elinkxl.c revision 1.87.8.1 1 /* $NetBSD: elinkxl.c,v 1.87.8.1 2006/06/19 03:58:13 chap Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: elinkxl.c,v 1.87.8.1 2006/06/19 03:58:13 chap Exp $");
41
42 #include "bpfilter.h"
43 #include "rnd.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/kernel.h>
49 #include <sys/mbuf.h>
50 #include <sys/socket.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/syslog.h>
54 #include <sys/select.h>
55 #include <sys/device.h>
56 #if NRND > 0
57 #include <sys/rnd.h>
58 #endif
59
60 #include <uvm/uvm_extern.h>
61
62 #include <net/if.h>
63 #include <net/if_dl.h>
64 #include <net/if_ether.h>
65 #include <net/if_media.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #include <net/bpfdesc.h>
70 #endif
71
72 #include <machine/cpu.h>
73 #include <machine/bus.h>
74 #include <machine/intr.h>
75 #include <machine/endian.h>
76
77 #include <dev/mii/miivar.h>
78 #include <dev/mii/mii.h>
79 #include <dev/mii/mii_bitbang.h>
80
81 #include <dev/ic/elink3reg.h>
82 /* #include <dev/ic/elink3var.h> */
83 #include <dev/ic/elinkxlreg.h>
84 #include <dev/ic/elinkxlvar.h>
85
86 #ifdef DEBUG
87 int exdebug = 0;
88 #endif
89
90 /* ifmedia callbacks */
91 int ex_media_chg(struct ifnet *ifp);
92 void ex_media_stat(struct ifnet *ifp, struct ifmediareq *req);
93
94 void ex_probe_media(struct ex_softc *);
95 void ex_set_filter(struct ex_softc *);
96 void ex_set_media(struct ex_softc *);
97 void ex_set_xcvr(struct ex_softc *, u_int16_t);
98 struct mbuf *ex_get(struct ex_softc *, int);
99 u_int16_t ex_read_eeprom(struct ex_softc *, int);
100 int ex_init(struct ifnet *);
101 void ex_read(struct ex_softc *);
102 void ex_reset(struct ex_softc *);
103 void ex_set_mc(struct ex_softc *);
104 void ex_getstats(struct ex_softc *);
105 void ex_printstats(struct ex_softc *);
106 void ex_tick(void *);
107
108 void ex_power(int, void *);
109
110 static int ex_eeprom_busy(struct ex_softc *);
111 static int ex_add_rxbuf(struct ex_softc *, struct ex_rxdesc *);
112 static void ex_init_txdescs(struct ex_softc *);
113
114 static void ex_shutdown(void *);
115 static void ex_start(struct ifnet *);
116 static void ex_txstat(struct ex_softc *);
117
118 int ex_mii_readreg(struct device *, int, int);
119 void ex_mii_writereg(struct device *, int, int, int);
120 void ex_mii_statchg(struct device *);
121
122 void ex_probemedia(struct ex_softc *);
123
124 /*
125 * Structure to map media-present bits in boards to ifmedia codes and
126 * printable media names. Used for table-driven ifmedia initialization.
127 */
128 struct ex_media {
129 int exm_mpbit; /* media present bit */
130 const char *exm_name; /* name of medium */
131 int exm_ifmedia; /* ifmedia word for medium */
132 int exm_epmedia; /* ELINKMEDIA_* constant */
133 };
134
135 /*
136 * Media table for 3c90x chips. Note that chips with MII have no
137 * `native' media.
138 */
139 struct ex_media ex_native_media[] = {
140 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
141 ELINKMEDIA_10BASE_T },
142 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
143 ELINKMEDIA_10BASE_T },
144 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
145 ELINKMEDIA_AUI },
146 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
147 ELINKMEDIA_10BASE_2 },
148 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
149 ELINKMEDIA_100BASE_TX },
150 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
151 ELINKMEDIA_100BASE_TX },
152 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
153 ELINKMEDIA_100BASE_FX },
154 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
155 ELINKMEDIA_MII },
156 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
157 ELINKMEDIA_100BASE_T4 },
158 { 0, NULL, 0,
159 0 },
160 };
161
162 /*
163 * MII bit-bang glue.
164 */
165 u_int32_t ex_mii_bitbang_read(struct device *);
166 void ex_mii_bitbang_write(struct device *, u_int32_t);
167
168 const struct mii_bitbang_ops ex_mii_bitbang_ops = {
169 ex_mii_bitbang_read,
170 ex_mii_bitbang_write,
171 {
172 ELINK_PHY_DATA, /* MII_BIT_MDO */
173 ELINK_PHY_DATA, /* MII_BIT_MDI */
174 ELINK_PHY_CLK, /* MII_BIT_MDC */
175 ELINK_PHY_DIR, /* MII_BIT_DIR_HOST_PHY */
176 0, /* MII_BIT_DIR_PHY_HOST */
177 }
178 };
179
180 /*
181 * Back-end attach and configure.
182 */
183 void
184 ex_config(sc)
185 struct ex_softc *sc;
186 {
187 struct ifnet *ifp;
188 u_int16_t val;
189 u_int8_t macaddr[ETHER_ADDR_LEN] = {0};
190 bus_space_tag_t iot = sc->sc_iot;
191 bus_space_handle_t ioh = sc->sc_ioh;
192 int i, error, attach_stage;
193
194 callout_init(&sc->ex_mii_callout);
195
196 ex_reset(sc);
197
198 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR0);
199 macaddr[0] = val >> 8;
200 macaddr[1] = val & 0xff;
201 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR1);
202 macaddr[2] = val >> 8;
203 macaddr[3] = val & 0xff;
204 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR2);
205 macaddr[4] = val >> 8;
206 macaddr[5] = val & 0xff;
207
208 aprint_normal("%s: MAC address %s\n", sc->sc_dev.dv_xname,
209 ether_sprintf(macaddr));
210
211 if (sc->ex_conf & (EX_CONF_INV_LED_POLARITY|EX_CONF_PHY_POWER)) {
212 GO_WINDOW(2);
213 val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
214 if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
215 val |= ELINK_RESET_OPT_LEDPOLAR;
216 if (sc->ex_conf & EX_CONF_PHY_POWER)
217 val |= ELINK_RESET_OPT_PHYPOWER;
218 bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
219 }
220 if (sc->ex_conf & EX_CONF_NO_XCVR_PWR) {
221 GO_WINDOW(0);
222 bus_space_write_2(iot, ioh, ELINK_W0_MFG_ID,
223 EX_XCVR_PWR_MAGICBITS);
224 }
225
226 attach_stage = 0;
227
228 /*
229 * Allocate the upload descriptors, and create and load the DMA
230 * map for them.
231 */
232 if ((error = bus_dmamem_alloc(sc->sc_dmat,
233 EX_NUPD * sizeof (struct ex_upd), PAGE_SIZE, 0, &sc->sc_useg, 1,
234 &sc->sc_urseg, BUS_DMA_NOWAIT)) != 0) {
235 aprint_error(
236 "%s: can't allocate upload descriptors, error = %d\n",
237 sc->sc_dev.dv_xname, error);
238 goto fail;
239 }
240
241 attach_stage = 1;
242
243 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg,
244 EX_NUPD * sizeof (struct ex_upd), (caddr_t *)&sc->sc_upd,
245 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
246 aprint_error("%s: can't map upload descriptors, error = %d\n",
247 sc->sc_dev.dv_xname, error);
248 goto fail;
249 }
250
251 attach_stage = 2;
252
253 if ((error = bus_dmamap_create(sc->sc_dmat,
254 EX_NUPD * sizeof (struct ex_upd), 1,
255 EX_NUPD * sizeof (struct ex_upd), 0, BUS_DMA_NOWAIT,
256 &sc->sc_upd_dmamap)) != 0) {
257 aprint_error(
258 "%s: can't create upload desc. DMA map, error = %d\n",
259 sc->sc_dev.dv_xname, error);
260 goto fail;
261 }
262
263 attach_stage = 3;
264
265 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_upd_dmamap,
266 sc->sc_upd, EX_NUPD * sizeof (struct ex_upd), NULL,
267 BUS_DMA_NOWAIT)) != 0) {
268 aprint_error(
269 "%s: can't load upload desc. DMA map, error = %d\n",
270 sc->sc_dev.dv_xname, error);
271 goto fail;
272 }
273
274 attach_stage = 4;
275
276 /*
277 * Allocate the download descriptors, and create and load the DMA
278 * map for them.
279 */
280 if ((error = bus_dmamem_alloc(sc->sc_dmat,
281 EX_NDPD * sizeof (struct ex_dpd), PAGE_SIZE, 0, &sc->sc_dseg, 1,
282 &sc->sc_drseg, BUS_DMA_NOWAIT)) != 0) {
283 aprint_error(
284 "%s: can't allocate download descriptors, error = %d\n",
285 sc->sc_dev.dv_xname, error);
286 goto fail;
287 }
288
289 attach_stage = 5;
290
291 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg,
292 EX_NDPD * sizeof (struct ex_dpd), (caddr_t *)&sc->sc_dpd,
293 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
294 aprint_error("%s: can't map download descriptors, error = %d\n",
295 sc->sc_dev.dv_xname, error);
296 goto fail;
297 }
298 memset(sc->sc_dpd, 0, EX_NDPD * sizeof (struct ex_dpd));
299
300 attach_stage = 6;
301
302 if ((error = bus_dmamap_create(sc->sc_dmat,
303 EX_NDPD * sizeof (struct ex_dpd), 1,
304 EX_NDPD * sizeof (struct ex_dpd), 0, BUS_DMA_NOWAIT,
305 &sc->sc_dpd_dmamap)) != 0) {
306 aprint_error(
307 "%s: can't create download desc. DMA map, error = %d\n",
308 sc->sc_dev.dv_xname, error);
309 goto fail;
310 }
311
312 attach_stage = 7;
313
314 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dpd_dmamap,
315 sc->sc_dpd, EX_NDPD * sizeof (struct ex_dpd), NULL,
316 BUS_DMA_NOWAIT)) != 0) {
317 aprint_error(
318 "%s: can't load download desc. DMA map, error = %d\n",
319 sc->sc_dev.dv_xname, error);
320 goto fail;
321 }
322
323 attach_stage = 8;
324
325
326 /*
327 * Create the transmit buffer DMA maps.
328 */
329 for (i = 0; i < EX_NDPD; i++) {
330 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
331 EX_NTFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
332 &sc->sc_tx_dmamaps[i])) != 0) {
333 aprint_error(
334 "%s: can't create tx DMA map %d, error = %d\n",
335 sc->sc_dev.dv_xname, i, error);
336 goto fail;
337 }
338 }
339
340 attach_stage = 9;
341
342 /*
343 * Create the receive buffer DMA maps.
344 */
345 for (i = 0; i < EX_NUPD; i++) {
346 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
347 EX_NRFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
348 &sc->sc_rx_dmamaps[i])) != 0) {
349 aprint_error(
350 "%s: can't create rx DMA map %d, error = %d\n",
351 sc->sc_dev.dv_xname, i, error);
352 goto fail;
353 }
354 }
355
356 attach_stage = 10;
357
358 /*
359 * Create ring of upload descriptors, only once. The DMA engine
360 * will loop over this when receiving packets, stalling if it
361 * hits an UPD with a finished receive.
362 */
363 for (i = 0; i < EX_NUPD; i++) {
364 sc->sc_rxdescs[i].rx_dmamap = sc->sc_rx_dmamaps[i];
365 sc->sc_rxdescs[i].rx_upd = &sc->sc_upd[i];
366 sc->sc_upd[i].upd_frags[0].fr_len =
367 htole32((MCLBYTES - 2) | EX_FR_LAST);
368 if (ex_add_rxbuf(sc, &sc->sc_rxdescs[i]) != 0) {
369 aprint_error("%s: can't allocate or map rx buffers\n",
370 sc->sc_dev.dv_xname);
371 goto fail;
372 }
373 }
374
375 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap, 0,
376 EX_NUPD * sizeof (struct ex_upd),
377 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
378
379 ex_init_txdescs(sc);
380
381 attach_stage = 11;
382
383
384 GO_WINDOW(3);
385 val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
386 if (val & ELINK_MEDIACAP_MII)
387 sc->ex_conf |= EX_CONF_MII;
388
389 ifp = &sc->sc_ethercom.ec_if;
390
391 /*
392 * Initialize our media structures and MII info. We'll
393 * probe the MII if we discover that we have one.
394 */
395 sc->ex_mii.mii_ifp = ifp;
396 sc->ex_mii.mii_readreg = ex_mii_readreg;
397 sc->ex_mii.mii_writereg = ex_mii_writereg;
398 sc->ex_mii.mii_statchg = ex_mii_statchg;
399 ifmedia_init(&sc->ex_mii.mii_media, IFM_IMASK, ex_media_chg,
400 ex_media_stat);
401
402 if (sc->ex_conf & EX_CONF_MII) {
403 /*
404 * Find PHY, extract media information from it.
405 * First, select the right transceiver.
406 */
407 ex_set_xcvr(sc, val);
408
409 mii_attach(&sc->sc_dev, &sc->ex_mii, 0xffffffff,
410 MII_PHY_ANY, MII_OFFSET_ANY, 0);
411 if (LIST_FIRST(&sc->ex_mii.mii_phys) == NULL) {
412 ifmedia_add(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE,
413 0, NULL);
414 ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE);
415 } else {
416 ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_AUTO);
417 }
418 } else
419 ex_probemedia(sc);
420
421 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
422 ifp->if_softc = sc;
423 ifp->if_start = ex_start;
424 ifp->if_ioctl = ex_ioctl;
425 ifp->if_watchdog = ex_watchdog;
426 ifp->if_init = ex_init;
427 ifp->if_stop = ex_stop;
428 ifp->if_flags =
429 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
430 sc->sc_if_flags = ifp->if_flags;
431 IFQ_SET_READY(&ifp->if_snd);
432
433 /*
434 * We can support 802.1Q VLAN-sized frames.
435 */
436 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
437
438 /*
439 * The 3c90xB has hardware IPv4/TCPv4/UDPv4 checksum support.
440 */
441 if (sc->ex_conf & EX_CONF_90XB)
442 sc->sc_ethercom.ec_if.if_capabilities |=
443 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
444 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
445 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
446
447 if_attach(ifp);
448 ether_ifattach(ifp, macaddr);
449
450 GO_WINDOW(1);
451
452 sc->tx_start_thresh = 20;
453 sc->tx_succ_ok = 0;
454
455 /* TODO: set queues to 0 */
456
457 #if NRND > 0
458 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
459 RND_TYPE_NET, 0);
460 #endif
461
462 /* Establish callback to reset card when we reboot. */
463 sc->sc_sdhook = shutdownhook_establish(ex_shutdown, sc);
464 if (sc->sc_sdhook == NULL)
465 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
466 sc->sc_dev.dv_xname);
467
468 /* Add a suspend hook to make sure we come back up after a resume. */
469 sc->sc_powerhook = powerhook_establish(ex_power, sc);
470 if (sc->sc_powerhook == NULL)
471 aprint_error("%s: WARNING: unable to establish power hook\n",
472 sc->sc_dev.dv_xname);
473
474 /* The attach is successful. */
475 sc->ex_flags |= EX_FLAGS_ATTACHED;
476 return;
477
478 fail:
479 /*
480 * Free any resources we've allocated during the failed attach
481 * attempt. Do this in reverse order and fall though.
482 */
483 switch (attach_stage) {
484 case 11:
485 {
486 struct ex_rxdesc *rxd;
487
488 for (i = 0; i < EX_NUPD; i++) {
489 rxd = &sc->sc_rxdescs[i];
490 if (rxd->rx_mbhead != NULL) {
491 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
492 m_freem(rxd->rx_mbhead);
493 }
494 }
495 }
496 /* FALLTHROUGH */
497
498 case 10:
499 for (i = 0; i < EX_NUPD; i++)
500 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
501 /* FALLTHROUGH */
502
503 case 9:
504 for (i = 0; i < EX_NDPD; i++)
505 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
506 /* FALLTHROUGH */
507 case 8:
508 bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
509 /* FALLTHROUGH */
510
511 case 7:
512 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
513 /* FALLTHROUGH */
514
515 case 6:
516 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
517 EX_NDPD * sizeof (struct ex_dpd));
518 /* FALLTHROUGH */
519
520 case 5:
521 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
522 break;
523
524 case 4:
525 bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
526 /* FALLTHROUGH */
527
528 case 3:
529 bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
530 /* FALLTHROUGH */
531
532 case 2:
533 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
534 EX_NUPD * sizeof (struct ex_upd));
535 /* FALLTHROUGH */
536
537 case 1:
538 bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
539 break;
540 }
541
542 }
543
544 /*
545 * Find the media present on non-MII chips.
546 */
547 void
548 ex_probemedia(sc)
549 struct ex_softc *sc;
550 {
551 bus_space_tag_t iot = sc->sc_iot;
552 bus_space_handle_t ioh = sc->sc_ioh;
553 struct ifmedia *ifm = &sc->ex_mii.mii_media;
554 struct ex_media *exm;
555 u_int16_t config1, reset_options, default_media;
556 int defmedia = 0;
557 const char *sep = "", *defmedianame = NULL;
558
559 GO_WINDOW(3);
560 config1 = bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
561 reset_options = bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
562 GO_WINDOW(0);
563
564 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
565
566 aprint_normal("%s: ", sc->sc_dev.dv_xname);
567
568 /* Sanity check that there are any media! */
569 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
570 aprint_error("no media present!\n");
571 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
572 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
573 return;
574 }
575
576 #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", "
577
578 for (exm = ex_native_media; exm->exm_name != NULL; exm++) {
579 if (reset_options & exm->exm_mpbit) {
580 /*
581 * Default media is a little complicated. We
582 * support full-duplex which uses the same
583 * reset options bit.
584 *
585 * XXX Check EEPROM for default to FDX?
586 */
587 if (exm->exm_epmedia == default_media) {
588 if ((exm->exm_ifmedia & IFM_FDX) == 0) {
589 defmedia = exm->exm_ifmedia;
590 defmedianame = exm->exm_name;
591 }
592 } else if (defmedia == 0) {
593 defmedia = exm->exm_ifmedia;
594 defmedianame = exm->exm_name;
595 }
596 ifmedia_add(ifm, exm->exm_ifmedia, exm->exm_epmedia,
597 NULL);
598 PRINT(exm->exm_name);
599 }
600 }
601
602 #undef PRINT
603
604 #ifdef DIAGNOSTIC
605 if (defmedia == 0)
606 panic("ex_probemedia: impossible");
607 #endif
608
609 aprint_normal(", default %s\n", defmedianame);
610 ifmedia_set(ifm, defmedia);
611 }
612
613 /*
614 * Bring device up.
615 */
616 int
617 ex_init(ifp)
618 struct ifnet *ifp;
619 {
620 struct ex_softc *sc = ifp->if_softc;
621 bus_space_tag_t iot = sc->sc_iot;
622 bus_space_handle_t ioh = sc->sc_ioh;
623 int i;
624 int error = 0;
625
626 if ((error = ex_enable(sc)) != 0)
627 goto out;
628
629 ex_waitcmd(sc);
630 ex_stop(ifp, 0);
631
632 /*
633 * Set the station address and clear the station mask. The latter
634 * is needed for 90x cards, 0 is the default for 90xB cards.
635 */
636 GO_WINDOW(2);
637 for (i = 0; i < ETHER_ADDR_LEN; i++) {
638 bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
639 LLADDR(ifp->if_sadl)[i]);
640 bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
641 }
642
643 GO_WINDOW(3);
644
645 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_RESET);
646 ex_waitcmd(sc);
647 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
648 ex_waitcmd(sc);
649
650 /*
651 * Disable reclaim threshold for 90xB, set free threshold to
652 * 6 * 256 = 1536 for 90x.
653 */
654 if (sc->ex_conf & EX_CONF_90XB)
655 bus_space_write_2(iot, ioh, ELINK_COMMAND,
656 ELINK_TXRECLTHRESH | 255);
657 else
658 bus_space_write_1(iot, ioh, ELINK_TXFREETHRESH, 6);
659
660 bus_space_write_2(iot, ioh, ELINK_COMMAND,
661 SET_RX_EARLY_THRESH | ELINK_THRESH_DISABLE);
662
663 bus_space_write_4(iot, ioh, ELINK_DMACTRL,
664 bus_space_read_4(iot, ioh, ELINK_DMACTRL) | ELINK_DMAC_UPRXEAREN);
665
666 bus_space_write_2(iot, ioh, ELINK_COMMAND,
667 SET_RD_0_MASK | XL_WATCHED_INTERRUPTS);
668 bus_space_write_2(iot, ioh, ELINK_COMMAND,
669 SET_INTR_MASK | XL_WATCHED_INTERRUPTS);
670
671 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
672 if (sc->intr_ack)
673 (* sc->intr_ack)(sc);
674 ex_set_media(sc);
675 ex_set_mc(sc);
676
677
678 bus_space_write_2(iot, ioh, ELINK_COMMAND, STATS_ENABLE);
679 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
680 bus_space_write_4(iot, ioh, ELINK_UPLISTPTR, sc->sc_upddma);
681 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
682 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_UPUNSTALL);
683
684 if (sc->ex_conf & (EX_CONF_PHY_POWER | EX_CONF_INV_LED_POLARITY)) {
685 u_int16_t cbcard_config;
686
687 GO_WINDOW(2);
688 cbcard_config = bus_space_read_2(sc->sc_iot, sc->sc_ioh, 0x0c);
689 if (sc->ex_conf & EX_CONF_PHY_POWER) {
690 cbcard_config |= 0x4000; /* turn on PHY power */
691 }
692 if (sc->ex_conf & EX_CONF_INV_LED_POLARITY) {
693 cbcard_config |= 0x0010; /* invert LED polarity */
694 }
695 bus_space_write_2(sc->sc_iot, sc->sc_ioh, 0x0c, cbcard_config);
696
697 GO_WINDOW(3);
698 }
699
700 ifp->if_flags |= IFF_RUNNING;
701 ifp->if_flags &= ~IFF_OACTIVE;
702 ex_start(ifp);
703 sc->sc_if_flags = ifp->if_flags;
704
705 GO_WINDOW(1);
706
707 callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
708
709 out:
710 if (error) {
711 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
712 ifp->if_timer = 0;
713 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
714 }
715 return (error);
716 }
717
718 #define MCHASHSIZE 256
719 #define ex_mchash(addr) (ether_crc32_be((addr), ETHER_ADDR_LEN) & \
720 (MCHASHSIZE - 1))
721
722 /*
723 * Set multicast receive filter. Also take care of promiscuous mode
724 * here (XXX).
725 */
726 void
727 ex_set_mc(sc)
728 struct ex_softc *sc;
729 {
730 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
731 struct ethercom *ec = &sc->sc_ethercom;
732 struct ether_multi *enm;
733 struct ether_multistep estep;
734 int i;
735 u_int16_t mask = FIL_INDIVIDUAL | FIL_BRDCST;
736
737 if (ifp->if_flags & IFF_PROMISC) {
738 mask |= FIL_PROMISC;
739 goto allmulti;
740 }
741
742 ETHER_FIRST_MULTI(estep, ec, enm);
743 if (enm == NULL)
744 goto nomulti;
745
746 if ((sc->ex_conf & EX_CONF_90XB) == 0)
747 /* No multicast hash filtering. */
748 goto allmulti;
749
750 for (i = 0; i < MCHASHSIZE; i++)
751 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
752 ELINK_COMMAND, ELINK_CLEARHASHFILBIT | i);
753
754 do {
755 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
756 ETHER_ADDR_LEN) != 0)
757 goto allmulti;
758
759 i = ex_mchash(enm->enm_addrlo);
760 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
761 ELINK_COMMAND, ELINK_SETHASHFILBIT | i);
762 ETHER_NEXT_MULTI(estep, enm);
763 } while (enm != NULL);
764 mask |= FIL_MULTIHASH;
765
766 nomulti:
767 ifp->if_flags &= ~IFF_ALLMULTI;
768 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
769 SET_RX_FILTER | mask);
770 return;
771
772 allmulti:
773 ifp->if_flags |= IFF_ALLMULTI;
774 mask |= FIL_MULTICAST;
775 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
776 SET_RX_FILTER | mask);
777 }
778
779
780 static void
781 ex_txstat(sc)
782 struct ex_softc *sc;
783 {
784 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
785 bus_space_tag_t iot = sc->sc_iot;
786 bus_space_handle_t ioh = sc->sc_ioh;
787 int i;
788
789 /*
790 * We need to read+write TX_STATUS until we get a 0 status
791 * in order to turn off the interrupt flag.
792 * ELINK_TXSTATUS is in the upper byte of 2 with ELINK_TIMER
793 * XXX: Big Endian? Can we assume that TXSTATUS will be the
794 * upper byte?
795 */
796 while ((i = bus_space_read_2(iot, ioh, ELINK_TIMER)) & TXS_COMPLETE) {
797 bus_space_write_2(iot, ioh, ELINK_TIMER, 0x0);
798
799 if (i & TXS_JABBER) {
800 ++sc->sc_ethercom.ec_if.if_oerrors;
801 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
802 printf("%s: jabber (%x)\n",
803 sc->sc_dev.dv_xname, i);
804 ex_init(ifp);
805 /* TODO: be more subtle here */
806 } else if (i & TXS_UNDERRUN) {
807 ++sc->sc_ethercom.ec_if.if_oerrors;
808 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
809 printf("%s: fifo underrun (%x) @%d\n",
810 sc->sc_dev.dv_xname, i,
811 sc->tx_start_thresh);
812 if (sc->tx_succ_ok < 100)
813 sc->tx_start_thresh = min(ETHER_MAX_LEN,
814 sc->tx_start_thresh + 20);
815 sc->tx_succ_ok = 0;
816 ex_init(ifp);
817 /* TODO: be more subtle here */
818 } else if (i & TXS_MAX_COLLISION) {
819 ++sc->sc_ethercom.ec_if.if_oerrors;
820 ++sc->sc_ethercom.ec_if.if_collisions;
821 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
822 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
823 } else if (sc->tx_succ_ok < 100)
824 sc->tx_succ_ok++;
825 }
826 }
827
828 int
829 ex_media_chg(ifp)
830 struct ifnet *ifp;
831 {
832
833 if (ifp->if_flags & IFF_UP)
834 ex_init(ifp);
835 return 0;
836 }
837
838 void
839 ex_set_xcvr(sc, media)
840 struct ex_softc *sc;
841 const u_int16_t media;
842 {
843 bus_space_tag_t iot = sc->sc_iot;
844 bus_space_handle_t ioh = sc->sc_ioh;
845 u_int32_t icfg;
846
847 /*
848 * We're already in Window 3
849 */
850 icfg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
851 icfg &= ~(CONFIG_XCVR_SEL << 16);
852 if (media & (ELINK_MEDIACAP_MII | ELINK_MEDIACAP_100BASET4))
853 icfg |= ELINKMEDIA_MII << (CONFIG_XCVR_SEL_SHIFT + 16);
854 if (media & ELINK_MEDIACAP_100BASETX)
855 icfg |= ELINKMEDIA_AUTO << (CONFIG_XCVR_SEL_SHIFT + 16);
856 if (media & ELINK_MEDIACAP_100BASEFX)
857 icfg |= ELINKMEDIA_100BASE_FX
858 << (CONFIG_XCVR_SEL_SHIFT + 16);
859 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, icfg);
860 }
861
862 void
863 ex_set_media(sc)
864 struct ex_softc *sc;
865 {
866 bus_space_tag_t iot = sc->sc_iot;
867 bus_space_handle_t ioh = sc->sc_ioh;
868 u_int32_t configreg;
869
870 if (((sc->ex_conf & EX_CONF_MII) &&
871 (sc->ex_mii.mii_media_active & IFM_FDX))
872 || (!(sc->ex_conf & EX_CONF_MII) &&
873 (sc->ex_mii.mii_media.ifm_media & IFM_FDX))) {
874 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL,
875 MAC_CONTROL_FDX);
876 } else {
877 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, 0);
878 }
879
880 /*
881 * If the device has MII, select it, and then tell the
882 * PHY which media to use.
883 */
884 if (sc->ex_conf & EX_CONF_MII) {
885 u_int16_t val;
886
887 GO_WINDOW(3);
888 val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
889 ex_set_xcvr(sc, val);
890 mii_mediachg(&sc->ex_mii);
891 return;
892 }
893
894 GO_WINDOW(4);
895 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0);
896 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
897 delay(800);
898
899 /*
900 * Now turn on the selected media/transceiver.
901 */
902 switch (IFM_SUBTYPE(sc->ex_mii.mii_media.ifm_cur->ifm_media)) {
903 case IFM_10_T:
904 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
905 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
906 break;
907
908 case IFM_10_2:
909 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
910 DELAY(800);
911 break;
912
913 case IFM_100_TX:
914 case IFM_100_FX:
915 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
916 LINKBEAT_ENABLE);
917 DELAY(800);
918 break;
919
920 case IFM_10_5:
921 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
922 SQE_ENABLE);
923 DELAY(800);
924 break;
925
926 case IFM_MANUAL:
927 break;
928
929 case IFM_NONE:
930 return;
931
932 default:
933 panic("ex_set_media: impossible");
934 }
935
936 GO_WINDOW(3);
937 configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
938
939 configreg &= ~(CONFIG_MEDIAMASK << 16);
940 configreg |= (sc->ex_mii.mii_media.ifm_cur->ifm_data <<
941 (CONFIG_MEDIAMASK_SHIFT + 16));
942
943 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
944 }
945
946 /*
947 * Get currently-selected media from card.
948 * (if_media callback, may be called before interface is brought up).
949 */
950 void
951 ex_media_stat(ifp, req)
952 struct ifnet *ifp;
953 struct ifmediareq *req;
954 {
955 struct ex_softc *sc = ifp->if_softc;
956 u_int16_t help;
957
958 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING)) {
959 if (sc->ex_conf & EX_CONF_MII) {
960 mii_pollstat(&sc->ex_mii);
961 req->ifm_status = sc->ex_mii.mii_media_status;
962 req->ifm_active = sc->ex_mii.mii_media_active;
963 } else {
964 GO_WINDOW(4);
965 req->ifm_status = IFM_AVALID;
966 req->ifm_active =
967 sc->ex_mii.mii_media.ifm_cur->ifm_media;
968 help = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
969 ELINK_W4_MEDIA_TYPE);
970 if (help & LINKBEAT_DETECT)
971 req->ifm_status |= IFM_ACTIVE;
972 GO_WINDOW(1);
973 }
974 }
975 }
976
977
978
979 /*
980 * Start outputting on the interface.
981 */
982 static void
983 ex_start(ifp)
984 struct ifnet *ifp;
985 {
986 struct ex_softc *sc = ifp->if_softc;
987 bus_space_tag_t iot = sc->sc_iot;
988 bus_space_handle_t ioh = sc->sc_ioh;
989 volatile struct ex_fraghdr *fr = NULL;
990 volatile struct ex_dpd *dpd = NULL, *prevdpd = NULL;
991 struct ex_txdesc *txp;
992 struct mbuf *mb_head;
993 bus_dmamap_t dmamap;
994 int offset, totlen, segment, error;
995 u_int32_t csum_flags;
996
997 if (sc->tx_head || sc->tx_free == NULL)
998 return;
999
1000 txp = NULL;
1001
1002 /*
1003 * We're finished if there is nothing more to add to the list or if
1004 * we're all filled up with buffers to transmit.
1005 */
1006 while (sc->tx_free != NULL) {
1007 /*
1008 * Grab a packet to transmit.
1009 */
1010 IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1011 if (mb_head == NULL)
1012 break;
1013
1014 /*
1015 * Get pointer to next available tx desc.
1016 */
1017 txp = sc->tx_free;
1018 dmamap = txp->tx_dmamap;
1019
1020 /*
1021 * Go through each of the mbufs in the chain and initialize
1022 * the transmit buffer descriptors with the physical address
1023 * and size of the mbuf.
1024 */
1025 reload:
1026 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1027 mb_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1028 switch (error) {
1029 case 0:
1030 /* Success. */
1031 break;
1032
1033 case EFBIG:
1034 {
1035 struct mbuf *mn;
1036
1037 /*
1038 * We ran out of segments. We have to recopy this
1039 * mbuf chain first. Bail out if we can't get the
1040 * new buffers.
1041 */
1042 printf("%s: too many segments, ", sc->sc_dev.dv_xname);
1043
1044 MGETHDR(mn, M_DONTWAIT, MT_DATA);
1045 if (mn == NULL) {
1046 m_freem(mb_head);
1047 printf("aborting\n");
1048 goto out;
1049 }
1050 if (mb_head->m_pkthdr.len > MHLEN) {
1051 MCLGET(mn, M_DONTWAIT);
1052 if ((mn->m_flags & M_EXT) == 0) {
1053 m_freem(mn);
1054 m_freem(mb_head);
1055 printf("aborting\n");
1056 goto out;
1057 }
1058 }
1059 m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1060 mtod(mn, caddr_t));
1061 mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1062 m_freem(mb_head);
1063 mb_head = mn;
1064 printf("retrying\n");
1065 goto reload;
1066 }
1067
1068 default:
1069 /*
1070 * Some other problem; report it.
1071 */
1072 printf("%s: can't load mbuf chain, error = %d\n",
1073 sc->sc_dev.dv_xname, error);
1074 m_freem(mb_head);
1075 goto out;
1076 }
1077
1078 /*
1079 * remove our tx desc from freelist.
1080 */
1081 sc->tx_free = txp->tx_next;
1082 txp->tx_next = NULL;
1083
1084 fr = &txp->tx_dpd->dpd_frags[0];
1085 totlen = 0;
1086 for (segment = 0; segment < dmamap->dm_nsegs; segment++, fr++) {
1087 fr->fr_addr = htole32(dmamap->dm_segs[segment].ds_addr);
1088 fr->fr_len = htole32(dmamap->dm_segs[segment].ds_len);
1089 totlen += dmamap->dm_segs[segment].ds_len;
1090 }
1091 fr--;
1092 fr->fr_len |= htole32(EX_FR_LAST);
1093 txp->tx_mbhead = mb_head;
1094
1095 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1096 BUS_DMASYNC_PREWRITE);
1097
1098 dpd = txp->tx_dpd;
1099 dpd->dpd_nextptr = 0;
1100 dpd->dpd_fsh = htole32(totlen);
1101
1102 /* Byte-swap constants so compiler can optimize. */
1103
1104 if (sc->ex_conf & EX_CONF_90XB) {
1105 csum_flags = 0;
1106
1107 if (mb_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1108 csum_flags |= htole32(EX_DPD_IPCKSUM);
1109
1110 if (mb_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1111 csum_flags |= htole32(EX_DPD_TCPCKSUM);
1112 else if (mb_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1113 csum_flags |= htole32(EX_DPD_UDPCKSUM);
1114
1115 dpd->dpd_fsh |= csum_flags;
1116 } else {
1117 KDASSERT((mb_head->m_pkthdr.csum_flags &
1118 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) == 0);
1119 }
1120
1121 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1122 ((const char *)(intptr_t)dpd - (const char *)sc->sc_dpd),
1123 sizeof (struct ex_dpd),
1124 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1125
1126 /*
1127 * No need to stall the download engine, we know it's
1128 * not busy right now.
1129 *
1130 * Fix up pointers in both the "soft" tx and the physical
1131 * tx list.
1132 */
1133 if (sc->tx_head != NULL) {
1134 prevdpd = sc->tx_tail->tx_dpd;
1135 offset = ((const char *)(intptr_t)prevdpd - (const char *)sc->sc_dpd);
1136 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1137 offset, sizeof (struct ex_dpd),
1138 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1139 prevdpd->dpd_nextptr = htole32(DPD_DMADDR(sc, txp));
1140 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1141 offset, sizeof (struct ex_dpd),
1142 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1143 sc->tx_tail->tx_next = txp;
1144 sc->tx_tail = txp;
1145 } else {
1146 sc->tx_tail = sc->tx_head = txp;
1147 }
1148
1149 #if NBPFILTER > 0
1150 /*
1151 * Pass packet to bpf if there is a listener.
1152 */
1153 if (ifp->if_bpf)
1154 bpf_mtap(ifp->if_bpf, mb_head);
1155 #endif
1156 }
1157 out:
1158 if (sc->tx_head) {
1159 sc->tx_tail->tx_dpd->dpd_fsh |= htole32(EX_DPD_DNIND);
1160 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1161 ((caddr_t)sc->tx_tail->tx_dpd - (caddr_t)sc->sc_dpd),
1162 sizeof (struct ex_dpd),
1163 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1164 ifp->if_flags |= IFF_OACTIVE;
1165 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNUNSTALL);
1166 bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
1167 DPD_DMADDR(sc, sc->tx_head));
1168
1169 /* trigger watchdog */
1170 ifp->if_timer = 5;
1171 }
1172 }
1173
1174
1175 int
1176 ex_intr(arg)
1177 void *arg;
1178 {
1179 struct ex_softc *sc = arg;
1180 bus_space_tag_t iot = sc->sc_iot;
1181 bus_space_handle_t ioh = sc->sc_ioh;
1182 u_int16_t stat;
1183 int ret = 0;
1184 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1185
1186 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1187 !device_is_active(&sc->sc_dev))
1188 return (0);
1189
1190 for (;;) {
1191 stat = bus_space_read_2(iot, ioh, ELINK_STATUS);
1192
1193 if ((stat & XL_WATCHED_INTERRUPTS) == 0) {
1194 if ((stat & INTR_LATCH) == 0) {
1195 #if 0
1196 printf("%s: intr latch cleared\n",
1197 sc->sc_dev.dv_xname);
1198 #endif
1199 break;
1200 }
1201 }
1202
1203 ret = 1;
1204
1205 /*
1206 * Acknowledge interrupts.
1207 */
1208 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1209 (stat & (XL_WATCHED_INTERRUPTS | INTR_LATCH)));
1210 if (sc->intr_ack)
1211 (*sc->intr_ack)(sc);
1212
1213 if (stat & HOST_ERROR) {
1214 printf("%s: adapter failure (%x)\n",
1215 sc->sc_dev.dv_xname, stat);
1216 ex_reset(sc);
1217 ex_init(ifp);
1218 return 1;
1219 }
1220 if (stat & TX_COMPLETE) {
1221 ex_txstat(sc);
1222 }
1223 if (stat & UPD_STATS) {
1224 ex_getstats(sc);
1225 }
1226 if (stat & DN_COMPLETE) {
1227 struct ex_txdesc *txp, *ptxp = NULL;
1228 bus_dmamap_t txmap;
1229
1230 /* reset watchdog timer, was set in ex_start() */
1231 ifp->if_timer = 0;
1232
1233 for (txp = sc->tx_head; txp != NULL;
1234 txp = txp->tx_next) {
1235 bus_dmamap_sync(sc->sc_dmat,
1236 sc->sc_dpd_dmamap,
1237 (caddr_t)txp->tx_dpd - (caddr_t)sc->sc_dpd,
1238 sizeof (struct ex_dpd),
1239 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1240 if (txp->tx_mbhead != NULL) {
1241 txmap = txp->tx_dmamap;
1242 bus_dmamap_sync(sc->sc_dmat, txmap,
1243 0, txmap->dm_mapsize,
1244 BUS_DMASYNC_POSTWRITE);
1245 bus_dmamap_unload(sc->sc_dmat, txmap);
1246 m_freem(txp->tx_mbhead);
1247 txp->tx_mbhead = NULL;
1248 }
1249 ptxp = txp;
1250 }
1251
1252 /*
1253 * Move finished tx buffers back to the tx free list.
1254 */
1255 if (sc->tx_free) {
1256 sc->tx_ftail->tx_next = sc->tx_head;
1257 sc->tx_ftail = ptxp;
1258 } else
1259 sc->tx_ftail = sc->tx_free = sc->tx_head;
1260
1261 sc->tx_head = sc->tx_tail = NULL;
1262 ifp->if_flags &= ~IFF_OACTIVE;
1263 }
1264
1265 if (stat & UP_COMPLETE) {
1266 struct ex_rxdesc *rxd;
1267 struct mbuf *m;
1268 struct ex_upd *upd;
1269 bus_dmamap_t rxmap;
1270 u_int32_t pktstat;
1271
1272 rcvloop:
1273 rxd = sc->rx_head;
1274 rxmap = rxd->rx_dmamap;
1275 m = rxd->rx_mbhead;
1276 upd = rxd->rx_upd;
1277
1278 bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
1279 rxmap->dm_mapsize,
1280 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1281 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1282 ((caddr_t)upd - (caddr_t)sc->sc_upd),
1283 sizeof (struct ex_upd),
1284 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1285 pktstat = le32toh(upd->upd_pktstatus);
1286
1287 if (pktstat & EX_UPD_COMPLETE) {
1288 /*
1289 * Remove first packet from the chain.
1290 */
1291 sc->rx_head = rxd->rx_next;
1292 rxd->rx_next = NULL;
1293
1294 /*
1295 * Add a new buffer to the receive chain.
1296 * If this fails, the old buffer is recycled
1297 * instead.
1298 */
1299 if (ex_add_rxbuf(sc, rxd) == 0) {
1300 u_int16_t total_len;
1301
1302 if (pktstat &
1303 ((sc->sc_ethercom.ec_capenable &
1304 ETHERCAP_VLAN_MTU) ?
1305 EX_UPD_ERR_VLAN : EX_UPD_ERR)) {
1306 ifp->if_ierrors++;
1307 m_freem(m);
1308 goto rcvloop;
1309 }
1310
1311 total_len = pktstat & EX_UPD_PKTLENMASK;
1312 if (total_len <
1313 sizeof(struct ether_header)) {
1314 m_freem(m);
1315 goto rcvloop;
1316 }
1317 m->m_pkthdr.rcvif = ifp;
1318 m->m_pkthdr.len = m->m_len = total_len;
1319 #if NBPFILTER > 0
1320 if (ifp->if_bpf)
1321 bpf_mtap(ifp->if_bpf, m);
1322 #endif
1323 /*
1324 * Set the incoming checksum information for the packet.
1325 */
1326 if ((sc->ex_conf & EX_CONF_90XB) != 0 &&
1327 (pktstat & EX_UPD_IPCHECKED) != 0) {
1328 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1329 if (pktstat & EX_UPD_IPCKSUMERR)
1330 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1331 if (pktstat & EX_UPD_TCPCHECKED) {
1332 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1333 if (pktstat & EX_UPD_TCPCKSUMERR)
1334 m->m_pkthdr.csum_flags |=
1335 M_CSUM_TCP_UDP_BAD;
1336 } else if (pktstat & EX_UPD_UDPCHECKED) {
1337 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1338 if (pktstat & EX_UPD_UDPCKSUMERR)
1339 m->m_pkthdr.csum_flags |=
1340 M_CSUM_TCP_UDP_BAD;
1341 }
1342 }
1343 (*ifp->if_input)(ifp, m);
1344 }
1345 goto rcvloop;
1346 }
1347 /*
1348 * Just in case we filled up all UPDs and the DMA engine
1349 * stalled. We could be more subtle about this.
1350 */
1351 if (bus_space_read_4(iot, ioh, ELINK_UPLISTPTR) == 0) {
1352 printf("%s: uplistptr was 0\n",
1353 sc->sc_dev.dv_xname);
1354 ex_init(ifp);
1355 } else if (bus_space_read_4(iot, ioh, ELINK_UPPKTSTATUS)
1356 & 0x2000) {
1357 printf("%s: receive stalled\n",
1358 sc->sc_dev.dv_xname);
1359 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1360 ELINK_UPUNSTALL);
1361 }
1362 }
1363
1364 #if NRND > 0
1365 if (stat)
1366 rnd_add_uint32(&sc->rnd_source, stat);
1367 #endif
1368 }
1369
1370 /* no more interrupts */
1371 if (ret && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1372 ex_start(ifp);
1373 return ret;
1374 }
1375
1376 int
1377 ex_ioctl(ifp, cmd, data)
1378 struct ifnet *ifp;
1379 u_long cmd;
1380 caddr_t data;
1381 {
1382 struct ex_softc *sc = ifp->if_softc;
1383 struct ifreq *ifr = (struct ifreq *)data;
1384 int s, error;
1385
1386 s = splnet();
1387
1388 switch (cmd) {
1389 case SIOCSIFMEDIA:
1390 case SIOCGIFMEDIA:
1391 error = ifmedia_ioctl(ifp, ifr, &sc->ex_mii.mii_media, cmd);
1392 break;
1393 case SIOCSIFFLAGS:
1394 /* If the interface is up and running, only modify the receive
1395 * filter when setting promiscuous or debug mode. Otherwise
1396 * fall through to ether_ioctl, which will reset the chip.
1397 */
1398 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1399 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1400 == (IFF_UP|IFF_RUNNING))
1401 && ((ifp->if_flags & (~RESETIGN))
1402 == (sc->sc_if_flags & (~RESETIGN)))) {
1403 ex_set_mc(sc);
1404 error = 0;
1405 break;
1406 #undef RESETIGN
1407 }
1408 /* FALLTHROUGH */
1409 default:
1410 error = ether_ioctl(ifp, cmd, data);
1411 if (error == ENETRESET) {
1412 /*
1413 * Multicast list has changed; set the hardware filter
1414 * accordingly.
1415 */
1416 if (ifp->if_flags & IFF_RUNNING)
1417 ex_set_mc(sc);
1418 error = 0;
1419 }
1420 break;
1421 }
1422
1423 sc->sc_if_flags = ifp->if_flags;
1424 splx(s);
1425 return (error);
1426 }
1427
1428 void
1429 ex_getstats(sc)
1430 struct ex_softc *sc;
1431 {
1432 bus_space_handle_t ioh = sc->sc_ioh;
1433 bus_space_tag_t iot = sc->sc_iot;
1434 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1435 u_int8_t upperok;
1436
1437 GO_WINDOW(6);
1438 upperok = bus_space_read_1(iot, ioh, UPPER_FRAMES_OK);
1439 ifp->if_ipackets += bus_space_read_1(iot, ioh, RX_FRAMES_OK);
1440 ifp->if_ipackets += (upperok & 0x03) << 8;
1441 ifp->if_opackets += bus_space_read_1(iot, ioh, TX_FRAMES_OK);
1442 ifp->if_opackets += (upperok & 0x30) << 4;
1443 ifp->if_ierrors += bus_space_read_1(iot, ioh, RX_OVERRUNS);
1444 ifp->if_collisions += bus_space_read_1(iot, ioh, TX_COLLISIONS);
1445 /*
1446 * There seems to be no way to get the exact number of collisions,
1447 * this is the number that occurred at the very least.
1448 */
1449 ifp->if_collisions += 2 * bus_space_read_1(iot, ioh,
1450 TX_AFTER_X_COLLISIONS);
1451 /*
1452 * Interface byte counts are counted by ether_input() and
1453 * ether_output(), so don't accumulate them here. Just
1454 * read the NIC counters so they don't generate overflow interrupts.
1455 * Upper byte counters are latched from reading the totals, so
1456 * they don't need to be read if we don't need their values.
1457 */
1458 (void)bus_space_read_2(iot, ioh, RX_TOTAL_OK);
1459 (void)bus_space_read_2(iot, ioh, TX_TOTAL_OK);
1460
1461 /*
1462 * Clear the following to avoid stats overflow interrupts
1463 */
1464 (void)bus_space_read_1(iot, ioh, TX_DEFERRALS);
1465 (void)bus_space_read_1(iot, ioh, TX_AFTER_1_COLLISION);
1466 (void)bus_space_read_1(iot, ioh, TX_NO_SQE);
1467 (void)bus_space_read_1(iot, ioh, TX_CD_LOST);
1468 GO_WINDOW(4);
1469 (void)bus_space_read_1(iot, ioh, ELINK_W4_BADSSD);
1470 GO_WINDOW(1);
1471 }
1472
1473 void
1474 ex_printstats(sc)
1475 struct ex_softc *sc;
1476 {
1477 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1478
1479 ex_getstats(sc);
1480 printf("in %llu out %llu ierror %llu oerror %llu ibytes %llu obytes "
1481 "%llu\n", (unsigned long long)ifp->if_ipackets,
1482 (unsigned long long)ifp->if_opackets,
1483 (unsigned long long)ifp->if_ierrors,
1484 (unsigned long long)ifp->if_oerrors,
1485 (unsigned long long)ifp->if_ibytes,
1486 (unsigned long long)ifp->if_obytes);
1487 }
1488
1489 void
1490 ex_tick(arg)
1491 void *arg;
1492 {
1493 struct ex_softc *sc = arg;
1494 int s;
1495
1496 if (!device_is_active(&sc->sc_dev))
1497 return;
1498
1499 s = splnet();
1500
1501 if (sc->ex_conf & EX_CONF_MII)
1502 mii_tick(&sc->ex_mii);
1503
1504 if (!(bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, ELINK_STATUS)
1505 & COMMAND_IN_PROGRESS))
1506 ex_getstats(sc);
1507
1508 splx(s);
1509
1510 callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
1511 }
1512
1513 void
1514 ex_reset(sc)
1515 struct ex_softc *sc;
1516 {
1517 u_int16_t val = GLOBAL_RESET;
1518
1519 if (sc->ex_conf & EX_CONF_RESETHACK)
1520 val |= 0x10;
1521 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, val);
1522 /*
1523 * XXX apparently the command in progress bit can't be trusted
1524 * during a reset, so we just always wait this long. Fortunately
1525 * we normally only reset the chip during autoconfig.
1526 */
1527 delay(100000);
1528 ex_waitcmd(sc);
1529 }
1530
1531 void
1532 ex_watchdog(ifp)
1533 struct ifnet *ifp;
1534 {
1535 struct ex_softc *sc = ifp->if_softc;
1536
1537 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1538 ++sc->sc_ethercom.ec_if.if_oerrors;
1539
1540 ex_reset(sc);
1541 ex_init(ifp);
1542 }
1543
1544 void
1545 ex_stop(ifp, disable)
1546 struct ifnet *ifp;
1547 int disable;
1548 {
1549 struct ex_softc *sc = ifp->if_softc;
1550 bus_space_tag_t iot = sc->sc_iot;
1551 bus_space_handle_t ioh = sc->sc_ioh;
1552 struct ex_txdesc *tx;
1553 struct ex_rxdesc *rx;
1554 int i;
1555
1556 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1557 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1558 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1559
1560 for (tx = sc->tx_head ; tx != NULL; tx = tx->tx_next) {
1561 if (tx->tx_mbhead == NULL)
1562 continue;
1563 m_freem(tx->tx_mbhead);
1564 tx->tx_mbhead = NULL;
1565 bus_dmamap_unload(sc->sc_dmat, tx->tx_dmamap);
1566 tx->tx_dpd->dpd_fsh = tx->tx_dpd->dpd_nextptr = 0;
1567 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1568 ((caddr_t)tx->tx_dpd - (caddr_t)sc->sc_dpd),
1569 sizeof (struct ex_dpd),
1570 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1571 }
1572 sc->tx_tail = sc->tx_head = NULL;
1573 ex_init_txdescs(sc);
1574
1575 sc->rx_tail = sc->rx_head = 0;
1576 for (i = 0; i < EX_NUPD; i++) {
1577 rx = &sc->sc_rxdescs[i];
1578 if (rx->rx_mbhead != NULL) {
1579 bus_dmamap_unload(sc->sc_dmat, rx->rx_dmamap);
1580 m_freem(rx->rx_mbhead);
1581 rx->rx_mbhead = NULL;
1582 }
1583 ex_add_rxbuf(sc, rx);
1584 }
1585
1586 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1587
1588 callout_stop(&sc->ex_mii_callout);
1589 if (sc->ex_conf & EX_CONF_MII)
1590 mii_down(&sc->ex_mii);
1591
1592 if (disable)
1593 ex_disable(sc);
1594
1595 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1596 sc->sc_if_flags = ifp->if_flags;
1597 ifp->if_timer = 0;
1598 }
1599
1600 static void
1601 ex_init_txdescs(sc)
1602 struct ex_softc *sc;
1603 {
1604 int i;
1605
1606 for (i = 0; i < EX_NDPD; i++) {
1607 sc->sc_txdescs[i].tx_dmamap = sc->sc_tx_dmamaps[i];
1608 sc->sc_txdescs[i].tx_dpd = &sc->sc_dpd[i];
1609 if (i < EX_NDPD - 1)
1610 sc->sc_txdescs[i].tx_next = &sc->sc_txdescs[i + 1];
1611 else
1612 sc->sc_txdescs[i].tx_next = NULL;
1613 }
1614 sc->tx_free = &sc->sc_txdescs[0];
1615 sc->tx_ftail = &sc->sc_txdescs[EX_NDPD-1];
1616 }
1617
1618
1619 int
1620 ex_activate(self, act)
1621 struct device *self;
1622 enum devact act;
1623 {
1624 struct ex_softc *sc = (void *) self;
1625 int s, error = 0;
1626
1627 s = splnet();
1628 switch (act) {
1629 case DVACT_ACTIVATE:
1630 error = EOPNOTSUPP;
1631 break;
1632
1633 case DVACT_DEACTIVATE:
1634 if (sc->ex_conf & EX_CONF_MII)
1635 mii_activate(&sc->ex_mii, act, MII_PHY_ANY,
1636 MII_OFFSET_ANY);
1637 if_deactivate(&sc->sc_ethercom.ec_if);
1638 break;
1639 }
1640 splx(s);
1641
1642 return (error);
1643 }
1644
1645 int
1646 ex_detach(sc)
1647 struct ex_softc *sc;
1648 {
1649 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1650 struct ex_rxdesc *rxd;
1651 int i;
1652
1653 /* Succeed now if there's no work to do. */
1654 if ((sc->ex_flags & EX_FLAGS_ATTACHED) == 0)
1655 return (0);
1656
1657 /* Unhook our tick handler. */
1658 callout_stop(&sc->ex_mii_callout);
1659
1660 if (sc->ex_conf & EX_CONF_MII) {
1661 /* Detach all PHYs */
1662 mii_detach(&sc->ex_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1663 }
1664
1665 /* Delete all remaining media. */
1666 ifmedia_delete_instance(&sc->ex_mii.mii_media, IFM_INST_ANY);
1667
1668 #if NRND > 0
1669 rnd_detach_source(&sc->rnd_source);
1670 #endif
1671 ether_ifdetach(ifp);
1672 if_detach(ifp);
1673
1674 for (i = 0; i < EX_NUPD; i++) {
1675 rxd = &sc->sc_rxdescs[i];
1676 if (rxd->rx_mbhead != NULL) {
1677 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1678 m_freem(rxd->rx_mbhead);
1679 rxd->rx_mbhead = NULL;
1680 }
1681 }
1682 for (i = 0; i < EX_NUPD; i++)
1683 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
1684 for (i = 0; i < EX_NDPD; i++)
1685 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
1686 bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
1687 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
1688 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
1689 EX_NDPD * sizeof (struct ex_dpd));
1690 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
1691 bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
1692 bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
1693 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
1694 EX_NUPD * sizeof (struct ex_upd));
1695 bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
1696
1697 shutdownhook_disestablish(sc->sc_sdhook);
1698 powerhook_disestablish(sc->sc_powerhook);
1699
1700 return (0);
1701 }
1702
1703 /*
1704 * Before reboots, reset card completely.
1705 */
1706 static void
1707 ex_shutdown(arg)
1708 void *arg;
1709 {
1710 struct ex_softc *sc = arg;
1711
1712 ex_stop(&sc->sc_ethercom.ec_if, 1);
1713 /*
1714 * Make sure the interface is powered up when we reboot,
1715 * otherwise firmware on some systems gets really confused.
1716 */
1717 (void) ex_enable(sc);
1718 }
1719
1720 /*
1721 * Read EEPROM data.
1722 * XXX what to do if EEPROM doesn't unbusy?
1723 */
1724 u_int16_t
1725 ex_read_eeprom(sc, offset)
1726 struct ex_softc *sc;
1727 int offset;
1728 {
1729 bus_space_tag_t iot = sc->sc_iot;
1730 bus_space_handle_t ioh = sc->sc_ioh;
1731 u_int16_t data = 0, cmd = READ_EEPROM;
1732 int off;
1733
1734 off = sc->ex_conf & EX_CONF_EEPROM_OFF ? 0x30 : 0;
1735 cmd = sc->ex_conf & EX_CONF_EEPROM_8BIT ? READ_EEPROM8 : READ_EEPROM;
1736
1737 GO_WINDOW(0);
1738 if (ex_eeprom_busy(sc))
1739 goto out;
1740 bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
1741 cmd | (off + (offset & 0x3f)));
1742 if (ex_eeprom_busy(sc))
1743 goto out;
1744 data = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
1745 out:
1746 return data;
1747 }
1748
1749 static int
1750 ex_eeprom_busy(sc)
1751 struct ex_softc *sc;
1752 {
1753 bus_space_tag_t iot = sc->sc_iot;
1754 bus_space_handle_t ioh = sc->sc_ioh;
1755 int i = 100;
1756
1757 while (i--) {
1758 if (!(bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND) &
1759 EEPROM_BUSY))
1760 return 0;
1761 delay(100);
1762 }
1763 printf("\n%s: eeprom stays busy.\n", sc->sc_dev.dv_xname);
1764 return (1);
1765 }
1766
1767 /*
1768 * Create a new rx buffer and add it to the 'soft' rx list.
1769 */
1770 static int
1771 ex_add_rxbuf(sc, rxd)
1772 struct ex_softc *sc;
1773 struct ex_rxdesc *rxd;
1774 {
1775 struct mbuf *m, *oldm;
1776 bus_dmamap_t rxmap;
1777 int error, rval = 0;
1778
1779 oldm = rxd->rx_mbhead;
1780 rxmap = rxd->rx_dmamap;
1781
1782 MGETHDR(m, M_DONTWAIT, MT_DATA);
1783 if (m != NULL) {
1784 MCLGET(m, M_DONTWAIT);
1785 if ((m->m_flags & M_EXT) == 0) {
1786 m_freem(m);
1787 if (oldm == NULL)
1788 return 1;
1789 m = oldm;
1790 MRESETDATA(m);
1791 rval = 1;
1792 }
1793 } else {
1794 if (oldm == NULL)
1795 return 1;
1796 m = oldm;
1797 MRESETDATA(m);
1798 rval = 1;
1799 }
1800
1801 /*
1802 * Setup the DMA map for this receive buffer.
1803 */
1804 if (m != oldm) {
1805 if (oldm != NULL)
1806 bus_dmamap_unload(sc->sc_dmat, rxmap);
1807 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1808 m->m_ext.ext_buf, MCLBYTES, NULL,
1809 BUS_DMA_READ|BUS_DMA_NOWAIT);
1810 if (error) {
1811 printf("%s: can't load rx buffer, error = %d\n",
1812 sc->sc_dev.dv_xname, error);
1813 panic("ex_add_rxbuf"); /* XXX */
1814 }
1815 }
1816
1817 /*
1818 * Align for data after 14 byte header.
1819 */
1820 m->m_data += 2;
1821
1822 rxd->rx_mbhead = m;
1823 rxd->rx_upd->upd_pktstatus = htole32(MCLBYTES - 2);
1824 rxd->rx_upd->upd_frags[0].fr_addr =
1825 htole32(rxmap->dm_segs[0].ds_addr + 2);
1826 rxd->rx_upd->upd_nextptr = 0;
1827
1828 /*
1829 * Attach it to the end of the list.
1830 */
1831 if (sc->rx_head != NULL) {
1832 sc->rx_tail->rx_next = rxd;
1833 sc->rx_tail->rx_upd->upd_nextptr = htole32(sc->sc_upddma +
1834 ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd));
1835 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1836 (caddr_t)sc->rx_tail->rx_upd - (caddr_t)sc->sc_upd,
1837 sizeof (struct ex_upd),
1838 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1839 } else {
1840 sc->rx_head = rxd;
1841 }
1842 sc->rx_tail = rxd;
1843
1844 bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
1845 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1846 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1847 ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd),
1848 sizeof (struct ex_upd), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1849 return (rval);
1850 }
1851
1852 u_int32_t
1853 ex_mii_bitbang_read(self)
1854 struct device *self;
1855 {
1856 struct ex_softc *sc = (void *) self;
1857
1858 /* We're already in Window 4. */
1859 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT));
1860 }
1861
1862 void
1863 ex_mii_bitbang_write(self, val)
1864 struct device *self;
1865 u_int32_t val;
1866 {
1867 struct ex_softc *sc = (void *) self;
1868
1869 /* We're already in Window 4. */
1870 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT, val);
1871 }
1872
1873 int
1874 ex_mii_readreg(v, phy, reg)
1875 struct device *v;
1876 int phy, reg;
1877 {
1878 struct ex_softc *sc = (struct ex_softc *)v;
1879 int val;
1880
1881 if ((sc->ex_conf & EX_CONF_INTPHY) && phy != ELINK_INTPHY_ID)
1882 return 0;
1883
1884 GO_WINDOW(4);
1885
1886 val = mii_bitbang_readreg(v, &ex_mii_bitbang_ops, phy, reg);
1887
1888 GO_WINDOW(1);
1889
1890 return (val);
1891 }
1892
1893 void
1894 ex_mii_writereg(v, phy, reg, data)
1895 struct device *v;
1896 int phy;
1897 int reg;
1898 int data;
1899 {
1900 struct ex_softc *sc = (struct ex_softc *)v;
1901
1902 GO_WINDOW(4);
1903
1904 mii_bitbang_writereg(v, &ex_mii_bitbang_ops, phy, reg, data);
1905
1906 GO_WINDOW(1);
1907 }
1908
1909 void
1910 ex_mii_statchg(v)
1911 struct device *v;
1912 {
1913 struct ex_softc *sc = (struct ex_softc *)v;
1914 bus_space_tag_t iot = sc->sc_iot;
1915 bus_space_handle_t ioh = sc->sc_ioh;
1916 int mctl;
1917
1918 GO_WINDOW(3);
1919 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1920 if (sc->ex_mii.mii_media_active & IFM_FDX)
1921 mctl |= MAC_CONTROL_FDX;
1922 else
1923 mctl &= ~MAC_CONTROL_FDX;
1924 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1925 GO_WINDOW(1); /* back to operating window */
1926 }
1927
1928 int
1929 ex_enable(sc)
1930 struct ex_softc *sc;
1931 {
1932 if (sc->enabled == 0 && sc->enable != NULL) {
1933 if ((*sc->enable)(sc) != 0) {
1934 printf("%s: de/vice enable failed\n",
1935 sc->sc_dev.dv_xname);
1936 return (EIO);
1937 }
1938 sc->enabled = 1;
1939 }
1940 return (0);
1941 }
1942
1943 void
1944 ex_disable(sc)
1945 struct ex_softc *sc;
1946 {
1947 if (sc->enabled == 1 && sc->disable != NULL) {
1948 (*sc->disable)(sc);
1949 sc->enabled = 0;
1950 }
1951 }
1952
1953 void
1954 ex_power(why, arg)
1955 int why;
1956 void *arg;
1957 {
1958 struct ex_softc *sc = (void *)arg;
1959 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1960 int s;
1961
1962 s = splnet();
1963 switch (why) {
1964 case PWR_SUSPEND:
1965 case PWR_STANDBY:
1966 ex_stop(ifp, 0);
1967 if (sc->power != NULL)
1968 (*sc->power)(sc, why);
1969 break;
1970 case PWR_RESUME:
1971 if (ifp->if_flags & IFF_UP) {
1972 if (sc->power != NULL)
1973 (*sc->power)(sc, why);
1974 ex_init(ifp);
1975 }
1976 break;
1977 case PWR_SOFTSUSPEND:
1978 case PWR_SOFTSTANDBY:
1979 case PWR_SOFTRESUME:
1980 break;
1981 }
1982 splx(s);
1983 }
1984