elinkxl.c revision 1.82 1 /* $NetBSD: elinkxl.c,v 1.82 2005/05/31 01:43:36 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: elinkxl.c,v 1.82 2005/05/31 01:43:36 christos Exp $");
41
42 #include "bpfilter.h"
43 #include "rnd.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/kernel.h>
49 #include <sys/mbuf.h>
50 #include <sys/socket.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/syslog.h>
54 #include <sys/select.h>
55 #include <sys/device.h>
56 #if NRND > 0
57 #include <sys/rnd.h>
58 #endif
59
60 #include <uvm/uvm_extern.h>
61
62 #include <net/if.h>
63 #include <net/if_dl.h>
64 #include <net/if_ether.h>
65 #include <net/if_media.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #include <net/bpfdesc.h>
70 #endif
71
72 #include <machine/cpu.h>
73 #include <machine/bus.h>
74 #include <machine/intr.h>
75 #include <machine/endian.h>
76
77 #include <dev/mii/miivar.h>
78 #include <dev/mii/mii.h>
79 #include <dev/mii/mii_bitbang.h>
80
81 #include <dev/ic/elink3reg.h>
82 /* #include <dev/ic/elink3var.h> */
83 #include <dev/ic/elinkxlreg.h>
84 #include <dev/ic/elinkxlvar.h>
85
86 #ifdef DEBUG
87 int exdebug = 0;
88 #endif
89
90 /* ifmedia callbacks */
91 int ex_media_chg(struct ifnet *ifp);
92 void ex_media_stat(struct ifnet *ifp, struct ifmediareq *req);
93
94 void ex_probe_media(struct ex_softc *);
95 void ex_set_filter(struct ex_softc *);
96 void ex_set_media(struct ex_softc *);
97 void ex_set_xcvr(struct ex_softc *, u_int16_t);
98 struct mbuf *ex_get(struct ex_softc *, int);
99 u_int16_t ex_read_eeprom(struct ex_softc *, int);
100 int ex_init(struct ifnet *);
101 void ex_read(struct ex_softc *);
102 void ex_reset(struct ex_softc *);
103 void ex_set_mc(struct ex_softc *);
104 void ex_getstats(struct ex_softc *);
105 void ex_printstats(struct ex_softc *);
106 void ex_tick(void *);
107
108 void ex_power(int, void *);
109
110 static int ex_eeprom_busy(struct ex_softc *);
111 static int ex_add_rxbuf(struct ex_softc *, struct ex_rxdesc *);
112 static void ex_init_txdescs(struct ex_softc *);
113
114 static void ex_shutdown(void *);
115 static void ex_start(struct ifnet *);
116 static void ex_txstat(struct ex_softc *);
117
118 int ex_mii_readreg(struct device *, int, int);
119 void ex_mii_writereg(struct device *, int, int, int);
120 void ex_mii_statchg(struct device *);
121
122 void ex_probemedia(struct ex_softc *);
123
124 /*
125 * Structure to map media-present bits in boards to ifmedia codes and
126 * printable media names. Used for table-driven ifmedia initialization.
127 */
128 struct ex_media {
129 int exm_mpbit; /* media present bit */
130 const char *exm_name; /* name of medium */
131 int exm_ifmedia; /* ifmedia word for medium */
132 int exm_epmedia; /* ELINKMEDIA_* constant */
133 };
134
135 /*
136 * Media table for 3c90x chips. Note that chips with MII have no
137 * `native' media.
138 */
139 struct ex_media ex_native_media[] = {
140 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
141 ELINKMEDIA_10BASE_T },
142 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
143 ELINKMEDIA_10BASE_T },
144 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
145 ELINKMEDIA_AUI },
146 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
147 ELINKMEDIA_10BASE_2 },
148 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
149 ELINKMEDIA_100BASE_TX },
150 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
151 ELINKMEDIA_100BASE_TX },
152 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
153 ELINKMEDIA_100BASE_FX },
154 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
155 ELINKMEDIA_MII },
156 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
157 ELINKMEDIA_100BASE_T4 },
158 { 0, NULL, 0,
159 0 },
160 };
161
162 /*
163 * MII bit-bang glue.
164 */
165 u_int32_t ex_mii_bitbang_read(struct device *);
166 void ex_mii_bitbang_write(struct device *, u_int32_t);
167
168 const struct mii_bitbang_ops ex_mii_bitbang_ops = {
169 ex_mii_bitbang_read,
170 ex_mii_bitbang_write,
171 {
172 ELINK_PHY_DATA, /* MII_BIT_MDO */
173 ELINK_PHY_DATA, /* MII_BIT_MDI */
174 ELINK_PHY_CLK, /* MII_BIT_MDC */
175 ELINK_PHY_DIR, /* MII_BIT_DIR_HOST_PHY */
176 0, /* MII_BIT_DIR_PHY_HOST */
177 }
178 };
179
180 /*
181 * Back-end attach and configure.
182 */
183 void
184 ex_config(sc)
185 struct ex_softc *sc;
186 {
187 struct ifnet *ifp;
188 u_int16_t val;
189 u_int8_t macaddr[ETHER_ADDR_LEN] = {0};
190 bus_space_tag_t iot = sc->sc_iot;
191 bus_space_handle_t ioh = sc->sc_ioh;
192 int i, error, attach_stage;
193
194 callout_init(&sc->ex_mii_callout);
195
196 ex_reset(sc);
197
198 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR0);
199 macaddr[0] = val >> 8;
200 macaddr[1] = val & 0xff;
201 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR1);
202 macaddr[2] = val >> 8;
203 macaddr[3] = val & 0xff;
204 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR2);
205 macaddr[4] = val >> 8;
206 macaddr[5] = val & 0xff;
207
208 aprint_normal("%s: MAC address %s\n", sc->sc_dev.dv_xname,
209 ether_sprintf(macaddr));
210
211 if (sc->ex_conf & (EX_CONF_INV_LED_POLARITY|EX_CONF_PHY_POWER)) {
212 GO_WINDOW(2);
213 val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
214 if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
215 val |= ELINK_RESET_OPT_LEDPOLAR;
216 if (sc->ex_conf & EX_CONF_PHY_POWER)
217 val |= ELINK_RESET_OPT_PHYPOWER;
218 bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
219 }
220 if (sc->ex_conf & EX_CONF_NO_XCVR_PWR) {
221 GO_WINDOW(0);
222 bus_space_write_2(iot, ioh, ELINK_W0_MFG_ID,
223 EX_XCVR_PWR_MAGICBITS);
224 }
225
226 attach_stage = 0;
227
228 /*
229 * Allocate the upload descriptors, and create and load the DMA
230 * map for them.
231 */
232 if ((error = bus_dmamem_alloc(sc->sc_dmat,
233 EX_NUPD * sizeof (struct ex_upd), PAGE_SIZE, 0, &sc->sc_useg, 1,
234 &sc->sc_urseg, BUS_DMA_NOWAIT)) != 0) {
235 aprint_error(
236 "%s: can't allocate upload descriptors, error = %d\n",
237 sc->sc_dev.dv_xname, error);
238 goto fail;
239 }
240
241 attach_stage = 1;
242
243 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg,
244 EX_NUPD * sizeof (struct ex_upd), (caddr_t *)&sc->sc_upd,
245 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
246 aprint_error("%s: can't map upload descriptors, error = %d\n",
247 sc->sc_dev.dv_xname, error);
248 goto fail;
249 }
250
251 attach_stage = 2;
252
253 if ((error = bus_dmamap_create(sc->sc_dmat,
254 EX_NUPD * sizeof (struct ex_upd), 1,
255 EX_NUPD * sizeof (struct ex_upd), 0, BUS_DMA_NOWAIT,
256 &sc->sc_upd_dmamap)) != 0) {
257 aprint_error(
258 "%s: can't create upload desc. DMA map, error = %d\n",
259 sc->sc_dev.dv_xname, error);
260 goto fail;
261 }
262
263 attach_stage = 3;
264
265 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_upd_dmamap,
266 sc->sc_upd, EX_NUPD * sizeof (struct ex_upd), NULL,
267 BUS_DMA_NOWAIT)) != 0) {
268 aprint_error(
269 "%s: can't load upload desc. DMA map, error = %d\n",
270 sc->sc_dev.dv_xname, error);
271 goto fail;
272 }
273
274 attach_stage = 4;
275
276 /*
277 * Allocate the download descriptors, and create and load the DMA
278 * map for them.
279 */
280 if ((error = bus_dmamem_alloc(sc->sc_dmat,
281 EX_NDPD * sizeof (struct ex_dpd), PAGE_SIZE, 0, &sc->sc_dseg, 1,
282 &sc->sc_drseg, BUS_DMA_NOWAIT)) != 0) {
283 aprint_error(
284 "%s: can't allocate download descriptors, error = %d\n",
285 sc->sc_dev.dv_xname, error);
286 goto fail;
287 }
288
289 attach_stage = 5;
290
291 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg,
292 EX_NDPD * sizeof (struct ex_dpd), (caddr_t *)&sc->sc_dpd,
293 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
294 aprint_error("%s: can't map download descriptors, error = %d\n",
295 sc->sc_dev.dv_xname, error);
296 goto fail;
297 }
298 memset(sc->sc_dpd, 0, EX_NDPD * sizeof (struct ex_dpd));
299
300 attach_stage = 6;
301
302 if ((error = bus_dmamap_create(sc->sc_dmat,
303 EX_NDPD * sizeof (struct ex_dpd), 1,
304 EX_NDPD * sizeof (struct ex_dpd), 0, BUS_DMA_NOWAIT,
305 &sc->sc_dpd_dmamap)) != 0) {
306 aprint_error(
307 "%s: can't create download desc. DMA map, error = %d\n",
308 sc->sc_dev.dv_xname, error);
309 goto fail;
310 }
311
312 attach_stage = 7;
313
314 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dpd_dmamap,
315 sc->sc_dpd, EX_NDPD * sizeof (struct ex_dpd), NULL,
316 BUS_DMA_NOWAIT)) != 0) {
317 aprint_error(
318 "%s: can't load download desc. DMA map, error = %d\n",
319 sc->sc_dev.dv_xname, error);
320 goto fail;
321 }
322
323 attach_stage = 8;
324
325
326 /*
327 * Create the transmit buffer DMA maps.
328 */
329 for (i = 0; i < EX_NDPD; i++) {
330 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
331 EX_NTFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
332 &sc->sc_tx_dmamaps[i])) != 0) {
333 aprint_error(
334 "%s: can't create tx DMA map %d, error = %d\n",
335 sc->sc_dev.dv_xname, i, error);
336 goto fail;
337 }
338 }
339
340 attach_stage = 9;
341
342 /*
343 * Create the receive buffer DMA maps.
344 */
345 for (i = 0; i < EX_NUPD; i++) {
346 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
347 EX_NRFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
348 &sc->sc_rx_dmamaps[i])) != 0) {
349 aprint_error(
350 "%s: can't create rx DMA map %d, error = %d\n",
351 sc->sc_dev.dv_xname, i, error);
352 goto fail;
353 }
354 }
355
356 attach_stage = 10;
357
358 /*
359 * Create ring of upload descriptors, only once. The DMA engine
360 * will loop over this when receiving packets, stalling if it
361 * hits an UPD with a finished receive.
362 */
363 for (i = 0; i < EX_NUPD; i++) {
364 sc->sc_rxdescs[i].rx_dmamap = sc->sc_rx_dmamaps[i];
365 sc->sc_rxdescs[i].rx_upd = &sc->sc_upd[i];
366 sc->sc_upd[i].upd_frags[0].fr_len =
367 htole32((MCLBYTES - 2) | EX_FR_LAST);
368 if (ex_add_rxbuf(sc, &sc->sc_rxdescs[i]) != 0) {
369 aprint_error("%s: can't allocate or map rx buffers\n",
370 sc->sc_dev.dv_xname);
371 goto fail;
372 }
373 }
374
375 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap, 0,
376 EX_NUPD * sizeof (struct ex_upd),
377 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
378
379 ex_init_txdescs(sc);
380
381 attach_stage = 11;
382
383
384 GO_WINDOW(3);
385 val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
386 if (val & ELINK_MEDIACAP_MII)
387 sc->ex_conf |= EX_CONF_MII;
388
389 ifp = &sc->sc_ethercom.ec_if;
390
391 /*
392 * Initialize our media structures and MII info. We'll
393 * probe the MII if we discover that we have one.
394 */
395 sc->ex_mii.mii_ifp = ifp;
396 sc->ex_mii.mii_readreg = ex_mii_readreg;
397 sc->ex_mii.mii_writereg = ex_mii_writereg;
398 sc->ex_mii.mii_statchg = ex_mii_statchg;
399 ifmedia_init(&sc->ex_mii.mii_media, IFM_IMASK, ex_media_chg,
400 ex_media_stat);
401
402 if (sc->ex_conf & EX_CONF_MII) {
403 /*
404 * Find PHY, extract media information from it.
405 * First, select the right transceiver.
406 */
407 ex_set_xcvr(sc, val);
408
409 mii_attach(&sc->sc_dev, &sc->ex_mii, 0xffffffff,
410 MII_PHY_ANY, MII_OFFSET_ANY, 0);
411 if (LIST_FIRST(&sc->ex_mii.mii_phys) == NULL) {
412 ifmedia_add(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE,
413 0, NULL);
414 ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE);
415 } else {
416 ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_AUTO);
417 }
418 } else
419 ex_probemedia(sc);
420
421 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
422 ifp->if_softc = sc;
423 ifp->if_start = ex_start;
424 ifp->if_ioctl = ex_ioctl;
425 ifp->if_watchdog = ex_watchdog;
426 ifp->if_init = ex_init;
427 ifp->if_stop = ex_stop;
428 ifp->if_flags =
429 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
430 sc->sc_if_flags = ifp->if_flags;
431 IFQ_SET_READY(&ifp->if_snd);
432
433 /*
434 * We can support 802.1Q VLAN-sized frames.
435 */
436 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
437
438 /*
439 * The 3c90xB has hardware IPv4/TCPv4/UDPv4 checksum support.
440 */
441 if (sc->ex_conf & EX_CONF_90XB)
442 sc->sc_ethercom.ec_if.if_capabilities |=
443 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
444 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
445 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
446
447 if_attach(ifp);
448 ether_ifattach(ifp, macaddr);
449
450 GO_WINDOW(1);
451
452 sc->tx_start_thresh = 20;
453 sc->tx_succ_ok = 0;
454
455 /* TODO: set queues to 0 */
456
457 #if NRND > 0
458 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
459 RND_TYPE_NET, 0);
460 #endif
461
462 /* Establish callback to reset card when we reboot. */
463 sc->sc_sdhook = shutdownhook_establish(ex_shutdown, sc);
464 if (sc->sc_sdhook == NULL)
465 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
466 sc->sc_dev.dv_xname);
467
468 /* Add a suspend hook to make sure we come back up after a resume. */
469 sc->sc_powerhook = powerhook_establish(ex_power, sc);
470 if (sc->sc_powerhook == NULL)
471 aprint_error("%s: WARNING: unable to establish power hook\n",
472 sc->sc_dev.dv_xname);
473
474 /* The attach is successful. */
475 sc->ex_flags |= EX_FLAGS_ATTACHED;
476 return;
477
478 fail:
479 /*
480 * Free any resources we've allocated during the failed attach
481 * attempt. Do this in reverse order and fall though.
482 */
483 switch (attach_stage) {
484 case 11:
485 {
486 struct ex_rxdesc *rxd;
487
488 for (i = 0; i < EX_NUPD; i++) {
489 rxd = &sc->sc_rxdescs[i];
490 if (rxd->rx_mbhead != NULL) {
491 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
492 m_freem(rxd->rx_mbhead);
493 }
494 }
495 }
496 /* FALLTHROUGH */
497
498 case 10:
499 for (i = 0; i < EX_NUPD; i++)
500 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
501 /* FALLTHROUGH */
502
503 case 9:
504 for (i = 0; i < EX_NDPD; i++)
505 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
506 /* FALLTHROUGH */
507 case 8:
508 bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
509 /* FALLTHROUGH */
510
511 case 7:
512 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
513 /* FALLTHROUGH */
514
515 case 6:
516 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
517 EX_NDPD * sizeof (struct ex_dpd));
518 /* FALLTHROUGH */
519
520 case 5:
521 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
522 break;
523
524 case 4:
525 bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
526 /* FALLTHROUGH */
527
528 case 3:
529 bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
530 /* FALLTHROUGH */
531
532 case 2:
533 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
534 EX_NUPD * sizeof (struct ex_upd));
535 /* FALLTHROUGH */
536
537 case 1:
538 bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
539 break;
540 }
541
542 }
543
544 /*
545 * Find the media present on non-MII chips.
546 */
547 void
548 ex_probemedia(sc)
549 struct ex_softc *sc;
550 {
551 bus_space_tag_t iot = sc->sc_iot;
552 bus_space_handle_t ioh = sc->sc_ioh;
553 struct ifmedia *ifm = &sc->ex_mii.mii_media;
554 struct ex_media *exm;
555 u_int16_t config1, reset_options, default_media;
556 int defmedia = 0;
557 const char *sep = "", *defmedianame = NULL;
558
559 GO_WINDOW(3);
560 config1 = bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
561 reset_options = bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
562 GO_WINDOW(0);
563
564 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
565
566 aprint_normal("%s: ", sc->sc_dev.dv_xname);
567
568 /* Sanity check that there are any media! */
569 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
570 aprint_error("no media present!\n");
571 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
572 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
573 return;
574 }
575
576 #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", "
577
578 for (exm = ex_native_media; exm->exm_name != NULL; exm++) {
579 if (reset_options & exm->exm_mpbit) {
580 /*
581 * Default media is a little complicated. We
582 * support full-duplex which uses the same
583 * reset options bit.
584 *
585 * XXX Check EEPROM for default to FDX?
586 */
587 if (exm->exm_epmedia == default_media) {
588 if ((exm->exm_ifmedia & IFM_FDX) == 0) {
589 defmedia = exm->exm_ifmedia;
590 defmedianame = exm->exm_name;
591 }
592 } else if (defmedia == 0) {
593 defmedia = exm->exm_ifmedia;
594 defmedianame = exm->exm_name;
595 }
596 ifmedia_add(ifm, exm->exm_ifmedia, exm->exm_epmedia,
597 NULL);
598 PRINT(exm->exm_name);
599 }
600 }
601
602 #undef PRINT
603
604 #ifdef DIAGNOSTIC
605 if (defmedia == 0)
606 panic("ex_probemedia: impossible");
607 #endif
608
609 aprint_normal(", default %s\n", defmedianame);
610 ifmedia_set(ifm, defmedia);
611 }
612
613 /*
614 * Bring device up.
615 */
616 int
617 ex_init(ifp)
618 struct ifnet *ifp;
619 {
620 struct ex_softc *sc = ifp->if_softc;
621 bus_space_tag_t iot = sc->sc_iot;
622 bus_space_handle_t ioh = sc->sc_ioh;
623 int i;
624 int error = 0;
625
626 if ((error = ex_enable(sc)) != 0)
627 goto out;
628
629 ex_waitcmd(sc);
630 ex_stop(ifp, 0);
631
632 /*
633 * Set the station address and clear the station mask. The latter
634 * is needed for 90x cards, 0 is the default for 90xB cards.
635 */
636 GO_WINDOW(2);
637 for (i = 0; i < ETHER_ADDR_LEN; i++) {
638 bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
639 ((const char *)CLLADDR(ifp->if_sadl))[i]);
640 bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
641 }
642
643 GO_WINDOW(3);
644
645 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_RESET);
646 ex_waitcmd(sc);
647 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
648 ex_waitcmd(sc);
649
650 /*
651 * Disable reclaim threshold for 90xB, set free threshold to
652 * 6 * 256 = 1536 for 90x.
653 */
654 if (sc->ex_conf & EX_CONF_90XB)
655 bus_space_write_2(iot, ioh, ELINK_COMMAND,
656 ELINK_TXRECLTHRESH | 255);
657 else
658 bus_space_write_1(iot, ioh, ELINK_TXFREETHRESH, 6);
659
660 bus_space_write_2(iot, ioh, ELINK_COMMAND,
661 SET_RX_EARLY_THRESH | ELINK_THRESH_DISABLE);
662
663 bus_space_write_4(iot, ioh, ELINK_DMACTRL,
664 bus_space_read_4(iot, ioh, ELINK_DMACTRL) | ELINK_DMAC_UPRXEAREN);
665
666 bus_space_write_2(iot, ioh, ELINK_COMMAND,
667 SET_RD_0_MASK | XL_WATCHED_INTERRUPTS);
668 bus_space_write_2(iot, ioh, ELINK_COMMAND,
669 SET_INTR_MASK | XL_WATCHED_INTERRUPTS);
670
671 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
672 if (sc->intr_ack)
673 (* sc->intr_ack)(sc);
674 ex_set_media(sc);
675 ex_set_mc(sc);
676
677
678 bus_space_write_2(iot, ioh, ELINK_COMMAND, STATS_ENABLE);
679 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
680 bus_space_write_4(iot, ioh, ELINK_UPLISTPTR, sc->sc_upddma);
681 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
682 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_UPUNSTALL);
683
684 if (sc->ex_conf & (EX_CONF_PHY_POWER | EX_CONF_INV_LED_POLARITY)) {
685 u_int16_t cbcard_config;
686
687 GO_WINDOW(2);
688 cbcard_config = bus_space_read_2(sc->sc_iot, sc->sc_ioh, 0x0c);
689 if (sc->ex_conf & EX_CONF_PHY_POWER) {
690 cbcard_config |= 0x4000; /* turn on PHY power */
691 }
692 if (sc->ex_conf & EX_CONF_INV_LED_POLARITY) {
693 cbcard_config |= 0x0010; /* invert LED polarity */
694 }
695 bus_space_write_2(sc->sc_iot, sc->sc_ioh, 0x0c, cbcard_config);
696
697 GO_WINDOW(3);
698 }
699
700 ifp->if_flags |= IFF_RUNNING;
701 ifp->if_flags &= ~IFF_OACTIVE;
702 ex_start(ifp);
703 sc->sc_if_flags = ifp->if_flags;
704
705 GO_WINDOW(1);
706
707 callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
708
709 out:
710 if (error) {
711 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
712 ifp->if_timer = 0;
713 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
714 }
715 return (error);
716 }
717
718 #define MCHASHSIZE 256
719 #define ex_mchash(addr) (ether_crc32_be((addr), ETHER_ADDR_LEN) & \
720 (MCHASHSIZE - 1))
721
722 /*
723 * Set multicast receive filter. Also take care of promiscuous mode
724 * here (XXX).
725 */
726 void
727 ex_set_mc(sc)
728 struct ex_softc *sc;
729 {
730 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
731 struct ethercom *ec = &sc->sc_ethercom;
732 struct ether_multi *enm;
733 struct ether_multistep estep;
734 int i;
735 u_int16_t mask = FIL_INDIVIDUAL | FIL_BRDCST;
736
737 if (ifp->if_flags & IFF_PROMISC) {
738 mask |= FIL_PROMISC;
739 goto allmulti;
740 }
741
742 ETHER_FIRST_MULTI(estep, ec, enm);
743 if (enm == NULL)
744 goto nomulti;
745
746 if ((sc->ex_conf & EX_CONF_90XB) == 0)
747 /* No multicast hash filtering. */
748 goto allmulti;
749
750 for (i = 0; i < MCHASHSIZE; i++)
751 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
752 ELINK_COMMAND, ELINK_CLEARHASHFILBIT | i);
753
754 do {
755 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
756 ETHER_ADDR_LEN) != 0)
757 goto allmulti;
758
759 i = ex_mchash(enm->enm_addrlo);
760 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
761 ELINK_COMMAND, ELINK_SETHASHFILBIT | i);
762 ETHER_NEXT_MULTI(estep, enm);
763 } while (enm != NULL);
764 mask |= FIL_MULTIHASH;
765
766 nomulti:
767 ifp->if_flags &= ~IFF_ALLMULTI;
768 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
769 SET_RX_FILTER | mask);
770 return;
771
772 allmulti:
773 ifp->if_flags |= IFF_ALLMULTI;
774 mask |= FIL_MULTICAST;
775 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
776 SET_RX_FILTER | mask);
777 }
778
779
780 static void
781 ex_txstat(sc)
782 struct ex_softc *sc;
783 {
784 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
785 bus_space_tag_t iot = sc->sc_iot;
786 bus_space_handle_t ioh = sc->sc_ioh;
787 int i;
788
789 /*
790 * We need to read+write TX_STATUS until we get a 0 status
791 * in order to turn off the interrupt flag.
792 */
793 while ((i = bus_space_read_1(iot, ioh, ELINK_TXSTATUS)) & TXS_COMPLETE) {
794 bus_space_write_1(iot, ioh, ELINK_TXSTATUS, 0x0);
795
796 if (i & TXS_JABBER) {
797 ++sc->sc_ethercom.ec_if.if_oerrors;
798 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
799 printf("%s: jabber (%x)\n",
800 sc->sc_dev.dv_xname, i);
801 ex_init(ifp);
802 /* TODO: be more subtle here */
803 } else if (i & TXS_UNDERRUN) {
804 ++sc->sc_ethercom.ec_if.if_oerrors;
805 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
806 printf("%s: fifo underrun (%x) @%d\n",
807 sc->sc_dev.dv_xname, i,
808 sc->tx_start_thresh);
809 if (sc->tx_succ_ok < 100)
810 sc->tx_start_thresh = min(ETHER_MAX_LEN,
811 sc->tx_start_thresh + 20);
812 sc->tx_succ_ok = 0;
813 ex_init(ifp);
814 /* TODO: be more subtle here */
815 } else if (i & TXS_MAX_COLLISION) {
816 ++sc->sc_ethercom.ec_if.if_collisions;
817 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
818 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
819 } else
820 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
821 }
822 }
823
824 int
825 ex_media_chg(ifp)
826 struct ifnet *ifp;
827 {
828
829 if (ifp->if_flags & IFF_UP)
830 ex_init(ifp);
831 return 0;
832 }
833
834 void
835 ex_set_xcvr(sc, media)
836 struct ex_softc *sc;
837 const u_int16_t media;
838 {
839 bus_space_tag_t iot = sc->sc_iot;
840 bus_space_handle_t ioh = sc->sc_ioh;
841 u_int32_t icfg;
842
843 /*
844 * We're already in Window 3
845 */
846 icfg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
847 icfg &= ~(CONFIG_XCVR_SEL << 16);
848 if (media & (ELINK_MEDIACAP_MII | ELINK_MEDIACAP_100BASET4))
849 icfg |= ELINKMEDIA_MII << (CONFIG_XCVR_SEL_SHIFT + 16);
850 if (media & ELINK_MEDIACAP_100BASETX)
851 icfg |= ELINKMEDIA_AUTO << (CONFIG_XCVR_SEL_SHIFT + 16);
852 if (media & ELINK_MEDIACAP_100BASEFX)
853 icfg |= ELINKMEDIA_100BASE_FX
854 << (CONFIG_XCVR_SEL_SHIFT + 16);
855 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, icfg);
856 }
857
858 void
859 ex_set_media(sc)
860 struct ex_softc *sc;
861 {
862 bus_space_tag_t iot = sc->sc_iot;
863 bus_space_handle_t ioh = sc->sc_ioh;
864 u_int32_t configreg;
865
866 if (((sc->ex_conf & EX_CONF_MII) &&
867 (sc->ex_mii.mii_media_active & IFM_FDX))
868 || (!(sc->ex_conf & EX_CONF_MII) &&
869 (sc->ex_mii.mii_media.ifm_media & IFM_FDX))) {
870 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL,
871 MAC_CONTROL_FDX);
872 } else {
873 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, 0);
874 }
875
876 /*
877 * If the device has MII, select it, and then tell the
878 * PHY which media to use.
879 */
880 if (sc->ex_conf & EX_CONF_MII) {
881 u_int16_t val;
882
883 GO_WINDOW(3);
884 val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
885 ex_set_xcvr(sc, val);
886 mii_mediachg(&sc->ex_mii);
887 return;
888 }
889
890 GO_WINDOW(4);
891 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0);
892 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
893 delay(800);
894
895 /*
896 * Now turn on the selected media/transceiver.
897 */
898 switch (IFM_SUBTYPE(sc->ex_mii.mii_media.ifm_cur->ifm_media)) {
899 case IFM_10_T:
900 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
901 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
902 break;
903
904 case IFM_10_2:
905 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
906 DELAY(800);
907 break;
908
909 case IFM_100_TX:
910 case IFM_100_FX:
911 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
912 LINKBEAT_ENABLE);
913 DELAY(800);
914 break;
915
916 case IFM_10_5:
917 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
918 SQE_ENABLE);
919 DELAY(800);
920 break;
921
922 case IFM_MANUAL:
923 break;
924
925 case IFM_NONE:
926 return;
927
928 default:
929 panic("ex_set_media: impossible");
930 }
931
932 GO_WINDOW(3);
933 configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
934
935 configreg &= ~(CONFIG_MEDIAMASK << 16);
936 configreg |= (sc->ex_mii.mii_media.ifm_cur->ifm_data <<
937 (CONFIG_MEDIAMASK_SHIFT + 16));
938
939 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
940 }
941
942 /*
943 * Get currently-selected media from card.
944 * (if_media callback, may be called before interface is brought up).
945 */
946 void
947 ex_media_stat(ifp, req)
948 struct ifnet *ifp;
949 struct ifmediareq *req;
950 {
951 struct ex_softc *sc = ifp->if_softc;
952 u_int16_t help;
953
954 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING)) {
955 if (sc->ex_conf & EX_CONF_MII) {
956 mii_pollstat(&sc->ex_mii);
957 req->ifm_status = sc->ex_mii.mii_media_status;
958 req->ifm_active = sc->ex_mii.mii_media_active;
959 } else {
960 GO_WINDOW(4);
961 req->ifm_status = IFM_AVALID;
962 req->ifm_active =
963 sc->ex_mii.mii_media.ifm_cur->ifm_media;
964 help = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
965 ELINK_W4_MEDIA_TYPE);
966 if (help & LINKBEAT_DETECT)
967 req->ifm_status |= IFM_ACTIVE;
968 GO_WINDOW(1);
969 }
970 }
971 }
972
973
974
975 /*
976 * Start outputting on the interface.
977 */
978 static void
979 ex_start(ifp)
980 struct ifnet *ifp;
981 {
982 struct ex_softc *sc = ifp->if_softc;
983 bus_space_tag_t iot = sc->sc_iot;
984 bus_space_handle_t ioh = sc->sc_ioh;
985 volatile struct ex_fraghdr *fr = NULL;
986 volatile struct ex_dpd *dpd = NULL, *prevdpd = NULL;
987 struct ex_txdesc *txp;
988 struct mbuf *mb_head;
989 bus_dmamap_t dmamap;
990 int offset, totlen, segment, error;
991 u_int32_t csum_flags;
992
993 if (sc->tx_head || sc->tx_free == NULL)
994 return;
995
996 txp = NULL;
997
998 /*
999 * We're finished if there is nothing more to add to the list or if
1000 * we're all filled up with buffers to transmit.
1001 */
1002 while (sc->tx_free != NULL) {
1003 /*
1004 * Grab a packet to transmit.
1005 */
1006 IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1007 if (mb_head == NULL)
1008 break;
1009
1010 /*
1011 * Get pointer to next available tx desc.
1012 */
1013 txp = sc->tx_free;
1014 dmamap = txp->tx_dmamap;
1015
1016 /*
1017 * Go through each of the mbufs in the chain and initialize
1018 * the transmit buffer descriptors with the physical address
1019 * and size of the mbuf.
1020 */
1021 reload:
1022 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1023 mb_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1024 switch (error) {
1025 case 0:
1026 /* Success. */
1027 break;
1028
1029 case EFBIG:
1030 {
1031 struct mbuf *mn;
1032
1033 /*
1034 * We ran out of segments. We have to recopy this
1035 * mbuf chain first. Bail out if we can't get the
1036 * new buffers.
1037 */
1038 printf("%s: too many segments, ", sc->sc_dev.dv_xname);
1039
1040 MGETHDR(mn, M_DONTWAIT, MT_DATA);
1041 if (mn == NULL) {
1042 m_freem(mb_head);
1043 printf("aborting\n");
1044 goto out;
1045 }
1046 if (mb_head->m_pkthdr.len > MHLEN) {
1047 MCLGET(mn, M_DONTWAIT);
1048 if ((mn->m_flags & M_EXT) == 0) {
1049 m_freem(mn);
1050 m_freem(mb_head);
1051 printf("aborting\n");
1052 goto out;
1053 }
1054 }
1055 m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1056 mtod(mn, caddr_t));
1057 mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1058 m_freem(mb_head);
1059 mb_head = mn;
1060 printf("retrying\n");
1061 goto reload;
1062 }
1063
1064 default:
1065 /*
1066 * Some other problem; report it.
1067 */
1068 printf("%s: can't load mbuf chain, error = %d\n",
1069 sc->sc_dev.dv_xname, error);
1070 m_freem(mb_head);
1071 goto out;
1072 }
1073
1074 /*
1075 * remove our tx desc from freelist.
1076 */
1077 sc->tx_free = txp->tx_next;
1078 txp->tx_next = NULL;
1079
1080 fr = &txp->tx_dpd->dpd_frags[0];
1081 totlen = 0;
1082 for (segment = 0; segment < dmamap->dm_nsegs; segment++, fr++) {
1083 fr->fr_addr = htole32(dmamap->dm_segs[segment].ds_addr);
1084 fr->fr_len = htole32(dmamap->dm_segs[segment].ds_len);
1085 totlen += dmamap->dm_segs[segment].ds_len;
1086 }
1087 fr--;
1088 fr->fr_len |= htole32(EX_FR_LAST);
1089 txp->tx_mbhead = mb_head;
1090
1091 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1092 BUS_DMASYNC_PREWRITE);
1093
1094 dpd = txp->tx_dpd;
1095 dpd->dpd_nextptr = 0;
1096 dpd->dpd_fsh = htole32(totlen);
1097
1098 /* Byte-swap constants so compiler can optimize. */
1099
1100 if (sc->ex_conf & EX_CONF_90XB) {
1101 csum_flags = 0;
1102
1103 if (mb_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1104 csum_flags |= htole32(EX_DPD_IPCKSUM);
1105
1106 if (mb_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1107 csum_flags |= htole32(EX_DPD_TCPCKSUM);
1108 else if (mb_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1109 csum_flags |= htole32(EX_DPD_UDPCKSUM);
1110
1111 dpd->dpd_fsh |= csum_flags;
1112 } else {
1113 KDASSERT((mb_head->m_pkthdr.csum_flags &
1114 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) == 0);
1115 }
1116
1117 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1118 ((const char *)(intptr_t)dpd - (const char *)sc->sc_dpd),
1119 sizeof (struct ex_dpd),
1120 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1121
1122 /*
1123 * No need to stall the download engine, we know it's
1124 * not busy right now.
1125 *
1126 * Fix up pointers in both the "soft" tx and the physical
1127 * tx list.
1128 */
1129 if (sc->tx_head != NULL) {
1130 prevdpd = sc->tx_tail->tx_dpd;
1131 offset = ((const char *)(intptr_t)prevdpd - (const char *)sc->sc_dpd);
1132 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1133 offset, sizeof (struct ex_dpd),
1134 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1135 prevdpd->dpd_nextptr = htole32(DPD_DMADDR(sc, txp));
1136 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1137 offset, sizeof (struct ex_dpd),
1138 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1139 sc->tx_tail->tx_next = txp;
1140 sc->tx_tail = txp;
1141 } else {
1142 sc->tx_tail = sc->tx_head = txp;
1143 }
1144
1145 #if NBPFILTER > 0
1146 /*
1147 * Pass packet to bpf if there is a listener.
1148 */
1149 if (ifp->if_bpf)
1150 bpf_mtap(ifp->if_bpf, mb_head);
1151 #endif
1152 }
1153 out:
1154 if (sc->tx_head) {
1155 sc->tx_tail->tx_dpd->dpd_fsh |= htole32(EX_DPD_DNIND);
1156 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1157 ((caddr_t)sc->tx_tail->tx_dpd - (caddr_t)sc->sc_dpd),
1158 sizeof (struct ex_dpd),
1159 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1160 ifp->if_flags |= IFF_OACTIVE;
1161 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNUNSTALL);
1162 bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
1163 DPD_DMADDR(sc, sc->tx_head));
1164
1165 /* trigger watchdog */
1166 ifp->if_timer = 5;
1167 }
1168 }
1169
1170
1171 int
1172 ex_intr(arg)
1173 void *arg;
1174 {
1175 struct ex_softc *sc = arg;
1176 bus_space_tag_t iot = sc->sc_iot;
1177 bus_space_handle_t ioh = sc->sc_ioh;
1178 u_int16_t stat;
1179 int ret = 0;
1180 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1181
1182 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1183 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1184 return (0);
1185
1186 for (;;) {
1187 stat = bus_space_read_2(iot, ioh, ELINK_STATUS);
1188
1189 if ((stat & XL_WATCHED_INTERRUPTS) == 0) {
1190 if ((stat & INTR_LATCH) == 0) {
1191 #if 0
1192 printf("%s: intr latch cleared\n",
1193 sc->sc_dev.dv_xname);
1194 #endif
1195 break;
1196 }
1197 }
1198
1199 ret = 1;
1200
1201 /*
1202 * Acknowledge interrupts.
1203 */
1204 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1205 (stat & (XL_WATCHED_INTERRUPTS | INTR_LATCH)));
1206 if (sc->intr_ack)
1207 (*sc->intr_ack)(sc);
1208
1209 if (stat & HOST_ERROR) {
1210 printf("%s: adapter failure (%x)\n",
1211 sc->sc_dev.dv_xname, stat);
1212 ex_reset(sc);
1213 ex_init(ifp);
1214 return 1;
1215 }
1216 if (stat & TX_COMPLETE) {
1217 ex_txstat(sc);
1218 }
1219 if (stat & UPD_STATS) {
1220 ex_getstats(sc);
1221 }
1222 if (stat & DN_COMPLETE) {
1223 struct ex_txdesc *txp, *ptxp = NULL;
1224 bus_dmamap_t txmap;
1225
1226 /* reset watchdog timer, was set in ex_start() */
1227 ifp->if_timer = 0;
1228
1229 for (txp = sc->tx_head; txp != NULL;
1230 txp = txp->tx_next) {
1231 bus_dmamap_sync(sc->sc_dmat,
1232 sc->sc_dpd_dmamap,
1233 (caddr_t)txp->tx_dpd - (caddr_t)sc->sc_dpd,
1234 sizeof (struct ex_dpd),
1235 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1236 if (txp->tx_mbhead != NULL) {
1237 txmap = txp->tx_dmamap;
1238 bus_dmamap_sync(sc->sc_dmat, txmap,
1239 0, txmap->dm_mapsize,
1240 BUS_DMASYNC_POSTWRITE);
1241 bus_dmamap_unload(sc->sc_dmat, txmap);
1242 m_freem(txp->tx_mbhead);
1243 txp->tx_mbhead = NULL;
1244 }
1245 ptxp = txp;
1246 }
1247
1248 /*
1249 * Move finished tx buffers back to the tx free list.
1250 */
1251 if (sc->tx_free) {
1252 sc->tx_ftail->tx_next = sc->tx_head;
1253 sc->tx_ftail = ptxp;
1254 } else
1255 sc->tx_ftail = sc->tx_free = sc->tx_head;
1256
1257 sc->tx_head = sc->tx_tail = NULL;
1258 ifp->if_flags &= ~IFF_OACTIVE;
1259 }
1260
1261 if (stat & UP_COMPLETE) {
1262 struct ex_rxdesc *rxd;
1263 struct mbuf *m;
1264 struct ex_upd *upd;
1265 bus_dmamap_t rxmap;
1266 u_int32_t pktstat;
1267
1268 rcvloop:
1269 rxd = sc->rx_head;
1270 rxmap = rxd->rx_dmamap;
1271 m = rxd->rx_mbhead;
1272 upd = rxd->rx_upd;
1273
1274 bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
1275 rxmap->dm_mapsize,
1276 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1277 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1278 ((caddr_t)upd - (caddr_t)sc->sc_upd),
1279 sizeof (struct ex_upd),
1280 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1281 pktstat = le32toh(upd->upd_pktstatus);
1282
1283 if (pktstat & EX_UPD_COMPLETE) {
1284 /*
1285 * Remove first packet from the chain.
1286 */
1287 sc->rx_head = rxd->rx_next;
1288 rxd->rx_next = NULL;
1289
1290 /*
1291 * Add a new buffer to the receive chain.
1292 * If this fails, the old buffer is recycled
1293 * instead.
1294 */
1295 if (ex_add_rxbuf(sc, rxd) == 0) {
1296 u_int16_t total_len;
1297
1298 if (pktstat &
1299 ((sc->sc_ethercom.ec_capenable &
1300 ETHERCAP_VLAN_MTU) ?
1301 EX_UPD_ERR_VLAN : EX_UPD_ERR)) {
1302 ifp->if_ierrors++;
1303 m_freem(m);
1304 goto rcvloop;
1305 }
1306
1307 total_len = pktstat & EX_UPD_PKTLENMASK;
1308 if (total_len <
1309 sizeof(struct ether_header)) {
1310 m_freem(m);
1311 goto rcvloop;
1312 }
1313 m->m_pkthdr.rcvif = ifp;
1314 m->m_pkthdr.len = m->m_len = total_len;
1315 #if NBPFILTER > 0
1316 if (ifp->if_bpf)
1317 bpf_mtap(ifp->if_bpf, m);
1318 #endif
1319 /*
1320 * Set the incoming checksum information for the packet.
1321 */
1322 if ((sc->ex_conf & EX_CONF_90XB) != 0 &&
1323 (pktstat & EX_UPD_IPCHECKED) != 0) {
1324 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1325 if (pktstat & EX_UPD_IPCKSUMERR)
1326 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1327 if (pktstat & EX_UPD_TCPCHECKED) {
1328 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1329 if (pktstat & EX_UPD_TCPCKSUMERR)
1330 m->m_pkthdr.csum_flags |=
1331 M_CSUM_TCP_UDP_BAD;
1332 } else if (pktstat & EX_UPD_UDPCHECKED) {
1333 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1334 if (pktstat & EX_UPD_UDPCKSUMERR)
1335 m->m_pkthdr.csum_flags |=
1336 M_CSUM_TCP_UDP_BAD;
1337 }
1338 }
1339 (*ifp->if_input)(ifp, m);
1340 }
1341 goto rcvloop;
1342 }
1343 /*
1344 * Just in case we filled up all UPDs and the DMA engine
1345 * stalled. We could be more subtle about this.
1346 */
1347 if (bus_space_read_4(iot, ioh, ELINK_UPLISTPTR) == 0) {
1348 printf("%s: uplistptr was 0\n",
1349 sc->sc_dev.dv_xname);
1350 ex_init(ifp);
1351 } else if (bus_space_read_4(iot, ioh, ELINK_UPPKTSTATUS)
1352 & 0x2000) {
1353 printf("%s: receive stalled\n",
1354 sc->sc_dev.dv_xname);
1355 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1356 ELINK_UPUNSTALL);
1357 }
1358 }
1359
1360 #if NRND > 0
1361 if (stat)
1362 rnd_add_uint32(&sc->rnd_source, stat);
1363 #endif
1364 }
1365
1366 /* no more interrupts */
1367 if (ret && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1368 ex_start(ifp);
1369 return ret;
1370 }
1371
1372 int
1373 ex_ioctl(ifp, cmd, data)
1374 struct ifnet *ifp;
1375 u_long cmd;
1376 caddr_t data;
1377 {
1378 struct ex_softc *sc = ifp->if_softc;
1379 struct ifreq *ifr = (struct ifreq *)data;
1380 int s, error;
1381
1382 s = splnet();
1383
1384 switch (cmd) {
1385 case SIOCSIFMEDIA:
1386 case SIOCGIFMEDIA:
1387 error = ifmedia_ioctl(ifp, ifr, &sc->ex_mii.mii_media, cmd);
1388 break;
1389 case SIOCSIFFLAGS:
1390 /* If the interface is up and running, only modify the receive
1391 * filter when setting promiscuous or debug mode. Otherwise
1392 * fall through to ether_ioctl, which will reset the chip.
1393 */
1394 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1395 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1396 == (IFF_UP|IFF_RUNNING))
1397 && ((ifp->if_flags & (~RESETIGN))
1398 == (sc->sc_if_flags & (~RESETIGN)))) {
1399 ex_set_mc(sc);
1400 error = 0;
1401 break;
1402 #undef RESETIGN
1403 }
1404 /* FALLTHROUGH */
1405 default:
1406 error = ether_ioctl(ifp, cmd, data);
1407 if (error == ENETRESET) {
1408 /*
1409 * Multicast list has changed; set the hardware filter
1410 * accordingly.
1411 */
1412 if (ifp->if_flags & IFF_RUNNING)
1413 ex_set_mc(sc);
1414 error = 0;
1415 }
1416 break;
1417 }
1418
1419 sc->sc_if_flags = ifp->if_flags;
1420 splx(s);
1421 return (error);
1422 }
1423
1424 void
1425 ex_getstats(sc)
1426 struct ex_softc *sc;
1427 {
1428 bus_space_handle_t ioh = sc->sc_ioh;
1429 bus_space_tag_t iot = sc->sc_iot;
1430 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1431 u_int8_t upperok;
1432
1433 GO_WINDOW(6);
1434 upperok = bus_space_read_1(iot, ioh, UPPER_FRAMES_OK);
1435 ifp->if_ipackets += bus_space_read_1(iot, ioh, RX_FRAMES_OK);
1436 ifp->if_ipackets += (upperok & 0x03) << 8;
1437 ifp->if_opackets += bus_space_read_1(iot, ioh, TX_FRAMES_OK);
1438 ifp->if_opackets += (upperok & 0x30) << 4;
1439 ifp->if_ierrors += bus_space_read_1(iot, ioh, RX_OVERRUNS);
1440 ifp->if_collisions += bus_space_read_1(iot, ioh, TX_COLLISIONS);
1441 /*
1442 * There seems to be no way to get the exact number of collisions,
1443 * this is the number that occurred at the very least.
1444 */
1445 ifp->if_collisions += 2 * bus_space_read_1(iot, ioh,
1446 TX_AFTER_X_COLLISIONS);
1447 /*
1448 * Interface byte counts are counted by ether_input() and
1449 * ether_output(), so don't accumulate them here. Just
1450 * read the NIC counters so they don't generate overflow interrupts.
1451 * Upper byte counters are latched from reading the totals, so
1452 * they don't need to be read if we don't need their values.
1453 */
1454 bus_space_read_2(iot, ioh, RX_TOTAL_OK);
1455 bus_space_read_2(iot, ioh, TX_TOTAL_OK);
1456
1457 /*
1458 * Clear the following to avoid stats overflow interrupts
1459 */
1460 bus_space_read_1(iot, ioh, TX_DEFERRALS);
1461 bus_space_read_1(iot, ioh, TX_AFTER_1_COLLISION);
1462 bus_space_read_1(iot, ioh, TX_NO_SQE);
1463 bus_space_read_1(iot, ioh, TX_CD_LOST);
1464 GO_WINDOW(4);
1465 bus_space_read_1(iot, ioh, ELINK_W4_BADSSD);
1466 GO_WINDOW(1);
1467 }
1468
1469 void
1470 ex_printstats(sc)
1471 struct ex_softc *sc;
1472 {
1473 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1474
1475 ex_getstats(sc);
1476 printf("in %llu out %llu ierror %llu oerror %llu ibytes %llu obytes "
1477 "%llu\n", (unsigned long long)ifp->if_ipackets,
1478 (unsigned long long)ifp->if_opackets,
1479 (unsigned long long)ifp->if_ierrors,
1480 (unsigned long long)ifp->if_oerrors,
1481 (unsigned long long)ifp->if_ibytes,
1482 (unsigned long long)ifp->if_obytes);
1483 }
1484
1485 void
1486 ex_tick(arg)
1487 void *arg;
1488 {
1489 struct ex_softc *sc = arg;
1490 int s;
1491
1492 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1493 return;
1494
1495 s = splnet();
1496
1497 if (sc->ex_conf & EX_CONF_MII)
1498 mii_tick(&sc->ex_mii);
1499
1500 if (!(bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, ELINK_STATUS)
1501 & COMMAND_IN_PROGRESS))
1502 ex_getstats(sc);
1503
1504 splx(s);
1505
1506 callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
1507 }
1508
1509 void
1510 ex_reset(sc)
1511 struct ex_softc *sc;
1512 {
1513 u_int16_t val = GLOBAL_RESET;
1514
1515 if (sc->ex_conf & EX_CONF_RESETHACK)
1516 val |= 0x10;
1517 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, val);
1518 /*
1519 * XXX apparently the command in progress bit can't be trusted
1520 * during a reset, so we just always wait this long. Fortunately
1521 * we normally only reset the chip during autoconfig.
1522 */
1523 delay(100000);
1524 ex_waitcmd(sc);
1525 }
1526
1527 void
1528 ex_watchdog(ifp)
1529 struct ifnet *ifp;
1530 {
1531 struct ex_softc *sc = ifp->if_softc;
1532
1533 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1534 ++sc->sc_ethercom.ec_if.if_oerrors;
1535
1536 ex_reset(sc);
1537 ex_init(ifp);
1538 }
1539
1540 void
1541 ex_stop(ifp, disable)
1542 struct ifnet *ifp;
1543 int disable;
1544 {
1545 struct ex_softc *sc = ifp->if_softc;
1546 bus_space_tag_t iot = sc->sc_iot;
1547 bus_space_handle_t ioh = sc->sc_ioh;
1548 struct ex_txdesc *tx;
1549 struct ex_rxdesc *rx;
1550 int i;
1551
1552 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1553 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1554 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1555
1556 for (tx = sc->tx_head ; tx != NULL; tx = tx->tx_next) {
1557 if (tx->tx_mbhead == NULL)
1558 continue;
1559 m_freem(tx->tx_mbhead);
1560 tx->tx_mbhead = NULL;
1561 bus_dmamap_unload(sc->sc_dmat, tx->tx_dmamap);
1562 tx->tx_dpd->dpd_fsh = tx->tx_dpd->dpd_nextptr = 0;
1563 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1564 ((caddr_t)tx->tx_dpd - (caddr_t)sc->sc_dpd),
1565 sizeof (struct ex_dpd),
1566 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1567 }
1568 sc->tx_tail = sc->tx_head = NULL;
1569 ex_init_txdescs(sc);
1570
1571 sc->rx_tail = sc->rx_head = 0;
1572 for (i = 0; i < EX_NUPD; i++) {
1573 rx = &sc->sc_rxdescs[i];
1574 if (rx->rx_mbhead != NULL) {
1575 bus_dmamap_unload(sc->sc_dmat, rx->rx_dmamap);
1576 m_freem(rx->rx_mbhead);
1577 rx->rx_mbhead = NULL;
1578 }
1579 ex_add_rxbuf(sc, rx);
1580 }
1581
1582 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1583
1584 callout_stop(&sc->ex_mii_callout);
1585 if (sc->ex_conf & EX_CONF_MII)
1586 mii_down(&sc->ex_mii);
1587
1588 if (disable)
1589 ex_disable(sc);
1590
1591 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1592 sc->sc_if_flags = ifp->if_flags;
1593 ifp->if_timer = 0;
1594 }
1595
1596 static void
1597 ex_init_txdescs(sc)
1598 struct ex_softc *sc;
1599 {
1600 int i;
1601
1602 for (i = 0; i < EX_NDPD; i++) {
1603 sc->sc_txdescs[i].tx_dmamap = sc->sc_tx_dmamaps[i];
1604 sc->sc_txdescs[i].tx_dpd = &sc->sc_dpd[i];
1605 if (i < EX_NDPD - 1)
1606 sc->sc_txdescs[i].tx_next = &sc->sc_txdescs[i + 1];
1607 else
1608 sc->sc_txdescs[i].tx_next = NULL;
1609 }
1610 sc->tx_free = &sc->sc_txdescs[0];
1611 sc->tx_ftail = &sc->sc_txdescs[EX_NDPD-1];
1612 }
1613
1614
1615 int
1616 ex_activate(self, act)
1617 struct device *self;
1618 enum devact act;
1619 {
1620 struct ex_softc *sc = (void *) self;
1621 int s, error = 0;
1622
1623 s = splnet();
1624 switch (act) {
1625 case DVACT_ACTIVATE:
1626 error = EOPNOTSUPP;
1627 break;
1628
1629 case DVACT_DEACTIVATE:
1630 if (sc->ex_conf & EX_CONF_MII)
1631 mii_activate(&sc->ex_mii, act, MII_PHY_ANY,
1632 MII_OFFSET_ANY);
1633 if_deactivate(&sc->sc_ethercom.ec_if);
1634 break;
1635 }
1636 splx(s);
1637
1638 return (error);
1639 }
1640
1641 int
1642 ex_detach(sc)
1643 struct ex_softc *sc;
1644 {
1645 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1646 struct ex_rxdesc *rxd;
1647 int i;
1648
1649 /* Succeed now if there's no work to do. */
1650 if ((sc->ex_flags & EX_FLAGS_ATTACHED) == 0)
1651 return (0);
1652
1653 /* Unhook our tick handler. */
1654 callout_stop(&sc->ex_mii_callout);
1655
1656 if (sc->ex_conf & EX_CONF_MII) {
1657 /* Detach all PHYs */
1658 mii_detach(&sc->ex_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1659 }
1660
1661 /* Delete all remaining media. */
1662 ifmedia_delete_instance(&sc->ex_mii.mii_media, IFM_INST_ANY);
1663
1664 #if NRND > 0
1665 rnd_detach_source(&sc->rnd_source);
1666 #endif
1667 ether_ifdetach(ifp);
1668 if_detach(ifp);
1669
1670 for (i = 0; i < EX_NUPD; i++) {
1671 rxd = &sc->sc_rxdescs[i];
1672 if (rxd->rx_mbhead != NULL) {
1673 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1674 m_freem(rxd->rx_mbhead);
1675 rxd->rx_mbhead = NULL;
1676 }
1677 }
1678 for (i = 0; i < EX_NUPD; i++)
1679 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
1680 for (i = 0; i < EX_NDPD; i++)
1681 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
1682 bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
1683 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
1684 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
1685 EX_NDPD * sizeof (struct ex_dpd));
1686 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
1687 bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
1688 bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
1689 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
1690 EX_NUPD * sizeof (struct ex_upd));
1691 bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
1692
1693 shutdownhook_disestablish(sc->sc_sdhook);
1694 powerhook_disestablish(sc->sc_powerhook);
1695
1696 return (0);
1697 }
1698
1699 /*
1700 * Before reboots, reset card completely.
1701 */
1702 static void
1703 ex_shutdown(arg)
1704 void *arg;
1705 {
1706 struct ex_softc *sc = arg;
1707
1708 ex_stop(&sc->sc_ethercom.ec_if, 1);
1709 /*
1710 * Make sure the interface is powered up when we reboot,
1711 * otherwise firmware on some systems gets really confused.
1712 */
1713 (void) ex_enable(sc);
1714 }
1715
1716 /*
1717 * Read EEPROM data.
1718 * XXX what to do if EEPROM doesn't unbusy?
1719 */
1720 u_int16_t
1721 ex_read_eeprom(sc, offset)
1722 struct ex_softc *sc;
1723 int offset;
1724 {
1725 bus_space_tag_t iot = sc->sc_iot;
1726 bus_space_handle_t ioh = sc->sc_ioh;
1727 u_int16_t data = 0, cmd = READ_EEPROM;
1728 int off;
1729
1730 off = sc->ex_conf & EX_CONF_EEPROM_OFF ? 0x30 : 0;
1731 cmd = sc->ex_conf & EX_CONF_EEPROM_8BIT ? READ_EEPROM8 : READ_EEPROM;
1732
1733 GO_WINDOW(0);
1734 if (ex_eeprom_busy(sc))
1735 goto out;
1736 bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
1737 cmd | (off + (offset & 0x3f)));
1738 if (ex_eeprom_busy(sc))
1739 goto out;
1740 data = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
1741 out:
1742 return data;
1743 }
1744
1745 static int
1746 ex_eeprom_busy(sc)
1747 struct ex_softc *sc;
1748 {
1749 bus_space_tag_t iot = sc->sc_iot;
1750 bus_space_handle_t ioh = sc->sc_ioh;
1751 int i = 100;
1752
1753 while (i--) {
1754 if (!(bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND) &
1755 EEPROM_BUSY))
1756 return 0;
1757 delay(100);
1758 }
1759 printf("\n%s: eeprom stays busy.\n", sc->sc_dev.dv_xname);
1760 return (1);
1761 }
1762
1763 /*
1764 * Create a new rx buffer and add it to the 'soft' rx list.
1765 */
1766 static int
1767 ex_add_rxbuf(sc, rxd)
1768 struct ex_softc *sc;
1769 struct ex_rxdesc *rxd;
1770 {
1771 struct mbuf *m, *oldm;
1772 bus_dmamap_t rxmap;
1773 int error, rval = 0;
1774
1775 oldm = rxd->rx_mbhead;
1776 rxmap = rxd->rx_dmamap;
1777
1778 MGETHDR(m, M_DONTWAIT, MT_DATA);
1779 if (m != NULL) {
1780 MCLGET(m, M_DONTWAIT);
1781 if ((m->m_flags & M_EXT) == 0) {
1782 m_freem(m);
1783 if (oldm == NULL)
1784 return 1;
1785 m = oldm;
1786 MRESETDATA(m);
1787 rval = 1;
1788 }
1789 } else {
1790 if (oldm == NULL)
1791 return 1;
1792 m = oldm;
1793 MRESETDATA(m);
1794 rval = 1;
1795 }
1796
1797 /*
1798 * Setup the DMA map for this receive buffer.
1799 */
1800 if (m != oldm) {
1801 if (oldm != NULL)
1802 bus_dmamap_unload(sc->sc_dmat, rxmap);
1803 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1804 m->m_ext.ext_buf, MCLBYTES, NULL,
1805 BUS_DMA_READ|BUS_DMA_NOWAIT);
1806 if (error) {
1807 printf("%s: can't load rx buffer, error = %d\n",
1808 sc->sc_dev.dv_xname, error);
1809 panic("ex_add_rxbuf"); /* XXX */
1810 }
1811 }
1812
1813 /*
1814 * Align for data after 14 byte header.
1815 */
1816 m->m_data += 2;
1817
1818 rxd->rx_mbhead = m;
1819 rxd->rx_upd->upd_pktstatus = htole32(MCLBYTES - 2);
1820 rxd->rx_upd->upd_frags[0].fr_addr =
1821 htole32(rxmap->dm_segs[0].ds_addr + 2);
1822 rxd->rx_upd->upd_nextptr = 0;
1823
1824 /*
1825 * Attach it to the end of the list.
1826 */
1827 if (sc->rx_head != NULL) {
1828 sc->rx_tail->rx_next = rxd;
1829 sc->rx_tail->rx_upd->upd_nextptr = htole32(sc->sc_upddma +
1830 ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd));
1831 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1832 (caddr_t)sc->rx_tail->rx_upd - (caddr_t)sc->sc_upd,
1833 sizeof (struct ex_upd),
1834 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1835 } else {
1836 sc->rx_head = rxd;
1837 }
1838 sc->rx_tail = rxd;
1839
1840 bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
1841 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1842 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1843 ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd),
1844 sizeof (struct ex_upd), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1845 return (rval);
1846 }
1847
1848 u_int32_t
1849 ex_mii_bitbang_read(self)
1850 struct device *self;
1851 {
1852 struct ex_softc *sc = (void *) self;
1853
1854 /* We're already in Window 4. */
1855 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT));
1856 }
1857
1858 void
1859 ex_mii_bitbang_write(self, val)
1860 struct device *self;
1861 u_int32_t val;
1862 {
1863 struct ex_softc *sc = (void *) self;
1864
1865 /* We're already in Window 4. */
1866 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT, val);
1867 }
1868
1869 int
1870 ex_mii_readreg(v, phy, reg)
1871 struct device *v;
1872 int phy, reg;
1873 {
1874 struct ex_softc *sc = (struct ex_softc *)v;
1875 int val;
1876
1877 if ((sc->ex_conf & EX_CONF_INTPHY) && phy != ELINK_INTPHY_ID)
1878 return 0;
1879
1880 GO_WINDOW(4);
1881
1882 val = mii_bitbang_readreg(v, &ex_mii_bitbang_ops, phy, reg);
1883
1884 GO_WINDOW(1);
1885
1886 return (val);
1887 }
1888
1889 void
1890 ex_mii_writereg(v, phy, reg, data)
1891 struct device *v;
1892 int phy;
1893 int reg;
1894 int data;
1895 {
1896 struct ex_softc *sc = (struct ex_softc *)v;
1897
1898 GO_WINDOW(4);
1899
1900 mii_bitbang_writereg(v, &ex_mii_bitbang_ops, phy, reg, data);
1901
1902 GO_WINDOW(1);
1903 }
1904
1905 void
1906 ex_mii_statchg(v)
1907 struct device *v;
1908 {
1909 struct ex_softc *sc = (struct ex_softc *)v;
1910 bus_space_tag_t iot = sc->sc_iot;
1911 bus_space_handle_t ioh = sc->sc_ioh;
1912 int mctl;
1913
1914 GO_WINDOW(3);
1915 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1916 if (sc->ex_mii.mii_media_active & IFM_FDX)
1917 mctl |= MAC_CONTROL_FDX;
1918 else
1919 mctl &= ~MAC_CONTROL_FDX;
1920 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1921 GO_WINDOW(1); /* back to operating window */
1922 }
1923
1924 int
1925 ex_enable(sc)
1926 struct ex_softc *sc;
1927 {
1928 if (sc->enabled == 0 && sc->enable != NULL) {
1929 if ((*sc->enable)(sc) != 0) {
1930 printf("%s: de/vice enable failed\n",
1931 sc->sc_dev.dv_xname);
1932 return (EIO);
1933 }
1934 sc->enabled = 1;
1935 }
1936 return (0);
1937 }
1938
1939 void
1940 ex_disable(sc)
1941 struct ex_softc *sc;
1942 {
1943 if (sc->enabled == 1 && sc->disable != NULL) {
1944 (*sc->disable)(sc);
1945 sc->enabled = 0;
1946 }
1947 }
1948
1949 void
1950 ex_power(why, arg)
1951 int why;
1952 void *arg;
1953 {
1954 struct ex_softc *sc = (void *)arg;
1955 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1956 int s;
1957
1958 s = splnet();
1959 switch (why) {
1960 case PWR_SUSPEND:
1961 case PWR_STANDBY:
1962 ex_stop(ifp, 0);
1963 if (sc->power != NULL)
1964 (*sc->power)(sc, why);
1965 break;
1966 case PWR_RESUME:
1967 if (ifp->if_flags & IFF_UP) {
1968 if (sc->power != NULL)
1969 (*sc->power)(sc, why);
1970 ex_init(ifp);
1971 }
1972 break;
1973 case PWR_SOFTSUSPEND:
1974 case PWR_SOFTSTANDBY:
1975 case PWR_SOFTRESUME:
1976 break;
1977 }
1978 splx(s);
1979 }
1980