942 (*sc->disable)(sc);
1943 sc->enabled = 0;
1944 }
1945 }
1946
1947 void
1948 ex_power(why, arg)
1949 int why;
1950 void *arg;
1951 {
1952 struct ex_softc *sc = (void *)arg;
1953 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1954 int s;
1955
1956 s = splnet();
1957 switch (why) {
1958 case PWR_SUSPEND:
1959 case PWR_STANDBY:
1960 ex_stop(ifp, 0);
1961 if (sc->power != NULL)
1962 (*sc->power)(sc, why);
1963 break;
1964 case PWR_RESUME:
1965 if (ifp->if_flags & IFF_UP) {
1966 if (sc->power != NULL)
1967 (*sc->power)(sc, why);
1968 ex_init(ifp);
1969 }
1970 break;
1971 case PWR_SOFTSUSPEND:
1972 case PWR_SOFTSTANDBY:
1973 case PWR_SOFTRESUME:
1974 break;
1975 }
1976 splx(s);
1977 }
1978