elinkxl.c revision 1.88.8.1 1 /* $NetBSD: elinkxl.c,v 1.88.8.1 2006/10/22 06:05:44 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: elinkxl.c,v 1.88.8.1 2006/10/22 06:05:44 yamt Exp $");
41
42 #include "bpfilter.h"
43 #include "rnd.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/kernel.h>
49 #include <sys/mbuf.h>
50 #include <sys/socket.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/syslog.h>
54 #include <sys/select.h>
55 #include <sys/device.h>
56 #if NRND > 0
57 #include <sys/rnd.h>
58 #endif
59
60 #include <uvm/uvm_extern.h>
61
62 #include <net/if.h>
63 #include <net/if_dl.h>
64 #include <net/if_ether.h>
65 #include <net/if_media.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #include <net/bpfdesc.h>
70 #endif
71
72 #include <machine/cpu.h>
73 #include <machine/bus.h>
74 #include <machine/intr.h>
75 #include <machine/endian.h>
76
77 #include <dev/mii/miivar.h>
78 #include <dev/mii/mii.h>
79 #include <dev/mii/mii_bitbang.h>
80
81 #include <dev/ic/elink3reg.h>
82 /* #include <dev/ic/elink3var.h> */
83 #include <dev/ic/elinkxlreg.h>
84 #include <dev/ic/elinkxlvar.h>
85
86 #ifdef DEBUG
87 int exdebug = 0;
88 #endif
89
90 /* ifmedia callbacks */
91 int ex_media_chg(struct ifnet *ifp);
92 void ex_media_stat(struct ifnet *ifp, struct ifmediareq *req);
93
94 void ex_probe_media(struct ex_softc *);
95 void ex_set_filter(struct ex_softc *);
96 void ex_set_media(struct ex_softc *);
97 void ex_set_xcvr(struct ex_softc *, u_int16_t);
98 struct mbuf *ex_get(struct ex_softc *, int);
99 u_int16_t ex_read_eeprom(struct ex_softc *, int);
100 int ex_init(struct ifnet *);
101 void ex_read(struct ex_softc *);
102 void ex_reset(struct ex_softc *);
103 void ex_set_mc(struct ex_softc *);
104 void ex_getstats(struct ex_softc *);
105 void ex_printstats(struct ex_softc *);
106 void ex_tick(void *);
107
108 void ex_power(int, void *);
109
110 static int ex_eeprom_busy(struct ex_softc *);
111 static int ex_add_rxbuf(struct ex_softc *, struct ex_rxdesc *);
112 static void ex_init_txdescs(struct ex_softc *);
113
114 static void ex_shutdown(void *);
115 static void ex_start(struct ifnet *);
116 static void ex_txstat(struct ex_softc *);
117
118 int ex_mii_readreg(struct device *, int, int);
119 void ex_mii_writereg(struct device *, int, int, int);
120 void ex_mii_statchg(struct device *);
121
122 void ex_probemedia(struct ex_softc *);
123
124 /*
125 * Structure to map media-present bits in boards to ifmedia codes and
126 * printable media names. Used for table-driven ifmedia initialization.
127 */
128 struct ex_media {
129 int exm_mpbit; /* media present bit */
130 const char *exm_name; /* name of medium */
131 int exm_ifmedia; /* ifmedia word for medium */
132 int exm_epmedia; /* ELINKMEDIA_* constant */
133 };
134
135 /*
136 * Media table for 3c90x chips. Note that chips with MII have no
137 * `native' media.
138 */
139 struct ex_media ex_native_media[] = {
140 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
141 ELINKMEDIA_10BASE_T },
142 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
143 ELINKMEDIA_10BASE_T },
144 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
145 ELINKMEDIA_AUI },
146 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
147 ELINKMEDIA_10BASE_2 },
148 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
149 ELINKMEDIA_100BASE_TX },
150 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
151 ELINKMEDIA_100BASE_TX },
152 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
153 ELINKMEDIA_100BASE_FX },
154 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
155 ELINKMEDIA_MII },
156 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
157 ELINKMEDIA_100BASE_T4 },
158 { 0, NULL, 0,
159 0 },
160 };
161
162 /*
163 * MII bit-bang glue.
164 */
165 u_int32_t ex_mii_bitbang_read(struct device *);
166 void ex_mii_bitbang_write(struct device *, u_int32_t);
167
168 const struct mii_bitbang_ops ex_mii_bitbang_ops = {
169 ex_mii_bitbang_read,
170 ex_mii_bitbang_write,
171 {
172 ELINK_PHY_DATA, /* MII_BIT_MDO */
173 ELINK_PHY_DATA, /* MII_BIT_MDI */
174 ELINK_PHY_CLK, /* MII_BIT_MDC */
175 ELINK_PHY_DIR, /* MII_BIT_DIR_HOST_PHY */
176 0, /* MII_BIT_DIR_PHY_HOST */
177 }
178 };
179
180 /*
181 * Back-end attach and configure.
182 */
183 void
184 ex_config(sc)
185 struct ex_softc *sc;
186 {
187 struct ifnet *ifp;
188 u_int16_t val;
189 u_int8_t macaddr[ETHER_ADDR_LEN] = {0};
190 bus_space_tag_t iot = sc->sc_iot;
191 bus_space_handle_t ioh = sc->sc_ioh;
192 int i, error, attach_stage;
193
194 callout_init(&sc->ex_mii_callout);
195
196 ex_reset(sc);
197
198 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR0);
199 macaddr[0] = val >> 8;
200 macaddr[1] = val & 0xff;
201 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR1);
202 macaddr[2] = val >> 8;
203 macaddr[3] = val & 0xff;
204 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR2);
205 macaddr[4] = val >> 8;
206 macaddr[5] = val & 0xff;
207
208 aprint_normal("%s: MAC address %s\n", sc->sc_dev.dv_xname,
209 ether_sprintf(macaddr));
210
211 if (sc->ex_conf & (EX_CONF_INV_LED_POLARITY|EX_CONF_PHY_POWER)) {
212 GO_WINDOW(2);
213 val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
214 if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
215 val |= ELINK_RESET_OPT_LEDPOLAR;
216 if (sc->ex_conf & EX_CONF_PHY_POWER)
217 val |= ELINK_RESET_OPT_PHYPOWER;
218 bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
219 }
220 if (sc->ex_conf & EX_CONF_NO_XCVR_PWR) {
221 GO_WINDOW(0);
222 bus_space_write_2(iot, ioh, ELINK_W0_MFG_ID,
223 EX_XCVR_PWR_MAGICBITS);
224 }
225
226 attach_stage = 0;
227
228 /*
229 * Allocate the upload descriptors, and create and load the DMA
230 * map for them.
231 */
232 if ((error = bus_dmamem_alloc(sc->sc_dmat,
233 EX_NUPD * sizeof (struct ex_upd), PAGE_SIZE, 0, &sc->sc_useg, 1,
234 &sc->sc_urseg, BUS_DMA_NOWAIT)) != 0) {
235 aprint_error(
236 "%s: can't allocate upload descriptors, error = %d\n",
237 sc->sc_dev.dv_xname, error);
238 goto fail;
239 }
240
241 attach_stage = 1;
242
243 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg,
244 EX_NUPD * sizeof (struct ex_upd), (caddr_t *)&sc->sc_upd,
245 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
246 aprint_error("%s: can't map upload descriptors, error = %d\n",
247 sc->sc_dev.dv_xname, error);
248 goto fail;
249 }
250
251 attach_stage = 2;
252
253 if ((error = bus_dmamap_create(sc->sc_dmat,
254 EX_NUPD * sizeof (struct ex_upd), 1,
255 EX_NUPD * sizeof (struct ex_upd), 0, BUS_DMA_NOWAIT,
256 &sc->sc_upd_dmamap)) != 0) {
257 aprint_error(
258 "%s: can't create upload desc. DMA map, error = %d\n",
259 sc->sc_dev.dv_xname, error);
260 goto fail;
261 }
262
263 attach_stage = 3;
264
265 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_upd_dmamap,
266 sc->sc_upd, EX_NUPD * sizeof (struct ex_upd), NULL,
267 BUS_DMA_NOWAIT)) != 0) {
268 aprint_error(
269 "%s: can't load upload desc. DMA map, error = %d\n",
270 sc->sc_dev.dv_xname, error);
271 goto fail;
272 }
273
274 attach_stage = 4;
275
276 /*
277 * Allocate the download descriptors, and create and load the DMA
278 * map for them.
279 */
280 if ((error = bus_dmamem_alloc(sc->sc_dmat,
281 EX_NDPD * sizeof (struct ex_dpd), PAGE_SIZE, 0, &sc->sc_dseg, 1,
282 &sc->sc_drseg, BUS_DMA_NOWAIT)) != 0) {
283 aprint_error(
284 "%s: can't allocate download descriptors, error = %d\n",
285 sc->sc_dev.dv_xname, error);
286 goto fail;
287 }
288
289 attach_stage = 5;
290
291 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg,
292 EX_NDPD * sizeof (struct ex_dpd), (caddr_t *)&sc->sc_dpd,
293 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
294 aprint_error("%s: can't map download descriptors, error = %d\n",
295 sc->sc_dev.dv_xname, error);
296 goto fail;
297 }
298 memset(sc->sc_dpd, 0, EX_NDPD * sizeof (struct ex_dpd));
299
300 attach_stage = 6;
301
302 if ((error = bus_dmamap_create(sc->sc_dmat,
303 EX_NDPD * sizeof (struct ex_dpd), 1,
304 EX_NDPD * sizeof (struct ex_dpd), 0, BUS_DMA_NOWAIT,
305 &sc->sc_dpd_dmamap)) != 0) {
306 aprint_error(
307 "%s: can't create download desc. DMA map, error = %d\n",
308 sc->sc_dev.dv_xname, error);
309 goto fail;
310 }
311
312 attach_stage = 7;
313
314 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dpd_dmamap,
315 sc->sc_dpd, EX_NDPD * sizeof (struct ex_dpd), NULL,
316 BUS_DMA_NOWAIT)) != 0) {
317 aprint_error(
318 "%s: can't load download desc. DMA map, error = %d\n",
319 sc->sc_dev.dv_xname, error);
320 goto fail;
321 }
322
323 attach_stage = 8;
324
325
326 /*
327 * Create the transmit buffer DMA maps.
328 */
329 for (i = 0; i < EX_NDPD; i++) {
330 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
331 EX_NTFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
332 &sc->sc_tx_dmamaps[i])) != 0) {
333 aprint_error(
334 "%s: can't create tx DMA map %d, error = %d\n",
335 sc->sc_dev.dv_xname, i, error);
336 goto fail;
337 }
338 }
339
340 attach_stage = 9;
341
342 /*
343 * Create the receive buffer DMA maps.
344 */
345 for (i = 0; i < EX_NUPD; i++) {
346 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
347 EX_NRFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
348 &sc->sc_rx_dmamaps[i])) != 0) {
349 aprint_error(
350 "%s: can't create rx DMA map %d, error = %d\n",
351 sc->sc_dev.dv_xname, i, error);
352 goto fail;
353 }
354 }
355
356 attach_stage = 10;
357
358 /*
359 * Create ring of upload descriptors, only once. The DMA engine
360 * will loop over this when receiving packets, stalling if it
361 * hits an UPD with a finished receive.
362 */
363 for (i = 0; i < EX_NUPD; i++) {
364 sc->sc_rxdescs[i].rx_dmamap = sc->sc_rx_dmamaps[i];
365 sc->sc_rxdescs[i].rx_upd = &sc->sc_upd[i];
366 sc->sc_upd[i].upd_frags[0].fr_len =
367 htole32((MCLBYTES - 2) | EX_FR_LAST);
368 if (ex_add_rxbuf(sc, &sc->sc_rxdescs[i]) != 0) {
369 aprint_error("%s: can't allocate or map rx buffers\n",
370 sc->sc_dev.dv_xname);
371 goto fail;
372 }
373 }
374
375 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap, 0,
376 EX_NUPD * sizeof (struct ex_upd),
377 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
378
379 ex_init_txdescs(sc);
380
381 attach_stage = 11;
382
383
384 GO_WINDOW(3);
385 val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
386 if (val & ELINK_MEDIACAP_MII)
387 sc->ex_conf |= EX_CONF_MII;
388
389 ifp = &sc->sc_ethercom.ec_if;
390
391 /*
392 * Initialize our media structures and MII info. We'll
393 * probe the MII if we discover that we have one.
394 */
395 sc->ex_mii.mii_ifp = ifp;
396 sc->ex_mii.mii_readreg = ex_mii_readreg;
397 sc->ex_mii.mii_writereg = ex_mii_writereg;
398 sc->ex_mii.mii_statchg = ex_mii_statchg;
399 ifmedia_init(&sc->ex_mii.mii_media, IFM_IMASK, ex_media_chg,
400 ex_media_stat);
401
402 if (sc->ex_conf & EX_CONF_MII) {
403 /*
404 * Find PHY, extract media information from it.
405 * First, select the right transceiver.
406 */
407 ex_set_xcvr(sc, val);
408
409 mii_attach(&sc->sc_dev, &sc->ex_mii, 0xffffffff,
410 MII_PHY_ANY, MII_OFFSET_ANY, 0);
411 if (LIST_FIRST(&sc->ex_mii.mii_phys) == NULL) {
412 ifmedia_add(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE,
413 0, NULL);
414 ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE);
415 } else {
416 ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_AUTO);
417 }
418 } else
419 ex_probemedia(sc);
420
421 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
422 ifp->if_softc = sc;
423 ifp->if_start = ex_start;
424 ifp->if_ioctl = ex_ioctl;
425 ifp->if_watchdog = ex_watchdog;
426 ifp->if_init = ex_init;
427 ifp->if_stop = ex_stop;
428 ifp->if_flags =
429 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
430 sc->sc_if_flags = ifp->if_flags;
431 IFQ_SET_READY(&ifp->if_snd);
432
433 /*
434 * We can support 802.1Q VLAN-sized frames.
435 */
436 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
437
438 /*
439 * The 3c90xB has hardware IPv4/TCPv4/UDPv4 checksum support.
440 */
441 if (sc->ex_conf & EX_CONF_90XB)
442 sc->sc_ethercom.ec_if.if_capabilities |=
443 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
444 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
445 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
446
447 if_attach(ifp);
448 ether_ifattach(ifp, macaddr);
449
450 GO_WINDOW(1);
451
452 sc->tx_start_thresh = 20;
453 sc->tx_succ_ok = 0;
454
455 /* TODO: set queues to 0 */
456
457 #if NRND > 0
458 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
459 RND_TYPE_NET, 0);
460 #endif
461
462 /* Establish callback to reset card when we reboot. */
463 sc->sc_sdhook = shutdownhook_establish(ex_shutdown, sc);
464 if (sc->sc_sdhook == NULL)
465 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
466 sc->sc_dev.dv_xname);
467
468 /* Add a suspend hook to make sure we come back up after a resume. */
469 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
470 ex_power, sc);
471 if (sc->sc_powerhook == NULL)
472 aprint_error("%s: WARNING: unable to establish power hook\n",
473 sc->sc_dev.dv_xname);
474
475 /* The attach is successful. */
476 sc->ex_flags |= EX_FLAGS_ATTACHED;
477 return;
478
479 fail:
480 /*
481 * Free any resources we've allocated during the failed attach
482 * attempt. Do this in reverse order and fall though.
483 */
484 switch (attach_stage) {
485 case 11:
486 {
487 struct ex_rxdesc *rxd;
488
489 for (i = 0; i < EX_NUPD; i++) {
490 rxd = &sc->sc_rxdescs[i];
491 if (rxd->rx_mbhead != NULL) {
492 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
493 m_freem(rxd->rx_mbhead);
494 }
495 }
496 }
497 /* FALLTHROUGH */
498
499 case 10:
500 for (i = 0; i < EX_NUPD; i++)
501 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
502 /* FALLTHROUGH */
503
504 case 9:
505 for (i = 0; i < EX_NDPD; i++)
506 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
507 /* FALLTHROUGH */
508 case 8:
509 bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
510 /* FALLTHROUGH */
511
512 case 7:
513 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
514 /* FALLTHROUGH */
515
516 case 6:
517 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
518 EX_NDPD * sizeof (struct ex_dpd));
519 /* FALLTHROUGH */
520
521 case 5:
522 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
523 break;
524
525 case 4:
526 bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
527 /* FALLTHROUGH */
528
529 case 3:
530 bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
531 /* FALLTHROUGH */
532
533 case 2:
534 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
535 EX_NUPD * sizeof (struct ex_upd));
536 /* FALLTHROUGH */
537
538 case 1:
539 bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
540 break;
541 }
542
543 }
544
545 /*
546 * Find the media present on non-MII chips.
547 */
548 void
549 ex_probemedia(sc)
550 struct ex_softc *sc;
551 {
552 bus_space_tag_t iot = sc->sc_iot;
553 bus_space_handle_t ioh = sc->sc_ioh;
554 struct ifmedia *ifm = &sc->ex_mii.mii_media;
555 struct ex_media *exm;
556 u_int16_t config1, reset_options, default_media;
557 int defmedia = 0;
558 const char *sep = "", *defmedianame = NULL;
559
560 GO_WINDOW(3);
561 config1 = bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
562 reset_options = bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
563 GO_WINDOW(0);
564
565 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
566
567 aprint_normal("%s: ", sc->sc_dev.dv_xname);
568
569 /* Sanity check that there are any media! */
570 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
571 aprint_error("no media present!\n");
572 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
573 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
574 return;
575 }
576
577 #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", "
578
579 for (exm = ex_native_media; exm->exm_name != NULL; exm++) {
580 if (reset_options & exm->exm_mpbit) {
581 /*
582 * Default media is a little complicated. We
583 * support full-duplex which uses the same
584 * reset options bit.
585 *
586 * XXX Check EEPROM for default to FDX?
587 */
588 if (exm->exm_epmedia == default_media) {
589 if ((exm->exm_ifmedia & IFM_FDX) == 0) {
590 defmedia = exm->exm_ifmedia;
591 defmedianame = exm->exm_name;
592 }
593 } else if (defmedia == 0) {
594 defmedia = exm->exm_ifmedia;
595 defmedianame = exm->exm_name;
596 }
597 ifmedia_add(ifm, exm->exm_ifmedia, exm->exm_epmedia,
598 NULL);
599 PRINT(exm->exm_name);
600 }
601 }
602
603 #undef PRINT
604
605 #ifdef DIAGNOSTIC
606 if (defmedia == 0)
607 panic("ex_probemedia: impossible");
608 #endif
609
610 aprint_normal(", default %s\n", defmedianame);
611 ifmedia_set(ifm, defmedia);
612 }
613
614 /*
615 * Bring device up.
616 */
617 int
618 ex_init(ifp)
619 struct ifnet *ifp;
620 {
621 struct ex_softc *sc = ifp->if_softc;
622 bus_space_tag_t iot = sc->sc_iot;
623 bus_space_handle_t ioh = sc->sc_ioh;
624 int i;
625 int error = 0;
626
627 if ((error = ex_enable(sc)) != 0)
628 goto out;
629
630 ex_waitcmd(sc);
631 ex_stop(ifp, 0);
632
633 /*
634 * Set the station address and clear the station mask. The latter
635 * is needed for 90x cards, 0 is the default for 90xB cards.
636 */
637 GO_WINDOW(2);
638 for (i = 0; i < ETHER_ADDR_LEN; i++) {
639 bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
640 LLADDR(ifp->if_sadl)[i]);
641 bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
642 }
643
644 GO_WINDOW(3);
645
646 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_RESET);
647 ex_waitcmd(sc);
648 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
649 ex_waitcmd(sc);
650
651 /*
652 * Disable reclaim threshold for 90xB, set free threshold to
653 * 6 * 256 = 1536 for 90x.
654 */
655 if (sc->ex_conf & EX_CONF_90XB)
656 bus_space_write_2(iot, ioh, ELINK_COMMAND,
657 ELINK_TXRECLTHRESH | 255);
658 else
659 bus_space_write_1(iot, ioh, ELINK_TXFREETHRESH, 6);
660
661 bus_space_write_2(iot, ioh, ELINK_COMMAND,
662 SET_RX_EARLY_THRESH | ELINK_THRESH_DISABLE);
663
664 bus_space_write_4(iot, ioh, ELINK_DMACTRL,
665 bus_space_read_4(iot, ioh, ELINK_DMACTRL) | ELINK_DMAC_UPRXEAREN);
666
667 bus_space_write_2(iot, ioh, ELINK_COMMAND,
668 SET_RD_0_MASK | XL_WATCHED_INTERRUPTS);
669 bus_space_write_2(iot, ioh, ELINK_COMMAND,
670 SET_INTR_MASK | XL_WATCHED_INTERRUPTS);
671
672 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
673 if (sc->intr_ack)
674 (* sc->intr_ack)(sc);
675 ex_set_media(sc);
676 ex_set_mc(sc);
677
678
679 bus_space_write_2(iot, ioh, ELINK_COMMAND, STATS_ENABLE);
680 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
681 bus_space_write_4(iot, ioh, ELINK_UPLISTPTR, sc->sc_upddma);
682 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
683 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_UPUNSTALL);
684
685 if (sc->ex_conf & (EX_CONF_PHY_POWER | EX_CONF_INV_LED_POLARITY)) {
686 u_int16_t cbcard_config;
687
688 GO_WINDOW(2);
689 cbcard_config = bus_space_read_2(sc->sc_iot, sc->sc_ioh, 0x0c);
690 if (sc->ex_conf & EX_CONF_PHY_POWER) {
691 cbcard_config |= 0x4000; /* turn on PHY power */
692 }
693 if (sc->ex_conf & EX_CONF_INV_LED_POLARITY) {
694 cbcard_config |= 0x0010; /* invert LED polarity */
695 }
696 bus_space_write_2(sc->sc_iot, sc->sc_ioh, 0x0c, cbcard_config);
697
698 GO_WINDOW(3);
699 }
700
701 ifp->if_flags |= IFF_RUNNING;
702 ifp->if_flags &= ~IFF_OACTIVE;
703 ex_start(ifp);
704 sc->sc_if_flags = ifp->if_flags;
705
706 GO_WINDOW(1);
707
708 callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
709
710 out:
711 if (error) {
712 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
713 ifp->if_timer = 0;
714 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
715 }
716 return (error);
717 }
718
719 #define MCHASHSIZE 256
720 #define ex_mchash(addr) (ether_crc32_be((addr), ETHER_ADDR_LEN) & \
721 (MCHASHSIZE - 1))
722
723 /*
724 * Set multicast receive filter. Also take care of promiscuous mode
725 * here (XXX).
726 */
727 void
728 ex_set_mc(sc)
729 struct ex_softc *sc;
730 {
731 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
732 struct ethercom *ec = &sc->sc_ethercom;
733 struct ether_multi *enm;
734 struct ether_multistep estep;
735 int i;
736 u_int16_t mask = FIL_INDIVIDUAL | FIL_BRDCST;
737
738 if (ifp->if_flags & IFF_PROMISC) {
739 mask |= FIL_PROMISC;
740 goto allmulti;
741 }
742
743 ETHER_FIRST_MULTI(estep, ec, enm);
744 if (enm == NULL)
745 goto nomulti;
746
747 if ((sc->ex_conf & EX_CONF_90XB) == 0)
748 /* No multicast hash filtering. */
749 goto allmulti;
750
751 for (i = 0; i < MCHASHSIZE; i++)
752 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
753 ELINK_COMMAND, ELINK_CLEARHASHFILBIT | i);
754
755 do {
756 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
757 ETHER_ADDR_LEN) != 0)
758 goto allmulti;
759
760 i = ex_mchash(enm->enm_addrlo);
761 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
762 ELINK_COMMAND, ELINK_SETHASHFILBIT | i);
763 ETHER_NEXT_MULTI(estep, enm);
764 } while (enm != NULL);
765 mask |= FIL_MULTIHASH;
766
767 nomulti:
768 ifp->if_flags &= ~IFF_ALLMULTI;
769 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
770 SET_RX_FILTER | mask);
771 return;
772
773 allmulti:
774 ifp->if_flags |= IFF_ALLMULTI;
775 mask |= FIL_MULTICAST;
776 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
777 SET_RX_FILTER | mask);
778 }
779
780
781 static void
782 ex_txstat(sc)
783 struct ex_softc *sc;
784 {
785 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
786 bus_space_tag_t iot = sc->sc_iot;
787 bus_space_handle_t ioh = sc->sc_ioh;
788 int i;
789
790 /*
791 * We need to read+write TX_STATUS until we get a 0 status
792 * in order to turn off the interrupt flag.
793 * ELINK_TXSTATUS is in the upper byte of 2 with ELINK_TIMER
794 * XXX: Big Endian? Can we assume that TXSTATUS will be the
795 * upper byte?
796 */
797 while ((i = bus_space_read_2(iot, ioh, ELINK_TIMER)) & TXS_COMPLETE) {
798 bus_space_write_2(iot, ioh, ELINK_TIMER, 0x0);
799
800 if (i & TXS_JABBER) {
801 ++sc->sc_ethercom.ec_if.if_oerrors;
802 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
803 printf("%s: jabber (%x)\n",
804 sc->sc_dev.dv_xname, i);
805 ex_init(ifp);
806 /* TODO: be more subtle here */
807 } else if (i & TXS_UNDERRUN) {
808 ++sc->sc_ethercom.ec_if.if_oerrors;
809 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
810 printf("%s: fifo underrun (%x) @%d\n",
811 sc->sc_dev.dv_xname, i,
812 sc->tx_start_thresh);
813 if (sc->tx_succ_ok < 100)
814 sc->tx_start_thresh = min(ETHER_MAX_LEN,
815 sc->tx_start_thresh + 20);
816 sc->tx_succ_ok = 0;
817 ex_init(ifp);
818 /* TODO: be more subtle here */
819 } else if (i & TXS_MAX_COLLISION) {
820 ++sc->sc_ethercom.ec_if.if_oerrors;
821 ++sc->sc_ethercom.ec_if.if_collisions;
822 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
823 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
824 } else if (sc->tx_succ_ok < 100)
825 sc->tx_succ_ok++;
826 }
827 }
828
829 int
830 ex_media_chg(ifp)
831 struct ifnet *ifp;
832 {
833
834 if (ifp->if_flags & IFF_UP)
835 ex_init(ifp);
836 return 0;
837 }
838
839 void
840 ex_set_xcvr(sc, media)
841 struct ex_softc *sc;
842 const u_int16_t media;
843 {
844 bus_space_tag_t iot = sc->sc_iot;
845 bus_space_handle_t ioh = sc->sc_ioh;
846 u_int32_t icfg;
847
848 /*
849 * We're already in Window 3
850 */
851 icfg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
852 icfg &= ~(CONFIG_XCVR_SEL << 16);
853 if (media & (ELINK_MEDIACAP_MII | ELINK_MEDIACAP_100BASET4))
854 icfg |= ELINKMEDIA_MII << (CONFIG_XCVR_SEL_SHIFT + 16);
855 if (media & ELINK_MEDIACAP_100BASETX)
856 icfg |= ELINKMEDIA_AUTO << (CONFIG_XCVR_SEL_SHIFT + 16);
857 if (media & ELINK_MEDIACAP_100BASEFX)
858 icfg |= ELINKMEDIA_100BASE_FX
859 << (CONFIG_XCVR_SEL_SHIFT + 16);
860 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, icfg);
861 }
862
863 void
864 ex_set_media(sc)
865 struct ex_softc *sc;
866 {
867 bus_space_tag_t iot = sc->sc_iot;
868 bus_space_handle_t ioh = sc->sc_ioh;
869 u_int32_t configreg;
870
871 if (((sc->ex_conf & EX_CONF_MII) &&
872 (sc->ex_mii.mii_media_active & IFM_FDX))
873 || (!(sc->ex_conf & EX_CONF_MII) &&
874 (sc->ex_mii.mii_media.ifm_media & IFM_FDX))) {
875 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL,
876 MAC_CONTROL_FDX);
877 } else {
878 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, 0);
879 }
880
881 /*
882 * If the device has MII, select it, and then tell the
883 * PHY which media to use.
884 */
885 if (sc->ex_conf & EX_CONF_MII) {
886 u_int16_t val;
887
888 GO_WINDOW(3);
889 val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
890 ex_set_xcvr(sc, val);
891 mii_mediachg(&sc->ex_mii);
892 return;
893 }
894
895 GO_WINDOW(4);
896 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0);
897 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
898 delay(800);
899
900 /*
901 * Now turn on the selected media/transceiver.
902 */
903 switch (IFM_SUBTYPE(sc->ex_mii.mii_media.ifm_cur->ifm_media)) {
904 case IFM_10_T:
905 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
906 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
907 break;
908
909 case IFM_10_2:
910 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
911 DELAY(800);
912 break;
913
914 case IFM_100_TX:
915 case IFM_100_FX:
916 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
917 LINKBEAT_ENABLE);
918 DELAY(800);
919 break;
920
921 case IFM_10_5:
922 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
923 SQE_ENABLE);
924 DELAY(800);
925 break;
926
927 case IFM_MANUAL:
928 break;
929
930 case IFM_NONE:
931 return;
932
933 default:
934 panic("ex_set_media: impossible");
935 }
936
937 GO_WINDOW(3);
938 configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
939
940 configreg &= ~(CONFIG_MEDIAMASK << 16);
941 configreg |= (sc->ex_mii.mii_media.ifm_cur->ifm_data <<
942 (CONFIG_MEDIAMASK_SHIFT + 16));
943
944 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
945 }
946
947 /*
948 * Get currently-selected media from card.
949 * (if_media callback, may be called before interface is brought up).
950 */
951 void
952 ex_media_stat(ifp, req)
953 struct ifnet *ifp;
954 struct ifmediareq *req;
955 {
956 struct ex_softc *sc = ifp->if_softc;
957 u_int16_t help;
958
959 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING)) {
960 if (sc->ex_conf & EX_CONF_MII) {
961 mii_pollstat(&sc->ex_mii);
962 req->ifm_status = sc->ex_mii.mii_media_status;
963 req->ifm_active = sc->ex_mii.mii_media_active;
964 } else {
965 GO_WINDOW(4);
966 req->ifm_status = IFM_AVALID;
967 req->ifm_active =
968 sc->ex_mii.mii_media.ifm_cur->ifm_media;
969 help = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
970 ELINK_W4_MEDIA_TYPE);
971 if (help & LINKBEAT_DETECT)
972 req->ifm_status |= IFM_ACTIVE;
973 GO_WINDOW(1);
974 }
975 }
976 }
977
978
979
980 /*
981 * Start outputting on the interface.
982 */
983 static void
984 ex_start(ifp)
985 struct ifnet *ifp;
986 {
987 struct ex_softc *sc = ifp->if_softc;
988 bus_space_tag_t iot = sc->sc_iot;
989 bus_space_handle_t ioh = sc->sc_ioh;
990 volatile struct ex_fraghdr *fr = NULL;
991 volatile struct ex_dpd *dpd = NULL, *prevdpd = NULL;
992 struct ex_txdesc *txp;
993 struct mbuf *mb_head;
994 bus_dmamap_t dmamap;
995 int offset, totlen, segment, error;
996 u_int32_t csum_flags;
997
998 if (sc->tx_head || sc->tx_free == NULL)
999 return;
1000
1001 txp = NULL;
1002
1003 /*
1004 * We're finished if there is nothing more to add to the list or if
1005 * we're all filled up with buffers to transmit.
1006 */
1007 while (sc->tx_free != NULL) {
1008 /*
1009 * Grab a packet to transmit.
1010 */
1011 IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1012 if (mb_head == NULL)
1013 break;
1014
1015 /*
1016 * Get pointer to next available tx desc.
1017 */
1018 txp = sc->tx_free;
1019 dmamap = txp->tx_dmamap;
1020
1021 /*
1022 * Go through each of the mbufs in the chain and initialize
1023 * the transmit buffer descriptors with the physical address
1024 * and size of the mbuf.
1025 */
1026 reload:
1027 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1028 mb_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1029 switch (error) {
1030 case 0:
1031 /* Success. */
1032 break;
1033
1034 case EFBIG:
1035 {
1036 struct mbuf *mn;
1037
1038 /*
1039 * We ran out of segments. We have to recopy this
1040 * mbuf chain first. Bail out if we can't get the
1041 * new buffers.
1042 */
1043 printf("%s: too many segments, ", sc->sc_dev.dv_xname);
1044
1045 MGETHDR(mn, M_DONTWAIT, MT_DATA);
1046 if (mn == NULL) {
1047 m_freem(mb_head);
1048 printf("aborting\n");
1049 goto out;
1050 }
1051 if (mb_head->m_pkthdr.len > MHLEN) {
1052 MCLGET(mn, M_DONTWAIT);
1053 if ((mn->m_flags & M_EXT) == 0) {
1054 m_freem(mn);
1055 m_freem(mb_head);
1056 printf("aborting\n");
1057 goto out;
1058 }
1059 }
1060 m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1061 mtod(mn, caddr_t));
1062 mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1063 m_freem(mb_head);
1064 mb_head = mn;
1065 printf("retrying\n");
1066 goto reload;
1067 }
1068
1069 default:
1070 /*
1071 * Some other problem; report it.
1072 */
1073 printf("%s: can't load mbuf chain, error = %d\n",
1074 sc->sc_dev.dv_xname, error);
1075 m_freem(mb_head);
1076 goto out;
1077 }
1078
1079 /*
1080 * remove our tx desc from freelist.
1081 */
1082 sc->tx_free = txp->tx_next;
1083 txp->tx_next = NULL;
1084
1085 fr = &txp->tx_dpd->dpd_frags[0];
1086 totlen = 0;
1087 for (segment = 0; segment < dmamap->dm_nsegs; segment++, fr++) {
1088 fr->fr_addr = htole32(dmamap->dm_segs[segment].ds_addr);
1089 fr->fr_len = htole32(dmamap->dm_segs[segment].ds_len);
1090 totlen += dmamap->dm_segs[segment].ds_len;
1091 }
1092 fr--;
1093 fr->fr_len |= htole32(EX_FR_LAST);
1094 txp->tx_mbhead = mb_head;
1095
1096 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1097 BUS_DMASYNC_PREWRITE);
1098
1099 dpd = txp->tx_dpd;
1100 dpd->dpd_nextptr = 0;
1101 dpd->dpd_fsh = htole32(totlen);
1102
1103 /* Byte-swap constants so compiler can optimize. */
1104
1105 if (sc->ex_conf & EX_CONF_90XB) {
1106 csum_flags = 0;
1107
1108 if (mb_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1109 csum_flags |= htole32(EX_DPD_IPCKSUM);
1110
1111 if (mb_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1112 csum_flags |= htole32(EX_DPD_TCPCKSUM);
1113 else if (mb_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1114 csum_flags |= htole32(EX_DPD_UDPCKSUM);
1115
1116 dpd->dpd_fsh |= csum_flags;
1117 } else {
1118 KDASSERT((mb_head->m_pkthdr.csum_flags &
1119 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) == 0);
1120 }
1121
1122 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1123 ((const char *)(intptr_t)dpd - (const char *)sc->sc_dpd),
1124 sizeof (struct ex_dpd),
1125 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1126
1127 /*
1128 * No need to stall the download engine, we know it's
1129 * not busy right now.
1130 *
1131 * Fix up pointers in both the "soft" tx and the physical
1132 * tx list.
1133 */
1134 if (sc->tx_head != NULL) {
1135 prevdpd = sc->tx_tail->tx_dpd;
1136 offset = ((const char *)(intptr_t)prevdpd - (const char *)sc->sc_dpd);
1137 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1138 offset, sizeof (struct ex_dpd),
1139 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1140 prevdpd->dpd_nextptr = htole32(DPD_DMADDR(sc, txp));
1141 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1142 offset, sizeof (struct ex_dpd),
1143 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1144 sc->tx_tail->tx_next = txp;
1145 sc->tx_tail = txp;
1146 } else {
1147 sc->tx_tail = sc->tx_head = txp;
1148 }
1149
1150 #if NBPFILTER > 0
1151 /*
1152 * Pass packet to bpf if there is a listener.
1153 */
1154 if (ifp->if_bpf)
1155 bpf_mtap(ifp->if_bpf, mb_head);
1156 #endif
1157 }
1158 out:
1159 if (sc->tx_head) {
1160 sc->tx_tail->tx_dpd->dpd_fsh |= htole32(EX_DPD_DNIND);
1161 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1162 ((caddr_t)sc->tx_tail->tx_dpd - (caddr_t)sc->sc_dpd),
1163 sizeof (struct ex_dpd),
1164 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1165 ifp->if_flags |= IFF_OACTIVE;
1166 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNUNSTALL);
1167 bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
1168 DPD_DMADDR(sc, sc->tx_head));
1169
1170 /* trigger watchdog */
1171 ifp->if_timer = 5;
1172 }
1173 }
1174
1175
1176 int
1177 ex_intr(arg)
1178 void *arg;
1179 {
1180 struct ex_softc *sc = arg;
1181 bus_space_tag_t iot = sc->sc_iot;
1182 bus_space_handle_t ioh = sc->sc_ioh;
1183 u_int16_t stat;
1184 int ret = 0;
1185 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1186
1187 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1188 !device_is_active(&sc->sc_dev))
1189 return (0);
1190
1191 for (;;) {
1192 stat = bus_space_read_2(iot, ioh, ELINK_STATUS);
1193
1194 if ((stat & XL_WATCHED_INTERRUPTS) == 0) {
1195 if ((stat & INTR_LATCH) == 0) {
1196 #if 0
1197 printf("%s: intr latch cleared\n",
1198 sc->sc_dev.dv_xname);
1199 #endif
1200 break;
1201 }
1202 }
1203
1204 ret = 1;
1205
1206 /*
1207 * Acknowledge interrupts.
1208 */
1209 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1210 (stat & (XL_WATCHED_INTERRUPTS | INTR_LATCH)));
1211 if (sc->intr_ack)
1212 (*sc->intr_ack)(sc);
1213
1214 if (stat & HOST_ERROR) {
1215 printf("%s: adapter failure (%x)\n",
1216 sc->sc_dev.dv_xname, stat);
1217 ex_reset(sc);
1218 ex_init(ifp);
1219 return 1;
1220 }
1221 if (stat & TX_COMPLETE) {
1222 ex_txstat(sc);
1223 }
1224 if (stat & UPD_STATS) {
1225 ex_getstats(sc);
1226 }
1227 if (stat & DN_COMPLETE) {
1228 struct ex_txdesc *txp, *ptxp = NULL;
1229 bus_dmamap_t txmap;
1230
1231 /* reset watchdog timer, was set in ex_start() */
1232 ifp->if_timer = 0;
1233
1234 for (txp = sc->tx_head; txp != NULL;
1235 txp = txp->tx_next) {
1236 bus_dmamap_sync(sc->sc_dmat,
1237 sc->sc_dpd_dmamap,
1238 (caddr_t)txp->tx_dpd - (caddr_t)sc->sc_dpd,
1239 sizeof (struct ex_dpd),
1240 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1241 if (txp->tx_mbhead != NULL) {
1242 txmap = txp->tx_dmamap;
1243 bus_dmamap_sync(sc->sc_dmat, txmap,
1244 0, txmap->dm_mapsize,
1245 BUS_DMASYNC_POSTWRITE);
1246 bus_dmamap_unload(sc->sc_dmat, txmap);
1247 m_freem(txp->tx_mbhead);
1248 txp->tx_mbhead = NULL;
1249 }
1250 ptxp = txp;
1251 }
1252
1253 /*
1254 * Move finished tx buffers back to the tx free list.
1255 */
1256 if (sc->tx_free) {
1257 sc->tx_ftail->tx_next = sc->tx_head;
1258 sc->tx_ftail = ptxp;
1259 } else
1260 sc->tx_ftail = sc->tx_free = sc->tx_head;
1261
1262 sc->tx_head = sc->tx_tail = NULL;
1263 ifp->if_flags &= ~IFF_OACTIVE;
1264 }
1265
1266 if (stat & UP_COMPLETE) {
1267 struct ex_rxdesc *rxd;
1268 struct mbuf *m;
1269 struct ex_upd *upd;
1270 bus_dmamap_t rxmap;
1271 u_int32_t pktstat;
1272
1273 rcvloop:
1274 rxd = sc->rx_head;
1275 rxmap = rxd->rx_dmamap;
1276 m = rxd->rx_mbhead;
1277 upd = rxd->rx_upd;
1278
1279 bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
1280 rxmap->dm_mapsize,
1281 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1282 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1283 ((caddr_t)upd - (caddr_t)sc->sc_upd),
1284 sizeof (struct ex_upd),
1285 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1286 pktstat = le32toh(upd->upd_pktstatus);
1287
1288 if (pktstat & EX_UPD_COMPLETE) {
1289 /*
1290 * Remove first packet from the chain.
1291 */
1292 sc->rx_head = rxd->rx_next;
1293 rxd->rx_next = NULL;
1294
1295 /*
1296 * Add a new buffer to the receive chain.
1297 * If this fails, the old buffer is recycled
1298 * instead.
1299 */
1300 if (ex_add_rxbuf(sc, rxd) == 0) {
1301 u_int16_t total_len;
1302
1303 if (pktstat &
1304 ((sc->sc_ethercom.ec_capenable &
1305 ETHERCAP_VLAN_MTU) ?
1306 EX_UPD_ERR_VLAN : EX_UPD_ERR)) {
1307 ifp->if_ierrors++;
1308 m_freem(m);
1309 goto rcvloop;
1310 }
1311
1312 total_len = pktstat & EX_UPD_PKTLENMASK;
1313 if (total_len <
1314 sizeof(struct ether_header)) {
1315 m_freem(m);
1316 goto rcvloop;
1317 }
1318 m->m_pkthdr.rcvif = ifp;
1319 m->m_pkthdr.len = m->m_len = total_len;
1320 #if NBPFILTER > 0
1321 if (ifp->if_bpf)
1322 bpf_mtap(ifp->if_bpf, m);
1323 #endif
1324 /*
1325 * Set the incoming checksum information for the packet.
1326 */
1327 if ((sc->ex_conf & EX_CONF_90XB) != 0 &&
1328 (pktstat & EX_UPD_IPCHECKED) != 0) {
1329 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1330 if (pktstat & EX_UPD_IPCKSUMERR)
1331 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1332 if (pktstat & EX_UPD_TCPCHECKED) {
1333 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1334 if (pktstat & EX_UPD_TCPCKSUMERR)
1335 m->m_pkthdr.csum_flags |=
1336 M_CSUM_TCP_UDP_BAD;
1337 } else if (pktstat & EX_UPD_UDPCHECKED) {
1338 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1339 if (pktstat & EX_UPD_UDPCKSUMERR)
1340 m->m_pkthdr.csum_flags |=
1341 M_CSUM_TCP_UDP_BAD;
1342 }
1343 }
1344 (*ifp->if_input)(ifp, m);
1345 }
1346 goto rcvloop;
1347 }
1348 /*
1349 * Just in case we filled up all UPDs and the DMA engine
1350 * stalled. We could be more subtle about this.
1351 */
1352 if (bus_space_read_4(iot, ioh, ELINK_UPLISTPTR) == 0) {
1353 printf("%s: uplistptr was 0\n",
1354 sc->sc_dev.dv_xname);
1355 ex_init(ifp);
1356 } else if (bus_space_read_4(iot, ioh, ELINK_UPPKTSTATUS)
1357 & 0x2000) {
1358 printf("%s: receive stalled\n",
1359 sc->sc_dev.dv_xname);
1360 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1361 ELINK_UPUNSTALL);
1362 }
1363 }
1364
1365 #if NRND > 0
1366 if (stat)
1367 rnd_add_uint32(&sc->rnd_source, stat);
1368 #endif
1369 }
1370
1371 /* no more interrupts */
1372 if (ret && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1373 ex_start(ifp);
1374 return ret;
1375 }
1376
1377 int
1378 ex_ioctl(ifp, cmd, data)
1379 struct ifnet *ifp;
1380 u_long cmd;
1381 caddr_t data;
1382 {
1383 struct ex_softc *sc = ifp->if_softc;
1384 struct ifreq *ifr = (struct ifreq *)data;
1385 int s, error;
1386
1387 s = splnet();
1388
1389 switch (cmd) {
1390 case SIOCSIFMEDIA:
1391 case SIOCGIFMEDIA:
1392 error = ifmedia_ioctl(ifp, ifr, &sc->ex_mii.mii_media, cmd);
1393 break;
1394 case SIOCSIFFLAGS:
1395 /* If the interface is up and running, only modify the receive
1396 * filter when setting promiscuous or debug mode. Otherwise
1397 * fall through to ether_ioctl, which will reset the chip.
1398 */
1399 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1400 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1401 == (IFF_UP|IFF_RUNNING))
1402 && ((ifp->if_flags & (~RESETIGN))
1403 == (sc->sc_if_flags & (~RESETIGN)))) {
1404 ex_set_mc(sc);
1405 error = 0;
1406 break;
1407 #undef RESETIGN
1408 }
1409 /* FALLTHROUGH */
1410 default:
1411 error = ether_ioctl(ifp, cmd, data);
1412 if (error == ENETRESET) {
1413 /*
1414 * Multicast list has changed; set the hardware filter
1415 * accordingly.
1416 */
1417 if (ifp->if_flags & IFF_RUNNING)
1418 ex_set_mc(sc);
1419 error = 0;
1420 }
1421 break;
1422 }
1423
1424 sc->sc_if_flags = ifp->if_flags;
1425 splx(s);
1426 return (error);
1427 }
1428
1429 void
1430 ex_getstats(sc)
1431 struct ex_softc *sc;
1432 {
1433 bus_space_handle_t ioh = sc->sc_ioh;
1434 bus_space_tag_t iot = sc->sc_iot;
1435 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1436 u_int8_t upperok;
1437
1438 GO_WINDOW(6);
1439 upperok = bus_space_read_1(iot, ioh, UPPER_FRAMES_OK);
1440 ifp->if_ipackets += bus_space_read_1(iot, ioh, RX_FRAMES_OK);
1441 ifp->if_ipackets += (upperok & 0x03) << 8;
1442 ifp->if_opackets += bus_space_read_1(iot, ioh, TX_FRAMES_OK);
1443 ifp->if_opackets += (upperok & 0x30) << 4;
1444 ifp->if_ierrors += bus_space_read_1(iot, ioh, RX_OVERRUNS);
1445 ifp->if_collisions += bus_space_read_1(iot, ioh, TX_COLLISIONS);
1446 /*
1447 * There seems to be no way to get the exact number of collisions,
1448 * this is the number that occurred at the very least.
1449 */
1450 ifp->if_collisions += 2 * bus_space_read_1(iot, ioh,
1451 TX_AFTER_X_COLLISIONS);
1452 /*
1453 * Interface byte counts are counted by ether_input() and
1454 * ether_output(), so don't accumulate them here. Just
1455 * read the NIC counters so they don't generate overflow interrupts.
1456 * Upper byte counters are latched from reading the totals, so
1457 * they don't need to be read if we don't need their values.
1458 */
1459 (void)bus_space_read_2(iot, ioh, RX_TOTAL_OK);
1460 (void)bus_space_read_2(iot, ioh, TX_TOTAL_OK);
1461
1462 /*
1463 * Clear the following to avoid stats overflow interrupts
1464 */
1465 (void)bus_space_read_1(iot, ioh, TX_DEFERRALS);
1466 (void)bus_space_read_1(iot, ioh, TX_AFTER_1_COLLISION);
1467 (void)bus_space_read_1(iot, ioh, TX_NO_SQE);
1468 (void)bus_space_read_1(iot, ioh, TX_CD_LOST);
1469 GO_WINDOW(4);
1470 (void)bus_space_read_1(iot, ioh, ELINK_W4_BADSSD);
1471 GO_WINDOW(1);
1472 }
1473
1474 void
1475 ex_printstats(sc)
1476 struct ex_softc *sc;
1477 {
1478 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1479
1480 ex_getstats(sc);
1481 printf("in %llu out %llu ierror %llu oerror %llu ibytes %llu obytes "
1482 "%llu\n", (unsigned long long)ifp->if_ipackets,
1483 (unsigned long long)ifp->if_opackets,
1484 (unsigned long long)ifp->if_ierrors,
1485 (unsigned long long)ifp->if_oerrors,
1486 (unsigned long long)ifp->if_ibytes,
1487 (unsigned long long)ifp->if_obytes);
1488 }
1489
1490 void
1491 ex_tick(arg)
1492 void *arg;
1493 {
1494 struct ex_softc *sc = arg;
1495 int s;
1496
1497 if (!device_is_active(&sc->sc_dev))
1498 return;
1499
1500 s = splnet();
1501
1502 if (sc->ex_conf & EX_CONF_MII)
1503 mii_tick(&sc->ex_mii);
1504
1505 if (!(bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, ELINK_STATUS)
1506 & COMMAND_IN_PROGRESS))
1507 ex_getstats(sc);
1508
1509 splx(s);
1510
1511 callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
1512 }
1513
1514 void
1515 ex_reset(sc)
1516 struct ex_softc *sc;
1517 {
1518 u_int16_t val = GLOBAL_RESET;
1519
1520 if (sc->ex_conf & EX_CONF_RESETHACK)
1521 val |= 0x10;
1522 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, val);
1523 /*
1524 * XXX apparently the command in progress bit can't be trusted
1525 * during a reset, so we just always wait this long. Fortunately
1526 * we normally only reset the chip during autoconfig.
1527 */
1528 delay(100000);
1529 ex_waitcmd(sc);
1530 }
1531
1532 void
1533 ex_watchdog(ifp)
1534 struct ifnet *ifp;
1535 {
1536 struct ex_softc *sc = ifp->if_softc;
1537
1538 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1539 ++sc->sc_ethercom.ec_if.if_oerrors;
1540
1541 ex_reset(sc);
1542 ex_init(ifp);
1543 }
1544
1545 void
1546 ex_stop(ifp, disable)
1547 struct ifnet *ifp;
1548 int disable;
1549 {
1550 struct ex_softc *sc = ifp->if_softc;
1551 bus_space_tag_t iot = sc->sc_iot;
1552 bus_space_handle_t ioh = sc->sc_ioh;
1553 struct ex_txdesc *tx;
1554 struct ex_rxdesc *rx;
1555 int i;
1556
1557 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1558 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1559 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1560
1561 for (tx = sc->tx_head ; tx != NULL; tx = tx->tx_next) {
1562 if (tx->tx_mbhead == NULL)
1563 continue;
1564 m_freem(tx->tx_mbhead);
1565 tx->tx_mbhead = NULL;
1566 bus_dmamap_unload(sc->sc_dmat, tx->tx_dmamap);
1567 tx->tx_dpd->dpd_fsh = tx->tx_dpd->dpd_nextptr = 0;
1568 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1569 ((caddr_t)tx->tx_dpd - (caddr_t)sc->sc_dpd),
1570 sizeof (struct ex_dpd),
1571 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1572 }
1573 sc->tx_tail = sc->tx_head = NULL;
1574 ex_init_txdescs(sc);
1575
1576 sc->rx_tail = sc->rx_head = 0;
1577 for (i = 0; i < EX_NUPD; i++) {
1578 rx = &sc->sc_rxdescs[i];
1579 if (rx->rx_mbhead != NULL) {
1580 bus_dmamap_unload(sc->sc_dmat, rx->rx_dmamap);
1581 m_freem(rx->rx_mbhead);
1582 rx->rx_mbhead = NULL;
1583 }
1584 ex_add_rxbuf(sc, rx);
1585 }
1586
1587 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1588
1589 callout_stop(&sc->ex_mii_callout);
1590 if (sc->ex_conf & EX_CONF_MII)
1591 mii_down(&sc->ex_mii);
1592
1593 if (disable)
1594 ex_disable(sc);
1595
1596 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1597 sc->sc_if_flags = ifp->if_flags;
1598 ifp->if_timer = 0;
1599 }
1600
1601 static void
1602 ex_init_txdescs(sc)
1603 struct ex_softc *sc;
1604 {
1605 int i;
1606
1607 for (i = 0; i < EX_NDPD; i++) {
1608 sc->sc_txdescs[i].tx_dmamap = sc->sc_tx_dmamaps[i];
1609 sc->sc_txdescs[i].tx_dpd = &sc->sc_dpd[i];
1610 if (i < EX_NDPD - 1)
1611 sc->sc_txdescs[i].tx_next = &sc->sc_txdescs[i + 1];
1612 else
1613 sc->sc_txdescs[i].tx_next = NULL;
1614 }
1615 sc->tx_free = &sc->sc_txdescs[0];
1616 sc->tx_ftail = &sc->sc_txdescs[EX_NDPD-1];
1617 }
1618
1619
1620 int
1621 ex_activate(self, act)
1622 struct device *self;
1623 enum devact act;
1624 {
1625 struct ex_softc *sc = (void *) self;
1626 int s, error = 0;
1627
1628 s = splnet();
1629 switch (act) {
1630 case DVACT_ACTIVATE:
1631 error = EOPNOTSUPP;
1632 break;
1633
1634 case DVACT_DEACTIVATE:
1635 if (sc->ex_conf & EX_CONF_MII)
1636 mii_activate(&sc->ex_mii, act, MII_PHY_ANY,
1637 MII_OFFSET_ANY);
1638 if_deactivate(&sc->sc_ethercom.ec_if);
1639 break;
1640 }
1641 splx(s);
1642
1643 return (error);
1644 }
1645
1646 int
1647 ex_detach(sc)
1648 struct ex_softc *sc;
1649 {
1650 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1651 struct ex_rxdesc *rxd;
1652 int i;
1653
1654 /* Succeed now if there's no work to do. */
1655 if ((sc->ex_flags & EX_FLAGS_ATTACHED) == 0)
1656 return (0);
1657
1658 /* Unhook our tick handler. */
1659 callout_stop(&sc->ex_mii_callout);
1660
1661 if (sc->ex_conf & EX_CONF_MII) {
1662 /* Detach all PHYs */
1663 mii_detach(&sc->ex_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1664 }
1665
1666 /* Delete all remaining media. */
1667 ifmedia_delete_instance(&sc->ex_mii.mii_media, IFM_INST_ANY);
1668
1669 #if NRND > 0
1670 rnd_detach_source(&sc->rnd_source);
1671 #endif
1672 ether_ifdetach(ifp);
1673 if_detach(ifp);
1674
1675 for (i = 0; i < EX_NUPD; i++) {
1676 rxd = &sc->sc_rxdescs[i];
1677 if (rxd->rx_mbhead != NULL) {
1678 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1679 m_freem(rxd->rx_mbhead);
1680 rxd->rx_mbhead = NULL;
1681 }
1682 }
1683 for (i = 0; i < EX_NUPD; i++)
1684 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
1685 for (i = 0; i < EX_NDPD; i++)
1686 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
1687 bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
1688 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
1689 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
1690 EX_NDPD * sizeof (struct ex_dpd));
1691 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
1692 bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
1693 bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
1694 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
1695 EX_NUPD * sizeof (struct ex_upd));
1696 bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
1697
1698 shutdownhook_disestablish(sc->sc_sdhook);
1699 powerhook_disestablish(sc->sc_powerhook);
1700
1701 return (0);
1702 }
1703
1704 /*
1705 * Before reboots, reset card completely.
1706 */
1707 static void
1708 ex_shutdown(arg)
1709 void *arg;
1710 {
1711 struct ex_softc *sc = arg;
1712
1713 ex_stop(&sc->sc_ethercom.ec_if, 1);
1714 /*
1715 * Make sure the interface is powered up when we reboot,
1716 * otherwise firmware on some systems gets really confused.
1717 */
1718 (void) ex_enable(sc);
1719 }
1720
1721 /*
1722 * Read EEPROM data.
1723 * XXX what to do if EEPROM doesn't unbusy?
1724 */
1725 u_int16_t
1726 ex_read_eeprom(sc, offset)
1727 struct ex_softc *sc;
1728 int offset;
1729 {
1730 bus_space_tag_t iot = sc->sc_iot;
1731 bus_space_handle_t ioh = sc->sc_ioh;
1732 u_int16_t data = 0, cmd = READ_EEPROM;
1733 int off;
1734
1735 off = sc->ex_conf & EX_CONF_EEPROM_OFF ? 0x30 : 0;
1736 cmd = sc->ex_conf & EX_CONF_EEPROM_8BIT ? READ_EEPROM8 : READ_EEPROM;
1737
1738 GO_WINDOW(0);
1739 if (ex_eeprom_busy(sc))
1740 goto out;
1741 bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
1742 cmd | (off + (offset & 0x3f)));
1743 if (ex_eeprom_busy(sc))
1744 goto out;
1745 data = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
1746 out:
1747 return data;
1748 }
1749
1750 static int
1751 ex_eeprom_busy(sc)
1752 struct ex_softc *sc;
1753 {
1754 bus_space_tag_t iot = sc->sc_iot;
1755 bus_space_handle_t ioh = sc->sc_ioh;
1756 int i = 100;
1757
1758 while (i--) {
1759 if (!(bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND) &
1760 EEPROM_BUSY))
1761 return 0;
1762 delay(100);
1763 }
1764 printf("\n%s: eeprom stays busy.\n", sc->sc_dev.dv_xname);
1765 return (1);
1766 }
1767
1768 /*
1769 * Create a new rx buffer and add it to the 'soft' rx list.
1770 */
1771 static int
1772 ex_add_rxbuf(sc, rxd)
1773 struct ex_softc *sc;
1774 struct ex_rxdesc *rxd;
1775 {
1776 struct mbuf *m, *oldm;
1777 bus_dmamap_t rxmap;
1778 int error, rval = 0;
1779
1780 oldm = rxd->rx_mbhead;
1781 rxmap = rxd->rx_dmamap;
1782
1783 MGETHDR(m, M_DONTWAIT, MT_DATA);
1784 if (m != NULL) {
1785 MCLGET(m, M_DONTWAIT);
1786 if ((m->m_flags & M_EXT) == 0) {
1787 m_freem(m);
1788 if (oldm == NULL)
1789 return 1;
1790 m = oldm;
1791 MRESETDATA(m);
1792 rval = 1;
1793 }
1794 } else {
1795 if (oldm == NULL)
1796 return 1;
1797 m = oldm;
1798 MRESETDATA(m);
1799 rval = 1;
1800 }
1801
1802 /*
1803 * Setup the DMA map for this receive buffer.
1804 */
1805 if (m != oldm) {
1806 if (oldm != NULL)
1807 bus_dmamap_unload(sc->sc_dmat, rxmap);
1808 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1809 m->m_ext.ext_buf, MCLBYTES, NULL,
1810 BUS_DMA_READ|BUS_DMA_NOWAIT);
1811 if (error) {
1812 printf("%s: can't load rx buffer, error = %d\n",
1813 sc->sc_dev.dv_xname, error);
1814 panic("ex_add_rxbuf"); /* XXX */
1815 }
1816 }
1817
1818 /*
1819 * Align for data after 14 byte header.
1820 */
1821 m->m_data += 2;
1822
1823 rxd->rx_mbhead = m;
1824 rxd->rx_upd->upd_pktstatus = htole32(MCLBYTES - 2);
1825 rxd->rx_upd->upd_frags[0].fr_addr =
1826 htole32(rxmap->dm_segs[0].ds_addr + 2);
1827 rxd->rx_upd->upd_nextptr = 0;
1828
1829 /*
1830 * Attach it to the end of the list.
1831 */
1832 if (sc->rx_head != NULL) {
1833 sc->rx_tail->rx_next = rxd;
1834 sc->rx_tail->rx_upd->upd_nextptr = htole32(sc->sc_upddma +
1835 ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd));
1836 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1837 (caddr_t)sc->rx_tail->rx_upd - (caddr_t)sc->sc_upd,
1838 sizeof (struct ex_upd),
1839 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1840 } else {
1841 sc->rx_head = rxd;
1842 }
1843 sc->rx_tail = rxd;
1844
1845 bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
1846 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1847 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1848 ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd),
1849 sizeof (struct ex_upd), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1850 return (rval);
1851 }
1852
1853 u_int32_t
1854 ex_mii_bitbang_read(self)
1855 struct device *self;
1856 {
1857 struct ex_softc *sc = (void *) self;
1858
1859 /* We're already in Window 4. */
1860 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT));
1861 }
1862
1863 void
1864 ex_mii_bitbang_write(self, val)
1865 struct device *self;
1866 u_int32_t val;
1867 {
1868 struct ex_softc *sc = (void *) self;
1869
1870 /* We're already in Window 4. */
1871 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT, val);
1872 }
1873
1874 int
1875 ex_mii_readreg(v, phy, reg)
1876 struct device *v;
1877 int phy, reg;
1878 {
1879 struct ex_softc *sc = (struct ex_softc *)v;
1880 int val;
1881
1882 if ((sc->ex_conf & EX_CONF_INTPHY) && phy != ELINK_INTPHY_ID)
1883 return 0;
1884
1885 GO_WINDOW(4);
1886
1887 val = mii_bitbang_readreg(v, &ex_mii_bitbang_ops, phy, reg);
1888
1889 GO_WINDOW(1);
1890
1891 return (val);
1892 }
1893
1894 void
1895 ex_mii_writereg(v, phy, reg, data)
1896 struct device *v;
1897 int phy;
1898 int reg;
1899 int data;
1900 {
1901 struct ex_softc *sc = (struct ex_softc *)v;
1902
1903 GO_WINDOW(4);
1904
1905 mii_bitbang_writereg(v, &ex_mii_bitbang_ops, phy, reg, data);
1906
1907 GO_WINDOW(1);
1908 }
1909
1910 void
1911 ex_mii_statchg(v)
1912 struct device *v;
1913 {
1914 struct ex_softc *sc = (struct ex_softc *)v;
1915 bus_space_tag_t iot = sc->sc_iot;
1916 bus_space_handle_t ioh = sc->sc_ioh;
1917 int mctl;
1918
1919 GO_WINDOW(3);
1920 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1921 if (sc->ex_mii.mii_media_active & IFM_FDX)
1922 mctl |= MAC_CONTROL_FDX;
1923 else
1924 mctl &= ~MAC_CONTROL_FDX;
1925 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1926 GO_WINDOW(1); /* back to operating window */
1927 }
1928
1929 int
1930 ex_enable(sc)
1931 struct ex_softc *sc;
1932 {
1933 if (sc->enabled == 0 && sc->enable != NULL) {
1934 if ((*sc->enable)(sc) != 0) {
1935 printf("%s: de/vice enable failed\n",
1936 sc->sc_dev.dv_xname);
1937 return (EIO);
1938 }
1939 sc->enabled = 1;
1940 }
1941 return (0);
1942 }
1943
1944 void
1945 ex_disable(sc)
1946 struct ex_softc *sc;
1947 {
1948 if (sc->enabled == 1 && sc->disable != NULL) {
1949 (*sc->disable)(sc);
1950 sc->enabled = 0;
1951 }
1952 }
1953
1954 void
1955 ex_power(why, arg)
1956 int why;
1957 void *arg;
1958 {
1959 struct ex_softc *sc = (void *)arg;
1960 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1961 int s;
1962
1963 s = splnet();
1964 switch (why) {
1965 case PWR_SUSPEND:
1966 case PWR_STANDBY:
1967 ex_stop(ifp, 0);
1968 if (sc->power != NULL)
1969 (*sc->power)(sc, why);
1970 break;
1971 case PWR_RESUME:
1972 if (ifp->if_flags & IFF_UP) {
1973 if (sc->power != NULL)
1974 (*sc->power)(sc, why);
1975 ex_init(ifp);
1976 }
1977 break;
1978 case PWR_SOFTSUSPEND:
1979 case PWR_SOFTSTANDBY:
1980 case PWR_SOFTRESUME:
1981 break;
1982 }
1983 splx(s);
1984 }
1985