gem.c revision 1.104 1 1.104 ozaki /* $NetBSD: gem.c,v 1.104 2016/02/09 08:32:10 ozaki-r Exp $ */
2 1.1 eeh
3 1.1 eeh /*
4 1.31 heas *
5 1.1 eeh * Copyright (C) 2001 Eduardo Horvath.
6 1.68 jdc * Copyright (c) 2001-2003 Thomas Moestl
7 1.1 eeh * All rights reserved.
8 1.1 eeh *
9 1.1 eeh *
10 1.1 eeh * Redistribution and use in source and binary forms, with or without
11 1.1 eeh * modification, are permitted provided that the following conditions
12 1.1 eeh * are met:
13 1.1 eeh * 1. Redistributions of source code must retain the above copyright
14 1.1 eeh * notice, this list of conditions and the following disclaimer.
15 1.1 eeh * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 eeh * notice, this list of conditions and the following disclaimer in the
17 1.1 eeh * documentation and/or other materials provided with the distribution.
18 1.31 heas *
19 1.1 eeh * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
20 1.1 eeh * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.1 eeh * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 eeh * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
23 1.1 eeh * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 eeh * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.1 eeh * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 eeh * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 eeh * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 eeh * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 eeh * SUCH DAMAGE.
30 1.1 eeh *
31 1.1 eeh */
32 1.1 eeh
33 1.1 eeh /*
34 1.68 jdc * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35 1.68 jdc * See `GEM Gigabit Ethernet ASIC Specification'
36 1.68 jdc * http://www.sun.com/processors/manuals/ge.pdf
37 1.1 eeh */
38 1.10 lukem
39 1.10 lukem #include <sys/cdefs.h>
40 1.104 ozaki __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.104 2016/02/09 08:32:10 ozaki-r Exp $");
41 1.1 eeh
42 1.35 heas #include "opt_inet.h"
43 1.1 eeh
44 1.1 eeh #include <sys/param.h>
45 1.31 heas #include <sys/systm.h>
46 1.1 eeh #include <sys/callout.h>
47 1.31 heas #include <sys/mbuf.h>
48 1.1 eeh #include <sys/syslog.h>
49 1.1 eeh #include <sys/malloc.h>
50 1.1 eeh #include <sys/kernel.h>
51 1.1 eeh #include <sys/socket.h>
52 1.1 eeh #include <sys/ioctl.h>
53 1.1 eeh #include <sys/errno.h>
54 1.1 eeh #include <sys/device.h>
55 1.1 eeh
56 1.1 eeh #include <machine/endian.h>
57 1.1 eeh
58 1.1 eeh #include <net/if.h>
59 1.1 eeh #include <net/if_dl.h>
60 1.1 eeh #include <net/if_media.h>
61 1.1 eeh #include <net/if_ether.h>
62 1.1 eeh
63 1.35 heas #ifdef INET
64 1.35 heas #include <netinet/in.h>
65 1.35 heas #include <netinet/in_systm.h>
66 1.35 heas #include <netinet/in_var.h>
67 1.35 heas #include <netinet/ip.h>
68 1.35 heas #include <netinet/tcp.h>
69 1.35 heas #include <netinet/udp.h>
70 1.35 heas #endif
71 1.35 heas
72 1.1 eeh #include <net/bpf.h>
73 1.1 eeh
74 1.60 ad #include <sys/bus.h>
75 1.60 ad #include <sys/intr.h>
76 1.1 eeh
77 1.1 eeh #include <dev/mii/mii.h>
78 1.1 eeh #include <dev/mii/miivar.h>
79 1.1 eeh #include <dev/mii/mii_bitbang.h>
80 1.1 eeh
81 1.1 eeh #include <dev/ic/gemreg.h>
82 1.1 eeh #include <dev/ic/gemvar.h>
83 1.1 eeh
84 1.1 eeh #define TRIES 10000
85 1.1 eeh
86 1.85 dyoung static void gem_inten(struct gem_softc *);
87 1.41 christos static void gem_start(struct ifnet *);
88 1.41 christos static void gem_stop(struct ifnet *, int);
89 1.53 christos int gem_ioctl(struct ifnet *, u_long, void *);
90 1.34 perry void gem_tick(void *);
91 1.34 perry void gem_watchdog(struct ifnet *);
92 1.99 jdc void gem_rx_watchdog(void *);
93 1.68 jdc void gem_pcs_start(struct gem_softc *sc);
94 1.68 jdc void gem_pcs_stop(struct gem_softc *sc, int);
95 1.34 perry int gem_init(struct ifnet *);
96 1.1 eeh void gem_init_regs(struct gem_softc *sc);
97 1.1 eeh static int gem_ringsize(int sz);
98 1.41 christos static int gem_meminit(struct gem_softc *);
99 1.34 perry void gem_mifinit(struct gem_softc *);
100 1.50 martin static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
101 1.50 martin u_int32_t, u_int32_t);
102 1.34 perry void gem_reset(struct gem_softc *);
103 1.1 eeh int gem_reset_rx(struct gem_softc *sc);
104 1.68 jdc static void gem_reset_rxdma(struct gem_softc *sc);
105 1.68 jdc static void gem_rx_common(struct gem_softc *sc);
106 1.1 eeh int gem_reset_tx(struct gem_softc *sc);
107 1.1 eeh int gem_disable_rx(struct gem_softc *sc);
108 1.1 eeh int gem_disable_tx(struct gem_softc *sc);
109 1.41 christos static void gem_rxdrain(struct gem_softc *sc);
110 1.1 eeh int gem_add_rxbuf(struct gem_softc *sc, int idx);
111 1.34 perry void gem_setladrf(struct gem_softc *);
112 1.1 eeh
113 1.1 eeh /* MII methods & callbacks */
114 1.84 cegger static int gem_mii_readreg(device_t, int, int);
115 1.84 cegger static void gem_mii_writereg(device_t, int, int, int);
116 1.100 matt static void gem_mii_statchg(struct ifnet *);
117 1.34 perry
118 1.79 dyoung static int gem_ifflags_cb(struct ethercom *);
119 1.79 dyoung
120 1.68 jdc void gem_statuschange(struct gem_softc *);
121 1.68 jdc
122 1.69 dyoung int gem_ser_mediachange(struct ifnet *);
123 1.69 dyoung void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
124 1.34 perry
125 1.85 dyoung static void gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
126 1.85 dyoung
127 1.34 perry struct mbuf *gem_get(struct gem_softc *, int, int);
128 1.34 perry int gem_put(struct gem_softc *, int, struct mbuf *);
129 1.34 perry void gem_read(struct gem_softc *, int, int);
130 1.68 jdc int gem_pint(struct gem_softc *);
131 1.34 perry int gem_eint(struct gem_softc *, u_int);
132 1.34 perry int gem_rint(struct gem_softc *);
133 1.34 perry int gem_tint(struct gem_softc *);
134 1.34 perry void gem_power(int, void *);
135 1.1 eeh
136 1.1 eeh #ifdef GEM_DEBUG
137 1.67 dyoung static void gem_txsoft_print(const struct gem_softc *, int, int);
138 1.1 eeh #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
139 1.1 eeh printf x
140 1.1 eeh #else
141 1.1 eeh #define DPRINTF(sc, x) /* nothing */
142 1.1 eeh #endif
143 1.1 eeh
144 1.40 bouyer #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
145 1.40 bouyer
146 1.85 dyoung int
147 1.85 dyoung gem_detach(struct gem_softc *sc, int flags)
148 1.85 dyoung {
149 1.88 martin int i;
150 1.85 dyoung struct ifnet *ifp = &sc->sc_ethercom.ec_if;
151 1.91 jdc bus_space_tag_t t = sc->sc_bustag;
152 1.91 jdc bus_space_handle_t h = sc->sc_h1;
153 1.85 dyoung
154 1.85 dyoung /*
155 1.85 dyoung * Free any resources we've allocated during the attach.
156 1.85 dyoung * Do this in reverse order and fall through.
157 1.85 dyoung */
158 1.85 dyoung switch (sc->sc_att_stage) {
159 1.85 dyoung case GEM_ATT_BACKEND_2:
160 1.85 dyoung case GEM_ATT_BACKEND_1:
161 1.85 dyoung case GEM_ATT_FINISHED:
162 1.91 jdc bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
163 1.85 dyoung gem_stop(&sc->sc_ethercom.ec_if, 1);
164 1.85 dyoung
165 1.85 dyoung #ifdef GEM_COUNTERS
166 1.85 dyoung for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
167 1.85 dyoung evcnt_detach(&sc->sc_ev_rxhist[i]);
168 1.85 dyoung evcnt_detach(&sc->sc_ev_rxnobuf);
169 1.85 dyoung evcnt_detach(&sc->sc_ev_rxfull);
170 1.85 dyoung evcnt_detach(&sc->sc_ev_rxint);
171 1.85 dyoung evcnt_detach(&sc->sc_ev_txint);
172 1.85 dyoung #endif
173 1.85 dyoung evcnt_detach(&sc->sc_ev_intr);
174 1.85 dyoung
175 1.85 dyoung rnd_detach_source(&sc->rnd_source);
176 1.85 dyoung ether_ifdetach(ifp);
177 1.85 dyoung if_detach(ifp);
178 1.85 dyoung ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
179 1.86 martin
180 1.86 martin callout_destroy(&sc->sc_tick_ch);
181 1.99 jdc callout_destroy(&sc->sc_rx_watchdog);
182 1.86 martin
183 1.85 dyoung /*FALLTHROUGH*/
184 1.85 dyoung case GEM_ATT_MII:
185 1.85 dyoung sc->sc_att_stage = GEM_ATT_MII;
186 1.88 martin mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
187 1.85 dyoung /*FALLTHROUGH*/
188 1.85 dyoung case GEM_ATT_7:
189 1.85 dyoung for (i = 0; i < GEM_NRXDESC; i++) {
190 1.85 dyoung if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
191 1.85 dyoung bus_dmamap_destroy(sc->sc_dmatag,
192 1.85 dyoung sc->sc_rxsoft[i].rxs_dmamap);
193 1.85 dyoung }
194 1.85 dyoung /*FALLTHROUGH*/
195 1.85 dyoung case GEM_ATT_6:
196 1.85 dyoung for (i = 0; i < GEM_TXQUEUELEN; i++) {
197 1.85 dyoung if (sc->sc_txsoft[i].txs_dmamap != NULL)
198 1.85 dyoung bus_dmamap_destroy(sc->sc_dmatag,
199 1.85 dyoung sc->sc_txsoft[i].txs_dmamap);
200 1.85 dyoung }
201 1.85 dyoung bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
202 1.85 dyoung /*FALLTHROUGH*/
203 1.85 dyoung case GEM_ATT_5:
204 1.86 martin bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
205 1.85 dyoung /*FALLTHROUGH*/
206 1.85 dyoung case GEM_ATT_4:
207 1.86 martin bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
208 1.85 dyoung /*FALLTHROUGH*/
209 1.85 dyoung case GEM_ATT_3:
210 1.85 dyoung bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
211 1.85 dyoung /*FALLTHROUGH*/
212 1.85 dyoung case GEM_ATT_2:
213 1.85 dyoung bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
214 1.85 dyoung sizeof(struct gem_control_data));
215 1.85 dyoung /*FALLTHROUGH*/
216 1.85 dyoung case GEM_ATT_1:
217 1.85 dyoung bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
218 1.85 dyoung /*FALLTHROUGH*/
219 1.85 dyoung case GEM_ATT_0:
220 1.85 dyoung sc->sc_att_stage = GEM_ATT_0;
221 1.85 dyoung /*FALLTHROUGH*/
222 1.85 dyoung case GEM_ATT_BACKEND_0:
223 1.85 dyoung break;
224 1.85 dyoung }
225 1.88 martin return 0;
226 1.85 dyoung }
227 1.85 dyoung
228 1.85 dyoung static void
229 1.85 dyoung gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
230 1.85 dyoung {
231 1.85 dyoung cfattach_t ca = device_cfattach(sc->sc_dev);
232 1.85 dyoung
233 1.85 dyoung sc->sc_att_stage = stage;
234 1.85 dyoung (*ca->ca_detach)(sc->sc_dev, 0);
235 1.85 dyoung }
236 1.1 eeh
237 1.1 eeh /*
238 1.6 thorpej * gem_attach:
239 1.1 eeh *
240 1.1 eeh * Attach a Gem interface to the system.
241 1.1 eeh */
242 1.1 eeh void
243 1.81 dsl gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
244 1.1 eeh {
245 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
246 1.1 eeh struct mii_data *mii = &sc->sc_mii;
247 1.68 jdc bus_space_tag_t t = sc->sc_bustag;
248 1.68 jdc bus_space_handle_t h = sc->sc_h1;
249 1.15 matt struct ifmedia_entry *ifm;
250 1.89 jdc int i, error, phyaddr;
251 1.15 matt u_int32_t v;
252 1.40 bouyer char *nullbuf;
253 1.1 eeh
254 1.1 eeh /* Make sure the chip is stopped. */
255 1.1 eeh ifp->if_softc = sc;
256 1.1 eeh gem_reset(sc);
257 1.1 eeh
258 1.1 eeh /*
259 1.1 eeh * Allocate the control data structures, and create and load the
260 1.40 bouyer * DMA map for it. gem_control_data is 9216 bytes, we have space for
261 1.40 bouyer * the padding buffer in the bus_dmamem_alloc()'d memory.
262 1.1 eeh */
263 1.1 eeh if ((error = bus_dmamem_alloc(sc->sc_dmatag,
264 1.40 bouyer sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
265 1.40 bouyer 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
266 1.85 dyoung aprint_error_dev(sc->sc_dev,
267 1.76 cegger "unable to allocate control data, error = %d\n",
268 1.76 cegger error);
269 1.85 dyoung gem_partial_detach(sc, GEM_ATT_0);
270 1.85 dyoung return;
271 1.1 eeh }
272 1.1 eeh
273 1.68 jdc /* XXX should map this in with correct endianness */
274 1.1 eeh if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
275 1.53 christos sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
276 1.1 eeh BUS_DMA_COHERENT)) != 0) {
277 1.85 dyoung aprint_error_dev(sc->sc_dev,
278 1.85 dyoung "unable to map control data, error = %d\n", error);
279 1.85 dyoung gem_partial_detach(sc, GEM_ATT_1);
280 1.85 dyoung return;
281 1.1 eeh }
282 1.1 eeh
283 1.40 bouyer nullbuf =
284 1.54 christos (char *)sc->sc_control_data + sizeof(struct gem_control_data);
285 1.40 bouyer
286 1.1 eeh if ((error = bus_dmamap_create(sc->sc_dmatag,
287 1.1 eeh sizeof(struct gem_control_data), 1,
288 1.1 eeh sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
289 1.85 dyoung aprint_error_dev(sc->sc_dev,
290 1.85 dyoung "unable to create control data DMA map, error = %d\n",
291 1.85 dyoung error);
292 1.85 dyoung gem_partial_detach(sc, GEM_ATT_2);
293 1.85 dyoung return;
294 1.1 eeh }
295 1.1 eeh
296 1.1 eeh if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
297 1.1 eeh sc->sc_control_data, sizeof(struct gem_control_data), NULL,
298 1.1 eeh 0)) != 0) {
299 1.85 dyoung aprint_error_dev(sc->sc_dev,
300 1.76 cegger "unable to load control data DMA map, error = %d\n",
301 1.76 cegger error);
302 1.85 dyoung gem_partial_detach(sc, GEM_ATT_3);
303 1.85 dyoung return;
304 1.1 eeh }
305 1.1 eeh
306 1.40 bouyer memset(nullbuf, 0, ETHER_MIN_TX);
307 1.40 bouyer if ((error = bus_dmamap_create(sc->sc_dmatag,
308 1.40 bouyer ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
309 1.85 dyoung aprint_error_dev(sc->sc_dev,
310 1.85 dyoung "unable to create padding DMA map, error = %d\n", error);
311 1.85 dyoung gem_partial_detach(sc, GEM_ATT_4);
312 1.85 dyoung return;
313 1.40 bouyer }
314 1.40 bouyer
315 1.40 bouyer if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
316 1.40 bouyer nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
317 1.85 dyoung aprint_error_dev(sc->sc_dev,
318 1.85 dyoung "unable to load padding DMA map, error = %d\n", error);
319 1.85 dyoung gem_partial_detach(sc, GEM_ATT_5);
320 1.85 dyoung return;
321 1.40 bouyer }
322 1.40 bouyer
323 1.40 bouyer bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
324 1.40 bouyer BUS_DMASYNC_PREWRITE);
325 1.40 bouyer
326 1.1 eeh /*
327 1.1 eeh * Initialize the transmit job descriptors.
328 1.1 eeh */
329 1.1 eeh SIMPLEQ_INIT(&sc->sc_txfreeq);
330 1.1 eeh SIMPLEQ_INIT(&sc->sc_txdirtyq);
331 1.1 eeh
332 1.1 eeh /*
333 1.1 eeh * Create the transmit buffer DMA maps.
334 1.1 eeh */
335 1.1 eeh for (i = 0; i < GEM_TXQUEUELEN; i++) {
336 1.1 eeh struct gem_txsoft *txs;
337 1.1 eeh
338 1.1 eeh txs = &sc->sc_txsoft[i];
339 1.1 eeh txs->txs_mbuf = NULL;
340 1.15 matt if ((error = bus_dmamap_create(sc->sc_dmatag,
341 1.15 matt ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
342 1.15 matt ETHER_MAX_LEN_JUMBO, 0, 0,
343 1.1 eeh &txs->txs_dmamap)) != 0) {
344 1.85 dyoung aprint_error_dev(sc->sc_dev,
345 1.85 dyoung "unable to create tx DMA map %d, error = %d\n",
346 1.85 dyoung i, error);
347 1.85 dyoung gem_partial_detach(sc, GEM_ATT_6);
348 1.85 dyoung return;
349 1.1 eeh }
350 1.1 eeh SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
351 1.1 eeh }
352 1.1 eeh
353 1.1 eeh /*
354 1.1 eeh * Create the receive buffer DMA maps.
355 1.1 eeh */
356 1.1 eeh for (i = 0; i < GEM_NRXDESC; i++) {
357 1.1 eeh if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
358 1.1 eeh MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
359 1.85 dyoung aprint_error_dev(sc->sc_dev,
360 1.85 dyoung "unable to create rx DMA map %d, error = %d\n",
361 1.85 dyoung i, error);
362 1.85 dyoung gem_partial_detach(sc, GEM_ATT_7);
363 1.85 dyoung return;
364 1.1 eeh }
365 1.1 eeh sc->sc_rxsoft[i].rxs_mbuf = NULL;
366 1.1 eeh }
367 1.1 eeh
368 1.68 jdc /* Initialize ifmedia structures and MII info */
369 1.68 jdc mii->mii_ifp = ifp;
370 1.68 jdc mii->mii_readreg = gem_mii_readreg;
371 1.68 jdc mii->mii_writereg = gem_mii_writereg;
372 1.68 jdc mii->mii_statchg = gem_mii_statchg;
373 1.68 jdc
374 1.69 dyoung sc->sc_ethercom.ec_mii = mii;
375 1.68 jdc
376 1.68 jdc /*
377 1.68 jdc * Initialization based on `GEM Gigabit Ethernet ASIC Specification'
378 1.68 jdc * Section 3.2.1 `Initialization Sequence'.
379 1.68 jdc * However, we can't assume SERDES or Serialink if neither
380 1.68 jdc * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
381 1.68 jdc * being set, as both are set on Sun X1141A (with SERDES). So,
382 1.68 jdc * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
383 1.89 jdc * Also, for variants that report 2 PHY's, we prefer the external
384 1.89 jdc * PHY over the internal PHY, so we look for that first.
385 1.68 jdc */
386 1.68 jdc gem_mifinit(sc);
387 1.68 jdc
388 1.68 jdc if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
389 1.69 dyoung ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
390 1.69 dyoung ether_mediastatus);
391 1.89 jdc /* Look for external PHY */
392 1.89 jdc if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
393 1.89 jdc sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
394 1.89 jdc bus_space_write_4(t, h, GEM_MIF_CONFIG,
395 1.89 jdc sc->sc_mif_config);
396 1.89 jdc switch (sc->sc_variant) {
397 1.89 jdc case GEM_SUN_ERI:
398 1.89 jdc phyaddr = GEM_PHYAD_EXTERNAL;
399 1.89 jdc break;
400 1.89 jdc default:
401 1.89 jdc phyaddr = MII_PHY_ANY;
402 1.89 jdc break;
403 1.89 jdc }
404 1.89 jdc mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
405 1.89 jdc MII_OFFSET_ANY, MIIF_FORCEANEG);
406 1.89 jdc }
407 1.89 jdc #ifdef GEM_DEBUG
408 1.89 jdc else
409 1.89 jdc aprint_debug_dev(sc->sc_dev, "using external PHY\n");
410 1.89 jdc #endif
411 1.89 jdc /* Look for internal PHY if no external PHY was found */
412 1.89 jdc if (LIST_EMPTY(&mii->mii_phys) &&
413 1.89 jdc sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) {
414 1.89 jdc sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
415 1.89 jdc bus_space_write_4(t, h, GEM_MIF_CONFIG,
416 1.89 jdc sc->sc_mif_config);
417 1.89 jdc switch (sc->sc_variant) {
418 1.89 jdc case GEM_SUN_ERI:
419 1.89 jdc case GEM_APPLE_K2_GMAC:
420 1.89 jdc phyaddr = GEM_PHYAD_INTERNAL;
421 1.89 jdc break;
422 1.89 jdc case GEM_APPLE_GMAC:
423 1.89 jdc phyaddr = GEM_PHYAD_EXTERNAL;
424 1.89 jdc break;
425 1.89 jdc default:
426 1.89 jdc phyaddr = MII_PHY_ANY;
427 1.89 jdc break;
428 1.89 jdc }
429 1.89 jdc mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
430 1.89 jdc MII_OFFSET_ANY, MIIF_FORCEANEG);
431 1.89 jdc #ifdef GEM_DEBUG
432 1.89 jdc if (!LIST_EMPTY(&mii->mii_phys))
433 1.89 jdc aprint_debug_dev(sc->sc_dev,
434 1.89 jdc "using internal PHY\n");
435 1.89 jdc #endif
436 1.89 jdc }
437 1.69 dyoung if (LIST_EMPTY(&mii->mii_phys)) {
438 1.68 jdc /* No PHY attached */
439 1.85 dyoung aprint_error_dev(sc->sc_dev,
440 1.85 dyoung "PHY probe failed\n");
441 1.85 dyoung gem_partial_detach(sc, GEM_ATT_MII);
442 1.85 dyoung return;
443 1.68 jdc } else {
444 1.69 dyoung struct mii_softc *child;
445 1.69 dyoung
446 1.68 jdc /*
447 1.68 jdc * Walk along the list of attached MII devices and
448 1.68 jdc * establish an `MII instance' to `PHY number'
449 1.68 jdc * mapping.
450 1.68 jdc */
451 1.69 dyoung LIST_FOREACH(child, &mii->mii_phys, mii_list) {
452 1.68 jdc /*
453 1.68 jdc * Note: we support just one PHY: the internal
454 1.68 jdc * or external MII is already selected for us
455 1.68 jdc * by the GEM_MIF_CONFIG register.
456 1.68 jdc */
457 1.68 jdc if (child->mii_phy > 1 || child->mii_inst > 0) {
458 1.85 dyoung aprint_error_dev(sc->sc_dev,
459 1.76 cegger "cannot accommodate MII device"
460 1.68 jdc " %s at PHY %d, instance %d\n",
461 1.77 xtraeme device_xname(child->mii_dev),
462 1.68 jdc child->mii_phy, child->mii_inst);
463 1.68 jdc continue;
464 1.68 jdc }
465 1.68 jdc sc->sc_phys[child->mii_inst] = child->mii_phy;
466 1.68 jdc }
467 1.68 jdc
468 1.68 jdc if (sc->sc_variant != GEM_SUN_ERI)
469 1.68 jdc bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
470 1.68 jdc GEM_MII_DATAPATH_MII);
471 1.68 jdc
472 1.68 jdc /*
473 1.68 jdc * XXX - we can really do the following ONLY if the
474 1.68 jdc * PHY indeed has the auto negotiation capability!!
475 1.68 jdc */
476 1.69 dyoung ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
477 1.68 jdc }
478 1.68 jdc } else {
479 1.69 dyoung ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
480 1.69 dyoung gem_ser_mediastatus);
481 1.68 jdc /* SERDES or Serialink */
482 1.68 jdc if (sc->sc_flags & GEM_SERDES) {
483 1.68 jdc bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
484 1.68 jdc GEM_MII_DATAPATH_SERDES);
485 1.68 jdc } else {
486 1.68 jdc sc->sc_flags |= GEM_SERIAL;
487 1.68 jdc bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
488 1.68 jdc GEM_MII_DATAPATH_SERIAL);
489 1.68 jdc }
490 1.68 jdc
491 1.85 dyoung aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
492 1.68 jdc sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
493 1.68 jdc
494 1.69 dyoung ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
495 1.68 jdc /* Check for FDX and HDX capabilities */
496 1.68 jdc sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
497 1.68 jdc if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
498 1.69 dyoung ifmedia_add(&sc->sc_mii.mii_media,
499 1.68 jdc IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
500 1.68 jdc aprint_normal("1000baseSX-FDX, ");
501 1.68 jdc }
502 1.68 jdc if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
503 1.69 dyoung ifmedia_add(&sc->sc_mii.mii_media,
504 1.68 jdc IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
505 1.68 jdc aprint_normal("1000baseSX-HDX, ");
506 1.68 jdc }
507 1.69 dyoung ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
508 1.68 jdc sc->sc_mii_media = IFM_AUTO;
509 1.68 jdc aprint_normal("auto\n");
510 1.68 jdc
511 1.68 jdc gem_pcs_stop(sc, 1);
512 1.68 jdc }
513 1.68 jdc
514 1.1 eeh /*
515 1.1 eeh * From this point forward, the attachment cannot fail. A failure
516 1.1 eeh * before this point releases all resources that may have been
517 1.1 eeh * allocated.
518 1.1 eeh */
519 1.1 eeh
520 1.1 eeh /* Announce ourselves. */
521 1.85 dyoung aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
522 1.6 thorpej ether_sprintf(enaddr));
523 1.1 eeh
524 1.15 matt /* Get RX FIFO size */
525 1.15 matt sc->sc_rxfifosize = 64 *
526 1.68 jdc bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
527 1.24 thorpej aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
528 1.15 matt
529 1.15 matt /* Get TX FIFO size */
530 1.68 jdc v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
531 1.24 thorpej aprint_normal(", %uKB TX fifo\n", v / 16);
532 1.15 matt
533 1.1 eeh /* Initialize ifnet structure. */
534 1.85 dyoung strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
535 1.1 eeh ifp->if_softc = sc;
536 1.1 eeh ifp->if_flags =
537 1.1 eeh IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
538 1.41 christos sc->sc_if_flags = ifp->if_flags;
539 1.85 dyoung #if 0
540 1.73 jdc /*
541 1.73 jdc * The GEM hardware supports basic TCP checksum offloading only.
542 1.73 jdc * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
543 1.73 jdc * have bugs in the receive checksum, so don't enable it for now.
544 1.85 dyoung */
545 1.73 jdc if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
546 1.73 jdc (GEM_IS_APPLE(sc) &&
547 1.73 jdc (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
548 1.73 jdc ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
549 1.85 dyoung #endif
550 1.73 jdc ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
551 1.1 eeh ifp->if_start = gem_start;
552 1.1 eeh ifp->if_ioctl = gem_ioctl;
553 1.1 eeh ifp->if_watchdog = gem_watchdog;
554 1.1 eeh ifp->if_stop = gem_stop;
555 1.1 eeh ifp->if_init = gem_init;
556 1.1 eeh IFQ_SET_READY(&ifp->if_snd);
557 1.1 eeh
558 1.15 matt /*
559 1.15 matt * If we support GigE media, we support jumbo frames too.
560 1.15 matt * Unless we are Apple.
561 1.15 matt */
562 1.69 dyoung TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
563 1.15 matt if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
564 1.15 matt IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
565 1.15 matt IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
566 1.15 matt IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
567 1.70 jdc if (!GEM_IS_APPLE(sc))
568 1.15 matt sc->sc_ethercom.ec_capabilities
569 1.15 matt |= ETHERCAP_JUMBO_MTU;
570 1.15 matt sc->sc_flags |= GEM_GIGABIT;
571 1.15 matt break;
572 1.15 matt }
573 1.15 matt }
574 1.15 matt
575 1.1 eeh /* claim 802.1q capability */
576 1.1 eeh sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
577 1.1 eeh
578 1.1 eeh /* Attach the interface. */
579 1.1 eeh if_attach(ifp);
580 1.6 thorpej ether_ifattach(ifp, enaddr);
581 1.79 dyoung ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
582 1.1 eeh
583 1.85 dyoung rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
584 1.102 tls RND_TYPE_NET, RND_FLAG_DEFAULT);
585 1.1 eeh
586 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
587 1.85 dyoung NULL, device_xname(sc->sc_dev), "interrupts");
588 1.19 matt #ifdef GEM_COUNTERS
589 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
590 1.85 dyoung &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
591 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
592 1.85 dyoung &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
593 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
594 1.85 dyoung &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
595 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
596 1.85 dyoung &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
597 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
598 1.85 dyoung &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
599 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
600 1.85 dyoung &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
601 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
602 1.85 dyoung &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
603 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
604 1.85 dyoung &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
605 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
606 1.85 dyoung &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
607 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
608 1.85 dyoung &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
609 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
610 1.85 dyoung &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
611 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
612 1.85 dyoung &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
613 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
614 1.85 dyoung &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
615 1.19 matt #endif
616 1.1 eeh
617 1.85 dyoung callout_init(&sc->sc_tick_ch, 0);
618 1.99 jdc callout_init(&sc->sc_rx_watchdog, 0);
619 1.99 jdc callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
620 1.1 eeh
621 1.85 dyoung sc->sc_att_stage = GEM_ATT_FINISHED;
622 1.1 eeh
623 1.1 eeh return;
624 1.1 eeh }
625 1.1 eeh
626 1.1 eeh void
627 1.81 dsl gem_tick(void *arg)
628 1.1 eeh {
629 1.1 eeh struct gem_softc *sc = arg;
630 1.1 eeh int s;
631 1.1 eeh
632 1.68 jdc if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
633 1.68 jdc /*
634 1.68 jdc * We have to reset everything if we failed to get a
635 1.68 jdc * PCS interrupt. Restarting the callout is handled
636 1.68 jdc * in gem_pcs_start().
637 1.68 jdc */
638 1.68 jdc gem_init(&sc->sc_ethercom.ec_if);
639 1.68 jdc } else {
640 1.68 jdc s = splnet();
641 1.68 jdc mii_tick(&sc->sc_mii);
642 1.68 jdc splx(s);
643 1.68 jdc callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
644 1.68 jdc }
645 1.1 eeh }
646 1.1 eeh
647 1.41 christos static int
648 1.81 dsl gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
649 1.41 christos {
650 1.41 christos int i;
651 1.41 christos u_int32_t reg;
652 1.46 blymn
653 1.41 christos for (i = TRIES; i--; DELAY(100)) {
654 1.50 martin reg = bus_space_read_4(sc->sc_bustag, h, r);
655 1.50 martin if ((reg & clr) == 0 && (reg & set) == set)
656 1.41 christos return (1);
657 1.41 christos }
658 1.41 christos return (0);
659 1.41 christos }
660 1.41 christos
661 1.1 eeh void
662 1.81 dsl gem_reset(struct gem_softc *sc)
663 1.1 eeh {
664 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
665 1.50 martin bus_space_handle_t h = sc->sc_h2;
666 1.1 eeh int s;
667 1.1 eeh
668 1.1 eeh s = splnet();
669 1.85 dyoung DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
670 1.1 eeh gem_reset_rx(sc);
671 1.1 eeh gem_reset_tx(sc);
672 1.1 eeh
673 1.1 eeh /* Do a full reset */
674 1.1 eeh bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
675 1.50 martin if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
676 1.85 dyoung aprint_error_dev(sc->sc_dev, "cannot reset device\n");
677 1.1 eeh splx(s);
678 1.1 eeh }
679 1.1 eeh
680 1.1 eeh
681 1.1 eeh /*
682 1.1 eeh * gem_rxdrain:
683 1.1 eeh *
684 1.1 eeh * Drain the receive queue.
685 1.1 eeh */
686 1.41 christos static void
687 1.1 eeh gem_rxdrain(struct gem_softc *sc)
688 1.1 eeh {
689 1.1 eeh struct gem_rxsoft *rxs;
690 1.1 eeh int i;
691 1.1 eeh
692 1.1 eeh for (i = 0; i < GEM_NRXDESC; i++) {
693 1.1 eeh rxs = &sc->sc_rxsoft[i];
694 1.1 eeh if (rxs->rxs_mbuf != NULL) {
695 1.41 christos bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
696 1.41 christos rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
697 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
698 1.1 eeh m_freem(rxs->rxs_mbuf);
699 1.1 eeh rxs->rxs_mbuf = NULL;
700 1.1 eeh }
701 1.1 eeh }
702 1.1 eeh }
703 1.1 eeh
704 1.31 heas /*
705 1.1 eeh * Reset the whole thing.
706 1.1 eeh */
707 1.41 christos static void
708 1.1 eeh gem_stop(struct ifnet *ifp, int disable)
709 1.1 eeh {
710 1.85 dyoung struct gem_softc *sc = ifp->if_softc;
711 1.1 eeh struct gem_txsoft *txs;
712 1.1 eeh
713 1.85 dyoung DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
714 1.1 eeh
715 1.95 martin callout_halt(&sc->sc_tick_ch, NULL);
716 1.101 jdc callout_halt(&sc->sc_rx_watchdog, NULL);
717 1.68 jdc if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
718 1.68 jdc gem_pcs_stop(sc, disable);
719 1.68 jdc else
720 1.68 jdc mii_down(&sc->sc_mii);
721 1.1 eeh
722 1.1 eeh /* XXX - Should we reset these instead? */
723 1.68 jdc gem_disable_tx(sc);
724 1.1 eeh gem_disable_rx(sc);
725 1.1 eeh
726 1.1 eeh /*
727 1.1 eeh * Release any queued transmit buffers.
728 1.1 eeh */
729 1.1 eeh while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
730 1.21 lukem SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
731 1.1 eeh if (txs->txs_mbuf != NULL) {
732 1.41 christos bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
733 1.41 christos txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
734 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
735 1.1 eeh m_freem(txs->txs_mbuf);
736 1.1 eeh txs->txs_mbuf = NULL;
737 1.1 eeh }
738 1.1 eeh SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
739 1.1 eeh }
740 1.1 eeh
741 1.1 eeh /*
742 1.1 eeh * Mark the interface down and cancel the watchdog timer.
743 1.1 eeh */
744 1.1 eeh ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
745 1.41 christos sc->sc_if_flags = ifp->if_flags;
746 1.1 eeh ifp->if_timer = 0;
747 1.75 dyoung
748 1.75 dyoung if (disable)
749 1.75 dyoung gem_rxdrain(sc);
750 1.1 eeh }
751 1.1 eeh
752 1.1 eeh
753 1.1 eeh /*
754 1.1 eeh * Reset the receiver
755 1.1 eeh */
756 1.1 eeh int
757 1.1 eeh gem_reset_rx(struct gem_softc *sc)
758 1.1 eeh {
759 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
760 1.50 martin bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
761 1.1 eeh
762 1.1 eeh /*
763 1.1 eeh * Resetting while DMA is in progress can cause a bus hang, so we
764 1.1 eeh * disable DMA first.
765 1.1 eeh */
766 1.1 eeh gem_disable_rx(sc);
767 1.1 eeh bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
768 1.68 jdc bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
769 1.1 eeh /* Wait till it finishes */
770 1.50 martin if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
771 1.85 dyoung aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
772 1.99 jdc /* Wait 5ms extra. */
773 1.99 jdc delay(5000);
774 1.1 eeh
775 1.1 eeh /* Finally, reset the ERX */
776 1.50 martin bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
777 1.68 jdc bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
778 1.1 eeh /* Wait till it finishes */
779 1.50 martin if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
780 1.85 dyoung aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
781 1.1 eeh return (1);
782 1.1 eeh }
783 1.1 eeh return (0);
784 1.1 eeh }
785 1.1 eeh
786 1.1 eeh
787 1.1 eeh /*
788 1.68 jdc * Reset the receiver DMA engine.
789 1.68 jdc *
790 1.68 jdc * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
791 1.68 jdc * etc in order to reset the receiver DMA engine only and not do a full
792 1.68 jdc * reset which amongst others also downs the link and clears the FIFOs.
793 1.68 jdc */
794 1.68 jdc static void
795 1.68 jdc gem_reset_rxdma(struct gem_softc *sc)
796 1.68 jdc {
797 1.68 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
798 1.68 jdc bus_space_tag_t t = sc->sc_bustag;
799 1.68 jdc bus_space_handle_t h = sc->sc_h1;
800 1.68 jdc int i;
801 1.68 jdc
802 1.68 jdc if (gem_reset_rx(sc) != 0) {
803 1.68 jdc gem_init(ifp);
804 1.68 jdc return;
805 1.68 jdc }
806 1.68 jdc for (i = 0; i < GEM_NRXDESC; i++)
807 1.68 jdc if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
808 1.68 jdc GEM_UPDATE_RXDESC(sc, i);
809 1.68 jdc sc->sc_rxptr = 0;
810 1.68 jdc GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
811 1.68 jdc GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
812 1.68 jdc
813 1.68 jdc /* Reprogram Descriptor Ring Base Addresses */
814 1.68 jdc /* NOTE: we use only 32-bit DMA addresses here. */
815 1.68 jdc bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
816 1.68 jdc bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
817 1.68 jdc
818 1.68 jdc /* Redo ERX Configuration */
819 1.68 jdc gem_rx_common(sc);
820 1.68 jdc
821 1.68 jdc /* Give the reciever a swift kick */
822 1.68 jdc bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
823 1.68 jdc }
824 1.68 jdc
825 1.68 jdc /*
826 1.68 jdc * Common RX configuration for gem_init() and gem_reset_rxdma().
827 1.68 jdc */
828 1.68 jdc static void
829 1.68 jdc gem_rx_common(struct gem_softc *sc)
830 1.68 jdc {
831 1.68 jdc bus_space_tag_t t = sc->sc_bustag;
832 1.68 jdc bus_space_handle_t h = sc->sc_h1;
833 1.68 jdc u_int32_t v;
834 1.68 jdc
835 1.68 jdc /* Encode Receive Descriptor ring size: four possible values */
836 1.68 jdc v = gem_ringsize(GEM_NRXDESC /*XXX*/);
837 1.68 jdc
838 1.68 jdc /* Set receive h/w checksum offset */
839 1.68 jdc #ifdef INET
840 1.68 jdc v |= (ETHER_HDR_LEN + sizeof(struct ip) +
841 1.68 jdc ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
842 1.68 jdc ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
843 1.68 jdc #endif
844 1.68 jdc
845 1.68 jdc /* Enable RX DMA */
846 1.68 jdc bus_space_write_4(t, h, GEM_RX_CONFIG,
847 1.68 jdc v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
848 1.68 jdc (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
849 1.68 jdc
850 1.68 jdc /*
851 1.68 jdc * The following value is for an OFF Threshold of about 3/4 full
852 1.68 jdc * and an ON Threshold of 1/4 full.
853 1.68 jdc */
854 1.68 jdc bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
855 1.68 jdc (3 * sc->sc_rxfifosize / 256) |
856 1.68 jdc ((sc->sc_rxfifosize / 256) << 12));
857 1.68 jdc bus_space_write_4(t, h, GEM_RX_BLANKING,
858 1.99 jdc (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
859 1.68 jdc }
860 1.68 jdc
861 1.68 jdc /*
862 1.1 eeh * Reset the transmitter
863 1.1 eeh */
864 1.1 eeh int
865 1.1 eeh gem_reset_tx(struct gem_softc *sc)
866 1.1 eeh {
867 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
868 1.50 martin bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
869 1.1 eeh
870 1.1 eeh /*
871 1.1 eeh * Resetting while DMA is in progress can cause a bus hang, so we
872 1.1 eeh * disable DMA first.
873 1.1 eeh */
874 1.1 eeh gem_disable_tx(sc);
875 1.1 eeh bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
876 1.68 jdc bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
877 1.1 eeh /* Wait till it finishes */
878 1.50 martin if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
879 1.85 dyoung aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
880 1.1 eeh /* Wait 5ms extra. */
881 1.1 eeh delay(5000);
882 1.1 eeh
883 1.1 eeh /* Finally, reset the ETX */
884 1.50 martin bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
885 1.68 jdc bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
886 1.1 eeh /* Wait till it finishes */
887 1.50 martin if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
888 1.85 dyoung aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
889 1.1 eeh return (1);
890 1.1 eeh }
891 1.1 eeh return (0);
892 1.1 eeh }
893 1.1 eeh
894 1.1 eeh /*
895 1.1 eeh * disable receiver.
896 1.1 eeh */
897 1.1 eeh int
898 1.1 eeh gem_disable_rx(struct gem_softc *sc)
899 1.1 eeh {
900 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
901 1.50 martin bus_space_handle_t h = sc->sc_h1;
902 1.1 eeh u_int32_t cfg;
903 1.1 eeh
904 1.1 eeh /* Flip the enable bit */
905 1.1 eeh cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
906 1.1 eeh cfg &= ~GEM_MAC_RX_ENABLE;
907 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
908 1.68 jdc bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
909 1.1 eeh /* Wait for it to finish */
910 1.50 martin return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
911 1.1 eeh }
912 1.1 eeh
913 1.1 eeh /*
914 1.1 eeh * disable transmitter.
915 1.1 eeh */
916 1.1 eeh int
917 1.1 eeh gem_disable_tx(struct gem_softc *sc)
918 1.1 eeh {
919 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
920 1.50 martin bus_space_handle_t h = sc->sc_h1;
921 1.1 eeh u_int32_t cfg;
922 1.1 eeh
923 1.1 eeh /* Flip the enable bit */
924 1.1 eeh cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
925 1.1 eeh cfg &= ~GEM_MAC_TX_ENABLE;
926 1.1 eeh bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
927 1.68 jdc bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
928 1.1 eeh /* Wait for it to finish */
929 1.50 martin return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
930 1.1 eeh }
931 1.1 eeh
932 1.1 eeh /*
933 1.1 eeh * Initialize interface.
934 1.1 eeh */
935 1.1 eeh int
936 1.1 eeh gem_meminit(struct gem_softc *sc)
937 1.1 eeh {
938 1.1 eeh struct gem_rxsoft *rxs;
939 1.1 eeh int i, error;
940 1.1 eeh
941 1.1 eeh /*
942 1.1 eeh * Initialize the transmit descriptor ring.
943 1.1 eeh */
944 1.85 dyoung memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
945 1.1 eeh for (i = 0; i < GEM_NTXDESC; i++) {
946 1.1 eeh sc->sc_txdescs[i].gd_flags = 0;
947 1.1 eeh sc->sc_txdescs[i].gd_addr = 0;
948 1.1 eeh }
949 1.1 eeh GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
950 1.1 eeh BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
951 1.14 matt sc->sc_txfree = GEM_NTXDESC-1;
952 1.1 eeh sc->sc_txnext = 0;
953 1.14 matt sc->sc_txwin = 0;
954 1.1 eeh
955 1.1 eeh /*
956 1.1 eeh * Initialize the receive descriptor and receive job
957 1.1 eeh * descriptor rings.
958 1.1 eeh */
959 1.1 eeh for (i = 0; i < GEM_NRXDESC; i++) {
960 1.1 eeh rxs = &sc->sc_rxsoft[i];
961 1.1 eeh if (rxs->rxs_mbuf == NULL) {
962 1.1 eeh if ((error = gem_add_rxbuf(sc, i)) != 0) {
963 1.85 dyoung aprint_error_dev(sc->sc_dev,
964 1.85 dyoung "unable to allocate or map rx "
965 1.1 eeh "buffer %d, error = %d\n",
966 1.76 cegger i, error);
967 1.1 eeh /*
968 1.1 eeh * XXX Should attempt to run with fewer receive
969 1.1 eeh * XXX buffers instead of just failing.
970 1.1 eeh */
971 1.1 eeh gem_rxdrain(sc);
972 1.1 eeh return (1);
973 1.1 eeh }
974 1.1 eeh } else
975 1.1 eeh GEM_INIT_RXDESC(sc, i);
976 1.1 eeh }
977 1.1 eeh sc->sc_rxptr = 0;
978 1.68 jdc sc->sc_meminited = 1;
979 1.68 jdc GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
980 1.68 jdc GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
981 1.1 eeh
982 1.1 eeh return (0);
983 1.1 eeh }
984 1.1 eeh
985 1.1 eeh static int
986 1.1 eeh gem_ringsize(int sz)
987 1.1 eeh {
988 1.1 eeh switch (sz) {
989 1.1 eeh case 32:
990 1.29 christos return GEM_RING_SZ_32;
991 1.1 eeh case 64:
992 1.29 christos return GEM_RING_SZ_64;
993 1.1 eeh case 128:
994 1.29 christos return GEM_RING_SZ_128;
995 1.1 eeh case 256:
996 1.29 christos return GEM_RING_SZ_256;
997 1.1 eeh case 512:
998 1.29 christos return GEM_RING_SZ_512;
999 1.1 eeh case 1024:
1000 1.29 christos return GEM_RING_SZ_1024;
1001 1.1 eeh case 2048:
1002 1.29 christos return GEM_RING_SZ_2048;
1003 1.1 eeh case 4096:
1004 1.29 christos return GEM_RING_SZ_4096;
1005 1.1 eeh case 8192:
1006 1.29 christos return GEM_RING_SZ_8192;
1007 1.1 eeh default:
1008 1.29 christos printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1009 1.29 christos return GEM_RING_SZ_32;
1010 1.1 eeh }
1011 1.1 eeh }
1012 1.1 eeh
1013 1.68 jdc
1014 1.68 jdc /*
1015 1.68 jdc * Start PCS
1016 1.68 jdc */
1017 1.68 jdc void
1018 1.68 jdc gem_pcs_start(struct gem_softc *sc)
1019 1.68 jdc {
1020 1.68 jdc bus_space_tag_t t = sc->sc_bustag;
1021 1.68 jdc bus_space_handle_t h = sc->sc_h1;
1022 1.68 jdc uint32_t v;
1023 1.68 jdc
1024 1.68 jdc #ifdef GEM_DEBUG
1025 1.85 dyoung aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1026 1.68 jdc #endif
1027 1.68 jdc
1028 1.68 jdc /*
1029 1.68 jdc * Set up. We must disable the MII before modifying the
1030 1.68 jdc * GEM_MII_ANAR register
1031 1.68 jdc */
1032 1.68 jdc if (sc->sc_flags & GEM_SERDES) {
1033 1.68 jdc bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1034 1.68 jdc GEM_MII_DATAPATH_SERDES);
1035 1.68 jdc bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1036 1.68 jdc GEM_MII_SLINK_LOOPBACK);
1037 1.68 jdc } else {
1038 1.68 jdc bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1039 1.68 jdc GEM_MII_DATAPATH_SERIAL);
1040 1.68 jdc bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1041 1.68 jdc }
1042 1.68 jdc bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1043 1.68 jdc v = bus_space_read_4(t, h, GEM_MII_ANAR);
1044 1.68 jdc v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1045 1.68 jdc if (sc->sc_mii_media == IFM_AUTO)
1046 1.68 jdc v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1047 1.68 jdc else if (sc->sc_mii_media == IFM_FDX) {
1048 1.68 jdc v |= GEM_MII_ANEG_FUL_DUPLX;
1049 1.68 jdc v &= ~GEM_MII_ANEG_HLF_DUPLX;
1050 1.68 jdc } else if (sc->sc_mii_media == IFM_HDX) {
1051 1.68 jdc v &= ~GEM_MII_ANEG_FUL_DUPLX;
1052 1.68 jdc v |= GEM_MII_ANEG_HLF_DUPLX;
1053 1.68 jdc }
1054 1.68 jdc
1055 1.68 jdc /* Configure link. */
1056 1.68 jdc bus_space_write_4(t, h, GEM_MII_ANAR, v);
1057 1.68 jdc bus_space_write_4(t, h, GEM_MII_CONTROL,
1058 1.68 jdc GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1059 1.68 jdc bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1060 1.68 jdc gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1061 1.68 jdc
1062 1.68 jdc /* Start the 10 second timer */
1063 1.68 jdc callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
1064 1.68 jdc }
1065 1.68 jdc
1066 1.68 jdc /*
1067 1.68 jdc * Stop PCS
1068 1.68 jdc */
1069 1.68 jdc void
1070 1.68 jdc gem_pcs_stop(struct gem_softc *sc, int disable)
1071 1.68 jdc {
1072 1.68 jdc bus_space_tag_t t = sc->sc_bustag;
1073 1.68 jdc bus_space_handle_t h = sc->sc_h1;
1074 1.68 jdc
1075 1.68 jdc #ifdef GEM_DEBUG
1076 1.85 dyoung aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1077 1.68 jdc #endif
1078 1.68 jdc
1079 1.68 jdc /* Tell link partner that we're going away */
1080 1.68 jdc bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1081 1.68 jdc
1082 1.68 jdc /*
1083 1.68 jdc * Disable PCS MII. The documentation suggests that setting
1084 1.68 jdc * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1085 1.68 jdc * negotiation will shut down the link. However, it appears
1086 1.68 jdc * that we also need to unset the datapath mode.
1087 1.68 jdc */
1088 1.68 jdc bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1089 1.68 jdc bus_space_write_4(t, h, GEM_MII_CONTROL,
1090 1.68 jdc GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1091 1.68 jdc bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1092 1.68 jdc bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1093 1.68 jdc
1094 1.68 jdc if (disable) {
1095 1.68 jdc if (sc->sc_flags & GEM_SERDES)
1096 1.68 jdc bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1097 1.68 jdc GEM_MII_SLINK_POWER_OFF);
1098 1.68 jdc else
1099 1.68 jdc bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1100 1.68 jdc GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1101 1.68 jdc }
1102 1.68 jdc
1103 1.68 jdc sc->sc_flags &= ~GEM_LINK;
1104 1.68 jdc sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1105 1.68 jdc sc->sc_mii.mii_media_status = IFM_AVALID;
1106 1.68 jdc }
1107 1.68 jdc
1108 1.68 jdc
1109 1.1 eeh /*
1110 1.1 eeh * Initialization of interface; set up initialization block
1111 1.1 eeh * and transmit/receive descriptor rings.
1112 1.1 eeh */
1113 1.1 eeh int
1114 1.1 eeh gem_init(struct ifnet *ifp)
1115 1.1 eeh {
1116 1.85 dyoung struct gem_softc *sc = ifp->if_softc;
1117 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1118 1.50 martin bus_space_handle_t h = sc->sc_h1;
1119 1.69 dyoung int rc = 0, s;
1120 1.15 matt u_int max_frame_size;
1121 1.1 eeh u_int32_t v;
1122 1.1 eeh
1123 1.1 eeh s = splnet();
1124 1.1 eeh
1125 1.85 dyoung DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1126 1.1 eeh /*
1127 1.1 eeh * Initialization sequence. The numbered steps below correspond
1128 1.1 eeh * to the sequence outlined in section 6.3.5.1 in the Ethernet
1129 1.1 eeh * Channel Engine manual (part of the PCIO manual).
1130 1.1 eeh * See also the STP2002-STQ document from Sun Microsystems.
1131 1.1 eeh */
1132 1.1 eeh
1133 1.1 eeh /* step 1 & 2. Reset the Ethernet Channel */
1134 1.1 eeh gem_stop(ifp, 0);
1135 1.1 eeh gem_reset(sc);
1136 1.85 dyoung DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1137 1.1 eeh
1138 1.1 eeh /* Re-initialize the MIF */
1139 1.1 eeh gem_mifinit(sc);
1140 1.1 eeh
1141 1.68 jdc /* Set up correct datapath for non-SERDES/Serialink */
1142 1.68 jdc if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1143 1.68 jdc sc->sc_variant != GEM_SUN_ERI)
1144 1.68 jdc bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1145 1.68 jdc GEM_MII_DATAPATH_MII);
1146 1.68 jdc
1147 1.1 eeh /* Call MI reset function if any */
1148 1.1 eeh if (sc->sc_hwreset)
1149 1.1 eeh (*sc->sc_hwreset)(sc);
1150 1.1 eeh
1151 1.1 eeh /* step 3. Setup data structures in host memory */
1152 1.103 dholland if (gem_meminit(sc) != 0) {
1153 1.103 dholland splx(s);
1154 1.68 jdc return 1;
1155 1.103 dholland }
1156 1.1 eeh
1157 1.1 eeh /* step 4. TX MAC registers & counters */
1158 1.1 eeh gem_init_regs(sc);
1159 1.15 matt max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1160 1.15 matt max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1161 1.15 matt if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1162 1.15 matt max_frame_size += ETHER_VLAN_ENCAP_LEN;
1163 1.1 eeh bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1164 1.15 matt max_frame_size|/* burst size */(0x2000<<16));
1165 1.1 eeh
1166 1.1 eeh /* step 5. RX MAC registers & counters */
1167 1.1 eeh gem_setladrf(sc);
1168 1.1 eeh
1169 1.1 eeh /* step 6 & 7. Program Descriptor Ring Base Addresses */
1170 1.4 thorpej /* NOTE: we use only 32-bit DMA addresses here. */
1171 1.4 thorpej bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1172 1.4 thorpej bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1173 1.4 thorpej
1174 1.4 thorpej bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1175 1.4 thorpej bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1176 1.1 eeh
1177 1.1 eeh /* step 8. Global Configuration & Interrupt Mask */
1178 1.85 dyoung gem_inten(sc);
1179 1.16 matt bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1180 1.68 jdc GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1181 1.68 jdc bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1182 1.68 jdc bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1183 1.68 jdc GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1184 1.5 thorpej
1185 1.1 eeh /* step 9. ETX Configuration: use mostly default values */
1186 1.1 eeh
1187 1.68 jdc /* Enable TX DMA */
1188 1.1 eeh v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1189 1.31 heas bus_space_write_4(t, h, GEM_TX_CONFIG,
1190 1.87 jdc v | GEM_TX_CONFIG_TXDMA_EN |
1191 1.87 jdc (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1192 1.87 jdc GEM_TX_CONFIG_TXFIFO_TH));
1193 1.1 eeh bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1194 1.1 eeh
1195 1.1 eeh /* step 10. ERX Configuration */
1196 1.68 jdc gem_rx_common(sc);
1197 1.1 eeh
1198 1.1 eeh /* step 11. Configure Media */
1199 1.69 dyoung if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1200 1.69 dyoung (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1201 1.69 dyoung goto out;
1202 1.1 eeh
1203 1.1 eeh /* step 12. RX_MAC Configuration Register */
1204 1.1 eeh v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1205 1.35 heas v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1206 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1207 1.1 eeh
1208 1.1 eeh /* step 14. Issue Transmit Pending command */
1209 1.1 eeh
1210 1.1 eeh /* Call MI initialization function if any */
1211 1.1 eeh if (sc->sc_hwinit)
1212 1.1 eeh (*sc->sc_hwinit)(sc);
1213 1.1 eeh
1214 1.1 eeh
1215 1.1 eeh /* step 15. Give the reciever a swift kick */
1216 1.1 eeh bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1217 1.1 eeh
1218 1.68 jdc if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1219 1.68 jdc /* Configure PCS */
1220 1.68 jdc gem_pcs_start(sc);
1221 1.68 jdc else
1222 1.68 jdc /* Start the one second timer. */
1223 1.68 jdc callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1224 1.1 eeh
1225 1.68 jdc sc->sc_flags &= ~GEM_LINK;
1226 1.1 eeh ifp->if_flags |= IFF_RUNNING;
1227 1.1 eeh ifp->if_flags &= ~IFF_OACTIVE;
1228 1.1 eeh ifp->if_timer = 0;
1229 1.41 christos sc->sc_if_flags = ifp->if_flags;
1230 1.69 dyoung out:
1231 1.1 eeh splx(s);
1232 1.1 eeh
1233 1.1 eeh return (0);
1234 1.1 eeh }
1235 1.1 eeh
1236 1.1 eeh void
1237 1.1 eeh gem_init_regs(struct gem_softc *sc)
1238 1.1 eeh {
1239 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1240 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1241 1.50 martin bus_space_handle_t h = sc->sc_h1;
1242 1.58 dyoung const u_char *laddr = CLLADDR(ifp->if_sadl);
1243 1.15 matt u_int32_t v;
1244 1.1 eeh
1245 1.1 eeh /* These regs are not cleared on reset */
1246 1.1 eeh if (!sc->sc_inited) {
1247 1.1 eeh
1248 1.68 jdc /* Load recommended values */
1249 1.68 jdc bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1250 1.68 jdc bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1251 1.68 jdc bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1252 1.1 eeh
1253 1.1 eeh bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1254 1.1 eeh /* Max frame and max burst size */
1255 1.1 eeh bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1256 1.68 jdc ETHER_MAX_LEN | (0x2000<<16));
1257 1.15 matt
1258 1.68 jdc bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1259 1.68 jdc bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1260 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1261 1.1 eeh bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1262 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1263 1.15 matt ((laddr[5]<<8)|laddr[4])&0x3ff);
1264 1.13 matt
1265 1.1 eeh /* Secondary MAC addr set to 0:0:0:0:0:0 */
1266 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1267 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1268 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1269 1.13 matt
1270 1.13 matt /* MAC control addr set to 01:80:c2:00:00:01 */
1271 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1272 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1273 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1274 1.1 eeh
1275 1.1 eeh /* MAC filter addr set to 0:0:0:0:0:0 */
1276 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1277 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1278 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1279 1.1 eeh
1280 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1281 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1282 1.1 eeh
1283 1.1 eeh sc->sc_inited = 1;
1284 1.1 eeh }
1285 1.1 eeh
1286 1.1 eeh /* Counters need to be zeroed */
1287 1.1 eeh bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1288 1.1 eeh bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1289 1.1 eeh bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1290 1.1 eeh bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1291 1.1 eeh bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1292 1.1 eeh bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1293 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1294 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1295 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1296 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1297 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1298 1.1 eeh
1299 1.68 jdc /* Set XOFF PAUSE time. */
1300 1.1 eeh bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1301 1.68 jdc
1302 1.68 jdc /*
1303 1.68 jdc * Set the internal arbitration to "infinite" bursts of the
1304 1.68 jdc * maximum length of 31 * 64 bytes so DMA transfers aren't
1305 1.68 jdc * split up in cache line size chunks. This greatly improves
1306 1.68 jdc * especially RX performance.
1307 1.68 jdc * Enable silicon bug workarounds for the Apple variants.
1308 1.68 jdc */
1309 1.68 jdc bus_space_write_4(t, h, GEM_CONFIG,
1310 1.68 jdc GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1311 1.78 jdc ((sc->sc_flags & GEM_PCI) ?
1312 1.78 jdc GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1313 1.68 jdc GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1314 1.1 eeh
1315 1.1 eeh /*
1316 1.1 eeh * Set the station address.
1317 1.1 eeh */
1318 1.13 matt bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1319 1.13 matt bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1320 1.13 matt bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1321 1.1 eeh
1322 1.15 matt /*
1323 1.15 matt * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1324 1.15 matt */
1325 1.70 jdc sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1326 1.15 matt v = GEM_MAC_XIF_TX_MII_ENA;
1327 1.70 jdc if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1328 1.70 jdc if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1329 1.70 jdc v |= GEM_MAC_XIF_FDPLX_LED;
1330 1.70 jdc if (sc->sc_flags & GEM_GIGABIT)
1331 1.70 jdc v |= GEM_MAC_XIF_GMII_MODE;
1332 1.70 jdc }
1333 1.70 jdc } else {
1334 1.68 jdc v |= GEM_MAC_XIF_GMII_MODE;
1335 1.70 jdc }
1336 1.15 matt bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1337 1.1 eeh }
1338 1.1 eeh
1339 1.67 dyoung #ifdef GEM_DEBUG
1340 1.67 dyoung static void
1341 1.67 dyoung gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1342 1.67 dyoung {
1343 1.67 dyoung int i;
1344 1.67 dyoung
1345 1.67 dyoung for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1346 1.67 dyoung printf("descriptor %d:\t", i);
1347 1.67 dyoung printf("gd_flags: 0x%016" PRIx64 "\t",
1348 1.67 dyoung GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1349 1.67 dyoung printf("gd_addr: 0x%016" PRIx64 "\n",
1350 1.67 dyoung GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1351 1.67 dyoung if (i == lastdesc)
1352 1.67 dyoung break;
1353 1.67 dyoung }
1354 1.67 dyoung }
1355 1.67 dyoung #endif
1356 1.67 dyoung
1357 1.41 christos static void
1358 1.81 dsl gem_start(struct ifnet *ifp)
1359 1.1 eeh {
1360 1.85 dyoung struct gem_softc *sc = ifp->if_softc;
1361 1.1 eeh struct mbuf *m0, *m;
1362 1.64 dyoung struct gem_txsoft *txs;
1363 1.1 eeh bus_dmamap_t dmamap;
1364 1.49 martin int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1365 1.40 bouyer uint64_t flags = 0;
1366 1.1 eeh
1367 1.1 eeh if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1368 1.1 eeh return;
1369 1.1 eeh
1370 1.1 eeh /*
1371 1.1 eeh * Remember the previous number of free descriptors and
1372 1.1 eeh * the first descriptor we'll use.
1373 1.1 eeh */
1374 1.1 eeh ofree = sc->sc_txfree;
1375 1.1 eeh firsttx = sc->sc_txnext;
1376 1.1 eeh
1377 1.1 eeh DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1378 1.85 dyoung device_xname(sc->sc_dev), ofree, firsttx));
1379 1.1 eeh
1380 1.1 eeh /*
1381 1.1 eeh * Loop through the send queue, setting up transmit descriptors
1382 1.1 eeh * until we drain the queue, or use up all available transmit
1383 1.1 eeh * descriptors.
1384 1.1 eeh */
1385 1.11 thorpej while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1386 1.68 jdc sc->sc_txfree != 0) {
1387 1.1 eeh /*
1388 1.1 eeh * Grab a packet off the queue.
1389 1.1 eeh */
1390 1.1 eeh IFQ_POLL(&ifp->if_snd, m0);
1391 1.1 eeh if (m0 == NULL)
1392 1.1 eeh break;
1393 1.1 eeh m = NULL;
1394 1.1 eeh
1395 1.1 eeh dmamap = txs->txs_dmamap;
1396 1.1 eeh
1397 1.1 eeh /*
1398 1.1 eeh * Load the DMA map. If this fails, the packet either
1399 1.1 eeh * didn't fit in the alloted number of segments, or we were
1400 1.1 eeh * short on resources. In this case, we'll copy and try
1401 1.1 eeh * again.
1402 1.1 eeh */
1403 1.1 eeh if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1404 1.40 bouyer BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1405 1.40 bouyer (m0->m_pkthdr.len < ETHER_MIN_TX &&
1406 1.40 bouyer dmamap->dm_nsegs == GEM_NTXSEGS)) {
1407 1.15 matt if (m0->m_pkthdr.len > MCLBYTES) {
1408 1.85 dyoung aprint_error_dev(sc->sc_dev,
1409 1.85 dyoung "unable to allocate jumbo Tx cluster\n");
1410 1.15 matt IFQ_DEQUEUE(&ifp->if_snd, m0);
1411 1.15 matt m_freem(m0);
1412 1.15 matt continue;
1413 1.15 matt }
1414 1.1 eeh MGETHDR(m, M_DONTWAIT, MT_DATA);
1415 1.1 eeh if (m == NULL) {
1416 1.85 dyoung aprint_error_dev(sc->sc_dev,
1417 1.85 dyoung "unable to allocate Tx mbuf\n");
1418 1.1 eeh break;
1419 1.1 eeh }
1420 1.26 matt MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1421 1.1 eeh if (m0->m_pkthdr.len > MHLEN) {
1422 1.1 eeh MCLGET(m, M_DONTWAIT);
1423 1.1 eeh if ((m->m_flags & M_EXT) == 0) {
1424 1.85 dyoung aprint_error_dev(sc->sc_dev,
1425 1.85 dyoung "unable to allocate Tx cluster\n");
1426 1.1 eeh m_freem(m);
1427 1.1 eeh break;
1428 1.1 eeh }
1429 1.1 eeh }
1430 1.53 christos m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1431 1.1 eeh m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1432 1.1 eeh error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1433 1.1 eeh m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1434 1.1 eeh if (error) {
1435 1.85 dyoung aprint_error_dev(sc->sc_dev,
1436 1.85 dyoung "unable to load Tx buffer, error = %d\n",
1437 1.85 dyoung error);
1438 1.1 eeh break;
1439 1.1 eeh }
1440 1.1 eeh }
1441 1.1 eeh
1442 1.1 eeh /*
1443 1.1 eeh * Ensure we have enough descriptors free to describe
1444 1.11 thorpej * the packet.
1445 1.1 eeh */
1446 1.40 bouyer if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1447 1.40 bouyer (sc->sc_txfree - 1) : sc->sc_txfree)) {
1448 1.1 eeh /*
1449 1.1 eeh * Not enough free descriptors to transmit this
1450 1.1 eeh * packet. We haven't committed to anything yet,
1451 1.1 eeh * so just unload the DMA map, put the packet
1452 1.1 eeh * back on the queue, and punt. Notify the upper
1453 1.1 eeh * layer that there are no more slots left.
1454 1.1 eeh *
1455 1.1 eeh * XXX We could allocate an mbuf and copy, but
1456 1.1 eeh * XXX it is worth it?
1457 1.1 eeh */
1458 1.1 eeh ifp->if_flags |= IFF_OACTIVE;
1459 1.41 christos sc->sc_if_flags = ifp->if_flags;
1460 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, dmamap);
1461 1.1 eeh if (m != NULL)
1462 1.1 eeh m_freem(m);
1463 1.1 eeh break;
1464 1.1 eeh }
1465 1.1 eeh
1466 1.1 eeh IFQ_DEQUEUE(&ifp->if_snd, m0);
1467 1.1 eeh if (m != NULL) {
1468 1.1 eeh m_freem(m0);
1469 1.1 eeh m0 = m;
1470 1.1 eeh }
1471 1.1 eeh
1472 1.1 eeh /*
1473 1.1 eeh * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1474 1.1 eeh */
1475 1.1 eeh
1476 1.1 eeh /* Sync the DMA map. */
1477 1.1 eeh bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1478 1.1 eeh BUS_DMASYNC_PREWRITE);
1479 1.1 eeh
1480 1.1 eeh /*
1481 1.1 eeh * Initialize the transmit descriptors.
1482 1.1 eeh */
1483 1.1 eeh for (nexttx = sc->sc_txnext, seg = 0;
1484 1.1 eeh seg < dmamap->dm_nsegs;
1485 1.1 eeh seg++, nexttx = GEM_NEXTTX(nexttx)) {
1486 1.1 eeh
1487 1.1 eeh /*
1488 1.1 eeh * If this is the first descriptor we're
1489 1.1 eeh * enqueueing, set the start of packet flag,
1490 1.1 eeh * and the checksum stuff if we want the hardware
1491 1.1 eeh * to do it.
1492 1.1 eeh */
1493 1.1 eeh sc->sc_txdescs[nexttx].gd_addr =
1494 1.2 eeh GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1495 1.1 eeh flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1496 1.1 eeh if (nexttx == firsttx) {
1497 1.1 eeh flags |= GEM_TD_START_OF_PACKET;
1498 1.14 matt if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1499 1.14 matt sc->sc_txwin = 0;
1500 1.14 matt flags |= GEM_TD_INTERRUPT_ME;
1501 1.14 matt }
1502 1.35 heas
1503 1.35 heas #ifdef INET
1504 1.35 heas /* h/w checksum */
1505 1.68 jdc if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1506 1.68 jdc m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1507 1.35 heas struct ether_header *eh;
1508 1.35 heas uint16_t offset, start;
1509 1.35 heas
1510 1.35 heas eh = mtod(m0, struct ether_header *);
1511 1.35 heas switch (ntohs(eh->ether_type)) {
1512 1.35 heas case ETHERTYPE_IP:
1513 1.35 heas start = ETHER_HDR_LEN;
1514 1.35 heas break;
1515 1.35 heas case ETHERTYPE_VLAN:
1516 1.35 heas start = ETHER_HDR_LEN +
1517 1.35 heas ETHER_VLAN_ENCAP_LEN;
1518 1.37 perry break;
1519 1.35 heas default:
1520 1.37 perry /* unsupported, drop it */
1521 1.35 heas m_free(m0);
1522 1.35 heas continue;
1523 1.35 heas }
1524 1.36 thorpej start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1525 1.36 thorpej offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1526 1.35 heas flags |= (start <<
1527 1.35 heas GEM_TD_CXSUM_STARTSHFT) |
1528 1.35 heas (offset <<
1529 1.35 heas GEM_TD_CXSUM_STUFFSHFT) |
1530 1.35 heas GEM_TD_CXSUM_ENABLE;
1531 1.35 heas }
1532 1.35 heas #endif
1533 1.1 eeh }
1534 1.1 eeh if (seg == dmamap->dm_nsegs - 1) {
1535 1.1 eeh flags |= GEM_TD_END_OF_PACKET;
1536 1.40 bouyer } else {
1537 1.40 bouyer /* last flag set outside of loop */
1538 1.40 bouyer sc->sc_txdescs[nexttx].gd_flags =
1539 1.40 bouyer GEM_DMA_WRITE(sc, flags);
1540 1.1 eeh }
1541 1.1 eeh lasttx = nexttx;
1542 1.1 eeh }
1543 1.40 bouyer if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1544 1.40 bouyer /* add padding buffer at end of chain */
1545 1.40 bouyer flags &= ~GEM_TD_END_OF_PACKET;
1546 1.40 bouyer sc->sc_txdescs[lasttx].gd_flags =
1547 1.40 bouyer GEM_DMA_WRITE(sc, flags);
1548 1.40 bouyer
1549 1.40 bouyer sc->sc_txdescs[nexttx].gd_addr =
1550 1.40 bouyer GEM_DMA_WRITE(sc,
1551 1.40 bouyer sc->sc_nulldmamap->dm_segs[0].ds_addr);
1552 1.40 bouyer flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1553 1.40 bouyer GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1554 1.40 bouyer lasttx = nexttx;
1555 1.40 bouyer nexttx = GEM_NEXTTX(nexttx);
1556 1.40 bouyer seg++;
1557 1.40 bouyer }
1558 1.40 bouyer sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1559 1.30 christos
1560 1.30 christos KASSERT(lasttx != -1);
1561 1.1 eeh
1562 1.40 bouyer /*
1563 1.40 bouyer * Store a pointer to the packet so we can free it later,
1564 1.40 bouyer * and remember what txdirty will be once the packet is
1565 1.40 bouyer * done.
1566 1.40 bouyer */
1567 1.40 bouyer txs->txs_mbuf = m0;
1568 1.40 bouyer txs->txs_firstdesc = sc->sc_txnext;
1569 1.40 bouyer txs->txs_lastdesc = lasttx;
1570 1.40 bouyer txs->txs_ndescs = seg;
1571 1.40 bouyer
1572 1.1 eeh #ifdef GEM_DEBUG
1573 1.1 eeh if (ifp->if_flags & IFF_DEBUG) {
1574 1.1 eeh printf(" gem_start %p transmit chain:\n", txs);
1575 1.67 dyoung gem_txsoft_print(sc, txs->txs_firstdesc,
1576 1.67 dyoung txs->txs_lastdesc);
1577 1.1 eeh }
1578 1.1 eeh #endif
1579 1.1 eeh
1580 1.1 eeh /* Sync the descriptors we're using. */
1581 1.65 dyoung GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1582 1.1 eeh BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1583 1.1 eeh
1584 1.1 eeh /* Advance the tx pointer. */
1585 1.40 bouyer sc->sc_txfree -= txs->txs_ndescs;
1586 1.1 eeh sc->sc_txnext = nexttx;
1587 1.1 eeh
1588 1.21 lukem SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1589 1.1 eeh SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1590 1.1 eeh
1591 1.1 eeh /*
1592 1.1 eeh * Pass the packet to any BPF listeners.
1593 1.1 eeh */
1594 1.94 joerg bpf_mtap(ifp, m0);
1595 1.1 eeh }
1596 1.1 eeh
1597 1.1 eeh if (txs == NULL || sc->sc_txfree == 0) {
1598 1.1 eeh /* No more slots left; notify upper layer. */
1599 1.1 eeh ifp->if_flags |= IFF_OACTIVE;
1600 1.41 christos sc->sc_if_flags = ifp->if_flags;
1601 1.1 eeh }
1602 1.1 eeh
1603 1.1 eeh if (sc->sc_txfree != ofree) {
1604 1.1 eeh DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1605 1.85 dyoung device_xname(sc->sc_dev), lasttx, firsttx));
1606 1.1 eeh /*
1607 1.31 heas * The entire packet chain is set up.
1608 1.1 eeh * Kick the transmitter.
1609 1.1 eeh */
1610 1.1 eeh DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1611 1.85 dyoung device_xname(sc->sc_dev), nexttx));
1612 1.50 martin bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1613 1.1 eeh sc->sc_txnext);
1614 1.1 eeh
1615 1.1 eeh /* Set a watchdog timer in case the chip flakes out. */
1616 1.1 eeh ifp->if_timer = 5;
1617 1.1 eeh DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1618 1.85 dyoung device_xname(sc->sc_dev), ifp->if_timer));
1619 1.1 eeh }
1620 1.1 eeh }
1621 1.1 eeh
1622 1.1 eeh /*
1623 1.1 eeh * Transmit interrupt.
1624 1.1 eeh */
1625 1.1 eeh int
1626 1.81 dsl gem_tint(struct gem_softc *sc)
1627 1.1 eeh {
1628 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1629 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1630 1.50 martin bus_space_handle_t mac = sc->sc_h1;
1631 1.1 eeh struct gem_txsoft *txs;
1632 1.1 eeh int txlast;
1633 1.14 matt int progress = 0;
1634 1.71 jdc u_int32_t v;
1635 1.1 eeh
1636 1.85 dyoung DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1637 1.1 eeh
1638 1.71 jdc /* Unload collision counters ... */
1639 1.71 jdc v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1640 1.71 jdc bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1641 1.71 jdc ifp->if_collisions += v +
1642 1.71 jdc bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1643 1.71 jdc bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1644 1.71 jdc ifp->if_oerrors += v;
1645 1.1 eeh
1646 1.71 jdc /* ... then clear the hardware counters. */
1647 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1648 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1649 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1650 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1651 1.1 eeh
1652 1.1 eeh /*
1653 1.1 eeh * Go through our Tx list and free mbufs for those
1654 1.1 eeh * frames that have been transmitted.
1655 1.1 eeh */
1656 1.1 eeh while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1657 1.1 eeh /*
1658 1.68 jdc * In theory, we could harvest some descriptors before
1659 1.1 eeh * the ring is empty, but that's a bit complicated.
1660 1.1 eeh *
1661 1.1 eeh * GEM_TX_COMPLETION points to the last descriptor
1662 1.1 eeh * processed +1.
1663 1.62 dyoung *
1664 1.62 dyoung * Let's assume that the NIC writes back to the Tx
1665 1.62 dyoung * descriptors before it updates the completion
1666 1.62 dyoung * register. If the NIC has posted writes to the
1667 1.62 dyoung * Tx descriptors, PCI ordering requires that the
1668 1.62 dyoung * posted writes flush to RAM before the register-read
1669 1.62 dyoung * finishes. So let's read the completion register,
1670 1.62 dyoung * before syncing the descriptors, so that we
1671 1.62 dyoung * examine Tx descriptors that are at least as
1672 1.62 dyoung * current as the completion register.
1673 1.1 eeh */
1674 1.1 eeh txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1675 1.1 eeh DPRINTF(sc,
1676 1.1 eeh ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1677 1.1 eeh txs->txs_lastdesc, txlast));
1678 1.1 eeh if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1679 1.63 dyoung if (txlast >= txs->txs_firstdesc &&
1680 1.63 dyoung txlast <= txs->txs_lastdesc)
1681 1.1 eeh break;
1682 1.63 dyoung } else if (txlast >= txs->txs_firstdesc ||
1683 1.68 jdc txlast <= txs->txs_lastdesc)
1684 1.63 dyoung break;
1685 1.1 eeh
1686 1.66 dyoung GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1687 1.62 dyoung BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1688 1.62 dyoung
1689 1.62 dyoung #ifdef GEM_DEBUG /* XXX DMA synchronization? */
1690 1.62 dyoung if (ifp->if_flags & IFF_DEBUG) {
1691 1.62 dyoung printf(" txsoft %p transmit chain:\n", txs);
1692 1.67 dyoung gem_txsoft_print(sc, txs->txs_firstdesc,
1693 1.67 dyoung txs->txs_lastdesc);
1694 1.62 dyoung }
1695 1.62 dyoung #endif
1696 1.62 dyoung
1697 1.62 dyoung
1698 1.1 eeh DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1699 1.21 lukem SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1700 1.1 eeh
1701 1.1 eeh sc->sc_txfree += txs->txs_ndescs;
1702 1.1 eeh
1703 1.1 eeh bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1704 1.1 eeh 0, txs->txs_dmamap->dm_mapsize,
1705 1.1 eeh BUS_DMASYNC_POSTWRITE);
1706 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1707 1.68 jdc if (txs->txs_mbuf != NULL) {
1708 1.68 jdc m_freem(txs->txs_mbuf);
1709 1.68 jdc txs->txs_mbuf = NULL;
1710 1.68 jdc }
1711 1.1 eeh
1712 1.1 eeh SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1713 1.1 eeh
1714 1.1 eeh ifp->if_opackets++;
1715 1.14 matt progress = 1;
1716 1.1 eeh }
1717 1.1 eeh
1718 1.28 chs #if 0
1719 1.1 eeh DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1720 1.55 dyoung "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1721 1.50 martin bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1722 1.55 dyoung ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1723 1.4 thorpej GEM_TX_DATA_PTR_HI) << 32) |
1724 1.50 martin bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1725 1.4 thorpej GEM_TX_DATA_PTR_LO),
1726 1.50 martin bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1727 1.28 chs #endif
1728 1.1 eeh
1729 1.14 matt if (progress) {
1730 1.14 matt if (sc->sc_txfree == GEM_NTXDESC - 1)
1731 1.14 matt sc->sc_txwin = 0;
1732 1.14 matt
1733 1.68 jdc /* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1734 1.14 matt ifp->if_flags &= ~IFF_OACTIVE;
1735 1.41 christos sc->sc_if_flags = ifp->if_flags;
1736 1.68 jdc ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1737 1.14 matt gem_start(ifp);
1738 1.14 matt }
1739 1.1 eeh DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1740 1.85 dyoung device_xname(sc->sc_dev), ifp->if_timer));
1741 1.1 eeh
1742 1.1 eeh return (1);
1743 1.1 eeh }
1744 1.1 eeh
1745 1.1 eeh /*
1746 1.1 eeh * Receive interrupt.
1747 1.1 eeh */
1748 1.1 eeh int
1749 1.81 dsl gem_rint(struct gem_softc *sc)
1750 1.1 eeh {
1751 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1752 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1753 1.50 martin bus_space_handle_t h = sc->sc_h1;
1754 1.1 eeh struct gem_rxsoft *rxs;
1755 1.1 eeh struct mbuf *m;
1756 1.1 eeh u_int64_t rxstat;
1757 1.18 matt u_int32_t rxcomp;
1758 1.18 matt int i, len, progress = 0;
1759 1.1 eeh
1760 1.85 dyoung DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1761 1.18 matt
1762 1.18 matt /*
1763 1.68 jdc * Ignore spurious interrupt that sometimes occurs before
1764 1.68 jdc * we are set up when we network boot.
1765 1.68 jdc */
1766 1.68 jdc if (!sc->sc_meminited)
1767 1.68 jdc return 1;
1768 1.68 jdc
1769 1.68 jdc /*
1770 1.18 matt * Read the completion register once. This limits
1771 1.18 matt * how long the following loop can execute.
1772 1.18 matt */
1773 1.18 matt rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1774 1.18 matt
1775 1.1 eeh /*
1776 1.68 jdc * XXX Read the lastrx only once at the top for speed.
1777 1.1 eeh */
1778 1.1 eeh DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1779 1.18 matt sc->sc_rxptr, rxcomp));
1780 1.18 matt
1781 1.18 matt /*
1782 1.18 matt * Go into the loop at least once.
1783 1.18 matt */
1784 1.18 matt for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1785 1.1 eeh i = GEM_NEXTRX(i)) {
1786 1.1 eeh rxs = &sc->sc_rxsoft[i];
1787 1.1 eeh
1788 1.1 eeh GEM_CDRXSYNC(sc, i,
1789 1.1 eeh BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1790 1.1 eeh
1791 1.2 eeh rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1792 1.1 eeh
1793 1.1 eeh if (rxstat & GEM_RD_OWN) {
1794 1.56 dyoung GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1795 1.1 eeh /*
1796 1.1 eeh * We have processed all of the receive buffers.
1797 1.1 eeh */
1798 1.1 eeh break;
1799 1.1 eeh }
1800 1.1 eeh
1801 1.18 matt progress++;
1802 1.18 matt ifp->if_ipackets++;
1803 1.18 matt
1804 1.1 eeh if (rxstat & GEM_RD_BAD_CRC) {
1805 1.18 matt ifp->if_ierrors++;
1806 1.85 dyoung aprint_error_dev(sc->sc_dev,
1807 1.85 dyoung "receive error: CRC error\n");
1808 1.1 eeh GEM_INIT_RXDESC(sc, i);
1809 1.1 eeh continue;
1810 1.1 eeh }
1811 1.1 eeh
1812 1.1 eeh bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1813 1.1 eeh rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1814 1.1 eeh #ifdef GEM_DEBUG
1815 1.1 eeh if (ifp->if_flags & IFF_DEBUG) {
1816 1.1 eeh printf(" rxsoft %p descriptor %d: ", rxs, i);
1817 1.1 eeh printf("gd_flags: 0x%016llx\t", (long long)
1818 1.2 eeh GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1819 1.1 eeh printf("gd_addr: 0x%016llx\n", (long long)
1820 1.2 eeh GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1821 1.1 eeh }
1822 1.1 eeh #endif
1823 1.1 eeh
1824 1.35 heas /* No errors; receive the packet. */
1825 1.35 heas len = GEM_RD_BUFLEN(rxstat);
1826 1.1 eeh
1827 1.1 eeh /*
1828 1.1 eeh * Allocate a new mbuf cluster. If that fails, we are
1829 1.1 eeh * out of memory, and must drop the packet and recycle
1830 1.1 eeh * the buffer that's already attached to this descriptor.
1831 1.1 eeh */
1832 1.1 eeh m = rxs->rxs_mbuf;
1833 1.1 eeh if (gem_add_rxbuf(sc, i) != 0) {
1834 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1835 1.1 eeh ifp->if_ierrors++;
1836 1.99 jdc aprint_error_dev(sc->sc_dev,
1837 1.99 jdc "receive error: RX no buffer space\n");
1838 1.1 eeh GEM_INIT_RXDESC(sc, i);
1839 1.1 eeh bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1840 1.1 eeh rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1841 1.1 eeh continue;
1842 1.1 eeh }
1843 1.1 eeh m->m_data += 2; /* We're already off by two */
1844 1.1 eeh
1845 1.1 eeh m->m_pkthdr.rcvif = ifp;
1846 1.1 eeh m->m_pkthdr.len = m->m_len = len;
1847 1.1 eeh
1848 1.1 eeh /*
1849 1.1 eeh * Pass this up to any BPF listeners, but only
1850 1.61 tsutsui * pass it up the stack if it's for us.
1851 1.1 eeh */
1852 1.94 joerg bpf_mtap(ifp, m);
1853 1.1 eeh
1854 1.35 heas #ifdef INET
1855 1.35 heas /* hardware checksum */
1856 1.68 jdc if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1857 1.35 heas struct ether_header *eh;
1858 1.35 heas struct ip *ip;
1859 1.35 heas int32_t hlen, pktlen;
1860 1.35 heas
1861 1.35 heas if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1862 1.35 heas pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1863 1.35 heas ETHER_VLAN_ENCAP_LEN;
1864 1.72 jdc eh = (struct ether_header *) (mtod(m, char *) +
1865 1.72 jdc ETHER_VLAN_ENCAP_LEN);
1866 1.35 heas } else {
1867 1.35 heas pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1868 1.35 heas eh = mtod(m, struct ether_header *);
1869 1.35 heas }
1870 1.35 heas if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1871 1.35 heas goto swcsum;
1872 1.54 christos ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1873 1.35 heas
1874 1.35 heas /* IPv4 only */
1875 1.35 heas if (ip->ip_v != IPVERSION)
1876 1.35 heas goto swcsum;
1877 1.35 heas
1878 1.35 heas hlen = ip->ip_hl << 2;
1879 1.35 heas if (hlen < sizeof(struct ip))
1880 1.35 heas goto swcsum;
1881 1.35 heas
1882 1.38 heas /*
1883 1.38 heas * bail if too short, has random trailing garbage,
1884 1.38 heas * truncated, fragment, or has ethernet pad.
1885 1.38 heas */
1886 1.35 heas if ((ntohs(ip->ip_len) < hlen) ||
1887 1.38 heas (ntohs(ip->ip_len) != pktlen) ||
1888 1.35 heas (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1889 1.35 heas goto swcsum;
1890 1.35 heas
1891 1.35 heas switch (ip->ip_p) {
1892 1.35 heas case IPPROTO_TCP:
1893 1.35 heas if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1894 1.35 heas goto swcsum;
1895 1.35 heas if (pktlen < (hlen + sizeof(struct tcphdr)))
1896 1.35 heas goto swcsum;
1897 1.35 heas m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1898 1.35 heas break;
1899 1.35 heas case IPPROTO_UDP:
1900 1.68 jdc /* FALLTHROUGH */
1901 1.35 heas default:
1902 1.35 heas goto swcsum;
1903 1.35 heas }
1904 1.35 heas
1905 1.35 heas /* the uncomplemented sum is expected */
1906 1.35 heas m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1907 1.35 heas
1908 1.35 heas /* if the pkt had ip options, we have to deduct them */
1909 1.35 heas if (hlen > sizeof(struct ip)) {
1910 1.35 heas uint16_t *opts;
1911 1.35 heas uint32_t optsum, temp;
1912 1.35 heas
1913 1.35 heas optsum = 0;
1914 1.35 heas temp = hlen - sizeof(struct ip);
1915 1.54 christos opts = (uint16_t *) ((char *) ip +
1916 1.35 heas sizeof(struct ip));
1917 1.35 heas
1918 1.35 heas while (temp > 1) {
1919 1.35 heas optsum += ntohs(*opts++);
1920 1.35 heas temp -= 2;
1921 1.35 heas }
1922 1.35 heas while (optsum >> 16)
1923 1.35 heas optsum = (optsum >> 16) +
1924 1.35 heas (optsum & 0xffff);
1925 1.35 heas
1926 1.83 tsutsui /* Deduct ip opts sum from hwsum. */
1927 1.83 tsutsui m->m_pkthdr.csum_data += (uint16_t)~optsum;
1928 1.35 heas
1929 1.35 heas while (m->m_pkthdr.csum_data >> 16)
1930 1.35 heas m->m_pkthdr.csum_data =
1931 1.35 heas (m->m_pkthdr.csum_data >> 16) +
1932 1.35 heas (m->m_pkthdr.csum_data &
1933 1.35 heas 0xffff);
1934 1.35 heas }
1935 1.35 heas
1936 1.35 heas m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1937 1.35 heas M_CSUM_NO_PSEUDOHDR;
1938 1.35 heas } else
1939 1.35 heas swcsum:
1940 1.35 heas m->m_pkthdr.csum_flags = 0;
1941 1.35 heas #endif
1942 1.1 eeh /* Pass it on. */
1943 1.104 ozaki if_percpuq_enqueue(ifp->if_percpuq, m);
1944 1.1 eeh }
1945 1.1 eeh
1946 1.18 matt if (progress) {
1947 1.18 matt /* Update the receive pointer. */
1948 1.18 matt if (i == sc->sc_rxptr) {
1949 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1950 1.19 matt #ifdef GEM_DEBUG
1951 1.28 chs if (ifp->if_flags & IFF_DEBUG)
1952 1.19 matt printf("%s: rint: ring wrap\n",
1953 1.85 dyoung device_xname(sc->sc_dev));
1954 1.19 matt #endif
1955 1.18 matt }
1956 1.18 matt sc->sc_rxptr = i;
1957 1.18 matt bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1958 1.18 matt }
1959 1.19 matt #ifdef GEM_COUNTERS
1960 1.18 matt if (progress <= 4) {
1961 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1962 1.28 chs } else if (progress < 32) {
1963 1.18 matt if (progress < 16)
1964 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1965 1.18 matt else
1966 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1967 1.31 heas
1968 1.18 matt } else {
1969 1.18 matt if (progress < 64)
1970 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1971 1.18 matt else
1972 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1973 1.18 matt }
1974 1.19 matt #endif
1975 1.1 eeh
1976 1.1 eeh DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1977 1.1 eeh sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1978 1.1 eeh
1979 1.71 jdc /* Read error counters ... */
1980 1.71 jdc ifp->if_ierrors +=
1981 1.71 jdc bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1982 1.71 jdc bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1983 1.71 jdc bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1984 1.71 jdc bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1985 1.71 jdc
1986 1.71 jdc /* ... then clear the hardware counters. */
1987 1.71 jdc bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1988 1.71 jdc bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1989 1.71 jdc bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1990 1.71 jdc bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1991 1.71 jdc
1992 1.1 eeh return (1);
1993 1.1 eeh }
1994 1.1 eeh
1995 1.1 eeh
1996 1.1 eeh /*
1997 1.1 eeh * gem_add_rxbuf:
1998 1.1 eeh *
1999 1.1 eeh * Add a receive buffer to the indicated descriptor.
2000 1.1 eeh */
2001 1.1 eeh int
2002 1.1 eeh gem_add_rxbuf(struct gem_softc *sc, int idx)
2003 1.1 eeh {
2004 1.1 eeh struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
2005 1.1 eeh struct mbuf *m;
2006 1.1 eeh int error;
2007 1.1 eeh
2008 1.1 eeh MGETHDR(m, M_DONTWAIT, MT_DATA);
2009 1.1 eeh if (m == NULL)
2010 1.1 eeh return (ENOBUFS);
2011 1.1 eeh
2012 1.26 matt MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2013 1.1 eeh MCLGET(m, M_DONTWAIT);
2014 1.1 eeh if ((m->m_flags & M_EXT) == 0) {
2015 1.1 eeh m_freem(m);
2016 1.1 eeh return (ENOBUFS);
2017 1.1 eeh }
2018 1.1 eeh
2019 1.1 eeh #ifdef GEM_DEBUG
2020 1.27 wiz /* bzero the packet to check DMA */
2021 1.1 eeh memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2022 1.1 eeh #endif
2023 1.1 eeh
2024 1.1 eeh if (rxs->rxs_mbuf != NULL)
2025 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2026 1.1 eeh
2027 1.1 eeh rxs->rxs_mbuf = m;
2028 1.1 eeh
2029 1.1 eeh error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2030 1.1 eeh m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2031 1.1 eeh BUS_DMA_READ|BUS_DMA_NOWAIT);
2032 1.1 eeh if (error) {
2033 1.85 dyoung aprint_error_dev(sc->sc_dev,
2034 1.85 dyoung "can't load rx DMA map %d, error = %d\n", idx, error);
2035 1.1 eeh panic("gem_add_rxbuf"); /* XXX */
2036 1.1 eeh }
2037 1.1 eeh
2038 1.1 eeh bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2039 1.1 eeh rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2040 1.1 eeh
2041 1.1 eeh GEM_INIT_RXDESC(sc, idx);
2042 1.1 eeh
2043 1.1 eeh return (0);
2044 1.1 eeh }
2045 1.1 eeh
2046 1.1 eeh
2047 1.1 eeh int
2048 1.68 jdc gem_eint(struct gem_softc *sc, u_int status)
2049 1.1 eeh {
2050 1.1 eeh char bits[128];
2051 1.78 jdc u_int32_t r, v;
2052 1.1 eeh
2053 1.1 eeh if ((status & GEM_INTR_MIF) != 0) {
2054 1.85 dyoung printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2055 1.1 eeh return (1);
2056 1.1 eeh }
2057 1.1 eeh
2058 1.68 jdc if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2059 1.68 jdc gem_reset_rxdma(sc);
2060 1.68 jdc return (1);
2061 1.68 jdc }
2062 1.68 jdc
2063 1.68 jdc if (status & GEM_INTR_BERR) {
2064 1.78 jdc if (sc->sc_flags & GEM_PCI)
2065 1.78 jdc r = GEM_ERROR_STATUS;
2066 1.78 jdc else
2067 1.78 jdc r = GEM_SBUS_ERROR_STATUS;
2068 1.78 jdc bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2069 1.78 jdc v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2070 1.85 dyoung aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2071 1.76 cegger v);
2072 1.68 jdc return (1);
2073 1.68 jdc }
2074 1.80 christos snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2075 1.85 dyoung printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2076 1.80 christos
2077 1.1 eeh return (1);
2078 1.1 eeh }
2079 1.1 eeh
2080 1.1 eeh
2081 1.68 jdc /*
2082 1.68 jdc * PCS interrupts.
2083 1.68 jdc * We should receive these when the link status changes, but sometimes
2084 1.68 jdc * we don't receive them for link up. We compensate for this in the
2085 1.68 jdc * gem_tick() callout.
2086 1.68 jdc */
2087 1.68 jdc int
2088 1.68 jdc gem_pint(struct gem_softc *sc)
2089 1.68 jdc {
2090 1.68 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2091 1.68 jdc bus_space_tag_t t = sc->sc_bustag;
2092 1.68 jdc bus_space_handle_t h = sc->sc_h1;
2093 1.68 jdc u_int32_t v, v2;
2094 1.68 jdc
2095 1.68 jdc /*
2096 1.68 jdc * Clear the PCS interrupt from GEM_STATUS. The PCS register is
2097 1.68 jdc * latched, so we have to read it twice. There is only one bit in
2098 1.68 jdc * use, so the value is meaningless.
2099 1.68 jdc */
2100 1.68 jdc bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2101 1.68 jdc bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2102 1.68 jdc
2103 1.68 jdc if ((ifp->if_flags & IFF_UP) == 0)
2104 1.68 jdc return 1;
2105 1.68 jdc
2106 1.68 jdc if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2107 1.68 jdc return 1;
2108 1.68 jdc
2109 1.68 jdc v = bus_space_read_4(t, h, GEM_MII_STATUS);
2110 1.68 jdc /* If we see remote fault, our link partner is probably going away */
2111 1.68 jdc if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2112 1.68 jdc gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2113 1.68 jdc v = bus_space_read_4(t, h, GEM_MII_STATUS);
2114 1.68 jdc /* Otherwise, we may need to wait after auto-negotiation completes */
2115 1.68 jdc } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2116 1.68 jdc GEM_MII_STATUS_ANEG_CPT) {
2117 1.68 jdc gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2118 1.68 jdc v = bus_space_read_4(t, h, GEM_MII_STATUS);
2119 1.68 jdc }
2120 1.68 jdc if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2121 1.68 jdc if (sc->sc_flags & GEM_LINK) {
2122 1.68 jdc return 1;
2123 1.68 jdc }
2124 1.68 jdc callout_stop(&sc->sc_tick_ch);
2125 1.68 jdc v = bus_space_read_4(t, h, GEM_MII_ANAR);
2126 1.68 jdc v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2127 1.68 jdc sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2128 1.68 jdc sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2129 1.68 jdc v &= v2;
2130 1.68 jdc if (v & GEM_MII_ANEG_FUL_DUPLX) {
2131 1.68 jdc sc->sc_mii.mii_media_active |= IFM_FDX;
2132 1.68 jdc #ifdef GEM_DEBUG
2133 1.85 dyoung aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2134 1.68 jdc #endif
2135 1.68 jdc } else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2136 1.68 jdc sc->sc_mii.mii_media_active |= IFM_HDX;
2137 1.68 jdc #ifdef GEM_DEBUG
2138 1.85 dyoung aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2139 1.68 jdc #endif
2140 1.68 jdc } else {
2141 1.68 jdc #ifdef GEM_DEBUG
2142 1.85 dyoung aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2143 1.68 jdc #endif
2144 1.68 jdc }
2145 1.68 jdc gem_statuschange(sc);
2146 1.68 jdc } else {
2147 1.68 jdc if ((sc->sc_flags & GEM_LINK) == 0) {
2148 1.68 jdc return 1;
2149 1.68 jdc }
2150 1.68 jdc sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2151 1.68 jdc sc->sc_mii.mii_media_status = IFM_AVALID;
2152 1.68 jdc #ifdef GEM_DEBUG
2153 1.85 dyoung aprint_debug_dev(sc->sc_dev, "link down\n");
2154 1.68 jdc #endif
2155 1.68 jdc gem_statuschange(sc);
2156 1.68 jdc
2157 1.68 jdc /* Start the 10 second timer */
2158 1.68 jdc callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2159 1.68 jdc }
2160 1.68 jdc return 1;
2161 1.68 jdc }
2162 1.68 jdc
2163 1.68 jdc
2164 1.68 jdc
2165 1.1 eeh int
2166 1.81 dsl gem_intr(void *v)
2167 1.1 eeh {
2168 1.85 dyoung struct gem_softc *sc = v;
2169 1.41 christos struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2170 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
2171 1.68 jdc bus_space_handle_t h = sc->sc_h1;
2172 1.1 eeh u_int32_t status;
2173 1.1 eeh int r = 0;
2174 1.3 eeh #ifdef GEM_DEBUG
2175 1.1 eeh char bits[128];
2176 1.3 eeh #endif
2177 1.1 eeh
2178 1.68 jdc /* XXX We should probably mask out interrupts until we're done */
2179 1.68 jdc
2180 1.19 matt sc->sc_ev_intr.ev_count++;
2181 1.19 matt
2182 1.68 jdc status = bus_space_read_4(t, h, GEM_STATUS);
2183 1.80 christos #ifdef GEM_DEBUG
2184 1.80 christos snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2185 1.80 christos #endif
2186 1.28 chs DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2187 1.85 dyoung device_xname(sc->sc_dev), (status >> 19), bits));
2188 1.80 christos
2189 1.1 eeh
2190 1.1 eeh if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2191 1.1 eeh r |= gem_eint(sc, status);
2192 1.1 eeh
2193 1.68 jdc /* We don't bother with GEM_INTR_TX_DONE */
2194 1.18 matt if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2195 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_txint);
2196 1.1 eeh r |= gem_tint(sc);
2197 1.18 matt }
2198 1.1 eeh
2199 1.18 matt if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2200 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxint);
2201 1.1 eeh r |= gem_rint(sc);
2202 1.18 matt }
2203 1.1 eeh
2204 1.1 eeh /* We should eventually do more than just print out error stats. */
2205 1.1 eeh if (status & GEM_INTR_TX_MAC) {
2206 1.68 jdc int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2207 1.1 eeh if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2208 1.14 matt printf("%s: MAC tx fault, status %x\n",
2209 1.85 dyoung device_xname(sc->sc_dev), txstat);
2210 1.41 christos if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2211 1.41 christos gem_init(ifp);
2212 1.1 eeh }
2213 1.1 eeh if (status & GEM_INTR_RX_MAC) {
2214 1.68 jdc int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2215 1.41 christos /*
2216 1.68 jdc * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2217 1.68 jdc * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2218 1.99 jdc * silicon bug so handle them silently. So if we detect
2219 1.99 jdc * an RX FIFO overflow, we fire off a timer, and check
2220 1.99 jdc * whether we're still making progress by looking at the
2221 1.99 jdc * RX FIFO write and read pointers.
2222 1.41 christos */
2223 1.68 jdc if (rxstat & GEM_MAC_RX_OVERFLOW) {
2224 1.68 jdc ifp->if_ierrors++;
2225 1.99 jdc aprint_error_dev(sc->sc_dev,
2226 1.99 jdc "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
2227 1.99 jdc sc->sc_rx_fifo_wr_ptr =
2228 1.99 jdc bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2229 1.99 jdc sc->sc_rx_fifo_rd_ptr =
2230 1.99 jdc bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2231 1.99 jdc callout_schedule(&sc->sc_rx_watchdog, 400);
2232 1.68 jdc } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2233 1.73 jdc printf("%s: MAC rx fault, status 0x%02x\n",
2234 1.85 dyoung device_xname(sc->sc_dev), rxstat);
2235 1.1 eeh }
2236 1.68 jdc if (status & GEM_INTR_PCS) {
2237 1.68 jdc r |= gem_pint(sc);
2238 1.68 jdc }
2239 1.68 jdc
2240 1.68 jdc /* Do we need to do anything with these?
2241 1.68 jdc if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2242 1.68 jdc status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2243 1.68 jdc if ((status2 & GEM_MAC_PAUSED) != 0)
2244 1.85 dyoung aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2245 1.76 cegger GEM_MAC_PAUSE_TIME(status2));
2246 1.68 jdc if ((status2 & GEM_MAC_PAUSE) != 0)
2247 1.85 dyoung aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2248 1.68 jdc if ((status2 & GEM_MAC_RESUME) != 0)
2249 1.85 dyoung aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2250 1.68 jdc }
2251 1.68 jdc if ((status & GEM_INTR_MIF) != 0)
2252 1.85 dyoung aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2253 1.68 jdc */
2254 1.45 heas rnd_add_uint32(&sc->rnd_source, status);
2255 1.1 eeh return (r);
2256 1.1 eeh }
2257 1.1 eeh
2258 1.99 jdc void
2259 1.99 jdc gem_rx_watchdog(void *arg)
2260 1.99 jdc {
2261 1.99 jdc struct gem_softc *sc = arg;
2262 1.99 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2263 1.99 jdc bus_space_tag_t t = sc->sc_bustag;
2264 1.99 jdc bus_space_handle_t h = sc->sc_h1;
2265 1.99 jdc u_int32_t rx_fifo_wr_ptr;
2266 1.99 jdc u_int32_t rx_fifo_rd_ptr;
2267 1.99 jdc u_int32_t state;
2268 1.99 jdc
2269 1.99 jdc if ((ifp->if_flags & IFF_RUNNING) == 0) {
2270 1.99 jdc aprint_error_dev(sc->sc_dev, "receiver not running\n");
2271 1.99 jdc return;
2272 1.99 jdc }
2273 1.99 jdc
2274 1.99 jdc rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2275 1.99 jdc rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2276 1.99 jdc state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
2277 1.99 jdc if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
2278 1.99 jdc ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
2279 1.99 jdc ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
2280 1.99 jdc (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
2281 1.99 jdc {
2282 1.99 jdc /*
2283 1.99 jdc * The RX state machine is still in overflow state and
2284 1.99 jdc * the RX FIFO write and read pointers seem to be
2285 1.99 jdc * stuck. Whack the chip over the head to get things
2286 1.99 jdc * going again.
2287 1.99 jdc */
2288 1.99 jdc aprint_error_dev(sc->sc_dev,
2289 1.99 jdc "receiver stuck in overflow, resetting\n");
2290 1.99 jdc gem_init(ifp);
2291 1.99 jdc } else {
2292 1.99 jdc if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
2293 1.99 jdc aprint_error_dev(sc->sc_dev,
2294 1.99 jdc "rx_watchdog: not in overflow state: 0x%x\n",
2295 1.99 jdc state);
2296 1.99 jdc }
2297 1.99 jdc if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
2298 1.99 jdc aprint_error_dev(sc->sc_dev,
2299 1.99 jdc "rx_watchdog: wr & rd ptr different\n");
2300 1.99 jdc }
2301 1.99 jdc if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
2302 1.99 jdc aprint_error_dev(sc->sc_dev,
2303 1.99 jdc "rx_watchdog: wr pointer != saved\n");
2304 1.99 jdc }
2305 1.99 jdc if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
2306 1.99 jdc aprint_error_dev(sc->sc_dev,
2307 1.99 jdc "rx_watchdog: rd pointer != saved\n");
2308 1.99 jdc }
2309 1.99 jdc aprint_error_dev(sc->sc_dev, "resetting anyway\n");
2310 1.99 jdc gem_init(ifp);
2311 1.99 jdc }
2312 1.99 jdc }
2313 1.1 eeh
2314 1.1 eeh void
2315 1.81 dsl gem_watchdog(struct ifnet *ifp)
2316 1.1 eeh {
2317 1.1 eeh struct gem_softc *sc = ifp->if_softc;
2318 1.1 eeh
2319 1.1 eeh DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2320 1.1 eeh "GEM_MAC_RX_CONFIG %x\n",
2321 1.50 martin bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2322 1.50 martin bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2323 1.50 martin bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2324 1.1 eeh
2325 1.85 dyoung log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2326 1.1 eeh ++ifp->if_oerrors;
2327 1.1 eeh
2328 1.1 eeh /* Try to get more packets going. */
2329 1.99 jdc gem_init(ifp);
2330 1.1 eeh gem_start(ifp);
2331 1.1 eeh }
2332 1.1 eeh
2333 1.1 eeh /*
2334 1.1 eeh * Initialize the MII Management Interface
2335 1.1 eeh */
2336 1.1 eeh void
2337 1.81 dsl gem_mifinit(struct gem_softc *sc)
2338 1.1 eeh {
2339 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
2340 1.50 martin bus_space_handle_t mif = sc->sc_h1;
2341 1.1 eeh
2342 1.1 eeh /* Configure the MIF in frame mode */
2343 1.1 eeh sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2344 1.1 eeh sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2345 1.1 eeh bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2346 1.1 eeh }
2347 1.1 eeh
2348 1.1 eeh /*
2349 1.1 eeh * MII interface
2350 1.1 eeh *
2351 1.1 eeh * The GEM MII interface supports at least three different operating modes:
2352 1.1 eeh *
2353 1.1 eeh * Bitbang mode is implemented using data, clock and output enable registers.
2354 1.1 eeh *
2355 1.1 eeh * Frame mode is implemented by loading a complete frame into the frame
2356 1.1 eeh * register and polling the valid bit for completion.
2357 1.1 eeh *
2358 1.1 eeh * Polling mode uses the frame register but completion is indicated by
2359 1.1 eeh * an interrupt.
2360 1.1 eeh *
2361 1.1 eeh */
2362 1.1 eeh static int
2363 1.84 cegger gem_mii_readreg(device_t self, int phy, int reg)
2364 1.1 eeh {
2365 1.85 dyoung struct gem_softc *sc = device_private(self);
2366 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
2367 1.50 martin bus_space_handle_t mif = sc->sc_h1;
2368 1.1 eeh int n;
2369 1.1 eeh u_int32_t v;
2370 1.1 eeh
2371 1.1 eeh #ifdef GEM_DEBUG1
2372 1.1 eeh if (sc->sc_debug)
2373 1.68 jdc printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2374 1.1 eeh #endif
2375 1.1 eeh
2376 1.1 eeh /* Construct the frame command */
2377 1.1 eeh v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
2378 1.1 eeh GEM_MIF_FRAME_READ;
2379 1.1 eeh
2380 1.1 eeh bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2381 1.1 eeh for (n = 0; n < 100; n++) {
2382 1.1 eeh DELAY(1);
2383 1.1 eeh v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2384 1.1 eeh if (v & GEM_MIF_FRAME_TA0)
2385 1.1 eeh return (v & GEM_MIF_FRAME_DATA);
2386 1.1 eeh }
2387 1.1 eeh
2388 1.85 dyoung printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2389 1.1 eeh return (0);
2390 1.1 eeh }
2391 1.1 eeh
2392 1.1 eeh static void
2393 1.84 cegger gem_mii_writereg(device_t self, int phy, int reg, int val)
2394 1.1 eeh {
2395 1.85 dyoung struct gem_softc *sc = device_private(self);
2396 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
2397 1.50 martin bus_space_handle_t mif = sc->sc_h1;
2398 1.1 eeh int n;
2399 1.1 eeh u_int32_t v;
2400 1.1 eeh
2401 1.1 eeh #ifdef GEM_DEBUG1
2402 1.1 eeh if (sc->sc_debug)
2403 1.68 jdc printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2404 1.1 eeh phy, reg, val);
2405 1.1 eeh #endif
2406 1.1 eeh
2407 1.1 eeh /* Construct the frame command */
2408 1.1 eeh v = GEM_MIF_FRAME_WRITE |
2409 1.1 eeh (phy << GEM_MIF_PHY_SHIFT) |
2410 1.1 eeh (reg << GEM_MIF_REG_SHIFT) |
2411 1.1 eeh (val & GEM_MIF_FRAME_DATA);
2412 1.1 eeh
2413 1.1 eeh bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2414 1.1 eeh for (n = 0; n < 100; n++) {
2415 1.1 eeh DELAY(1);
2416 1.1 eeh v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2417 1.1 eeh if (v & GEM_MIF_FRAME_TA0)
2418 1.1 eeh return;
2419 1.1 eeh }
2420 1.1 eeh
2421 1.85 dyoung printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2422 1.1 eeh }
2423 1.1 eeh
2424 1.1 eeh static void
2425 1.100 matt gem_mii_statchg(struct ifnet *ifp)
2426 1.1 eeh {
2427 1.100 matt struct gem_softc *sc = ifp->if_softc;
2428 1.3 eeh #ifdef GEM_DEBUG
2429 1.1 eeh int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2430 1.3 eeh #endif
2431 1.1 eeh
2432 1.1 eeh #ifdef GEM_DEBUG
2433 1.1 eeh if (sc->sc_debug)
2434 1.31 heas printf("gem_mii_statchg: status change: phy = %d\n",
2435 1.28 chs sc->sc_phys[instance]);
2436 1.1 eeh #endif
2437 1.68 jdc gem_statuschange(sc);
2438 1.68 jdc }
2439 1.1 eeh
2440 1.68 jdc /*
2441 1.68 jdc * Common status change for gem_mii_statchg() and gem_pint()
2442 1.68 jdc */
2443 1.68 jdc void
2444 1.68 jdc gem_statuschange(struct gem_softc* sc)
2445 1.68 jdc {
2446 1.68 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2447 1.68 jdc bus_space_tag_t t = sc->sc_bustag;
2448 1.68 jdc bus_space_handle_t mac = sc->sc_h1;
2449 1.68 jdc int gigabit;
2450 1.68 jdc u_int32_t rxcfg, txcfg, v;
2451 1.68 jdc
2452 1.68 jdc if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2453 1.68 jdc IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2454 1.68 jdc sc->sc_flags |= GEM_LINK;
2455 1.68 jdc else
2456 1.68 jdc sc->sc_flags &= ~GEM_LINK;
2457 1.68 jdc
2458 1.70 jdc if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2459 1.68 jdc gigabit = 1;
2460 1.70 jdc else
2461 1.68 jdc gigabit = 0;
2462 1.1 eeh
2463 1.68 jdc /*
2464 1.68 jdc * The configuration done here corresponds to the steps F) and
2465 1.68 jdc * G) and as far as enabling of RX and TX MAC goes also step H)
2466 1.68 jdc * of the initialization sequence outlined in section 3.2.1 of
2467 1.68 jdc * the GEM Gigabit Ethernet ASIC Specification.
2468 1.68 jdc */
2469 1.68 jdc
2470 1.68 jdc rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2471 1.68 jdc rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2472 1.68 jdc txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2473 1.68 jdc if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2474 1.68 jdc txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2475 1.68 jdc else if (gigabit) {
2476 1.68 jdc rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2477 1.68 jdc txcfg |= GEM_MAC_RX_CARR_EXTEND;
2478 1.68 jdc }
2479 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2480 1.68 jdc bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2481 1.68 jdc BUS_SPACE_BARRIER_WRITE);
2482 1.68 jdc if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2483 1.85 dyoung aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2484 1.68 jdc bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2485 1.68 jdc bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2486 1.68 jdc bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2487 1.68 jdc BUS_SPACE_BARRIER_WRITE);
2488 1.68 jdc if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2489 1.85 dyoung aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2490 1.68 jdc bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2491 1.68 jdc
2492 1.68 jdc v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2493 1.68 jdc ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2494 1.68 jdc bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2495 1.68 jdc
2496 1.68 jdc if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2497 1.68 jdc gigabit != 0)
2498 1.68 jdc bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2499 1.68 jdc GEM_MAC_SLOT_TIME_CARR_EXTEND);
2500 1.68 jdc else
2501 1.68 jdc bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2502 1.68 jdc GEM_MAC_SLOT_TIME_NORMAL);
2503 1.1 eeh
2504 1.1 eeh /* XIF Configuration */
2505 1.68 jdc if (sc->sc_flags & GEM_LINK)
2506 1.68 jdc v = GEM_MAC_XIF_LINK_LED;
2507 1.68 jdc else
2508 1.68 jdc v = 0;
2509 1.1 eeh v |= GEM_MAC_XIF_TX_MII_ENA;
2510 1.70 jdc
2511 1.70 jdc /* If an external transceiver is connected, enable its MII drivers */
2512 1.70 jdc sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2513 1.70 jdc if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2514 1.70 jdc if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2515 1.70 jdc if (gigabit)
2516 1.70 jdc v |= GEM_MAC_XIF_GMII_MODE;
2517 1.70 jdc else
2518 1.70 jdc v &= ~GEM_MAC_XIF_GMII_MODE;
2519 1.70 jdc } else
2520 1.70 jdc /* Internal MII needs buf enable */
2521 1.70 jdc v |= GEM_MAC_XIF_MII_BUF_ENA;
2522 1.97 jdc /* MII needs echo disable if half duplex. */
2523 1.97 jdc if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2524 1.97 jdc /* turn on full duplex LED */
2525 1.97 jdc v |= GEM_MAC_XIF_FDPLX_LED;
2526 1.97 jdc else
2527 1.97 jdc /* half duplex -- disable echo */
2528 1.97 jdc v |= GEM_MAC_XIF_ECHO_DISABL;
2529 1.68 jdc } else {
2530 1.70 jdc if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2531 1.70 jdc v |= GEM_MAC_XIF_FDPLX_LED;
2532 1.70 jdc v |= GEM_MAC_XIF_GMII_MODE;
2533 1.68 jdc }
2534 1.70 jdc bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2535 1.70 jdc
2536 1.68 jdc if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2537 1.68 jdc (sc->sc_flags & GEM_LINK) != 0) {
2538 1.68 jdc bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2539 1.68 jdc txcfg | GEM_MAC_TX_ENABLE);
2540 1.68 jdc bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2541 1.68 jdc rxcfg | GEM_MAC_RX_ENABLE);
2542 1.68 jdc }
2543 1.1 eeh }
2544 1.1 eeh
2545 1.1 eeh int
2546 1.69 dyoung gem_ser_mediachange(struct ifnet *ifp)
2547 1.1 eeh {
2548 1.1 eeh struct gem_softc *sc = ifp->if_softc;
2549 1.68 jdc u_int s, t;
2550 1.1 eeh
2551 1.69 dyoung if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2552 1.68 jdc return EINVAL;
2553 1.1 eeh
2554 1.69 dyoung s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2555 1.69 dyoung if (s == IFM_AUTO) {
2556 1.69 dyoung if (sc->sc_mii_media != s) {
2557 1.69 dyoung #ifdef GEM_DEBUG
2558 1.85 dyoung aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2559 1.69 dyoung #endif
2560 1.69 dyoung sc->sc_mii_media = s;
2561 1.69 dyoung if (ifp->if_flags & IFF_UP) {
2562 1.69 dyoung gem_pcs_stop(sc, 0);
2563 1.69 dyoung gem_pcs_start(sc);
2564 1.69 dyoung }
2565 1.69 dyoung }
2566 1.69 dyoung return 0;
2567 1.69 dyoung }
2568 1.69 dyoung if (s == IFM_1000_SX) {
2569 1.69 dyoung t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2570 1.69 dyoung if (t == IFM_FDX || t == IFM_HDX) {
2571 1.69 dyoung if (sc->sc_mii_media != t) {
2572 1.69 dyoung sc->sc_mii_media = t;
2573 1.68 jdc #ifdef GEM_DEBUG
2574 1.85 dyoung aprint_debug_dev(sc->sc_dev,
2575 1.76 cegger "setting media to 1000baseSX-%s\n",
2576 1.69 dyoung t == IFM_FDX ? "FDX" : "HDX");
2577 1.68 jdc #endif
2578 1.68 jdc if (ifp->if_flags & IFF_UP) {
2579 1.68 jdc gem_pcs_stop(sc, 0);
2580 1.68 jdc gem_pcs_start(sc);
2581 1.68 jdc }
2582 1.68 jdc }
2583 1.68 jdc return 0;
2584 1.68 jdc }
2585 1.69 dyoung }
2586 1.69 dyoung return EINVAL;
2587 1.1 eeh }
2588 1.1 eeh
2589 1.1 eeh void
2590 1.69 dyoung gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2591 1.1 eeh {
2592 1.1 eeh struct gem_softc *sc = ifp->if_softc;
2593 1.1 eeh
2594 1.1 eeh if ((ifp->if_flags & IFF_UP) == 0)
2595 1.1 eeh return;
2596 1.1 eeh ifmr->ifm_active = sc->sc_mii.mii_media_active;
2597 1.1 eeh ifmr->ifm_status = sc->sc_mii.mii_media_status;
2598 1.1 eeh }
2599 1.1 eeh
2600 1.79 dyoung static int
2601 1.79 dyoung gem_ifflags_cb(struct ethercom *ec)
2602 1.79 dyoung {
2603 1.79 dyoung struct ifnet *ifp = &ec->ec_if;
2604 1.79 dyoung struct gem_softc *sc = ifp->if_softc;
2605 1.79 dyoung int change = ifp->if_flags ^ sc->sc_if_flags;
2606 1.79 dyoung
2607 1.79 dyoung if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2608 1.79 dyoung return ENETRESET;
2609 1.79 dyoung else if ((change & IFF_PROMISC) != 0)
2610 1.79 dyoung gem_setladrf(sc);
2611 1.79 dyoung return 0;
2612 1.79 dyoung }
2613 1.79 dyoung
2614 1.1 eeh /*
2615 1.1 eeh * Process an ioctl request.
2616 1.1 eeh */
2617 1.1 eeh int
2618 1.79 dyoung gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2619 1.1 eeh {
2620 1.1 eeh struct gem_softc *sc = ifp->if_softc;
2621 1.1 eeh int s, error = 0;
2622 1.1 eeh
2623 1.20 matt s = splnet();
2624 1.1 eeh
2625 1.79 dyoung if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2626 1.74 dyoung error = 0;
2627 1.74 dyoung if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2628 1.74 dyoung ;
2629 1.74 dyoung else if (ifp->if_flags & IFF_RUNNING) {
2630 1.1 eeh /*
2631 1.1 eeh * Multicast list has changed; set the hardware filter
2632 1.1 eeh * accordingly.
2633 1.1 eeh */
2634 1.74 dyoung gem_setladrf(sc);
2635 1.1 eeh }
2636 1.1 eeh }
2637 1.1 eeh
2638 1.1 eeh /* Try to get things going again */
2639 1.43 christos if (ifp->if_flags & IFF_UP)
2640 1.1 eeh gem_start(ifp);
2641 1.1 eeh splx(s);
2642 1.1 eeh return (error);
2643 1.1 eeh }
2644 1.1 eeh
2645 1.85 dyoung static void
2646 1.85 dyoung gem_inten(struct gem_softc *sc)
2647 1.85 dyoung {
2648 1.85 dyoung bus_space_tag_t t = sc->sc_bustag;
2649 1.85 dyoung bus_space_handle_t h = sc->sc_h1;
2650 1.85 dyoung uint32_t v;
2651 1.85 dyoung
2652 1.85 dyoung if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2653 1.85 dyoung v = GEM_INTR_PCS;
2654 1.85 dyoung else
2655 1.85 dyoung v = GEM_INTR_MIF;
2656 1.85 dyoung bus_space_write_4(t, h, GEM_INTMASK,
2657 1.85 dyoung ~(GEM_INTR_TX_INTME |
2658 1.85 dyoung GEM_INTR_TX_EMPTY |
2659 1.85 dyoung GEM_INTR_TX_MAC |
2660 1.85 dyoung GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
2661 1.85 dyoung GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
2662 1.85 dyoung GEM_INTR_BERR | v));
2663 1.85 dyoung }
2664 1.85 dyoung
2665 1.85 dyoung bool
2666 1.93 dyoung gem_resume(device_t self, const pmf_qual_t *qual)
2667 1.85 dyoung {
2668 1.85 dyoung struct gem_softc *sc = device_private(self);
2669 1.85 dyoung
2670 1.85 dyoung gem_inten(sc);
2671 1.85 dyoung
2672 1.85 dyoung return true;
2673 1.85 dyoung }
2674 1.85 dyoung
2675 1.85 dyoung bool
2676 1.93 dyoung gem_suspend(device_t self, const pmf_qual_t *qual)
2677 1.85 dyoung {
2678 1.85 dyoung struct gem_softc *sc = device_private(self);
2679 1.85 dyoung bus_space_tag_t t = sc->sc_bustag;
2680 1.85 dyoung bus_space_handle_t h = sc->sc_h1;
2681 1.85 dyoung
2682 1.85 dyoung bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2683 1.85 dyoung
2684 1.85 dyoung return true;
2685 1.85 dyoung }
2686 1.1 eeh
2687 1.85 dyoung bool
2688 1.85 dyoung gem_shutdown(device_t self, int howto)
2689 1.1 eeh {
2690 1.85 dyoung struct gem_softc *sc = device_private(self);
2691 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2692 1.1 eeh
2693 1.1 eeh gem_stop(ifp, 1);
2694 1.85 dyoung
2695 1.85 dyoung return true;
2696 1.1 eeh }
2697 1.1 eeh
2698 1.1 eeh /*
2699 1.1 eeh * Set up the logical address filter.
2700 1.1 eeh */
2701 1.1 eeh void
2702 1.81 dsl gem_setladrf(struct gem_softc *sc)
2703 1.1 eeh {
2704 1.15 matt struct ethercom *ec = &sc->sc_ethercom;
2705 1.15 matt struct ifnet *ifp = &ec->ec_if;
2706 1.1 eeh struct ether_multi *enm;
2707 1.1 eeh struct ether_multistep step;
2708 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
2709 1.50 martin bus_space_handle_t h = sc->sc_h1;
2710 1.1 eeh u_int32_t crc;
2711 1.1 eeh u_int32_t hash[16];
2712 1.1 eeh u_int32_t v;
2713 1.15 matt int i;
2714 1.1 eeh
2715 1.1 eeh /* Get current RX configuration */
2716 1.1 eeh v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2717 1.1 eeh
2718 1.15 matt /*
2719 1.15 matt * Turn off promiscuous mode, promiscuous group mode (all multicast),
2720 1.15 matt * and hash filter. Depending on the case, the right bit will be
2721 1.15 matt * enabled.
2722 1.15 matt */
2723 1.15 matt v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2724 1.15 matt GEM_MAC_RX_PROMISC_GRP);
2725 1.15 matt
2726 1.1 eeh if ((ifp->if_flags & IFF_PROMISC) != 0) {
2727 1.15 matt /* Turn on promiscuous mode */
2728 1.1 eeh v |= GEM_MAC_RX_PROMISCUOUS;
2729 1.1 eeh ifp->if_flags |= IFF_ALLMULTI;
2730 1.1 eeh goto chipit;
2731 1.1 eeh }
2732 1.1 eeh
2733 1.1 eeh /*
2734 1.1 eeh * Set up multicast address filter by passing all multicast addresses
2735 1.15 matt * through a crc generator, and then using the high order 8 bits as an
2736 1.15 matt * index into the 256 bit logical address filter. The high order 4
2737 1.41 christos * bits selects the word, while the other 4 bits select the bit within
2738 1.15 matt * the word (where bit 0 is the MSB).
2739 1.1 eeh */
2740 1.1 eeh
2741 1.15 matt /* Clear hash table */
2742 1.15 matt memset(hash, 0, sizeof(hash));
2743 1.15 matt
2744 1.1 eeh ETHER_FIRST_MULTI(step, ec, enm);
2745 1.1 eeh while (enm != NULL) {
2746 1.6 thorpej if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2747 1.1 eeh /*
2748 1.1 eeh * We must listen to a range of multicast addresses.
2749 1.1 eeh * For now, just accept all multicasts, rather than
2750 1.1 eeh * trying to set only those filter bits needed to match
2751 1.1 eeh * the range. (At this time, the only use of address
2752 1.1 eeh * ranges is for IP multicast routing, for which the
2753 1.1 eeh * range is big enough to require all bits set.)
2754 1.68 jdc * XXX should use the address filters for this
2755 1.1 eeh */
2756 1.1 eeh ifp->if_flags |= IFF_ALLMULTI;
2757 1.15 matt v |= GEM_MAC_RX_PROMISC_GRP;
2758 1.1 eeh goto chipit;
2759 1.1 eeh }
2760 1.1 eeh
2761 1.15 matt /* Get the LE CRC32 of the address */
2762 1.15 matt crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2763 1.1 eeh
2764 1.1 eeh /* Just want the 8 most significant bits. */
2765 1.1 eeh crc >>= 24;
2766 1.1 eeh
2767 1.1 eeh /* Set the corresponding bit in the filter. */
2768 1.15 matt hash[crc >> 4] |= 1 << (15 - (crc & 15));
2769 1.1 eeh
2770 1.1 eeh ETHER_NEXT_MULTI(step, enm);
2771 1.1 eeh }
2772 1.1 eeh
2773 1.15 matt v |= GEM_MAC_RX_HASH_FILTER;
2774 1.1 eeh ifp->if_flags &= ~IFF_ALLMULTI;
2775 1.1 eeh
2776 1.15 matt /* Now load the hash table into the chip (if we are using it) */
2777 1.15 matt for (i = 0; i < 16; i++) {
2778 1.15 matt bus_space_write_4(t, h,
2779 1.15 matt GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2780 1.15 matt hash[i]);
2781 1.15 matt }
2782 1.15 matt
2783 1.1 eeh chipit:
2784 1.41 christos sc->sc_if_flags = ifp->if_flags;
2785 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2786 1.1 eeh }
2787