Home | History | Annotate | Line # | Download | only in ic
elinkxl.c revision 1.83
      1 /*	$NetBSD: elinkxl.c,v 1.83 2005/05/31 01:48:22 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Frank van der Linden.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: elinkxl.c,v 1.83 2005/05/31 01:48:22 christos Exp $");
     41 
     42 #include "bpfilter.h"
     43 #include "rnd.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/callout.h>
     48 #include <sys/kernel.h>
     49 #include <sys/mbuf.h>
     50 #include <sys/socket.h>
     51 #include <sys/ioctl.h>
     52 #include <sys/errno.h>
     53 #include <sys/syslog.h>
     54 #include <sys/select.h>
     55 #include <sys/device.h>
     56 #if NRND > 0
     57 #include <sys/rnd.h>
     58 #endif
     59 
     60 #include <uvm/uvm_extern.h>
     61 
     62 #include <net/if.h>
     63 #include <net/if_dl.h>
     64 #include <net/if_ether.h>
     65 #include <net/if_media.h>
     66 
     67 #if NBPFILTER > 0
     68 #include <net/bpf.h>
     69 #include <net/bpfdesc.h>
     70 #endif
     71 
     72 #include <machine/cpu.h>
     73 #include <machine/bus.h>
     74 #include <machine/intr.h>
     75 #include <machine/endian.h>
     76 
     77 #include <dev/mii/miivar.h>
     78 #include <dev/mii/mii.h>
     79 #include <dev/mii/mii_bitbang.h>
     80 
     81 #include <dev/ic/elink3reg.h>
     82 /* #include <dev/ic/elink3var.h> */
     83 #include <dev/ic/elinkxlreg.h>
     84 #include <dev/ic/elinkxlvar.h>
     85 
     86 #ifdef DEBUG
     87 int exdebug = 0;
     88 #endif
     89 
     90 /* ifmedia callbacks */
     91 int ex_media_chg(struct ifnet *ifp);
     92 void ex_media_stat(struct ifnet *ifp, struct ifmediareq *req);
     93 
     94 void ex_probe_media(struct ex_softc *);
     95 void ex_set_filter(struct ex_softc *);
     96 void ex_set_media(struct ex_softc *);
     97 void ex_set_xcvr(struct ex_softc *, u_int16_t);
     98 struct mbuf *ex_get(struct ex_softc *, int);
     99 u_int16_t ex_read_eeprom(struct ex_softc *, int);
    100 int ex_init(struct ifnet *);
    101 void ex_read(struct ex_softc *);
    102 void ex_reset(struct ex_softc *);
    103 void ex_set_mc(struct ex_softc *);
    104 void ex_getstats(struct ex_softc *);
    105 void ex_printstats(struct ex_softc *);
    106 void ex_tick(void *);
    107 
    108 void ex_power(int, void *);
    109 
    110 static int ex_eeprom_busy(struct ex_softc *);
    111 static int ex_add_rxbuf(struct ex_softc *, struct ex_rxdesc *);
    112 static void ex_init_txdescs(struct ex_softc *);
    113 
    114 static void ex_shutdown(void *);
    115 static void ex_start(struct ifnet *);
    116 static void ex_txstat(struct ex_softc *);
    117 
    118 int ex_mii_readreg(struct device *, int, int);
    119 void ex_mii_writereg(struct device *, int, int, int);
    120 void ex_mii_statchg(struct device *);
    121 
    122 void ex_probemedia(struct ex_softc *);
    123 
    124 /*
    125  * Structure to map media-present bits in boards to ifmedia codes and
    126  * printable media names.  Used for table-driven ifmedia initialization.
    127  */
    128 struct ex_media {
    129 	int	exm_mpbit;		/* media present bit */
    130 	const char *exm_name;		/* name of medium */
    131 	int	exm_ifmedia;		/* ifmedia word for medium */
    132 	int	exm_epmedia;		/* ELINKMEDIA_* constant */
    133 };
    134 
    135 /*
    136  * Media table for 3c90x chips.  Note that chips with MII have no
    137  * `native' media.
    138  */
    139 struct ex_media ex_native_media[] = {
    140 	{ ELINK_PCI_10BASE_T,	"10baseT",	IFM_ETHER|IFM_10_T,
    141 	  ELINKMEDIA_10BASE_T },
    142 	{ ELINK_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER|IFM_10_T|IFM_FDX,
    143 	  ELINKMEDIA_10BASE_T },
    144 	{ ELINK_PCI_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
    145 	  ELINKMEDIA_AUI },
    146 	{ ELINK_PCI_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
    147 	  ELINKMEDIA_10BASE_2 },
    148 	{ ELINK_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER|IFM_100_TX,
    149 	  ELINKMEDIA_100BASE_TX },
    150 	{ ELINK_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
    151 	  ELINKMEDIA_100BASE_TX },
    152 	{ ELINK_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER|IFM_100_FX,
    153 	  ELINKMEDIA_100BASE_FX },
    154 	{ ELINK_PCI_100BASE_MII,"manual",	IFM_ETHER|IFM_MANUAL,
    155 	  ELINKMEDIA_MII },
    156 	{ ELINK_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER|IFM_100_T4,
    157 	  ELINKMEDIA_100BASE_T4 },
    158 	{ 0,			NULL,		0,
    159 	  0 },
    160 };
    161 
    162 /*
    163  * MII bit-bang glue.
    164  */
    165 u_int32_t ex_mii_bitbang_read(struct device *);
    166 void ex_mii_bitbang_write(struct device *, u_int32_t);
    167 
    168 const struct mii_bitbang_ops ex_mii_bitbang_ops = {
    169 	ex_mii_bitbang_read,
    170 	ex_mii_bitbang_write,
    171 	{
    172 		ELINK_PHY_DATA,		/* MII_BIT_MDO */
    173 		ELINK_PHY_DATA,		/* MII_BIT_MDI */
    174 		ELINK_PHY_CLK,		/* MII_BIT_MDC */
    175 		ELINK_PHY_DIR,		/* MII_BIT_DIR_HOST_PHY */
    176 		0,			/* MII_BIT_DIR_PHY_HOST */
    177 	}
    178 };
    179 
    180 /*
    181  * Back-end attach and configure.
    182  */
    183 void
    184 ex_config(sc)
    185 	struct ex_softc *sc;
    186 {
    187 	struct ifnet *ifp;
    188 	u_int16_t val;
    189 	u_int8_t macaddr[ETHER_ADDR_LEN] = {0};
    190 	bus_space_tag_t iot = sc->sc_iot;
    191 	bus_space_handle_t ioh = sc->sc_ioh;
    192 	int i, error, attach_stage;
    193 
    194 	callout_init(&sc->ex_mii_callout);
    195 
    196 	ex_reset(sc);
    197 
    198 	val = ex_read_eeprom(sc, EEPROM_OEM_ADDR0);
    199 	macaddr[0] = val >> 8;
    200 	macaddr[1] = val & 0xff;
    201 	val = ex_read_eeprom(sc, EEPROM_OEM_ADDR1);
    202 	macaddr[2] = val >> 8;
    203 	macaddr[3] = val & 0xff;
    204 	val = ex_read_eeprom(sc, EEPROM_OEM_ADDR2);
    205 	macaddr[4] = val >> 8;
    206 	macaddr[5] = val & 0xff;
    207 
    208 	aprint_normal("%s: MAC address %s\n", sc->sc_dev.dv_xname,
    209 	    ether_sprintf(macaddr));
    210 
    211 	if (sc->ex_conf & (EX_CONF_INV_LED_POLARITY|EX_CONF_PHY_POWER)) {
    212 		GO_WINDOW(2);
    213 		val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
    214 		if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
    215 			val |= ELINK_RESET_OPT_LEDPOLAR;
    216 		if (sc->ex_conf & EX_CONF_PHY_POWER)
    217 			val |= ELINK_RESET_OPT_PHYPOWER;
    218 		bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
    219 	}
    220 	if (sc->ex_conf & EX_CONF_NO_XCVR_PWR) {
    221 		GO_WINDOW(0);
    222 		bus_space_write_2(iot, ioh, ELINK_W0_MFG_ID,
    223 		    EX_XCVR_PWR_MAGICBITS);
    224 	}
    225 
    226 	attach_stage = 0;
    227 
    228 	/*
    229 	 * Allocate the upload descriptors, and create and load the DMA
    230 	 * map for them.
    231 	 */
    232 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    233 	    EX_NUPD * sizeof (struct ex_upd), PAGE_SIZE, 0, &sc->sc_useg, 1,
    234             &sc->sc_urseg, BUS_DMA_NOWAIT)) != 0) {
    235 		aprint_error(
    236 		    "%s: can't allocate upload descriptors, error = %d\n",
    237 		    sc->sc_dev.dv_xname, error);
    238 		goto fail;
    239 	}
    240 
    241 	attach_stage = 1;
    242 
    243 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg,
    244 	    EX_NUPD * sizeof (struct ex_upd), (caddr_t *)&sc->sc_upd,
    245 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    246 		aprint_error("%s: can't map upload descriptors, error = %d\n",
    247 		    sc->sc_dev.dv_xname, error);
    248 		goto fail;
    249 	}
    250 
    251 	attach_stage = 2;
    252 
    253 	if ((error = bus_dmamap_create(sc->sc_dmat,
    254 	    EX_NUPD * sizeof (struct ex_upd), 1,
    255 	    EX_NUPD * sizeof (struct ex_upd), 0, BUS_DMA_NOWAIT,
    256 	    &sc->sc_upd_dmamap)) != 0) {
    257 		aprint_error(
    258 		    "%s: can't create upload desc. DMA map, error = %d\n",
    259 		    sc->sc_dev.dv_xname, error);
    260 		goto fail;
    261 	}
    262 
    263 	attach_stage = 3;
    264 
    265 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_upd_dmamap,
    266 	    sc->sc_upd, EX_NUPD * sizeof (struct ex_upd), NULL,
    267 	    BUS_DMA_NOWAIT)) != 0) {
    268 		aprint_error(
    269 		    "%s: can't load upload desc. DMA map, error = %d\n",
    270 		    sc->sc_dev.dv_xname, error);
    271 		goto fail;
    272 	}
    273 
    274 	attach_stage = 4;
    275 
    276 	/*
    277 	 * Allocate the download descriptors, and create and load the DMA
    278 	 * map for them.
    279 	 */
    280 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    281 	    EX_NDPD * sizeof (struct ex_dpd), PAGE_SIZE, 0, &sc->sc_dseg, 1,
    282 	    &sc->sc_drseg, BUS_DMA_NOWAIT)) != 0) {
    283 		aprint_error(
    284 		    "%s: can't allocate download descriptors, error = %d\n",
    285 		    sc->sc_dev.dv_xname, error);
    286 		goto fail;
    287 	}
    288 
    289 	attach_stage = 5;
    290 
    291 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg,
    292 	    EX_NDPD * sizeof (struct ex_dpd), (caddr_t *)&sc->sc_dpd,
    293 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
    294 		aprint_error("%s: can't map download descriptors, error = %d\n",
    295 		    sc->sc_dev.dv_xname, error);
    296 		goto fail;
    297 	}
    298 	memset(sc->sc_dpd, 0, EX_NDPD * sizeof (struct ex_dpd));
    299 
    300 	attach_stage = 6;
    301 
    302 	if ((error = bus_dmamap_create(sc->sc_dmat,
    303 	    EX_NDPD * sizeof (struct ex_dpd), 1,
    304 	    EX_NDPD * sizeof (struct ex_dpd), 0, BUS_DMA_NOWAIT,
    305 	    &sc->sc_dpd_dmamap)) != 0) {
    306 		aprint_error(
    307 		    "%s: can't create download desc. DMA map, error = %d\n",
    308 		    sc->sc_dev.dv_xname, error);
    309 		goto fail;
    310 	}
    311 
    312 	attach_stage = 7;
    313 
    314 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dpd_dmamap,
    315 	    sc->sc_dpd, EX_NDPD * sizeof (struct ex_dpd), NULL,
    316 	    BUS_DMA_NOWAIT)) != 0) {
    317 		aprint_error(
    318 		    "%s: can't load download desc. DMA map, error = %d\n",
    319 		    sc->sc_dev.dv_xname, error);
    320 		goto fail;
    321 	}
    322 
    323 	attach_stage = 8;
    324 
    325 
    326 	/*
    327 	 * Create the transmit buffer DMA maps.
    328 	 */
    329 	for (i = 0; i < EX_NDPD; i++) {
    330 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    331 		    EX_NTFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
    332 		    &sc->sc_tx_dmamaps[i])) != 0) {
    333 			aprint_error(
    334 			    "%s: can't create tx DMA map %d, error = %d\n",
    335 			    sc->sc_dev.dv_xname, i, error);
    336 			goto fail;
    337 		}
    338 	}
    339 
    340 	attach_stage = 9;
    341 
    342 	/*
    343 	 * Create the receive buffer DMA maps.
    344 	 */
    345 	for (i = 0; i < EX_NUPD; i++) {
    346 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    347 		    EX_NRFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
    348 		    &sc->sc_rx_dmamaps[i])) != 0) {
    349 			aprint_error(
    350 			    "%s: can't create rx DMA map %d, error = %d\n",
    351 			    sc->sc_dev.dv_xname, i, error);
    352 			goto fail;
    353 		}
    354 	}
    355 
    356 	attach_stage = 10;
    357 
    358 	/*
    359 	 * Create ring of upload descriptors, only once. The DMA engine
    360 	 * will loop over this when receiving packets, stalling if it
    361 	 * hits an UPD with a finished receive.
    362 	 */
    363 	for (i = 0; i < EX_NUPD; i++) {
    364 		sc->sc_rxdescs[i].rx_dmamap = sc->sc_rx_dmamaps[i];
    365 		sc->sc_rxdescs[i].rx_upd = &sc->sc_upd[i];
    366 		sc->sc_upd[i].upd_frags[0].fr_len =
    367 		    htole32((MCLBYTES - 2) | EX_FR_LAST);
    368 		if (ex_add_rxbuf(sc, &sc->sc_rxdescs[i]) != 0) {
    369 			aprint_error("%s: can't allocate or map rx buffers\n",
    370 			    sc->sc_dev.dv_xname);
    371 			goto fail;
    372 		}
    373 	}
    374 
    375 	bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap, 0,
    376 	    EX_NUPD * sizeof (struct ex_upd),
    377 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    378 
    379 	ex_init_txdescs(sc);
    380 
    381 	attach_stage = 11;
    382 
    383 
    384 	GO_WINDOW(3);
    385 	val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
    386 	if (val & ELINK_MEDIACAP_MII)
    387 		sc->ex_conf |= EX_CONF_MII;
    388 
    389 	ifp = &sc->sc_ethercom.ec_if;
    390 
    391 	/*
    392 	 * Initialize our media structures and MII info.  We'll
    393 	 * probe the MII if we discover that we have one.
    394 	 */
    395 	sc->ex_mii.mii_ifp = ifp;
    396 	sc->ex_mii.mii_readreg = ex_mii_readreg;
    397 	sc->ex_mii.mii_writereg = ex_mii_writereg;
    398 	sc->ex_mii.mii_statchg = ex_mii_statchg;
    399 	ifmedia_init(&sc->ex_mii.mii_media, IFM_IMASK, ex_media_chg,
    400 	    ex_media_stat);
    401 
    402 	if (sc->ex_conf & EX_CONF_MII) {
    403 		/*
    404 		 * Find PHY, extract media information from it.
    405 		 * First, select the right transceiver.
    406 		 */
    407 		ex_set_xcvr(sc, val);
    408 
    409 		mii_attach(&sc->sc_dev, &sc->ex_mii, 0xffffffff,
    410 		    MII_PHY_ANY, MII_OFFSET_ANY, 0);
    411 		if (LIST_FIRST(&sc->ex_mii.mii_phys) == NULL) {
    412 			ifmedia_add(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE,
    413 			    0, NULL);
    414 			ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE);
    415 		} else {
    416 			ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_AUTO);
    417 		}
    418 	} else
    419 		ex_probemedia(sc);
    420 
    421 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    422 	ifp->if_softc = sc;
    423 	ifp->if_start = ex_start;
    424 	ifp->if_ioctl = ex_ioctl;
    425 	ifp->if_watchdog = ex_watchdog;
    426 	ifp->if_init = ex_init;
    427 	ifp->if_stop = ex_stop;
    428 	ifp->if_flags =
    429 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    430 	sc->sc_if_flags = ifp->if_flags;
    431 	IFQ_SET_READY(&ifp->if_snd);
    432 
    433 	/*
    434 	 * We can support 802.1Q VLAN-sized frames.
    435 	 */
    436 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    437 
    438 	/*
    439 	 * The 3c90xB has hardware IPv4/TCPv4/UDPv4 checksum support.
    440 	 */
    441 	if (sc->ex_conf & EX_CONF_90XB)
    442 		sc->sc_ethercom.ec_if.if_capabilities |=
    443 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    444 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    445 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    446 
    447 	if_attach(ifp);
    448 	ether_ifattach(ifp, macaddr);
    449 
    450 	GO_WINDOW(1);
    451 
    452 	sc->tx_start_thresh = 20;
    453 	sc->tx_succ_ok = 0;
    454 
    455 	/* TODO: set queues to 0 */
    456 
    457 #if NRND > 0
    458 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    459 			  RND_TYPE_NET, 0);
    460 #endif
    461 
    462 	/*  Establish callback to reset card when we reboot. */
    463 	sc->sc_sdhook = shutdownhook_establish(ex_shutdown, sc);
    464 	if (sc->sc_sdhook == NULL)
    465 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
    466 			sc->sc_dev.dv_xname);
    467 
    468 	/* Add a suspend hook to make sure we come back up after a resume. */
    469 	sc->sc_powerhook = powerhook_establish(ex_power, sc);
    470 	if (sc->sc_powerhook == NULL)
    471 		aprint_error("%s: WARNING: unable to establish power hook\n",
    472 			sc->sc_dev.dv_xname);
    473 
    474 	/* The attach is successful. */
    475 	sc->ex_flags |= EX_FLAGS_ATTACHED;
    476 	return;
    477 
    478  fail:
    479 	/*
    480 	 * Free any resources we've allocated during the failed attach
    481 	 * attempt.  Do this in reverse order and fall though.
    482 	 */
    483 	switch (attach_stage) {
    484 	case 11:
    485 	    {
    486 		struct ex_rxdesc *rxd;
    487 
    488 		for (i = 0; i < EX_NUPD; i++) {
    489 			rxd = &sc->sc_rxdescs[i];
    490 			if (rxd->rx_mbhead != NULL) {
    491 				bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
    492 				m_freem(rxd->rx_mbhead);
    493 			}
    494 		}
    495 	    }
    496 		/* FALLTHROUGH */
    497 
    498 	case 10:
    499 		for (i = 0; i < EX_NUPD; i++)
    500 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
    501 		/* FALLTHROUGH */
    502 
    503 	case 9:
    504 		for (i = 0; i < EX_NDPD; i++)
    505 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
    506 		/* FALLTHROUGH */
    507 	case 8:
    508 		bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
    509 		/* FALLTHROUGH */
    510 
    511 	case 7:
    512 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
    513 		/* FALLTHROUGH */
    514 
    515 	case 6:
    516 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
    517 		    EX_NDPD * sizeof (struct ex_dpd));
    518 		/* FALLTHROUGH */
    519 
    520 	case 5:
    521 		bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
    522 		break;
    523 
    524 	case 4:
    525 		bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
    526 		/* FALLTHROUGH */
    527 
    528 	case 3:
    529 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
    530 		/* FALLTHROUGH */
    531 
    532 	case 2:
    533 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
    534 		    EX_NUPD * sizeof (struct ex_upd));
    535 		/* FALLTHROUGH */
    536 
    537 	case 1:
    538 		bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
    539 		break;
    540 	}
    541 
    542 }
    543 
    544 /*
    545  * Find the media present on non-MII chips.
    546  */
    547 void
    548 ex_probemedia(sc)
    549 	struct ex_softc *sc;
    550 {
    551 	bus_space_tag_t iot = sc->sc_iot;
    552 	bus_space_handle_t ioh = sc->sc_ioh;
    553 	struct ifmedia *ifm = &sc->ex_mii.mii_media;
    554 	struct ex_media *exm;
    555 	u_int16_t config1, reset_options, default_media;
    556 	int defmedia = 0;
    557 	const char *sep = "", *defmedianame = NULL;
    558 
    559 	GO_WINDOW(3);
    560 	config1 = bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
    561 	reset_options = bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
    562 	GO_WINDOW(0);
    563 
    564 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
    565 
    566 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
    567 
    568 	/* Sanity check that there are any media! */
    569 	if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
    570 		aprint_error("no media present!\n");
    571 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
    572 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
    573 		return;
    574 	}
    575 
    576 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
    577 
    578 	for (exm = ex_native_media; exm->exm_name != NULL; exm++) {
    579 		if (reset_options & exm->exm_mpbit) {
    580 			/*
    581 			 * Default media is a little complicated.  We
    582 			 * support full-duplex which uses the same
    583 			 * reset options bit.
    584 			 *
    585 			 * XXX Check EEPROM for default to FDX?
    586 			 */
    587 			if (exm->exm_epmedia == default_media) {
    588 				if ((exm->exm_ifmedia & IFM_FDX) == 0) {
    589 					defmedia = exm->exm_ifmedia;
    590 					defmedianame = exm->exm_name;
    591 				}
    592 			} else if (defmedia == 0) {
    593 				defmedia = exm->exm_ifmedia;
    594 				defmedianame = exm->exm_name;
    595 			}
    596 			ifmedia_add(ifm, exm->exm_ifmedia, exm->exm_epmedia,
    597 			    NULL);
    598 			PRINT(exm->exm_name);
    599 		}
    600 	}
    601 
    602 #undef PRINT
    603 
    604 #ifdef DIAGNOSTIC
    605 	if (defmedia == 0)
    606 		panic("ex_probemedia: impossible");
    607 #endif
    608 
    609 	aprint_normal(", default %s\n", defmedianame);
    610 	ifmedia_set(ifm, defmedia);
    611 }
    612 
    613 /*
    614  * Bring device up.
    615  */
    616 int
    617 ex_init(ifp)
    618 	struct ifnet *ifp;
    619 {
    620 	struct ex_softc *sc = ifp->if_softc;
    621 	bus_space_tag_t iot = sc->sc_iot;
    622 	bus_space_handle_t ioh = sc->sc_ioh;
    623 	int i;
    624 	int error = 0;
    625 
    626 	if ((error = ex_enable(sc)) != 0)
    627 		goto out;
    628 
    629 	ex_waitcmd(sc);
    630 	ex_stop(ifp, 0);
    631 
    632 	/*
    633 	 * Set the station address and clear the station mask. The latter
    634 	 * is needed for 90x cards, 0 is the default for 90xB cards.
    635 	 */
    636 	GO_WINDOW(2);
    637 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
    638 		bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
    639 		    LLADDR(ifp->if_sadl)[i]);
    640 		bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
    641 	}
    642 
    643 	GO_WINDOW(3);
    644 
    645 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_RESET);
    646 	ex_waitcmd(sc);
    647 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
    648 	ex_waitcmd(sc);
    649 
    650 	/*
    651 	 * Disable reclaim threshold for 90xB, set free threshold to
    652 	 * 6 * 256 = 1536 for 90x.
    653 	 */
    654 	if (sc->ex_conf & EX_CONF_90XB)
    655 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
    656 		    ELINK_TXRECLTHRESH | 255);
    657 	else
    658 		bus_space_write_1(iot, ioh, ELINK_TXFREETHRESH, 6);
    659 
    660 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    661 	    SET_RX_EARLY_THRESH | ELINK_THRESH_DISABLE);
    662 
    663 	bus_space_write_4(iot, ioh, ELINK_DMACTRL,
    664 	    bus_space_read_4(iot, ioh, ELINK_DMACTRL) | ELINK_DMAC_UPRXEAREN);
    665 
    666 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    667 	    SET_RD_0_MASK | XL_WATCHED_INTERRUPTS);
    668 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    669 	    SET_INTR_MASK | XL_WATCHED_INTERRUPTS);
    670 
    671 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
    672 	if (sc->intr_ack)
    673 	    (* sc->intr_ack)(sc);
    674 	ex_set_media(sc);
    675 	ex_set_mc(sc);
    676 
    677 
    678 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STATS_ENABLE);
    679 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
    680 	bus_space_write_4(iot, ioh, ELINK_UPLISTPTR, sc->sc_upddma);
    681 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
    682 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_UPUNSTALL);
    683 
    684 	if (sc->ex_conf & (EX_CONF_PHY_POWER | EX_CONF_INV_LED_POLARITY)) {
    685 		u_int16_t cbcard_config;
    686 
    687 		GO_WINDOW(2);
    688 		cbcard_config = bus_space_read_2(sc->sc_iot, sc->sc_ioh, 0x0c);
    689 		if (sc->ex_conf & EX_CONF_PHY_POWER) {
    690 			cbcard_config |= 0x4000; /* turn on PHY power */
    691 		}
    692 		if (sc->ex_conf & EX_CONF_INV_LED_POLARITY) {
    693 			cbcard_config |= 0x0010; /* invert LED polarity */
    694 		}
    695 		bus_space_write_2(sc->sc_iot, sc->sc_ioh, 0x0c, cbcard_config);
    696 
    697 		GO_WINDOW(3);
    698 	}
    699 
    700 	ifp->if_flags |= IFF_RUNNING;
    701 	ifp->if_flags &= ~IFF_OACTIVE;
    702 	ex_start(ifp);
    703 	sc->sc_if_flags = ifp->if_flags;
    704 
    705 	GO_WINDOW(1);
    706 
    707 	callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
    708 
    709  out:
    710 	if (error) {
    711 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    712 		ifp->if_timer = 0;
    713 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
    714 	}
    715 	return (error);
    716 }
    717 
    718 #define	MCHASHSIZE		256
    719 #define	ex_mchash(addr)		(ether_crc32_be((addr), ETHER_ADDR_LEN) & \
    720 				    (MCHASHSIZE - 1))
    721 
    722 /*
    723  * Set multicast receive filter. Also take care of promiscuous mode
    724  * here (XXX).
    725  */
    726 void
    727 ex_set_mc(sc)
    728 	struct ex_softc *sc;
    729 {
    730 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    731 	struct ethercom *ec = &sc->sc_ethercom;
    732 	struct ether_multi *enm;
    733 	struct ether_multistep estep;
    734 	int i;
    735 	u_int16_t mask = FIL_INDIVIDUAL | FIL_BRDCST;
    736 
    737 	if (ifp->if_flags & IFF_PROMISC) {
    738 		mask |= FIL_PROMISC;
    739 		goto allmulti;
    740 	}
    741 
    742 	ETHER_FIRST_MULTI(estep, ec, enm);
    743 	if (enm == NULL)
    744 		goto nomulti;
    745 
    746 	if ((sc->ex_conf & EX_CONF_90XB) == 0)
    747 		/* No multicast hash filtering. */
    748 		goto allmulti;
    749 
    750 	for (i = 0; i < MCHASHSIZE; i++)
    751 		bus_space_write_2(sc->sc_iot, sc->sc_ioh,
    752 		    ELINK_COMMAND, ELINK_CLEARHASHFILBIT | i);
    753 
    754 	do {
    755 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
    756 		    ETHER_ADDR_LEN) != 0)
    757 			goto allmulti;
    758 
    759 		i = ex_mchash(enm->enm_addrlo);
    760 		bus_space_write_2(sc->sc_iot, sc->sc_ioh,
    761 		    ELINK_COMMAND, ELINK_SETHASHFILBIT | i);
    762 		ETHER_NEXT_MULTI(estep, enm);
    763 	} while (enm != NULL);
    764 	mask |= FIL_MULTIHASH;
    765 
    766 nomulti:
    767 	ifp->if_flags &= ~IFF_ALLMULTI;
    768 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
    769 	    SET_RX_FILTER | mask);
    770 	return;
    771 
    772 allmulti:
    773 	ifp->if_flags |= IFF_ALLMULTI;
    774 	mask |= FIL_MULTICAST;
    775 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
    776 	    SET_RX_FILTER | mask);
    777 }
    778 
    779 
    780 static void
    781 ex_txstat(sc)
    782 	struct ex_softc *sc;
    783 {
    784 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    785 	bus_space_tag_t iot = sc->sc_iot;
    786 	bus_space_handle_t ioh = sc->sc_ioh;
    787 	int i;
    788 
    789 	/*
    790 	 * We need to read+write TX_STATUS until we get a 0 status
    791 	 * in order to turn off the interrupt flag.
    792 	 */
    793 	while ((i = bus_space_read_1(iot, ioh, ELINK_TXSTATUS)) & TXS_COMPLETE) {
    794 		bus_space_write_1(iot, ioh, ELINK_TXSTATUS, 0x0);
    795 
    796 		if (i & TXS_JABBER) {
    797 			++sc->sc_ethercom.ec_if.if_oerrors;
    798 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
    799 				printf("%s: jabber (%x)\n",
    800 				       sc->sc_dev.dv_xname, i);
    801 			ex_init(ifp);
    802 			/* TODO: be more subtle here */
    803 		} else if (i & TXS_UNDERRUN) {
    804 			++sc->sc_ethercom.ec_if.if_oerrors;
    805 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
    806 				printf("%s: fifo underrun (%x) @%d\n",
    807 				       sc->sc_dev.dv_xname, i,
    808 				       sc->tx_start_thresh);
    809 			if (sc->tx_succ_ok < 100)
    810 				    sc->tx_start_thresh = min(ETHER_MAX_LEN,
    811 					    sc->tx_start_thresh + 20);
    812 			sc->tx_succ_ok = 0;
    813 			ex_init(ifp);
    814 			/* TODO: be more subtle here */
    815 		} else if (i & TXS_MAX_COLLISION) {
    816 			++sc->sc_ethercom.ec_if.if_collisions;
    817 			bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
    818 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
    819 		} else
    820 			sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
    821 	}
    822 }
    823 
    824 int
    825 ex_media_chg(ifp)
    826 	struct ifnet *ifp;
    827 {
    828 
    829 	if (ifp->if_flags & IFF_UP)
    830 		ex_init(ifp);
    831 	return 0;
    832 }
    833 
    834 void
    835 ex_set_xcvr(sc, media)
    836 	struct ex_softc *sc;
    837 	const u_int16_t media;
    838 {
    839 	bus_space_tag_t iot = sc->sc_iot;
    840 	bus_space_handle_t ioh = sc->sc_ioh;
    841 	u_int32_t icfg;
    842 
    843 	/*
    844 	 * We're already in Window 3
    845 	 */
    846 	icfg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
    847 	icfg &= ~(CONFIG_XCVR_SEL << 16);
    848 	if (media & (ELINK_MEDIACAP_MII | ELINK_MEDIACAP_100BASET4))
    849 		icfg |= ELINKMEDIA_MII << (CONFIG_XCVR_SEL_SHIFT + 16);
    850 	if (media & ELINK_MEDIACAP_100BASETX)
    851 		icfg |= ELINKMEDIA_AUTO << (CONFIG_XCVR_SEL_SHIFT + 16);
    852 	if (media & ELINK_MEDIACAP_100BASEFX)
    853 		icfg |= ELINKMEDIA_100BASE_FX
    854 			<< (CONFIG_XCVR_SEL_SHIFT + 16);
    855 	bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, icfg);
    856 }
    857 
    858 void
    859 ex_set_media(sc)
    860 	struct ex_softc *sc;
    861 {
    862 	bus_space_tag_t iot = sc->sc_iot;
    863 	bus_space_handle_t ioh = sc->sc_ioh;
    864 	u_int32_t configreg;
    865 
    866 	if (((sc->ex_conf & EX_CONF_MII) &&
    867 	    (sc->ex_mii.mii_media_active & IFM_FDX))
    868 	    || (!(sc->ex_conf & EX_CONF_MII) &&
    869 	    (sc->ex_mii.mii_media.ifm_media & IFM_FDX))) {
    870 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL,
    871 		    MAC_CONTROL_FDX);
    872 	} else {
    873 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, 0);
    874 	}
    875 
    876 	/*
    877 	 * If the device has MII, select it, and then tell the
    878 	 * PHY which media to use.
    879 	 */
    880 	if (sc->ex_conf & EX_CONF_MII) {
    881 		u_int16_t val;
    882 
    883 		GO_WINDOW(3);
    884 		val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
    885 		ex_set_xcvr(sc, val);
    886 		mii_mediachg(&sc->ex_mii);
    887 		return;
    888 	}
    889 
    890 	GO_WINDOW(4);
    891 	bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0);
    892 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
    893 	delay(800);
    894 
    895 	/*
    896 	 * Now turn on the selected media/transceiver.
    897 	 */
    898 	switch (IFM_SUBTYPE(sc->ex_mii.mii_media.ifm_cur->ifm_media)) {
    899 	case IFM_10_T:
    900 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
    901 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
    902 		break;
    903 
    904 	case IFM_10_2:
    905 		bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
    906 		DELAY(800);
    907 		break;
    908 
    909 	case IFM_100_TX:
    910 	case IFM_100_FX:
    911 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
    912 		    LINKBEAT_ENABLE);
    913 		DELAY(800);
    914 		break;
    915 
    916 	case IFM_10_5:
    917 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
    918 		    SQE_ENABLE);
    919 		DELAY(800);
    920 		break;
    921 
    922 	case IFM_MANUAL:
    923 		break;
    924 
    925 	case IFM_NONE:
    926 		return;
    927 
    928 	default:
    929 		panic("ex_set_media: impossible");
    930 	}
    931 
    932 	GO_WINDOW(3);
    933 	configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
    934 
    935 	configreg &= ~(CONFIG_MEDIAMASK << 16);
    936 	configreg |= (sc->ex_mii.mii_media.ifm_cur->ifm_data <<
    937 	    (CONFIG_MEDIAMASK_SHIFT + 16));
    938 
    939 	bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
    940 }
    941 
    942 /*
    943  * Get currently-selected media from card.
    944  * (if_media callback, may be called before interface is brought up).
    945  */
    946 void
    947 ex_media_stat(ifp, req)
    948 	struct ifnet *ifp;
    949 	struct ifmediareq *req;
    950 {
    951 	struct ex_softc *sc = ifp->if_softc;
    952 	u_int16_t help;
    953 
    954 	if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING)) {
    955 		if (sc->ex_conf & EX_CONF_MII) {
    956 			mii_pollstat(&sc->ex_mii);
    957 			req->ifm_status = sc->ex_mii.mii_media_status;
    958 			req->ifm_active = sc->ex_mii.mii_media_active;
    959 		} else {
    960 			GO_WINDOW(4);
    961 			req->ifm_status = IFM_AVALID;
    962 			req->ifm_active =
    963 			    sc->ex_mii.mii_media.ifm_cur->ifm_media;
    964 			help = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
    965 						ELINK_W4_MEDIA_TYPE);
    966 			if (help & LINKBEAT_DETECT)
    967 				req->ifm_status |= IFM_ACTIVE;
    968 			GO_WINDOW(1);
    969 		}
    970 	}
    971 }
    972 
    973 
    974 
    975 /*
    976  * Start outputting on the interface.
    977  */
    978 static void
    979 ex_start(ifp)
    980 	struct ifnet *ifp;
    981 {
    982 	struct ex_softc *sc = ifp->if_softc;
    983 	bus_space_tag_t iot = sc->sc_iot;
    984 	bus_space_handle_t ioh = sc->sc_ioh;
    985 	volatile struct ex_fraghdr *fr = NULL;
    986 	volatile struct ex_dpd *dpd = NULL, *prevdpd = NULL;
    987 	struct ex_txdesc *txp;
    988 	struct mbuf *mb_head;
    989 	bus_dmamap_t dmamap;
    990 	int offset, totlen, segment, error;
    991 	u_int32_t csum_flags;
    992 
    993 	if (sc->tx_head || sc->tx_free == NULL)
    994 		return;
    995 
    996 	txp = NULL;
    997 
    998 	/*
    999 	 * We're finished if there is nothing more to add to the list or if
   1000 	 * we're all filled up with buffers to transmit.
   1001 	 */
   1002 	while (sc->tx_free != NULL) {
   1003 		/*
   1004 		 * Grab a packet to transmit.
   1005 		 */
   1006 		IFQ_DEQUEUE(&ifp->if_snd, mb_head);
   1007 		if (mb_head == NULL)
   1008 			break;
   1009 
   1010 		/*
   1011 		 * Get pointer to next available tx desc.
   1012 		 */
   1013 		txp = sc->tx_free;
   1014 		dmamap = txp->tx_dmamap;
   1015 
   1016 		/*
   1017 		 * Go through each of the mbufs in the chain and initialize
   1018 		 * the transmit buffer descriptors with the physical address
   1019 		 * and size of the mbuf.
   1020 		 */
   1021  reload:
   1022 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
   1023 		    mb_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1024 		switch (error) {
   1025 		case 0:
   1026 			/* Success. */
   1027 			break;
   1028 
   1029 		case EFBIG:
   1030 		    {
   1031 			struct mbuf *mn;
   1032 
   1033 			/*
   1034 			 * We ran out of segments.  We have to recopy this
   1035 			 * mbuf chain first.  Bail out if we can't get the
   1036 			 * new buffers.
   1037 			 */
   1038 			printf("%s: too many segments, ", sc->sc_dev.dv_xname);
   1039 
   1040 			MGETHDR(mn, M_DONTWAIT, MT_DATA);
   1041 			if (mn == NULL) {
   1042 				m_freem(mb_head);
   1043 				printf("aborting\n");
   1044 				goto out;
   1045 			}
   1046 			if (mb_head->m_pkthdr.len > MHLEN) {
   1047 				MCLGET(mn, M_DONTWAIT);
   1048 				if ((mn->m_flags & M_EXT) == 0) {
   1049 					m_freem(mn);
   1050 					m_freem(mb_head);
   1051 					printf("aborting\n");
   1052 					goto out;
   1053 				}
   1054 			}
   1055 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
   1056 			    mtod(mn, caddr_t));
   1057 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
   1058 			m_freem(mb_head);
   1059 			mb_head = mn;
   1060 			printf("retrying\n");
   1061 			goto reload;
   1062 		    }
   1063 
   1064 		default:
   1065 			/*
   1066 			 * Some other problem; report it.
   1067 			 */
   1068 			printf("%s: can't load mbuf chain, error = %d\n",
   1069 			    sc->sc_dev.dv_xname, error);
   1070 			m_freem(mb_head);
   1071 			goto out;
   1072 		}
   1073 
   1074 		/*
   1075 		 * remove our tx desc from freelist.
   1076 		 */
   1077 		sc->tx_free = txp->tx_next;
   1078 		txp->tx_next = NULL;
   1079 
   1080 		fr = &txp->tx_dpd->dpd_frags[0];
   1081 		totlen = 0;
   1082 		for (segment = 0; segment < dmamap->dm_nsegs; segment++, fr++) {
   1083 			fr->fr_addr = htole32(dmamap->dm_segs[segment].ds_addr);
   1084 			fr->fr_len = htole32(dmamap->dm_segs[segment].ds_len);
   1085 			totlen += dmamap->dm_segs[segment].ds_len;
   1086 		}
   1087 		fr--;
   1088 		fr->fr_len |= htole32(EX_FR_LAST);
   1089 		txp->tx_mbhead = mb_head;
   1090 
   1091 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1092 		    BUS_DMASYNC_PREWRITE);
   1093 
   1094 		dpd = txp->tx_dpd;
   1095 		dpd->dpd_nextptr = 0;
   1096 		dpd->dpd_fsh = htole32(totlen);
   1097 
   1098 		/* Byte-swap constants so compiler can optimize. */
   1099 
   1100 		if (sc->ex_conf & EX_CONF_90XB) {
   1101 			csum_flags = 0;
   1102 
   1103 			if (mb_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   1104 				csum_flags |= htole32(EX_DPD_IPCKSUM);
   1105 
   1106 			if (mb_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
   1107 				csum_flags |= htole32(EX_DPD_TCPCKSUM);
   1108 			else if (mb_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
   1109 				csum_flags |= htole32(EX_DPD_UDPCKSUM);
   1110 
   1111 			dpd->dpd_fsh |= csum_flags;
   1112 		} else {
   1113 			KDASSERT((mb_head->m_pkthdr.csum_flags &
   1114 			    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) == 0);
   1115 		}
   1116 
   1117 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
   1118 		    ((const char *)(intptr_t)dpd - (const char *)sc->sc_dpd),
   1119 		    sizeof (struct ex_dpd),
   1120 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1121 
   1122 		/*
   1123 		 * No need to stall the download engine, we know it's
   1124 		 * not busy right now.
   1125 		 *
   1126 		 * Fix up pointers in both the "soft" tx and the physical
   1127 		 * tx list.
   1128 		 */
   1129 		if (sc->tx_head != NULL) {
   1130 			prevdpd = sc->tx_tail->tx_dpd;
   1131 			offset = ((const char *)(intptr_t)prevdpd - (const char *)sc->sc_dpd);
   1132 			bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
   1133 			    offset, sizeof (struct ex_dpd),
   1134 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1135 			prevdpd->dpd_nextptr = htole32(DPD_DMADDR(sc, txp));
   1136 			bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
   1137 			    offset, sizeof (struct ex_dpd),
   1138 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1139 			sc->tx_tail->tx_next = txp;
   1140 			sc->tx_tail = txp;
   1141 		} else {
   1142 			sc->tx_tail = sc->tx_head = txp;
   1143 		}
   1144 
   1145 #if NBPFILTER > 0
   1146 		/*
   1147 		 * Pass packet to bpf if there is a listener.
   1148 		 */
   1149 		if (ifp->if_bpf)
   1150 			bpf_mtap(ifp->if_bpf, mb_head);
   1151 #endif
   1152 	}
   1153  out:
   1154 	if (sc->tx_head) {
   1155 		sc->tx_tail->tx_dpd->dpd_fsh |= htole32(EX_DPD_DNIND);
   1156 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
   1157 		    ((caddr_t)sc->tx_tail->tx_dpd - (caddr_t)sc->sc_dpd),
   1158 		    sizeof (struct ex_dpd),
   1159 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1160 		ifp->if_flags |= IFF_OACTIVE;
   1161 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNUNSTALL);
   1162 		bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
   1163 		    DPD_DMADDR(sc, sc->tx_head));
   1164 
   1165 		/* trigger watchdog */
   1166 		ifp->if_timer = 5;
   1167 	}
   1168 }
   1169 
   1170 
   1171 int
   1172 ex_intr(arg)
   1173 	void *arg;
   1174 {
   1175 	struct ex_softc *sc = arg;
   1176 	bus_space_tag_t iot = sc->sc_iot;
   1177 	bus_space_handle_t ioh = sc->sc_ioh;
   1178 	u_int16_t stat;
   1179 	int ret = 0;
   1180 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1181 
   1182 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
   1183 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   1184 		return (0);
   1185 
   1186 	for (;;) {
   1187 		stat = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1188 
   1189 		if ((stat & XL_WATCHED_INTERRUPTS) == 0) {
   1190 			if ((stat & INTR_LATCH) == 0) {
   1191 #if 0
   1192 				printf("%s: intr latch cleared\n",
   1193 				       sc->sc_dev.dv_xname);
   1194 #endif
   1195 				break;
   1196 			}
   1197 		}
   1198 
   1199 		ret = 1;
   1200 
   1201 		/*
   1202 		 * Acknowledge interrupts.
   1203 		 */
   1204 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
   1205 		    (stat & (XL_WATCHED_INTERRUPTS | INTR_LATCH)));
   1206 		if (sc->intr_ack)
   1207 			(*sc->intr_ack)(sc);
   1208 
   1209 		if (stat & HOST_ERROR) {
   1210 			printf("%s: adapter failure (%x)\n",
   1211 			    sc->sc_dev.dv_xname, stat);
   1212 			ex_reset(sc);
   1213 			ex_init(ifp);
   1214 			return 1;
   1215 		}
   1216 		if (stat & TX_COMPLETE) {
   1217 			ex_txstat(sc);
   1218 		}
   1219 		if (stat & UPD_STATS) {
   1220 			ex_getstats(sc);
   1221 		}
   1222 		if (stat & DN_COMPLETE) {
   1223 			struct ex_txdesc *txp, *ptxp = NULL;
   1224 			bus_dmamap_t txmap;
   1225 
   1226 			/* reset watchdog timer, was set in ex_start() */
   1227 			ifp->if_timer = 0;
   1228 
   1229 			for (txp = sc->tx_head; txp != NULL;
   1230 			    txp = txp->tx_next) {
   1231 				bus_dmamap_sync(sc->sc_dmat,
   1232 				    sc->sc_dpd_dmamap,
   1233 				    (caddr_t)txp->tx_dpd - (caddr_t)sc->sc_dpd,
   1234 				    sizeof (struct ex_dpd),
   1235 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1236 				if (txp->tx_mbhead != NULL) {
   1237 					txmap = txp->tx_dmamap;
   1238 					bus_dmamap_sync(sc->sc_dmat, txmap,
   1239 					    0, txmap->dm_mapsize,
   1240 					    BUS_DMASYNC_POSTWRITE);
   1241 					bus_dmamap_unload(sc->sc_dmat, txmap);
   1242 					m_freem(txp->tx_mbhead);
   1243 					txp->tx_mbhead = NULL;
   1244 				}
   1245 				ptxp = txp;
   1246 			}
   1247 
   1248 			/*
   1249 			 * Move finished tx buffers back to the tx free list.
   1250 			 */
   1251 			if (sc->tx_free) {
   1252 				sc->tx_ftail->tx_next = sc->tx_head;
   1253 				sc->tx_ftail = ptxp;
   1254 			} else
   1255 				sc->tx_ftail = sc->tx_free = sc->tx_head;
   1256 
   1257 			sc->tx_head = sc->tx_tail = NULL;
   1258 			ifp->if_flags &= ~IFF_OACTIVE;
   1259 		}
   1260 
   1261 		if (stat & UP_COMPLETE) {
   1262 			struct ex_rxdesc *rxd;
   1263 			struct mbuf *m;
   1264 			struct ex_upd *upd;
   1265 			bus_dmamap_t rxmap;
   1266 			u_int32_t pktstat;
   1267 
   1268  rcvloop:
   1269 			rxd = sc->rx_head;
   1270 			rxmap = rxd->rx_dmamap;
   1271 			m = rxd->rx_mbhead;
   1272 			upd = rxd->rx_upd;
   1273 
   1274 			bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
   1275 			    rxmap->dm_mapsize,
   1276 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1277 			bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
   1278 			    ((caddr_t)upd - (caddr_t)sc->sc_upd),
   1279 			    sizeof (struct ex_upd),
   1280 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1281 			pktstat = le32toh(upd->upd_pktstatus);
   1282 
   1283 			if (pktstat & EX_UPD_COMPLETE) {
   1284 				/*
   1285 				 * Remove first packet from the chain.
   1286 				 */
   1287 				sc->rx_head = rxd->rx_next;
   1288 				rxd->rx_next = NULL;
   1289 
   1290 				/*
   1291 				 * Add a new buffer to the receive chain.
   1292 				 * If this fails, the old buffer is recycled
   1293 				 * instead.
   1294 				 */
   1295 				if (ex_add_rxbuf(sc, rxd) == 0) {
   1296 					u_int16_t total_len;
   1297 
   1298 					if (pktstat &
   1299 					    ((sc->sc_ethercom.ec_capenable &
   1300 					    ETHERCAP_VLAN_MTU) ?
   1301 					    EX_UPD_ERR_VLAN : EX_UPD_ERR)) {
   1302 						ifp->if_ierrors++;
   1303 						m_freem(m);
   1304 						goto rcvloop;
   1305 					}
   1306 
   1307 					total_len = pktstat & EX_UPD_PKTLENMASK;
   1308 					if (total_len <
   1309 					    sizeof(struct ether_header)) {
   1310 						m_freem(m);
   1311 						goto rcvloop;
   1312 					}
   1313 					m->m_pkthdr.rcvif = ifp;
   1314 					m->m_pkthdr.len = m->m_len = total_len;
   1315 #if NBPFILTER > 0
   1316 					if (ifp->if_bpf)
   1317 						bpf_mtap(ifp->if_bpf, m);
   1318 #endif
   1319 		/*
   1320 		 * Set the incoming checksum information for the packet.
   1321 		 */
   1322 		if ((sc->ex_conf & EX_CONF_90XB) != 0 &&
   1323 		    (pktstat & EX_UPD_IPCHECKED) != 0) {
   1324 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1325 			if (pktstat & EX_UPD_IPCKSUMERR)
   1326 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1327 			if (pktstat & EX_UPD_TCPCHECKED) {
   1328 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1329 				if (pktstat & EX_UPD_TCPCKSUMERR)
   1330 					m->m_pkthdr.csum_flags |=
   1331 					    M_CSUM_TCP_UDP_BAD;
   1332 			} else if (pktstat & EX_UPD_UDPCHECKED) {
   1333 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1334 				if (pktstat & EX_UPD_UDPCKSUMERR)
   1335 					m->m_pkthdr.csum_flags |=
   1336 					    M_CSUM_TCP_UDP_BAD;
   1337 			}
   1338 		}
   1339 					(*ifp->if_input)(ifp, m);
   1340 				}
   1341 				goto rcvloop;
   1342 			}
   1343 			/*
   1344 			 * Just in case we filled up all UPDs and the DMA engine
   1345 			 * stalled. We could be more subtle about this.
   1346 			 */
   1347 			if (bus_space_read_4(iot, ioh, ELINK_UPLISTPTR) == 0) {
   1348 				printf("%s: uplistptr was 0\n",
   1349 				       sc->sc_dev.dv_xname);
   1350 				ex_init(ifp);
   1351 			} else if (bus_space_read_4(iot, ioh, ELINK_UPPKTSTATUS)
   1352 				   & 0x2000) {
   1353 				printf("%s: receive stalled\n",
   1354 				       sc->sc_dev.dv_xname);
   1355 				bus_space_write_2(iot, ioh, ELINK_COMMAND,
   1356 						  ELINK_UPUNSTALL);
   1357 			}
   1358 		}
   1359 
   1360 #if NRND > 0
   1361 		if (stat)
   1362 			rnd_add_uint32(&sc->rnd_source, stat);
   1363 #endif
   1364 	}
   1365 
   1366 	/* no more interrupts */
   1367 	if (ret && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
   1368 		ex_start(ifp);
   1369 	return ret;
   1370 }
   1371 
   1372 int
   1373 ex_ioctl(ifp, cmd, data)
   1374 	struct ifnet *ifp;
   1375 	u_long cmd;
   1376 	caddr_t data;
   1377 {
   1378 	struct ex_softc *sc = ifp->if_softc;
   1379 	struct ifreq *ifr = (struct ifreq *)data;
   1380 	int s, error;
   1381 
   1382 	s = splnet();
   1383 
   1384 	switch (cmd) {
   1385 	case SIOCSIFMEDIA:
   1386 	case SIOCGIFMEDIA:
   1387 		error = ifmedia_ioctl(ifp, ifr, &sc->ex_mii.mii_media, cmd);
   1388 		break;
   1389 	case SIOCSIFFLAGS:
   1390 		/* If the interface is up and running, only modify the receive
   1391 		 * filter when setting promiscuous or debug mode.  Otherwise
   1392 		 * fall through to ether_ioctl, which will reset the chip.
   1393 		 */
   1394 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
   1395 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
   1396 		    == (IFF_UP|IFF_RUNNING))
   1397 		    && ((ifp->if_flags & (~RESETIGN))
   1398 		    == (sc->sc_if_flags & (~RESETIGN)))) {
   1399 			ex_set_mc(sc);
   1400 			error = 0;
   1401 			break;
   1402 #undef RESETIGN
   1403 		}
   1404 		/* FALLTHROUGH */
   1405 	default:
   1406 		error = ether_ioctl(ifp, cmd, data);
   1407 		if (error == ENETRESET) {
   1408 			/*
   1409 			 * Multicast list has changed; set the hardware filter
   1410 			 * accordingly.
   1411 			 */
   1412 			if (ifp->if_flags & IFF_RUNNING)
   1413 				ex_set_mc(sc);
   1414 			error = 0;
   1415 		}
   1416 		break;
   1417 	}
   1418 
   1419 	sc->sc_if_flags = ifp->if_flags;
   1420 	splx(s);
   1421 	return (error);
   1422 }
   1423 
   1424 void
   1425 ex_getstats(sc)
   1426 	struct ex_softc *sc;
   1427 {
   1428 	bus_space_handle_t ioh = sc->sc_ioh;
   1429 	bus_space_tag_t iot = sc->sc_iot;
   1430 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1431 	u_int8_t upperok;
   1432 
   1433 	GO_WINDOW(6);
   1434 	upperok = bus_space_read_1(iot, ioh, UPPER_FRAMES_OK);
   1435 	ifp->if_ipackets += bus_space_read_1(iot, ioh, RX_FRAMES_OK);
   1436 	ifp->if_ipackets += (upperok & 0x03) << 8;
   1437 	ifp->if_opackets += bus_space_read_1(iot, ioh, TX_FRAMES_OK);
   1438 	ifp->if_opackets += (upperok & 0x30) << 4;
   1439 	ifp->if_ierrors += bus_space_read_1(iot, ioh, RX_OVERRUNS);
   1440 	ifp->if_collisions += bus_space_read_1(iot, ioh, TX_COLLISIONS);
   1441 	/*
   1442 	 * There seems to be no way to get the exact number of collisions,
   1443 	 * this is the number that occurred at the very least.
   1444 	 */
   1445 	ifp->if_collisions += 2 * bus_space_read_1(iot, ioh,
   1446 	    TX_AFTER_X_COLLISIONS);
   1447 	/*
   1448 	 * Interface byte counts are counted by ether_input() and
   1449 	 * ether_output(), so don't accumulate them here.  Just
   1450 	 * read the NIC counters so they don't generate overflow interrupts.
   1451 	 * Upper byte counters are latched from reading the totals, so
   1452 	 * they don't need to be read if we don't need their values.
   1453 	 */
   1454 	bus_space_read_2(iot, ioh, RX_TOTAL_OK);
   1455 	bus_space_read_2(iot, ioh, TX_TOTAL_OK);
   1456 
   1457 	/*
   1458 	 * Clear the following to avoid stats overflow interrupts
   1459 	 */
   1460 	bus_space_read_1(iot, ioh, TX_DEFERRALS);
   1461 	bus_space_read_1(iot, ioh, TX_AFTER_1_COLLISION);
   1462 	bus_space_read_1(iot, ioh, TX_NO_SQE);
   1463 	bus_space_read_1(iot, ioh, TX_CD_LOST);
   1464 	GO_WINDOW(4);
   1465 	bus_space_read_1(iot, ioh, ELINK_W4_BADSSD);
   1466 	GO_WINDOW(1);
   1467 }
   1468 
   1469 void
   1470 ex_printstats(sc)
   1471 	struct ex_softc *sc;
   1472 {
   1473 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1474 
   1475 	ex_getstats(sc);
   1476 	printf("in %llu out %llu ierror %llu oerror %llu ibytes %llu obytes "
   1477 	    "%llu\n", (unsigned long long)ifp->if_ipackets,
   1478 	    (unsigned long long)ifp->if_opackets,
   1479 	    (unsigned long long)ifp->if_ierrors,
   1480 	    (unsigned long long)ifp->if_oerrors,
   1481 	    (unsigned long long)ifp->if_ibytes,
   1482 	    (unsigned long long)ifp->if_obytes);
   1483 }
   1484 
   1485 void
   1486 ex_tick(arg)
   1487 	void *arg;
   1488 {
   1489 	struct ex_softc *sc = arg;
   1490 	int s;
   1491 
   1492 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
   1493 		return;
   1494 
   1495 	s = splnet();
   1496 
   1497 	if (sc->ex_conf & EX_CONF_MII)
   1498 		mii_tick(&sc->ex_mii);
   1499 
   1500 	if (!(bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, ELINK_STATUS)
   1501 	    & COMMAND_IN_PROGRESS))
   1502 		ex_getstats(sc);
   1503 
   1504 	splx(s);
   1505 
   1506 	callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
   1507 }
   1508 
   1509 void
   1510 ex_reset(sc)
   1511 	struct ex_softc *sc;
   1512 {
   1513 	u_int16_t val = GLOBAL_RESET;
   1514 
   1515 	if (sc->ex_conf & EX_CONF_RESETHACK)
   1516 		val |= 0x10;
   1517 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, val);
   1518 	/*
   1519 	 * XXX apparently the command in progress bit can't be trusted
   1520 	 * during a reset, so we just always wait this long. Fortunately
   1521 	 * we normally only reset the chip during autoconfig.
   1522 	 */
   1523 	delay(100000);
   1524 	ex_waitcmd(sc);
   1525 }
   1526 
   1527 void
   1528 ex_watchdog(ifp)
   1529 	struct ifnet *ifp;
   1530 {
   1531 	struct ex_softc *sc = ifp->if_softc;
   1532 
   1533 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1534 	++sc->sc_ethercom.ec_if.if_oerrors;
   1535 
   1536 	ex_reset(sc);
   1537 	ex_init(ifp);
   1538 }
   1539 
   1540 void
   1541 ex_stop(ifp, disable)
   1542 	struct ifnet *ifp;
   1543 	int disable;
   1544 {
   1545 	struct ex_softc *sc = ifp->if_softc;
   1546 	bus_space_tag_t iot = sc->sc_iot;
   1547 	bus_space_handle_t ioh = sc->sc_ioh;
   1548 	struct ex_txdesc *tx;
   1549 	struct ex_rxdesc *rx;
   1550 	int i;
   1551 
   1552 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
   1553 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
   1554 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
   1555 
   1556 	for (tx = sc->tx_head ; tx != NULL; tx = tx->tx_next) {
   1557 		if (tx->tx_mbhead == NULL)
   1558 			continue;
   1559 		m_freem(tx->tx_mbhead);
   1560 		tx->tx_mbhead = NULL;
   1561 		bus_dmamap_unload(sc->sc_dmat, tx->tx_dmamap);
   1562 		tx->tx_dpd->dpd_fsh = tx->tx_dpd->dpd_nextptr = 0;
   1563 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
   1564 		    ((caddr_t)tx->tx_dpd - (caddr_t)sc->sc_dpd),
   1565 		    sizeof (struct ex_dpd),
   1566 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1567 	}
   1568 	sc->tx_tail = sc->tx_head = NULL;
   1569 	ex_init_txdescs(sc);
   1570 
   1571 	sc->rx_tail = sc->rx_head = 0;
   1572 	for (i = 0; i < EX_NUPD; i++) {
   1573 		rx = &sc->sc_rxdescs[i];
   1574 		if (rx->rx_mbhead != NULL) {
   1575 			bus_dmamap_unload(sc->sc_dmat, rx->rx_dmamap);
   1576 			m_freem(rx->rx_mbhead);
   1577 			rx->rx_mbhead = NULL;
   1578 		}
   1579 		ex_add_rxbuf(sc, rx);
   1580 	}
   1581 
   1582 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
   1583 
   1584 	callout_stop(&sc->ex_mii_callout);
   1585 	if (sc->ex_conf & EX_CONF_MII)
   1586 		mii_down(&sc->ex_mii);
   1587 
   1588 	if (disable)
   1589 		ex_disable(sc);
   1590 
   1591 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1592 	sc->sc_if_flags = ifp->if_flags;
   1593 	ifp->if_timer = 0;
   1594 }
   1595 
   1596 static void
   1597 ex_init_txdescs(sc)
   1598 	struct ex_softc *sc;
   1599 {
   1600 	int i;
   1601 
   1602 	for (i = 0; i < EX_NDPD; i++) {
   1603 		sc->sc_txdescs[i].tx_dmamap = sc->sc_tx_dmamaps[i];
   1604 		sc->sc_txdescs[i].tx_dpd = &sc->sc_dpd[i];
   1605 		if (i < EX_NDPD - 1)
   1606 			sc->sc_txdescs[i].tx_next = &sc->sc_txdescs[i + 1];
   1607 		else
   1608 			sc->sc_txdescs[i].tx_next = NULL;
   1609 	}
   1610 	sc->tx_free = &sc->sc_txdescs[0];
   1611 	sc->tx_ftail = &sc->sc_txdescs[EX_NDPD-1];
   1612 }
   1613 
   1614 
   1615 int
   1616 ex_activate(self, act)
   1617 	struct device *self;
   1618 	enum devact act;
   1619 {
   1620 	struct ex_softc *sc = (void *) self;
   1621 	int s, error = 0;
   1622 
   1623 	s = splnet();
   1624 	switch (act) {
   1625 	case DVACT_ACTIVATE:
   1626 		error = EOPNOTSUPP;
   1627 		break;
   1628 
   1629 	case DVACT_DEACTIVATE:
   1630 		if (sc->ex_conf & EX_CONF_MII)
   1631 			mii_activate(&sc->ex_mii, act, MII_PHY_ANY,
   1632 			    MII_OFFSET_ANY);
   1633 		if_deactivate(&sc->sc_ethercom.ec_if);
   1634 		break;
   1635 	}
   1636 	splx(s);
   1637 
   1638 	return (error);
   1639 }
   1640 
   1641 int
   1642 ex_detach(sc)
   1643 	struct ex_softc *sc;
   1644 {
   1645 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1646 	struct ex_rxdesc *rxd;
   1647 	int i;
   1648 
   1649 	/* Succeed now if there's no work to do. */
   1650 	if ((sc->ex_flags & EX_FLAGS_ATTACHED) == 0)
   1651 		return (0);
   1652 
   1653 	/* Unhook our tick handler. */
   1654 	callout_stop(&sc->ex_mii_callout);
   1655 
   1656 	if (sc->ex_conf & EX_CONF_MII) {
   1657 		/* Detach all PHYs */
   1658 		mii_detach(&sc->ex_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   1659 	}
   1660 
   1661 	/* Delete all remaining media. */
   1662 	ifmedia_delete_instance(&sc->ex_mii.mii_media, IFM_INST_ANY);
   1663 
   1664 #if NRND > 0
   1665 	rnd_detach_source(&sc->rnd_source);
   1666 #endif
   1667 	ether_ifdetach(ifp);
   1668 	if_detach(ifp);
   1669 
   1670 	for (i = 0; i < EX_NUPD; i++) {
   1671 		rxd = &sc->sc_rxdescs[i];
   1672 		if (rxd->rx_mbhead != NULL) {
   1673 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
   1674 			m_freem(rxd->rx_mbhead);
   1675 			rxd->rx_mbhead = NULL;
   1676 		}
   1677 	}
   1678 	for (i = 0; i < EX_NUPD; i++)
   1679 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
   1680 	for (i = 0; i < EX_NDPD; i++)
   1681 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
   1682 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
   1683 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
   1684 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
   1685 	    EX_NDPD * sizeof (struct ex_dpd));
   1686 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
   1687 	bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
   1688 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
   1689 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
   1690 	    EX_NUPD * sizeof (struct ex_upd));
   1691 	bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
   1692 
   1693 	shutdownhook_disestablish(sc->sc_sdhook);
   1694 	powerhook_disestablish(sc->sc_powerhook);
   1695 
   1696 	return (0);
   1697 }
   1698 
   1699 /*
   1700  * Before reboots, reset card completely.
   1701  */
   1702 static void
   1703 ex_shutdown(arg)
   1704 	void *arg;
   1705 {
   1706 	struct ex_softc *sc = arg;
   1707 
   1708 	ex_stop(&sc->sc_ethercom.ec_if, 1);
   1709 	/*
   1710 	 * Make sure the interface is powered up when we reboot,
   1711 	 * otherwise firmware on some systems gets really confused.
   1712 	 */
   1713 	(void) ex_enable(sc);
   1714 }
   1715 
   1716 /*
   1717  * Read EEPROM data.
   1718  * XXX what to do if EEPROM doesn't unbusy?
   1719  */
   1720 u_int16_t
   1721 ex_read_eeprom(sc, offset)
   1722 	struct ex_softc *sc;
   1723 	int offset;
   1724 {
   1725 	bus_space_tag_t iot = sc->sc_iot;
   1726 	bus_space_handle_t ioh = sc->sc_ioh;
   1727 	u_int16_t data = 0, cmd = READ_EEPROM;
   1728 	int off;
   1729 
   1730 	off = sc->ex_conf & EX_CONF_EEPROM_OFF ? 0x30 : 0;
   1731 	cmd = sc->ex_conf & EX_CONF_EEPROM_8BIT ? READ_EEPROM8 : READ_EEPROM;
   1732 
   1733 	GO_WINDOW(0);
   1734 	if (ex_eeprom_busy(sc))
   1735 		goto out;
   1736 	bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
   1737 	    cmd | (off + (offset & 0x3f)));
   1738 	if (ex_eeprom_busy(sc))
   1739 		goto out;
   1740 	data = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
   1741 out:
   1742 	return data;
   1743 }
   1744 
   1745 static int
   1746 ex_eeprom_busy(sc)
   1747 	struct ex_softc *sc;
   1748 {
   1749 	bus_space_tag_t iot = sc->sc_iot;
   1750 	bus_space_handle_t ioh = sc->sc_ioh;
   1751 	int i = 100;
   1752 
   1753 	while (i--) {
   1754 		if (!(bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND) &
   1755 		    EEPROM_BUSY))
   1756 			return 0;
   1757 		delay(100);
   1758 	}
   1759 	printf("\n%s: eeprom stays busy.\n", sc->sc_dev.dv_xname);
   1760 	return (1);
   1761 }
   1762 
   1763 /*
   1764  * Create a new rx buffer and add it to the 'soft' rx list.
   1765  */
   1766 static int
   1767 ex_add_rxbuf(sc, rxd)
   1768 	struct ex_softc *sc;
   1769 	struct ex_rxdesc *rxd;
   1770 {
   1771 	struct mbuf *m, *oldm;
   1772 	bus_dmamap_t rxmap;
   1773 	int error, rval = 0;
   1774 
   1775 	oldm = rxd->rx_mbhead;
   1776 	rxmap = rxd->rx_dmamap;
   1777 
   1778 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1779 	if (m != NULL) {
   1780 		MCLGET(m, M_DONTWAIT);
   1781 		if ((m->m_flags & M_EXT) == 0) {
   1782 			m_freem(m);
   1783 			if (oldm == NULL)
   1784 				return 1;
   1785 			m = oldm;
   1786 			MRESETDATA(m);
   1787 			rval = 1;
   1788 		}
   1789 	} else {
   1790 		if (oldm == NULL)
   1791 			return 1;
   1792 		m = oldm;
   1793 		MRESETDATA(m);
   1794 		rval = 1;
   1795 	}
   1796 
   1797 	/*
   1798 	 * Setup the DMA map for this receive buffer.
   1799 	 */
   1800 	if (m != oldm) {
   1801 		if (oldm != NULL)
   1802 			bus_dmamap_unload(sc->sc_dmat, rxmap);
   1803 		error = bus_dmamap_load(sc->sc_dmat, rxmap,
   1804 		    m->m_ext.ext_buf, MCLBYTES, NULL,
   1805 		    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1806 		if (error) {
   1807 			printf("%s: can't load rx buffer, error = %d\n",
   1808 			    sc->sc_dev.dv_xname, error);
   1809 			panic("ex_add_rxbuf");	/* XXX */
   1810 		}
   1811 	}
   1812 
   1813 	/*
   1814 	 * Align for data after 14 byte header.
   1815 	 */
   1816 	m->m_data += 2;
   1817 
   1818 	rxd->rx_mbhead = m;
   1819 	rxd->rx_upd->upd_pktstatus = htole32(MCLBYTES - 2);
   1820 	rxd->rx_upd->upd_frags[0].fr_addr =
   1821 	    htole32(rxmap->dm_segs[0].ds_addr + 2);
   1822 	rxd->rx_upd->upd_nextptr = 0;
   1823 
   1824 	/*
   1825 	 * Attach it to the end of the list.
   1826 	 */
   1827 	if (sc->rx_head != NULL) {
   1828 		sc->rx_tail->rx_next = rxd;
   1829 		sc->rx_tail->rx_upd->upd_nextptr = htole32(sc->sc_upddma +
   1830 		    ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd));
   1831 		bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
   1832 		    (caddr_t)sc->rx_tail->rx_upd - (caddr_t)sc->sc_upd,
   1833 		    sizeof (struct ex_upd),
   1834 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1835 	} else {
   1836 		sc->rx_head = rxd;
   1837 	}
   1838 	sc->rx_tail = rxd;
   1839 
   1840 	bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
   1841 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1842 	bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
   1843 	    ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd),
   1844 	    sizeof (struct ex_upd), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1845 	return (rval);
   1846 }
   1847 
   1848 u_int32_t
   1849 ex_mii_bitbang_read(self)
   1850 	struct device *self;
   1851 {
   1852 	struct ex_softc *sc = (void *) self;
   1853 
   1854 	/* We're already in Window 4. */
   1855 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT));
   1856 }
   1857 
   1858 void
   1859 ex_mii_bitbang_write(self, val)
   1860 	struct device *self;
   1861 	u_int32_t val;
   1862 {
   1863 	struct ex_softc *sc = (void *) self;
   1864 
   1865 	/* We're already in Window 4. */
   1866 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT, val);
   1867 }
   1868 
   1869 int
   1870 ex_mii_readreg(v, phy, reg)
   1871 	struct device *v;
   1872 	int phy, reg;
   1873 {
   1874 	struct ex_softc *sc = (struct ex_softc *)v;
   1875 	int val;
   1876 
   1877 	if ((sc->ex_conf & EX_CONF_INTPHY) && phy != ELINK_INTPHY_ID)
   1878 		return 0;
   1879 
   1880 	GO_WINDOW(4);
   1881 
   1882 	val = mii_bitbang_readreg(v, &ex_mii_bitbang_ops, phy, reg);
   1883 
   1884 	GO_WINDOW(1);
   1885 
   1886 	return (val);
   1887 }
   1888 
   1889 void
   1890 ex_mii_writereg(v, phy, reg, data)
   1891         struct device *v;
   1892         int phy;
   1893         int reg;
   1894         int data;
   1895 {
   1896 	struct ex_softc *sc = (struct ex_softc *)v;
   1897 
   1898 	GO_WINDOW(4);
   1899 
   1900 	mii_bitbang_writereg(v, &ex_mii_bitbang_ops, phy, reg, data);
   1901 
   1902 	GO_WINDOW(1);
   1903 }
   1904 
   1905 void
   1906 ex_mii_statchg(v)
   1907 	struct device *v;
   1908 {
   1909 	struct ex_softc *sc = (struct ex_softc *)v;
   1910 	bus_space_tag_t iot = sc->sc_iot;
   1911 	bus_space_handle_t ioh = sc->sc_ioh;
   1912 	int mctl;
   1913 
   1914 	GO_WINDOW(3);
   1915 	mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
   1916 	if (sc->ex_mii.mii_media_active & IFM_FDX)
   1917 		mctl |= MAC_CONTROL_FDX;
   1918 	else
   1919 		mctl &= ~MAC_CONTROL_FDX;
   1920 	bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
   1921 	GO_WINDOW(1);   /* back to operating window */
   1922 }
   1923 
   1924 int
   1925 ex_enable(sc)
   1926 	struct ex_softc *sc;
   1927 {
   1928 	if (sc->enabled == 0 && sc->enable != NULL) {
   1929 		if ((*sc->enable)(sc) != 0) {
   1930 			printf("%s: de/vice enable failed\n",
   1931 				sc->sc_dev.dv_xname);
   1932 			return (EIO);
   1933 		}
   1934 		sc->enabled = 1;
   1935 	}
   1936 	return (0);
   1937 }
   1938 
   1939 void
   1940 ex_disable(sc)
   1941 	struct ex_softc *sc;
   1942 {
   1943 	if (sc->enabled == 1 && sc->disable != NULL) {
   1944 		(*sc->disable)(sc);
   1945 		sc->enabled = 0;
   1946 	}
   1947 }
   1948 
   1949 void
   1950 ex_power(why, arg)
   1951 	int why;
   1952 	void *arg;
   1953 {
   1954 	struct ex_softc *sc = (void *)arg;
   1955 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1956 	int s;
   1957 
   1958 	s = splnet();
   1959 	switch (why) {
   1960 	case PWR_SUSPEND:
   1961 	case PWR_STANDBY:
   1962 		ex_stop(ifp, 0);
   1963 		if (sc->power != NULL)
   1964 			(*sc->power)(sc, why);
   1965 		break;
   1966 	case PWR_RESUME:
   1967 		if (ifp->if_flags & IFF_UP) {
   1968 			if (sc->power != NULL)
   1969 				(*sc->power)(sc, why);
   1970 			ex_init(ifp);
   1971 		}
   1972 		break;
   1973 	case PWR_SOFTSUSPEND:
   1974 	case PWR_SOFTSTANDBY:
   1975 	case PWR_SOFTRESUME:
   1976 		break;
   1977 	}
   1978 	splx(s);
   1979 }
   1980