elinkxl.c revision 1.90 1 /* $NetBSD: elinkxl.c,v 1.90 2006/10/29 05:56:35 itohy Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Frank van der Linden.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: elinkxl.c,v 1.90 2006/10/29 05:56:35 itohy Exp $");
41
42 #include "bpfilter.h"
43 #include "rnd.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/kernel.h>
49 #include <sys/mbuf.h>
50 #include <sys/socket.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/syslog.h>
54 #include <sys/select.h>
55 #include <sys/device.h>
56 #if NRND > 0
57 #include <sys/rnd.h>
58 #endif
59
60 #include <uvm/uvm_extern.h>
61
62 #include <net/if.h>
63 #include <net/if_dl.h>
64 #include <net/if_ether.h>
65 #include <net/if_media.h>
66
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #include <net/bpfdesc.h>
70 #endif
71
72 #include <machine/cpu.h>
73 #include <machine/bus.h>
74 #include <machine/intr.h>
75 #include <machine/endian.h>
76
77 #include <dev/mii/miivar.h>
78 #include <dev/mii/mii.h>
79 #include <dev/mii/mii_bitbang.h>
80
81 #include <dev/ic/elink3reg.h>
82 /* #include <dev/ic/elink3var.h> */
83 #include <dev/ic/elinkxlreg.h>
84 #include <dev/ic/elinkxlvar.h>
85
86 #ifdef DEBUG
87 int exdebug = 0;
88 #endif
89
90 /* ifmedia callbacks */
91 int ex_media_chg(struct ifnet *ifp);
92 void ex_media_stat(struct ifnet *ifp, struct ifmediareq *req);
93
94 void ex_probe_media(struct ex_softc *);
95 void ex_set_filter(struct ex_softc *);
96 void ex_set_media(struct ex_softc *);
97 void ex_set_xcvr(struct ex_softc *, u_int16_t);
98 struct mbuf *ex_get(struct ex_softc *, int);
99 u_int16_t ex_read_eeprom(struct ex_softc *, int);
100 int ex_init(struct ifnet *);
101 void ex_read(struct ex_softc *);
102 void ex_reset(struct ex_softc *);
103 void ex_set_mc(struct ex_softc *);
104 void ex_getstats(struct ex_softc *);
105 void ex_printstats(struct ex_softc *);
106 void ex_tick(void *);
107
108 void ex_power(int, void *);
109
110 static int ex_eeprom_busy(struct ex_softc *);
111 static int ex_add_rxbuf(struct ex_softc *, struct ex_rxdesc *);
112 static void ex_init_txdescs(struct ex_softc *);
113
114 static void ex_shutdown(void *);
115 static void ex_start(struct ifnet *);
116 static void ex_txstat(struct ex_softc *);
117
118 int ex_mii_readreg(struct device *, int, int);
119 void ex_mii_writereg(struct device *, int, int, int);
120 void ex_mii_statchg(struct device *);
121
122 void ex_probemedia(struct ex_softc *);
123
124 /*
125 * Structure to map media-present bits in boards to ifmedia codes and
126 * printable media names. Used for table-driven ifmedia initialization.
127 */
128 struct ex_media {
129 int exm_mpbit; /* media present bit */
130 const char *exm_name; /* name of medium */
131 int exm_ifmedia; /* ifmedia word for medium */
132 int exm_epmedia; /* ELINKMEDIA_* constant */
133 };
134
135 /*
136 * Media table for 3c90x chips. Note that chips with MII have no
137 * `native' media.
138 */
139 struct ex_media ex_native_media[] = {
140 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
141 ELINKMEDIA_10BASE_T },
142 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
143 ELINKMEDIA_10BASE_T },
144 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
145 ELINKMEDIA_AUI },
146 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
147 ELINKMEDIA_10BASE_2 },
148 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
149 ELINKMEDIA_100BASE_TX },
150 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
151 ELINKMEDIA_100BASE_TX },
152 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
153 ELINKMEDIA_100BASE_FX },
154 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
155 ELINKMEDIA_MII },
156 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
157 ELINKMEDIA_100BASE_T4 },
158 { 0, NULL, 0,
159 0 },
160 };
161
162 /*
163 * MII bit-bang glue.
164 */
165 u_int32_t ex_mii_bitbang_read(struct device *);
166 void ex_mii_bitbang_write(struct device *, u_int32_t);
167
168 const struct mii_bitbang_ops ex_mii_bitbang_ops = {
169 ex_mii_bitbang_read,
170 ex_mii_bitbang_write,
171 {
172 ELINK_PHY_DATA, /* MII_BIT_MDO */
173 ELINK_PHY_DATA, /* MII_BIT_MDI */
174 ELINK_PHY_CLK, /* MII_BIT_MDC */
175 ELINK_PHY_DIR, /* MII_BIT_DIR_HOST_PHY */
176 0, /* MII_BIT_DIR_PHY_HOST */
177 }
178 };
179
180 /*
181 * Back-end attach and configure.
182 */
183 void
184 ex_config(sc)
185 struct ex_softc *sc;
186 {
187 struct ifnet *ifp;
188 u_int16_t val;
189 u_int8_t macaddr[ETHER_ADDR_LEN] = {0};
190 bus_space_tag_t iot = sc->sc_iot;
191 bus_space_handle_t ioh = sc->sc_ioh;
192 int i, error, attach_stage;
193
194 callout_init(&sc->ex_mii_callout);
195
196 ex_reset(sc);
197
198 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR0);
199 macaddr[0] = val >> 8;
200 macaddr[1] = val & 0xff;
201 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR1);
202 macaddr[2] = val >> 8;
203 macaddr[3] = val & 0xff;
204 val = ex_read_eeprom(sc, EEPROM_OEM_ADDR2);
205 macaddr[4] = val >> 8;
206 macaddr[5] = val & 0xff;
207
208 aprint_normal("%s: MAC address %s\n", sc->sc_dev.dv_xname,
209 ether_sprintf(macaddr));
210
211 if (sc->ex_conf & (EX_CONF_INV_LED_POLARITY|EX_CONF_PHY_POWER)) {
212 GO_WINDOW(2);
213 val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
214 if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
215 val |= ELINK_RESET_OPT_LEDPOLAR;
216 if (sc->ex_conf & EX_CONF_PHY_POWER)
217 val |= ELINK_RESET_OPT_PHYPOWER;
218 bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
219 }
220 if (sc->ex_conf & EX_CONF_NO_XCVR_PWR) {
221 GO_WINDOW(0);
222 bus_space_write_2(iot, ioh, ELINK_W0_MFG_ID,
223 EX_XCVR_PWR_MAGICBITS);
224 }
225
226 attach_stage = 0;
227
228 /*
229 * Allocate the upload descriptors, and create and load the DMA
230 * map for them.
231 */
232 if ((error = bus_dmamem_alloc(sc->sc_dmat,
233 EX_NUPD * sizeof (struct ex_upd), PAGE_SIZE, 0, &sc->sc_useg, 1,
234 &sc->sc_urseg, BUS_DMA_NOWAIT)) != 0) {
235 aprint_error(
236 "%s: can't allocate upload descriptors, error = %d\n",
237 sc->sc_dev.dv_xname, error);
238 goto fail;
239 }
240
241 attach_stage = 1;
242
243 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg,
244 EX_NUPD * sizeof (struct ex_upd), (caddr_t *)&sc->sc_upd,
245 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
246 aprint_error("%s: can't map upload descriptors, error = %d\n",
247 sc->sc_dev.dv_xname, error);
248 goto fail;
249 }
250
251 attach_stage = 2;
252
253 if ((error = bus_dmamap_create(sc->sc_dmat,
254 EX_NUPD * sizeof (struct ex_upd), 1,
255 EX_NUPD * sizeof (struct ex_upd), 0, BUS_DMA_NOWAIT,
256 &sc->sc_upd_dmamap)) != 0) {
257 aprint_error(
258 "%s: can't create upload desc. DMA map, error = %d\n",
259 sc->sc_dev.dv_xname, error);
260 goto fail;
261 }
262
263 attach_stage = 3;
264
265 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_upd_dmamap,
266 sc->sc_upd, EX_NUPD * sizeof (struct ex_upd), NULL,
267 BUS_DMA_NOWAIT)) != 0) {
268 aprint_error(
269 "%s: can't load upload desc. DMA map, error = %d\n",
270 sc->sc_dev.dv_xname, error);
271 goto fail;
272 }
273
274 attach_stage = 4;
275
276 /*
277 * Allocate the download descriptors, and create and load the DMA
278 * map for them.
279 */
280 if ((error = bus_dmamem_alloc(sc->sc_dmat,
281 EX_NDPD * sizeof (struct ex_dpd), PAGE_SIZE, 0, &sc->sc_dseg, 1,
282 &sc->sc_drseg, BUS_DMA_NOWAIT)) != 0) {
283 aprint_error(
284 "%s: can't allocate download descriptors, error = %d\n",
285 sc->sc_dev.dv_xname, error);
286 goto fail;
287 }
288
289 attach_stage = 5;
290
291 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg,
292 EX_NDPD * sizeof (struct ex_dpd), (caddr_t *)&sc->sc_dpd,
293 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
294 aprint_error("%s: can't map download descriptors, error = %d\n",
295 sc->sc_dev.dv_xname, error);
296 goto fail;
297 }
298 memset(sc->sc_dpd, 0, EX_NDPD * sizeof (struct ex_dpd));
299
300 attach_stage = 6;
301
302 if ((error = bus_dmamap_create(sc->sc_dmat,
303 EX_NDPD * sizeof (struct ex_dpd), 1,
304 EX_NDPD * sizeof (struct ex_dpd), 0, BUS_DMA_NOWAIT,
305 &sc->sc_dpd_dmamap)) != 0) {
306 aprint_error(
307 "%s: can't create download desc. DMA map, error = %d\n",
308 sc->sc_dev.dv_xname, error);
309 goto fail;
310 }
311
312 attach_stage = 7;
313
314 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dpd_dmamap,
315 sc->sc_dpd, EX_NDPD * sizeof (struct ex_dpd), NULL,
316 BUS_DMA_NOWAIT)) != 0) {
317 aprint_error(
318 "%s: can't load download desc. DMA map, error = %d\n",
319 sc->sc_dev.dv_xname, error);
320 goto fail;
321 }
322
323 attach_stage = 8;
324
325
326 /*
327 * Create the transmit buffer DMA maps.
328 */
329 for (i = 0; i < EX_NDPD; i++) {
330 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
331 EX_NTFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
332 &sc->sc_tx_dmamaps[i])) != 0) {
333 aprint_error(
334 "%s: can't create tx DMA map %d, error = %d\n",
335 sc->sc_dev.dv_xname, i, error);
336 goto fail;
337 }
338 }
339
340 attach_stage = 9;
341
342 /*
343 * Create the receive buffer DMA maps.
344 */
345 for (i = 0; i < EX_NUPD; i++) {
346 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
347 EX_NRFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
348 &sc->sc_rx_dmamaps[i])) != 0) {
349 aprint_error(
350 "%s: can't create rx DMA map %d, error = %d\n",
351 sc->sc_dev.dv_xname, i, error);
352 goto fail;
353 }
354 }
355
356 attach_stage = 10;
357
358 /*
359 * Create ring of upload descriptors, only once. The DMA engine
360 * will loop over this when receiving packets, stalling if it
361 * hits an UPD with a finished receive.
362 */
363 for (i = 0; i < EX_NUPD; i++) {
364 sc->sc_rxdescs[i].rx_dmamap = sc->sc_rx_dmamaps[i];
365 sc->sc_rxdescs[i].rx_upd = &sc->sc_upd[i];
366 sc->sc_upd[i].upd_frags[0].fr_len =
367 htole32((MCLBYTES - 2) | EX_FR_LAST);
368 if (ex_add_rxbuf(sc, &sc->sc_rxdescs[i]) != 0) {
369 aprint_error("%s: can't allocate or map rx buffers\n",
370 sc->sc_dev.dv_xname);
371 goto fail;
372 }
373 }
374
375 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap, 0,
376 EX_NUPD * sizeof (struct ex_upd),
377 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
378
379 ex_init_txdescs(sc);
380
381 attach_stage = 11;
382
383
384 GO_WINDOW(3);
385 val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
386 if (val & ELINK_MEDIACAP_MII)
387 sc->ex_conf |= EX_CONF_MII;
388
389 ifp = &sc->sc_ethercom.ec_if;
390
391 /*
392 * Initialize our media structures and MII info. We'll
393 * probe the MII if we discover that we have one.
394 */
395 sc->ex_mii.mii_ifp = ifp;
396 sc->ex_mii.mii_readreg = ex_mii_readreg;
397 sc->ex_mii.mii_writereg = ex_mii_writereg;
398 sc->ex_mii.mii_statchg = ex_mii_statchg;
399 ifmedia_init(&sc->ex_mii.mii_media, IFM_IMASK, ex_media_chg,
400 ex_media_stat);
401
402 if (sc->ex_conf & EX_CONF_MII) {
403 /*
404 * Find PHY, extract media information from it.
405 * First, select the right transceiver.
406 */
407 ex_set_xcvr(sc, val);
408
409 mii_attach(&sc->sc_dev, &sc->ex_mii, 0xffffffff,
410 MII_PHY_ANY, MII_OFFSET_ANY, 0);
411 if (LIST_FIRST(&sc->ex_mii.mii_phys) == NULL) {
412 ifmedia_add(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE,
413 0, NULL);
414 ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE);
415 } else {
416 ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_AUTO);
417 }
418 } else
419 ex_probemedia(sc);
420
421 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
422 ifp->if_softc = sc;
423 ifp->if_start = ex_start;
424 ifp->if_ioctl = ex_ioctl;
425 ifp->if_watchdog = ex_watchdog;
426 ifp->if_init = ex_init;
427 ifp->if_stop = ex_stop;
428 ifp->if_flags =
429 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
430 sc->sc_if_flags = ifp->if_flags;
431 IFQ_SET_READY(&ifp->if_snd);
432
433 /*
434 * We can support 802.1Q VLAN-sized frames.
435 */
436 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
437
438 /*
439 * The 3c90xB has hardware IPv4/TCPv4/UDPv4 checksum support.
440 */
441 if (sc->ex_conf & EX_CONF_90XB)
442 sc->sc_ethercom.ec_if.if_capabilities |=
443 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
444 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
445 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
446
447 if_attach(ifp);
448 ether_ifattach(ifp, macaddr);
449
450 GO_WINDOW(1);
451
452 sc->tx_start_thresh = 20;
453 sc->tx_succ_ok = 0;
454
455 /* TODO: set queues to 0 */
456
457 #if NRND > 0
458 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
459 RND_TYPE_NET, 0);
460 #endif
461
462 /* Establish callback to reset card when we reboot. */
463 sc->sc_sdhook = shutdownhook_establish(ex_shutdown, sc);
464 if (sc->sc_sdhook == NULL)
465 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
466 sc->sc_dev.dv_xname);
467
468 /* Add a suspend hook to make sure we come back up after a resume. */
469 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
470 ex_power, sc);
471 if (sc->sc_powerhook == NULL)
472 aprint_error("%s: WARNING: unable to establish power hook\n",
473 sc->sc_dev.dv_xname);
474
475 /* The attach is successful. */
476 sc->ex_flags |= EX_FLAGS_ATTACHED;
477 return;
478
479 fail:
480 /*
481 * Free any resources we've allocated during the failed attach
482 * attempt. Do this in reverse order and fall though.
483 */
484 switch (attach_stage) {
485 case 11:
486 {
487 struct ex_rxdesc *rxd;
488
489 for (i = 0; i < EX_NUPD; i++) {
490 rxd = &sc->sc_rxdescs[i];
491 if (rxd->rx_mbhead != NULL) {
492 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
493 m_freem(rxd->rx_mbhead);
494 }
495 }
496 }
497 /* FALLTHROUGH */
498
499 case 10:
500 for (i = 0; i < EX_NUPD; i++)
501 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
502 /* FALLTHROUGH */
503
504 case 9:
505 for (i = 0; i < EX_NDPD; i++)
506 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
507 /* FALLTHROUGH */
508 case 8:
509 bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
510 /* FALLTHROUGH */
511
512 case 7:
513 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
514 /* FALLTHROUGH */
515
516 case 6:
517 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
518 EX_NDPD * sizeof (struct ex_dpd));
519 /* FALLTHROUGH */
520
521 case 5:
522 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
523 break;
524
525 case 4:
526 bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
527 /* FALLTHROUGH */
528
529 case 3:
530 bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
531 /* FALLTHROUGH */
532
533 case 2:
534 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
535 EX_NUPD * sizeof (struct ex_upd));
536 /* FALLTHROUGH */
537
538 case 1:
539 bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
540 break;
541 }
542
543 }
544
545 /*
546 * Find the media present on non-MII chips.
547 */
548 void
549 ex_probemedia(sc)
550 struct ex_softc *sc;
551 {
552 bus_space_tag_t iot = sc->sc_iot;
553 bus_space_handle_t ioh = sc->sc_ioh;
554 struct ifmedia *ifm = &sc->ex_mii.mii_media;
555 struct ex_media *exm;
556 u_int16_t config1, reset_options, default_media;
557 int defmedia = 0;
558 const char *sep = "", *defmedianame = NULL;
559
560 GO_WINDOW(3);
561 config1 = bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
562 reset_options = bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
563 GO_WINDOW(0);
564
565 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
566
567 aprint_normal("%s: ", sc->sc_dev.dv_xname);
568
569 /* Sanity check that there are any media! */
570 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
571 aprint_error("no media present!\n");
572 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
573 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
574 return;
575 }
576
577 #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", "
578
579 for (exm = ex_native_media; exm->exm_name != NULL; exm++) {
580 if (reset_options & exm->exm_mpbit) {
581 /*
582 * Default media is a little complicated. We
583 * support full-duplex which uses the same
584 * reset options bit.
585 *
586 * XXX Check EEPROM for default to FDX?
587 */
588 if (exm->exm_epmedia == default_media) {
589 if ((exm->exm_ifmedia & IFM_FDX) == 0) {
590 defmedia = exm->exm_ifmedia;
591 defmedianame = exm->exm_name;
592 }
593 } else if (defmedia == 0) {
594 defmedia = exm->exm_ifmedia;
595 defmedianame = exm->exm_name;
596 }
597 ifmedia_add(ifm, exm->exm_ifmedia, exm->exm_epmedia,
598 NULL);
599 PRINT(exm->exm_name);
600 }
601 }
602
603 #undef PRINT
604
605 #ifdef DIAGNOSTIC
606 if (defmedia == 0)
607 panic("ex_probemedia: impossible");
608 #endif
609
610 aprint_normal(", default %s\n", defmedianame);
611 ifmedia_set(ifm, defmedia);
612 }
613
614 /*
615 * Bring device up.
616 */
617 int
618 ex_init(ifp)
619 struct ifnet *ifp;
620 {
621 struct ex_softc *sc = ifp->if_softc;
622 bus_space_tag_t iot = sc->sc_iot;
623 bus_space_handle_t ioh = sc->sc_ioh;
624 int i;
625 u_int16_t val;
626 int error = 0;
627
628 if ((error = ex_enable(sc)) != 0)
629 goto out;
630
631 ex_waitcmd(sc);
632 ex_stop(ifp, 0);
633
634 GO_WINDOW(2);
635
636 /* Turn on PHY power. */
637 if (sc->ex_conf & (EX_CONF_PHY_POWER | EX_CONF_INV_LED_POLARITY)) {
638 val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
639 if (sc->ex_conf & EX_CONF_PHY_POWER)
640 val |= ELINK_RESET_OPT_PHYPOWER; /* turn on PHY power */
641 if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
642 val |= ELINK_RESET_OPT_LEDPOLAR; /* invert LED polarity */
643 bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
644 }
645
646 /*
647 * Set the station address and clear the station mask. The latter
648 * is needed for 90x cards, 0 is the default for 90xB cards.
649 */
650 for (i = 0; i < ETHER_ADDR_LEN; i++) {
651 bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
652 LLADDR(ifp->if_sadl)[i]);
653 bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
654 }
655
656 GO_WINDOW(3);
657
658 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_RESET);
659 ex_waitcmd(sc);
660 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
661 ex_waitcmd(sc);
662
663 /*
664 * Disable reclaim threshold for 90xB, set free threshold to
665 * 6 * 256 = 1536 for 90x.
666 */
667 if (sc->ex_conf & EX_CONF_90XB)
668 bus_space_write_2(iot, ioh, ELINK_COMMAND,
669 ELINK_TXRECLTHRESH | 255);
670 else
671 bus_space_write_1(iot, ioh, ELINK_TXFREETHRESH, 6);
672
673 bus_space_write_2(iot, ioh, ELINK_COMMAND,
674 SET_RX_EARLY_THRESH | ELINK_THRESH_DISABLE);
675
676 bus_space_write_4(iot, ioh, ELINK_DMACTRL,
677 bus_space_read_4(iot, ioh, ELINK_DMACTRL) | ELINK_DMAC_UPRXEAREN);
678
679 bus_space_write_2(iot, ioh, ELINK_COMMAND,
680 SET_RD_0_MASK | XL_WATCHED_INTERRUPTS);
681 bus_space_write_2(iot, ioh, ELINK_COMMAND,
682 SET_INTR_MASK | XL_WATCHED_INTERRUPTS);
683
684 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
685 if (sc->intr_ack)
686 (* sc->intr_ack)(sc);
687 ex_set_media(sc);
688 ex_set_mc(sc);
689
690
691 bus_space_write_2(iot, ioh, ELINK_COMMAND, STATS_ENABLE);
692 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
693 bus_space_write_4(iot, ioh, ELINK_UPLISTPTR, sc->sc_upddma);
694 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
695 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_UPUNSTALL);
696
697 ifp->if_flags |= IFF_RUNNING;
698 ifp->if_flags &= ~IFF_OACTIVE;
699 ex_start(ifp);
700 sc->sc_if_flags = ifp->if_flags;
701
702 GO_WINDOW(1);
703
704 callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
705
706 out:
707 if (error) {
708 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
709 ifp->if_timer = 0;
710 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
711 }
712 return (error);
713 }
714
715 #define MCHASHSIZE 256
716 #define ex_mchash(addr) (ether_crc32_be((addr), ETHER_ADDR_LEN) & \
717 (MCHASHSIZE - 1))
718
719 /*
720 * Set multicast receive filter. Also take care of promiscuous mode
721 * here (XXX).
722 */
723 void
724 ex_set_mc(sc)
725 struct ex_softc *sc;
726 {
727 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
728 struct ethercom *ec = &sc->sc_ethercom;
729 struct ether_multi *enm;
730 struct ether_multistep estep;
731 int i;
732 u_int16_t mask = FIL_INDIVIDUAL | FIL_BRDCST;
733
734 if (ifp->if_flags & IFF_PROMISC) {
735 mask |= FIL_PROMISC;
736 goto allmulti;
737 }
738
739 ETHER_FIRST_MULTI(estep, ec, enm);
740 if (enm == NULL)
741 goto nomulti;
742
743 if ((sc->ex_conf & EX_CONF_90XB) == 0)
744 /* No multicast hash filtering. */
745 goto allmulti;
746
747 for (i = 0; i < MCHASHSIZE; i++)
748 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
749 ELINK_COMMAND, ELINK_CLEARHASHFILBIT | i);
750
751 do {
752 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
753 ETHER_ADDR_LEN) != 0)
754 goto allmulti;
755
756 i = ex_mchash(enm->enm_addrlo);
757 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
758 ELINK_COMMAND, ELINK_SETHASHFILBIT | i);
759 ETHER_NEXT_MULTI(estep, enm);
760 } while (enm != NULL);
761 mask |= FIL_MULTIHASH;
762
763 nomulti:
764 ifp->if_flags &= ~IFF_ALLMULTI;
765 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
766 SET_RX_FILTER | mask);
767 return;
768
769 allmulti:
770 ifp->if_flags |= IFF_ALLMULTI;
771 mask |= FIL_MULTICAST;
772 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
773 SET_RX_FILTER | mask);
774 }
775
776
777 static void
778 ex_txstat(sc)
779 struct ex_softc *sc;
780 {
781 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
782 bus_space_tag_t iot = sc->sc_iot;
783 bus_space_handle_t ioh = sc->sc_ioh;
784 int i;
785
786 /*
787 * We need to read+write TX_STATUS until we get a 0 status
788 * in order to turn off the interrupt flag.
789 * ELINK_TXSTATUS is in the upper byte of 2 with ELINK_TIMER
790 * XXX: Big Endian? Can we assume that TXSTATUS will be the
791 * upper byte?
792 */
793 while ((i = bus_space_read_2(iot, ioh, ELINK_TIMER)) & TXS_COMPLETE) {
794 bus_space_write_2(iot, ioh, ELINK_TIMER, 0x0);
795
796 if (i & TXS_JABBER) {
797 ++sc->sc_ethercom.ec_if.if_oerrors;
798 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
799 printf("%s: jabber (%x)\n",
800 sc->sc_dev.dv_xname, i);
801 ex_init(ifp);
802 /* TODO: be more subtle here */
803 } else if (i & TXS_UNDERRUN) {
804 ++sc->sc_ethercom.ec_if.if_oerrors;
805 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
806 printf("%s: fifo underrun (%x) @%d\n",
807 sc->sc_dev.dv_xname, i,
808 sc->tx_start_thresh);
809 if (sc->tx_succ_ok < 100)
810 sc->tx_start_thresh = min(ETHER_MAX_LEN,
811 sc->tx_start_thresh + 20);
812 sc->tx_succ_ok = 0;
813 ex_init(ifp);
814 /* TODO: be more subtle here */
815 } else if (i & TXS_MAX_COLLISION) {
816 ++sc->sc_ethercom.ec_if.if_oerrors;
817 ++sc->sc_ethercom.ec_if.if_collisions;
818 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
819 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
820 } else if (sc->tx_succ_ok < 100)
821 sc->tx_succ_ok++;
822 }
823 }
824
825 int
826 ex_media_chg(ifp)
827 struct ifnet *ifp;
828 {
829
830 if (ifp->if_flags & IFF_UP)
831 ex_init(ifp);
832 return 0;
833 }
834
835 void
836 ex_set_xcvr(sc, media)
837 struct ex_softc *sc;
838 const u_int16_t media;
839 {
840 bus_space_tag_t iot = sc->sc_iot;
841 bus_space_handle_t ioh = sc->sc_ioh;
842 u_int32_t icfg;
843
844 /*
845 * We're already in Window 3
846 */
847 icfg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
848 icfg &= ~(CONFIG_XCVR_SEL << 16);
849 if (media & (ELINK_MEDIACAP_MII | ELINK_MEDIACAP_100BASET4))
850 icfg |= ELINKMEDIA_MII << (CONFIG_XCVR_SEL_SHIFT + 16);
851 if (media & ELINK_MEDIACAP_100BASETX)
852 icfg |= ELINKMEDIA_AUTO << (CONFIG_XCVR_SEL_SHIFT + 16);
853 if (media & ELINK_MEDIACAP_100BASEFX)
854 icfg |= ELINKMEDIA_100BASE_FX
855 << (CONFIG_XCVR_SEL_SHIFT + 16);
856 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, icfg);
857 }
858
859 void
860 ex_set_media(sc)
861 struct ex_softc *sc;
862 {
863 bus_space_tag_t iot = sc->sc_iot;
864 bus_space_handle_t ioh = sc->sc_ioh;
865 u_int32_t configreg;
866
867 if (((sc->ex_conf & EX_CONF_MII) &&
868 (sc->ex_mii.mii_media_active & IFM_FDX))
869 || (!(sc->ex_conf & EX_CONF_MII) &&
870 (sc->ex_mii.mii_media.ifm_media & IFM_FDX))) {
871 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL,
872 MAC_CONTROL_FDX);
873 } else {
874 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, 0);
875 }
876
877 /*
878 * If the device has MII, select it, and then tell the
879 * PHY which media to use.
880 */
881 if (sc->ex_conf & EX_CONF_MII) {
882 u_int16_t val;
883
884 GO_WINDOW(3);
885 val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
886 ex_set_xcvr(sc, val);
887 mii_mediachg(&sc->ex_mii);
888 return;
889 }
890
891 GO_WINDOW(4);
892 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0);
893 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
894 delay(800);
895
896 /*
897 * Now turn on the selected media/transceiver.
898 */
899 switch (IFM_SUBTYPE(sc->ex_mii.mii_media.ifm_cur->ifm_media)) {
900 case IFM_10_T:
901 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
902 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
903 break;
904
905 case IFM_10_2:
906 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
907 DELAY(800);
908 break;
909
910 case IFM_100_TX:
911 case IFM_100_FX:
912 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
913 LINKBEAT_ENABLE);
914 DELAY(800);
915 break;
916
917 case IFM_10_5:
918 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
919 SQE_ENABLE);
920 DELAY(800);
921 break;
922
923 case IFM_MANUAL:
924 break;
925
926 case IFM_NONE:
927 return;
928
929 default:
930 panic("ex_set_media: impossible");
931 }
932
933 GO_WINDOW(3);
934 configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
935
936 configreg &= ~(CONFIG_MEDIAMASK << 16);
937 configreg |= (sc->ex_mii.mii_media.ifm_cur->ifm_data <<
938 (CONFIG_MEDIAMASK_SHIFT + 16));
939
940 bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
941 }
942
943 /*
944 * Get currently-selected media from card.
945 * (if_media callback, may be called before interface is brought up).
946 */
947 void
948 ex_media_stat(ifp, req)
949 struct ifnet *ifp;
950 struct ifmediareq *req;
951 {
952 struct ex_softc *sc = ifp->if_softc;
953 u_int16_t help;
954
955 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING)) {
956 if (sc->ex_conf & EX_CONF_MII) {
957 mii_pollstat(&sc->ex_mii);
958 req->ifm_status = sc->ex_mii.mii_media_status;
959 req->ifm_active = sc->ex_mii.mii_media_active;
960 } else {
961 GO_WINDOW(4);
962 req->ifm_status = IFM_AVALID;
963 req->ifm_active =
964 sc->ex_mii.mii_media.ifm_cur->ifm_media;
965 help = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
966 ELINK_W4_MEDIA_TYPE);
967 if (help & LINKBEAT_DETECT)
968 req->ifm_status |= IFM_ACTIVE;
969 GO_WINDOW(1);
970 }
971 }
972 }
973
974
975
976 /*
977 * Start outputting on the interface.
978 */
979 static void
980 ex_start(ifp)
981 struct ifnet *ifp;
982 {
983 struct ex_softc *sc = ifp->if_softc;
984 bus_space_tag_t iot = sc->sc_iot;
985 bus_space_handle_t ioh = sc->sc_ioh;
986 volatile struct ex_fraghdr *fr = NULL;
987 volatile struct ex_dpd *dpd = NULL, *prevdpd = NULL;
988 struct ex_txdesc *txp;
989 struct mbuf *mb_head;
990 bus_dmamap_t dmamap;
991 int offset, totlen, segment, error;
992 u_int32_t csum_flags;
993
994 if (sc->tx_head || sc->tx_free == NULL)
995 return;
996
997 txp = NULL;
998
999 /*
1000 * We're finished if there is nothing more to add to the list or if
1001 * we're all filled up with buffers to transmit.
1002 */
1003 while (sc->tx_free != NULL) {
1004 /*
1005 * Grab a packet to transmit.
1006 */
1007 IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1008 if (mb_head == NULL)
1009 break;
1010
1011 /*
1012 * Get pointer to next available tx desc.
1013 */
1014 txp = sc->tx_free;
1015 dmamap = txp->tx_dmamap;
1016
1017 /*
1018 * Go through each of the mbufs in the chain and initialize
1019 * the transmit buffer descriptors with the physical address
1020 * and size of the mbuf.
1021 */
1022 reload:
1023 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1024 mb_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1025 switch (error) {
1026 case 0:
1027 /* Success. */
1028 break;
1029
1030 case EFBIG:
1031 {
1032 struct mbuf *mn;
1033
1034 /*
1035 * We ran out of segments. We have to recopy this
1036 * mbuf chain first. Bail out if we can't get the
1037 * new buffers.
1038 */
1039 printf("%s: too many segments, ", sc->sc_dev.dv_xname);
1040
1041 MGETHDR(mn, M_DONTWAIT, MT_DATA);
1042 if (mn == NULL) {
1043 m_freem(mb_head);
1044 printf("aborting\n");
1045 goto out;
1046 }
1047 if (mb_head->m_pkthdr.len > MHLEN) {
1048 MCLGET(mn, M_DONTWAIT);
1049 if ((mn->m_flags & M_EXT) == 0) {
1050 m_freem(mn);
1051 m_freem(mb_head);
1052 printf("aborting\n");
1053 goto out;
1054 }
1055 }
1056 m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1057 mtod(mn, caddr_t));
1058 mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1059 m_freem(mb_head);
1060 mb_head = mn;
1061 printf("retrying\n");
1062 goto reload;
1063 }
1064
1065 default:
1066 /*
1067 * Some other problem; report it.
1068 */
1069 printf("%s: can't load mbuf chain, error = %d\n",
1070 sc->sc_dev.dv_xname, error);
1071 m_freem(mb_head);
1072 goto out;
1073 }
1074
1075 /*
1076 * remove our tx desc from freelist.
1077 */
1078 sc->tx_free = txp->tx_next;
1079 txp->tx_next = NULL;
1080
1081 fr = &txp->tx_dpd->dpd_frags[0];
1082 totlen = 0;
1083 for (segment = 0; segment < dmamap->dm_nsegs; segment++, fr++) {
1084 fr->fr_addr = htole32(dmamap->dm_segs[segment].ds_addr);
1085 fr->fr_len = htole32(dmamap->dm_segs[segment].ds_len);
1086 totlen += dmamap->dm_segs[segment].ds_len;
1087 }
1088 fr--;
1089 fr->fr_len |= htole32(EX_FR_LAST);
1090 txp->tx_mbhead = mb_head;
1091
1092 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1093 BUS_DMASYNC_PREWRITE);
1094
1095 dpd = txp->tx_dpd;
1096 dpd->dpd_nextptr = 0;
1097 dpd->dpd_fsh = htole32(totlen);
1098
1099 /* Byte-swap constants so compiler can optimize. */
1100
1101 if (sc->ex_conf & EX_CONF_90XB) {
1102 csum_flags = 0;
1103
1104 if (mb_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1105 csum_flags |= htole32(EX_DPD_IPCKSUM);
1106
1107 if (mb_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1108 csum_flags |= htole32(EX_DPD_TCPCKSUM);
1109 else if (mb_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1110 csum_flags |= htole32(EX_DPD_UDPCKSUM);
1111
1112 dpd->dpd_fsh |= csum_flags;
1113 } else {
1114 KDASSERT((mb_head->m_pkthdr.csum_flags &
1115 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) == 0);
1116 }
1117
1118 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1119 ((const char *)(intptr_t)dpd - (const char *)sc->sc_dpd),
1120 sizeof (struct ex_dpd),
1121 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1122
1123 /*
1124 * No need to stall the download engine, we know it's
1125 * not busy right now.
1126 *
1127 * Fix up pointers in both the "soft" tx and the physical
1128 * tx list.
1129 */
1130 if (sc->tx_head != NULL) {
1131 prevdpd = sc->tx_tail->tx_dpd;
1132 offset = ((const char *)(intptr_t)prevdpd - (const char *)sc->sc_dpd);
1133 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1134 offset, sizeof (struct ex_dpd),
1135 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1136 prevdpd->dpd_nextptr = htole32(DPD_DMADDR(sc, txp));
1137 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1138 offset, sizeof (struct ex_dpd),
1139 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1140 sc->tx_tail->tx_next = txp;
1141 sc->tx_tail = txp;
1142 } else {
1143 sc->tx_tail = sc->tx_head = txp;
1144 }
1145
1146 #if NBPFILTER > 0
1147 /*
1148 * Pass packet to bpf if there is a listener.
1149 */
1150 if (ifp->if_bpf)
1151 bpf_mtap(ifp->if_bpf, mb_head);
1152 #endif
1153 }
1154 out:
1155 if (sc->tx_head) {
1156 sc->tx_tail->tx_dpd->dpd_fsh |= htole32(EX_DPD_DNIND);
1157 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1158 ((caddr_t)sc->tx_tail->tx_dpd - (caddr_t)sc->sc_dpd),
1159 sizeof (struct ex_dpd),
1160 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1161 ifp->if_flags |= IFF_OACTIVE;
1162 bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNUNSTALL);
1163 bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
1164 DPD_DMADDR(sc, sc->tx_head));
1165
1166 /* trigger watchdog */
1167 ifp->if_timer = 5;
1168 }
1169 }
1170
1171
1172 int
1173 ex_intr(arg)
1174 void *arg;
1175 {
1176 struct ex_softc *sc = arg;
1177 bus_space_tag_t iot = sc->sc_iot;
1178 bus_space_handle_t ioh = sc->sc_ioh;
1179 u_int16_t stat;
1180 int ret = 0;
1181 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1182
1183 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1184 !device_is_active(&sc->sc_dev))
1185 return (0);
1186
1187 for (;;) {
1188 stat = bus_space_read_2(iot, ioh, ELINK_STATUS);
1189
1190 if ((stat & XL_WATCHED_INTERRUPTS) == 0) {
1191 if ((stat & INTR_LATCH) == 0) {
1192 #if 0
1193 printf("%s: intr latch cleared\n",
1194 sc->sc_dev.dv_xname);
1195 #endif
1196 break;
1197 }
1198 }
1199
1200 ret = 1;
1201
1202 /*
1203 * Acknowledge interrupts.
1204 */
1205 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1206 (stat & (XL_WATCHED_INTERRUPTS | INTR_LATCH)));
1207 if (sc->intr_ack)
1208 (*sc->intr_ack)(sc);
1209
1210 if (stat & HOST_ERROR) {
1211 printf("%s: adapter failure (%x)\n",
1212 sc->sc_dev.dv_xname, stat);
1213 ex_reset(sc);
1214 ex_init(ifp);
1215 return 1;
1216 }
1217 if (stat & TX_COMPLETE) {
1218 ex_txstat(sc);
1219 }
1220 if (stat & UPD_STATS) {
1221 ex_getstats(sc);
1222 }
1223 if (stat & DN_COMPLETE) {
1224 struct ex_txdesc *txp, *ptxp = NULL;
1225 bus_dmamap_t txmap;
1226
1227 /* reset watchdog timer, was set in ex_start() */
1228 ifp->if_timer = 0;
1229
1230 for (txp = sc->tx_head; txp != NULL;
1231 txp = txp->tx_next) {
1232 bus_dmamap_sync(sc->sc_dmat,
1233 sc->sc_dpd_dmamap,
1234 (caddr_t)txp->tx_dpd - (caddr_t)sc->sc_dpd,
1235 sizeof (struct ex_dpd),
1236 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1237 if (txp->tx_mbhead != NULL) {
1238 txmap = txp->tx_dmamap;
1239 bus_dmamap_sync(sc->sc_dmat, txmap,
1240 0, txmap->dm_mapsize,
1241 BUS_DMASYNC_POSTWRITE);
1242 bus_dmamap_unload(sc->sc_dmat, txmap);
1243 m_freem(txp->tx_mbhead);
1244 txp->tx_mbhead = NULL;
1245 }
1246 ptxp = txp;
1247 }
1248
1249 /*
1250 * Move finished tx buffers back to the tx free list.
1251 */
1252 if (sc->tx_free) {
1253 sc->tx_ftail->tx_next = sc->tx_head;
1254 sc->tx_ftail = ptxp;
1255 } else
1256 sc->tx_ftail = sc->tx_free = sc->tx_head;
1257
1258 sc->tx_head = sc->tx_tail = NULL;
1259 ifp->if_flags &= ~IFF_OACTIVE;
1260 }
1261
1262 if (stat & UP_COMPLETE) {
1263 struct ex_rxdesc *rxd;
1264 struct mbuf *m;
1265 struct ex_upd *upd;
1266 bus_dmamap_t rxmap;
1267 u_int32_t pktstat;
1268
1269 rcvloop:
1270 rxd = sc->rx_head;
1271 rxmap = rxd->rx_dmamap;
1272 m = rxd->rx_mbhead;
1273 upd = rxd->rx_upd;
1274
1275 bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
1276 rxmap->dm_mapsize,
1277 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1278 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1279 ((caddr_t)upd - (caddr_t)sc->sc_upd),
1280 sizeof (struct ex_upd),
1281 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1282 pktstat = le32toh(upd->upd_pktstatus);
1283
1284 if (pktstat & EX_UPD_COMPLETE) {
1285 /*
1286 * Remove first packet from the chain.
1287 */
1288 sc->rx_head = rxd->rx_next;
1289 rxd->rx_next = NULL;
1290
1291 /*
1292 * Add a new buffer to the receive chain.
1293 * If this fails, the old buffer is recycled
1294 * instead.
1295 */
1296 if (ex_add_rxbuf(sc, rxd) == 0) {
1297 u_int16_t total_len;
1298
1299 if (pktstat &
1300 ((sc->sc_ethercom.ec_capenable &
1301 ETHERCAP_VLAN_MTU) ?
1302 EX_UPD_ERR_VLAN : EX_UPD_ERR)) {
1303 ifp->if_ierrors++;
1304 m_freem(m);
1305 goto rcvloop;
1306 }
1307
1308 total_len = pktstat & EX_UPD_PKTLENMASK;
1309 if (total_len <
1310 sizeof(struct ether_header)) {
1311 m_freem(m);
1312 goto rcvloop;
1313 }
1314 m->m_pkthdr.rcvif = ifp;
1315 m->m_pkthdr.len = m->m_len = total_len;
1316 #if NBPFILTER > 0
1317 if (ifp->if_bpf)
1318 bpf_mtap(ifp->if_bpf, m);
1319 #endif
1320 /*
1321 * Set the incoming checksum information for the packet.
1322 */
1323 if ((sc->ex_conf & EX_CONF_90XB) != 0 &&
1324 (pktstat & EX_UPD_IPCHECKED) != 0) {
1325 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1326 if (pktstat & EX_UPD_IPCKSUMERR)
1327 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1328 if (pktstat & EX_UPD_TCPCHECKED) {
1329 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1330 if (pktstat & EX_UPD_TCPCKSUMERR)
1331 m->m_pkthdr.csum_flags |=
1332 M_CSUM_TCP_UDP_BAD;
1333 } else if (pktstat & EX_UPD_UDPCHECKED) {
1334 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1335 if (pktstat & EX_UPD_UDPCKSUMERR)
1336 m->m_pkthdr.csum_flags |=
1337 M_CSUM_TCP_UDP_BAD;
1338 }
1339 }
1340 (*ifp->if_input)(ifp, m);
1341 }
1342 goto rcvloop;
1343 }
1344 /*
1345 * Just in case we filled up all UPDs and the DMA engine
1346 * stalled. We could be more subtle about this.
1347 */
1348 if (bus_space_read_4(iot, ioh, ELINK_UPLISTPTR) == 0) {
1349 printf("%s: uplistptr was 0\n",
1350 sc->sc_dev.dv_xname);
1351 ex_init(ifp);
1352 } else if (bus_space_read_4(iot, ioh, ELINK_UPPKTSTATUS)
1353 & 0x2000) {
1354 printf("%s: receive stalled\n",
1355 sc->sc_dev.dv_xname);
1356 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1357 ELINK_UPUNSTALL);
1358 }
1359 }
1360
1361 #if NRND > 0
1362 if (stat)
1363 rnd_add_uint32(&sc->rnd_source, stat);
1364 #endif
1365 }
1366
1367 /* no more interrupts */
1368 if (ret && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1369 ex_start(ifp);
1370 return ret;
1371 }
1372
1373 int
1374 ex_ioctl(ifp, cmd, data)
1375 struct ifnet *ifp;
1376 u_long cmd;
1377 caddr_t data;
1378 {
1379 struct ex_softc *sc = ifp->if_softc;
1380 struct ifreq *ifr = (struct ifreq *)data;
1381 int s, error;
1382
1383 s = splnet();
1384
1385 switch (cmd) {
1386 case SIOCSIFMEDIA:
1387 case SIOCGIFMEDIA:
1388 error = ifmedia_ioctl(ifp, ifr, &sc->ex_mii.mii_media, cmd);
1389 break;
1390 case SIOCSIFFLAGS:
1391 /* If the interface is up and running, only modify the receive
1392 * filter when setting promiscuous or debug mode. Otherwise
1393 * fall through to ether_ioctl, which will reset the chip.
1394 */
1395 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1396 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1397 == (IFF_UP|IFF_RUNNING))
1398 && ((ifp->if_flags & (~RESETIGN))
1399 == (sc->sc_if_flags & (~RESETIGN)))) {
1400 ex_set_mc(sc);
1401 error = 0;
1402 break;
1403 #undef RESETIGN
1404 }
1405 /* FALLTHROUGH */
1406 default:
1407 error = ether_ioctl(ifp, cmd, data);
1408 if (error == ENETRESET) {
1409 /*
1410 * Multicast list has changed; set the hardware filter
1411 * accordingly.
1412 */
1413 if (ifp->if_flags & IFF_RUNNING)
1414 ex_set_mc(sc);
1415 error = 0;
1416 }
1417 break;
1418 }
1419
1420 sc->sc_if_flags = ifp->if_flags;
1421 splx(s);
1422 return (error);
1423 }
1424
1425 void
1426 ex_getstats(sc)
1427 struct ex_softc *sc;
1428 {
1429 bus_space_handle_t ioh = sc->sc_ioh;
1430 bus_space_tag_t iot = sc->sc_iot;
1431 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1432 u_int8_t upperok;
1433
1434 GO_WINDOW(6);
1435 upperok = bus_space_read_1(iot, ioh, UPPER_FRAMES_OK);
1436 ifp->if_ipackets += bus_space_read_1(iot, ioh, RX_FRAMES_OK);
1437 ifp->if_ipackets += (upperok & 0x03) << 8;
1438 ifp->if_opackets += bus_space_read_1(iot, ioh, TX_FRAMES_OK);
1439 ifp->if_opackets += (upperok & 0x30) << 4;
1440 ifp->if_ierrors += bus_space_read_1(iot, ioh, RX_OVERRUNS);
1441 ifp->if_collisions += bus_space_read_1(iot, ioh, TX_COLLISIONS);
1442 /*
1443 * There seems to be no way to get the exact number of collisions,
1444 * this is the number that occurred at the very least.
1445 */
1446 ifp->if_collisions += 2 * bus_space_read_1(iot, ioh,
1447 TX_AFTER_X_COLLISIONS);
1448 /*
1449 * Interface byte counts are counted by ether_input() and
1450 * ether_output(), so don't accumulate them here. Just
1451 * read the NIC counters so they don't generate overflow interrupts.
1452 * Upper byte counters are latched from reading the totals, so
1453 * they don't need to be read if we don't need their values.
1454 */
1455 (void)bus_space_read_2(iot, ioh, RX_TOTAL_OK);
1456 (void)bus_space_read_2(iot, ioh, TX_TOTAL_OK);
1457
1458 /*
1459 * Clear the following to avoid stats overflow interrupts
1460 */
1461 (void)bus_space_read_1(iot, ioh, TX_DEFERRALS);
1462 (void)bus_space_read_1(iot, ioh, TX_AFTER_1_COLLISION);
1463 (void)bus_space_read_1(iot, ioh, TX_NO_SQE);
1464 (void)bus_space_read_1(iot, ioh, TX_CD_LOST);
1465 GO_WINDOW(4);
1466 (void)bus_space_read_1(iot, ioh, ELINK_W4_BADSSD);
1467 GO_WINDOW(1);
1468 }
1469
1470 void
1471 ex_printstats(sc)
1472 struct ex_softc *sc;
1473 {
1474 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1475
1476 ex_getstats(sc);
1477 printf("in %llu out %llu ierror %llu oerror %llu ibytes %llu obytes "
1478 "%llu\n", (unsigned long long)ifp->if_ipackets,
1479 (unsigned long long)ifp->if_opackets,
1480 (unsigned long long)ifp->if_ierrors,
1481 (unsigned long long)ifp->if_oerrors,
1482 (unsigned long long)ifp->if_ibytes,
1483 (unsigned long long)ifp->if_obytes);
1484 }
1485
1486 void
1487 ex_tick(arg)
1488 void *arg;
1489 {
1490 struct ex_softc *sc = arg;
1491 int s;
1492
1493 if (!device_is_active(&sc->sc_dev))
1494 return;
1495
1496 s = splnet();
1497
1498 if (sc->ex_conf & EX_CONF_MII)
1499 mii_tick(&sc->ex_mii);
1500
1501 if (!(bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, ELINK_STATUS)
1502 & COMMAND_IN_PROGRESS))
1503 ex_getstats(sc);
1504
1505 splx(s);
1506
1507 callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
1508 }
1509
1510 void
1511 ex_reset(sc)
1512 struct ex_softc *sc;
1513 {
1514 u_int16_t val = GLOBAL_RESET;
1515
1516 if (sc->ex_conf & EX_CONF_RESETHACK)
1517 val |= 0x10;
1518 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, val);
1519 /*
1520 * XXX apparently the command in progress bit can't be trusted
1521 * during a reset, so we just always wait this long. Fortunately
1522 * we normally only reset the chip during autoconfig.
1523 */
1524 delay(100000);
1525 ex_waitcmd(sc);
1526 }
1527
1528 void
1529 ex_watchdog(ifp)
1530 struct ifnet *ifp;
1531 {
1532 struct ex_softc *sc = ifp->if_softc;
1533
1534 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1535 ++sc->sc_ethercom.ec_if.if_oerrors;
1536
1537 ex_reset(sc);
1538 ex_init(ifp);
1539 }
1540
1541 void
1542 ex_stop(ifp, disable)
1543 struct ifnet *ifp;
1544 int disable;
1545 {
1546 struct ex_softc *sc = ifp->if_softc;
1547 bus_space_tag_t iot = sc->sc_iot;
1548 bus_space_handle_t ioh = sc->sc_ioh;
1549 struct ex_txdesc *tx;
1550 struct ex_rxdesc *rx;
1551 int i;
1552
1553 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1554 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1555 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1556
1557 for (tx = sc->tx_head ; tx != NULL; tx = tx->tx_next) {
1558 if (tx->tx_mbhead == NULL)
1559 continue;
1560 m_freem(tx->tx_mbhead);
1561 tx->tx_mbhead = NULL;
1562 bus_dmamap_unload(sc->sc_dmat, tx->tx_dmamap);
1563 tx->tx_dpd->dpd_fsh = tx->tx_dpd->dpd_nextptr = 0;
1564 bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1565 ((caddr_t)tx->tx_dpd - (caddr_t)sc->sc_dpd),
1566 sizeof (struct ex_dpd),
1567 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1568 }
1569 sc->tx_tail = sc->tx_head = NULL;
1570 ex_init_txdescs(sc);
1571
1572 sc->rx_tail = sc->rx_head = 0;
1573 for (i = 0; i < EX_NUPD; i++) {
1574 rx = &sc->sc_rxdescs[i];
1575 if (rx->rx_mbhead != NULL) {
1576 bus_dmamap_unload(sc->sc_dmat, rx->rx_dmamap);
1577 m_freem(rx->rx_mbhead);
1578 rx->rx_mbhead = NULL;
1579 }
1580 ex_add_rxbuf(sc, rx);
1581 }
1582
1583 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1584
1585 callout_stop(&sc->ex_mii_callout);
1586 if (sc->ex_conf & EX_CONF_MII)
1587 mii_down(&sc->ex_mii);
1588
1589 if (disable)
1590 ex_disable(sc);
1591
1592 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1593 sc->sc_if_flags = ifp->if_flags;
1594 ifp->if_timer = 0;
1595 }
1596
1597 static void
1598 ex_init_txdescs(sc)
1599 struct ex_softc *sc;
1600 {
1601 int i;
1602
1603 for (i = 0; i < EX_NDPD; i++) {
1604 sc->sc_txdescs[i].tx_dmamap = sc->sc_tx_dmamaps[i];
1605 sc->sc_txdescs[i].tx_dpd = &sc->sc_dpd[i];
1606 if (i < EX_NDPD - 1)
1607 sc->sc_txdescs[i].tx_next = &sc->sc_txdescs[i + 1];
1608 else
1609 sc->sc_txdescs[i].tx_next = NULL;
1610 }
1611 sc->tx_free = &sc->sc_txdescs[0];
1612 sc->tx_ftail = &sc->sc_txdescs[EX_NDPD-1];
1613 }
1614
1615
1616 int
1617 ex_activate(self, act)
1618 struct device *self;
1619 enum devact act;
1620 {
1621 struct ex_softc *sc = (void *) self;
1622 int s, error = 0;
1623
1624 s = splnet();
1625 switch (act) {
1626 case DVACT_ACTIVATE:
1627 error = EOPNOTSUPP;
1628 break;
1629
1630 case DVACT_DEACTIVATE:
1631 if (sc->ex_conf & EX_CONF_MII)
1632 mii_activate(&sc->ex_mii, act, MII_PHY_ANY,
1633 MII_OFFSET_ANY);
1634 if_deactivate(&sc->sc_ethercom.ec_if);
1635 break;
1636 }
1637 splx(s);
1638
1639 return (error);
1640 }
1641
1642 int
1643 ex_detach(sc)
1644 struct ex_softc *sc;
1645 {
1646 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1647 struct ex_rxdesc *rxd;
1648 int i;
1649
1650 /* Succeed now if there's no work to do. */
1651 if ((sc->ex_flags & EX_FLAGS_ATTACHED) == 0)
1652 return (0);
1653
1654 /* Unhook our tick handler. */
1655 callout_stop(&sc->ex_mii_callout);
1656
1657 if (sc->ex_conf & EX_CONF_MII) {
1658 /* Detach all PHYs */
1659 mii_detach(&sc->ex_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1660 }
1661
1662 /* Delete all remaining media. */
1663 ifmedia_delete_instance(&sc->ex_mii.mii_media, IFM_INST_ANY);
1664
1665 #if NRND > 0
1666 rnd_detach_source(&sc->rnd_source);
1667 #endif
1668 ether_ifdetach(ifp);
1669 if_detach(ifp);
1670
1671 for (i = 0; i < EX_NUPD; i++) {
1672 rxd = &sc->sc_rxdescs[i];
1673 if (rxd->rx_mbhead != NULL) {
1674 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1675 m_freem(rxd->rx_mbhead);
1676 rxd->rx_mbhead = NULL;
1677 }
1678 }
1679 for (i = 0; i < EX_NUPD; i++)
1680 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
1681 for (i = 0; i < EX_NDPD; i++)
1682 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
1683 bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
1684 bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
1685 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
1686 EX_NDPD * sizeof (struct ex_dpd));
1687 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
1688 bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
1689 bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
1690 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
1691 EX_NUPD * sizeof (struct ex_upd));
1692 bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
1693
1694 shutdownhook_disestablish(sc->sc_sdhook);
1695 powerhook_disestablish(sc->sc_powerhook);
1696
1697 return (0);
1698 }
1699
1700 /*
1701 * Before reboots, reset card completely.
1702 */
1703 static void
1704 ex_shutdown(arg)
1705 void *arg;
1706 {
1707 struct ex_softc *sc = arg;
1708
1709 ex_stop(&sc->sc_ethercom.ec_if, 1);
1710 /*
1711 * Make sure the interface is powered up when we reboot,
1712 * otherwise firmware on some systems gets really confused.
1713 */
1714 (void) ex_enable(sc);
1715 }
1716
1717 /*
1718 * Read EEPROM data.
1719 * XXX what to do if EEPROM doesn't unbusy?
1720 */
1721 u_int16_t
1722 ex_read_eeprom(sc, offset)
1723 struct ex_softc *sc;
1724 int offset;
1725 {
1726 bus_space_tag_t iot = sc->sc_iot;
1727 bus_space_handle_t ioh = sc->sc_ioh;
1728 u_int16_t data = 0, cmd = READ_EEPROM;
1729 int off;
1730
1731 off = sc->ex_conf & EX_CONF_EEPROM_OFF ? 0x30 : 0;
1732 cmd = sc->ex_conf & EX_CONF_EEPROM_8BIT ? READ_EEPROM8 : READ_EEPROM;
1733
1734 GO_WINDOW(0);
1735 if (ex_eeprom_busy(sc))
1736 goto out;
1737 bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
1738 cmd | (off + (offset & 0x3f)));
1739 if (ex_eeprom_busy(sc))
1740 goto out;
1741 data = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
1742 out:
1743 return data;
1744 }
1745
1746 static int
1747 ex_eeprom_busy(sc)
1748 struct ex_softc *sc;
1749 {
1750 bus_space_tag_t iot = sc->sc_iot;
1751 bus_space_handle_t ioh = sc->sc_ioh;
1752 int i = 100;
1753
1754 while (i--) {
1755 if (!(bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND) &
1756 EEPROM_BUSY))
1757 return 0;
1758 delay(100);
1759 }
1760 printf("\n%s: eeprom stays busy.\n", sc->sc_dev.dv_xname);
1761 return (1);
1762 }
1763
1764 /*
1765 * Create a new rx buffer and add it to the 'soft' rx list.
1766 */
1767 static int
1768 ex_add_rxbuf(sc, rxd)
1769 struct ex_softc *sc;
1770 struct ex_rxdesc *rxd;
1771 {
1772 struct mbuf *m, *oldm;
1773 bus_dmamap_t rxmap;
1774 int error, rval = 0;
1775
1776 oldm = rxd->rx_mbhead;
1777 rxmap = rxd->rx_dmamap;
1778
1779 MGETHDR(m, M_DONTWAIT, MT_DATA);
1780 if (m != NULL) {
1781 MCLGET(m, M_DONTWAIT);
1782 if ((m->m_flags & M_EXT) == 0) {
1783 m_freem(m);
1784 if (oldm == NULL)
1785 return 1;
1786 m = oldm;
1787 MRESETDATA(m);
1788 rval = 1;
1789 }
1790 } else {
1791 if (oldm == NULL)
1792 return 1;
1793 m = oldm;
1794 MRESETDATA(m);
1795 rval = 1;
1796 }
1797
1798 /*
1799 * Setup the DMA map for this receive buffer.
1800 */
1801 if (m != oldm) {
1802 if (oldm != NULL)
1803 bus_dmamap_unload(sc->sc_dmat, rxmap);
1804 error = bus_dmamap_load(sc->sc_dmat, rxmap,
1805 m->m_ext.ext_buf, MCLBYTES, NULL,
1806 BUS_DMA_READ|BUS_DMA_NOWAIT);
1807 if (error) {
1808 printf("%s: can't load rx buffer, error = %d\n",
1809 sc->sc_dev.dv_xname, error);
1810 panic("ex_add_rxbuf"); /* XXX */
1811 }
1812 }
1813
1814 /*
1815 * Align for data after 14 byte header.
1816 */
1817 m->m_data += 2;
1818
1819 rxd->rx_mbhead = m;
1820 rxd->rx_upd->upd_pktstatus = htole32(MCLBYTES - 2);
1821 rxd->rx_upd->upd_frags[0].fr_addr =
1822 htole32(rxmap->dm_segs[0].ds_addr + 2);
1823 rxd->rx_upd->upd_nextptr = 0;
1824
1825 /*
1826 * Attach it to the end of the list.
1827 */
1828 if (sc->rx_head != NULL) {
1829 sc->rx_tail->rx_next = rxd;
1830 sc->rx_tail->rx_upd->upd_nextptr = htole32(sc->sc_upddma +
1831 ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd));
1832 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1833 (caddr_t)sc->rx_tail->rx_upd - (caddr_t)sc->sc_upd,
1834 sizeof (struct ex_upd),
1835 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1836 } else {
1837 sc->rx_head = rxd;
1838 }
1839 sc->rx_tail = rxd;
1840
1841 bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
1842 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1843 bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1844 ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd),
1845 sizeof (struct ex_upd), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1846 return (rval);
1847 }
1848
1849 u_int32_t
1850 ex_mii_bitbang_read(self)
1851 struct device *self;
1852 {
1853 struct ex_softc *sc = (void *) self;
1854
1855 /* We're already in Window 4. */
1856 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT));
1857 }
1858
1859 void
1860 ex_mii_bitbang_write(self, val)
1861 struct device *self;
1862 u_int32_t val;
1863 {
1864 struct ex_softc *sc = (void *) self;
1865
1866 /* We're already in Window 4. */
1867 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT, val);
1868 }
1869
1870 int
1871 ex_mii_readreg(v, phy, reg)
1872 struct device *v;
1873 int phy, reg;
1874 {
1875 struct ex_softc *sc = (struct ex_softc *)v;
1876 int val;
1877
1878 if ((sc->ex_conf & EX_CONF_INTPHY) && phy != ELINK_INTPHY_ID)
1879 return 0;
1880
1881 GO_WINDOW(4);
1882
1883 val = mii_bitbang_readreg(v, &ex_mii_bitbang_ops, phy, reg);
1884
1885 GO_WINDOW(1);
1886
1887 return (val);
1888 }
1889
1890 void
1891 ex_mii_writereg(v, phy, reg, data)
1892 struct device *v;
1893 int phy;
1894 int reg;
1895 int data;
1896 {
1897 struct ex_softc *sc = (struct ex_softc *)v;
1898
1899 GO_WINDOW(4);
1900
1901 mii_bitbang_writereg(v, &ex_mii_bitbang_ops, phy, reg, data);
1902
1903 GO_WINDOW(1);
1904 }
1905
1906 void
1907 ex_mii_statchg(v)
1908 struct device *v;
1909 {
1910 struct ex_softc *sc = (struct ex_softc *)v;
1911 bus_space_tag_t iot = sc->sc_iot;
1912 bus_space_handle_t ioh = sc->sc_ioh;
1913 int mctl;
1914
1915 GO_WINDOW(3);
1916 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1917 if (sc->ex_mii.mii_media_active & IFM_FDX)
1918 mctl |= MAC_CONTROL_FDX;
1919 else
1920 mctl &= ~MAC_CONTROL_FDX;
1921 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1922 GO_WINDOW(1); /* back to operating window */
1923 }
1924
1925 int
1926 ex_enable(sc)
1927 struct ex_softc *sc;
1928 {
1929 if (sc->enabled == 0 && sc->enable != NULL) {
1930 if ((*sc->enable)(sc) != 0) {
1931 printf("%s: de/vice enable failed\n",
1932 sc->sc_dev.dv_xname);
1933 return (EIO);
1934 }
1935 sc->enabled = 1;
1936 }
1937 return (0);
1938 }
1939
1940 void
1941 ex_disable(sc)
1942 struct ex_softc *sc;
1943 {
1944 if (sc->enabled == 1 && sc->disable != NULL) {
1945 (*sc->disable)(sc);
1946 sc->enabled = 0;
1947 }
1948 }
1949
1950 void
1951 ex_power(why, arg)
1952 int why;
1953 void *arg;
1954 {
1955 struct ex_softc *sc = (void *)arg;
1956 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1957 int s;
1958
1959 s = splnet();
1960 switch (why) {
1961 case PWR_SUSPEND:
1962 case PWR_STANDBY:
1963 ex_stop(ifp, 0);
1964 if (sc->power != NULL)
1965 (*sc->power)(sc, why);
1966 break;
1967 case PWR_RESUME:
1968 if (ifp->if_flags & IFF_UP) {
1969 if (sc->power != NULL)
1970 (*sc->power)(sc, why);
1971 ex_init(ifp);
1972 }
1973 break;
1974 case PWR_SOFTSUSPEND:
1975 case PWR_SOFTSTANDBY:
1976 case PWR_SOFTRESUME:
1977 break;
1978 }
1979 splx(s);
1980 }
1981