gem.c revision 1.26 1 1.26 matt /* $NetBSD: gem.c,v 1.26 2003/02/26 06:31:09 matt Exp $ */
2 1.1 eeh
3 1.1 eeh /*
4 1.1 eeh *
5 1.1 eeh * Copyright (C) 2001 Eduardo Horvath.
6 1.1 eeh * All rights reserved.
7 1.1 eeh *
8 1.1 eeh *
9 1.1 eeh * Redistribution and use in source and binary forms, with or without
10 1.1 eeh * modification, are permitted provided that the following conditions
11 1.1 eeh * are met:
12 1.1 eeh * 1. Redistributions of source code must retain the above copyright
13 1.1 eeh * notice, this list of conditions and the following disclaimer.
14 1.1 eeh * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 eeh * notice, this list of conditions and the following disclaimer in the
16 1.1 eeh * documentation and/or other materials provided with the distribution.
17 1.1 eeh *
18 1.1 eeh * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
19 1.1 eeh * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 1.1 eeh * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 1.1 eeh * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
22 1.1 eeh * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 1.1 eeh * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 1.1 eeh * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 1.1 eeh * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 1.1 eeh * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 1.1 eeh * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 1.1 eeh * SUCH DAMAGE.
29 1.1 eeh *
30 1.1 eeh */
31 1.1 eeh
32 1.1 eeh /*
33 1.1 eeh * Driver for Sun GEM ethernet controllers.
34 1.1 eeh */
35 1.10 lukem
36 1.10 lukem #include <sys/cdefs.h>
37 1.26 matt __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.26 2003/02/26 06:31:09 matt Exp $");
38 1.1 eeh
39 1.1 eeh #include "bpfilter.h"
40 1.1 eeh
41 1.1 eeh #include <sys/param.h>
42 1.1 eeh #include <sys/systm.h>
43 1.1 eeh #include <sys/callout.h>
44 1.1 eeh #include <sys/mbuf.h>
45 1.1 eeh #include <sys/syslog.h>
46 1.1 eeh #include <sys/malloc.h>
47 1.1 eeh #include <sys/kernel.h>
48 1.1 eeh #include <sys/socket.h>
49 1.1 eeh #include <sys/ioctl.h>
50 1.1 eeh #include <sys/errno.h>
51 1.1 eeh #include <sys/device.h>
52 1.1 eeh
53 1.1 eeh #include <machine/endian.h>
54 1.1 eeh
55 1.1 eeh #include <uvm/uvm_extern.h>
56 1.1 eeh
57 1.1 eeh #include <net/if.h>
58 1.1 eeh #include <net/if_dl.h>
59 1.1 eeh #include <net/if_media.h>
60 1.1 eeh #include <net/if_ether.h>
61 1.1 eeh
62 1.1 eeh #if NBPFILTER > 0
63 1.1 eeh #include <net/bpf.h>
64 1.1 eeh #endif
65 1.1 eeh
66 1.1 eeh #include <machine/bus.h>
67 1.1 eeh #include <machine/intr.h>
68 1.1 eeh
69 1.1 eeh #include <dev/mii/mii.h>
70 1.1 eeh #include <dev/mii/miivar.h>
71 1.1 eeh #include <dev/mii/mii_bitbang.h>
72 1.1 eeh
73 1.1 eeh #include <dev/ic/gemreg.h>
74 1.1 eeh #include <dev/ic/gemvar.h>
75 1.1 eeh
76 1.1 eeh #define TRIES 10000
77 1.1 eeh
78 1.1 eeh void gem_start __P((struct ifnet *));
79 1.1 eeh void gem_stop __P((struct ifnet *, int));
80 1.1 eeh int gem_ioctl __P((struct ifnet *, u_long, caddr_t));
81 1.1 eeh void gem_tick __P((void *));
82 1.1 eeh void gem_watchdog __P((struct ifnet *));
83 1.1 eeh void gem_shutdown __P((void *));
84 1.1 eeh int gem_init __P((struct ifnet *));
85 1.1 eeh void gem_init_regs(struct gem_softc *sc);
86 1.1 eeh static int gem_ringsize(int sz);
87 1.1 eeh int gem_meminit __P((struct gem_softc *));
88 1.1 eeh void gem_mifinit __P((struct gem_softc *));
89 1.1 eeh void gem_reset __P((struct gem_softc *));
90 1.1 eeh int gem_reset_rx(struct gem_softc *sc);
91 1.1 eeh int gem_reset_tx(struct gem_softc *sc);
92 1.1 eeh int gem_disable_rx(struct gem_softc *sc);
93 1.1 eeh int gem_disable_tx(struct gem_softc *sc);
94 1.1 eeh void gem_rxdrain(struct gem_softc *sc);
95 1.1 eeh int gem_add_rxbuf(struct gem_softc *sc, int idx);
96 1.1 eeh void gem_setladrf __P((struct gem_softc *));
97 1.1 eeh
98 1.1 eeh /* MII methods & callbacks */
99 1.1 eeh static int gem_mii_readreg __P((struct device *, int, int));
100 1.1 eeh static void gem_mii_writereg __P((struct device *, int, int, int));
101 1.1 eeh static void gem_mii_statchg __P((struct device *));
102 1.1 eeh
103 1.1 eeh int gem_mediachange __P((struct ifnet *));
104 1.1 eeh void gem_mediastatus __P((struct ifnet *, struct ifmediareq *));
105 1.1 eeh
106 1.1 eeh struct mbuf *gem_get __P((struct gem_softc *, int, int));
107 1.1 eeh int gem_put __P((struct gem_softc *, int, struct mbuf *));
108 1.1 eeh void gem_read __P((struct gem_softc *, int, int));
109 1.1 eeh int gem_eint __P((struct gem_softc *, u_int));
110 1.1 eeh int gem_rint __P((struct gem_softc *));
111 1.1 eeh int gem_tint __P((struct gem_softc *));
112 1.1 eeh void gem_power __P((int, void *));
113 1.1 eeh
114 1.1 eeh #ifdef GEM_DEBUG
115 1.1 eeh #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
116 1.1 eeh printf x
117 1.1 eeh #else
118 1.1 eeh #define DPRINTF(sc, x) /* nothing */
119 1.1 eeh #endif
120 1.1 eeh
121 1.1 eeh
122 1.1 eeh /*
123 1.6 thorpej * gem_attach:
124 1.1 eeh *
125 1.1 eeh * Attach a Gem interface to the system.
126 1.1 eeh */
127 1.1 eeh void
128 1.6 thorpej gem_attach(sc, enaddr)
129 1.1 eeh struct gem_softc *sc;
130 1.6 thorpej const uint8_t *enaddr;
131 1.1 eeh {
132 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
133 1.1 eeh struct mii_data *mii = &sc->sc_mii;
134 1.1 eeh struct mii_softc *child;
135 1.15 matt struct ifmedia_entry *ifm;
136 1.1 eeh int i, error;
137 1.15 matt u_int32_t v;
138 1.1 eeh
139 1.1 eeh /* Make sure the chip is stopped. */
140 1.1 eeh ifp->if_softc = sc;
141 1.1 eeh gem_reset(sc);
142 1.1 eeh
143 1.1 eeh /*
144 1.1 eeh * Allocate the control data structures, and create and load the
145 1.1 eeh * DMA map for it.
146 1.1 eeh */
147 1.1 eeh if ((error = bus_dmamem_alloc(sc->sc_dmatag,
148 1.1 eeh sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
149 1.1 eeh 1, &sc->sc_cdnseg, 0)) != 0) {
150 1.24 thorpej aprint_error(
151 1.24 thorpej "%s: unable to allocate control data, error = %d\n",
152 1.1 eeh sc->sc_dev.dv_xname, error);
153 1.1 eeh goto fail_0;
154 1.1 eeh }
155 1.1 eeh
156 1.1 eeh /* XXX should map this in with correct endianness */
157 1.1 eeh if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
158 1.1 eeh sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
159 1.1 eeh BUS_DMA_COHERENT)) != 0) {
160 1.24 thorpej aprint_error("%s: unable to map control data, error = %d\n",
161 1.1 eeh sc->sc_dev.dv_xname, error);
162 1.1 eeh goto fail_1;
163 1.1 eeh }
164 1.1 eeh
165 1.1 eeh if ((error = bus_dmamap_create(sc->sc_dmatag,
166 1.1 eeh sizeof(struct gem_control_data), 1,
167 1.1 eeh sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
168 1.24 thorpej aprint_error("%s: unable to create control data DMA map, "
169 1.1 eeh "error = %d\n", sc->sc_dev.dv_xname, error);
170 1.1 eeh goto fail_2;
171 1.1 eeh }
172 1.1 eeh
173 1.1 eeh if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
174 1.1 eeh sc->sc_control_data, sizeof(struct gem_control_data), NULL,
175 1.1 eeh 0)) != 0) {
176 1.24 thorpej aprint_error(
177 1.24 thorpej "%s: unable to load control data DMA map, error = %d\n",
178 1.1 eeh sc->sc_dev.dv_xname, error);
179 1.1 eeh goto fail_3;
180 1.1 eeh }
181 1.1 eeh
182 1.1 eeh /*
183 1.1 eeh * Initialize the transmit job descriptors.
184 1.1 eeh */
185 1.1 eeh SIMPLEQ_INIT(&sc->sc_txfreeq);
186 1.1 eeh SIMPLEQ_INIT(&sc->sc_txdirtyq);
187 1.1 eeh
188 1.1 eeh /*
189 1.1 eeh * Create the transmit buffer DMA maps.
190 1.1 eeh */
191 1.1 eeh for (i = 0; i < GEM_TXQUEUELEN; i++) {
192 1.1 eeh struct gem_txsoft *txs;
193 1.1 eeh
194 1.1 eeh txs = &sc->sc_txsoft[i];
195 1.1 eeh txs->txs_mbuf = NULL;
196 1.15 matt if ((error = bus_dmamap_create(sc->sc_dmatag,
197 1.15 matt ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
198 1.15 matt ETHER_MAX_LEN_JUMBO, 0, 0,
199 1.1 eeh &txs->txs_dmamap)) != 0) {
200 1.24 thorpej aprint_error("%s: unable to create tx DMA map %d, "
201 1.1 eeh "error = %d\n", sc->sc_dev.dv_xname, i, error);
202 1.1 eeh goto fail_4;
203 1.1 eeh }
204 1.1 eeh SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
205 1.1 eeh }
206 1.1 eeh
207 1.1 eeh /*
208 1.1 eeh * Create the receive buffer DMA maps.
209 1.1 eeh */
210 1.1 eeh for (i = 0; i < GEM_NRXDESC; i++) {
211 1.1 eeh if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
212 1.1 eeh MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
213 1.24 thorpej aprint_error("%s: unable to create rx DMA map %d, "
214 1.1 eeh "error = %d\n", sc->sc_dev.dv_xname, i, error);
215 1.1 eeh goto fail_5;
216 1.1 eeh }
217 1.1 eeh sc->sc_rxsoft[i].rxs_mbuf = NULL;
218 1.1 eeh }
219 1.1 eeh
220 1.1 eeh /*
221 1.1 eeh * From this point forward, the attachment cannot fail. A failure
222 1.1 eeh * before this point releases all resources that may have been
223 1.1 eeh * allocated.
224 1.1 eeh */
225 1.1 eeh
226 1.1 eeh /* Announce ourselves. */
227 1.24 thorpej aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
228 1.6 thorpej ether_sprintf(enaddr));
229 1.1 eeh
230 1.15 matt /* Get RX FIFO size */
231 1.15 matt sc->sc_rxfifosize = 64 *
232 1.15 matt bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
233 1.24 thorpej aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
234 1.15 matt
235 1.15 matt /* Get TX FIFO size */
236 1.15 matt v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
237 1.24 thorpej aprint_normal(", %uKB TX fifo\n", v / 16);
238 1.15 matt
239 1.1 eeh /* Initialize ifnet structure. */
240 1.1 eeh strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
241 1.1 eeh ifp->if_softc = sc;
242 1.1 eeh ifp->if_flags =
243 1.1 eeh IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
244 1.1 eeh ifp->if_start = gem_start;
245 1.1 eeh ifp->if_ioctl = gem_ioctl;
246 1.1 eeh ifp->if_watchdog = gem_watchdog;
247 1.1 eeh ifp->if_stop = gem_stop;
248 1.1 eeh ifp->if_init = gem_init;
249 1.1 eeh IFQ_SET_READY(&ifp->if_snd);
250 1.1 eeh
251 1.1 eeh /* Initialize ifmedia structures and MII info */
252 1.1 eeh mii->mii_ifp = ifp;
253 1.1 eeh mii->mii_readreg = gem_mii_readreg;
254 1.1 eeh mii->mii_writereg = gem_mii_writereg;
255 1.1 eeh mii->mii_statchg = gem_mii_statchg;
256 1.1 eeh
257 1.23 fair ifmedia_init(&mii->mii_media, IFM_IMASK, gem_mediachange, gem_mediastatus);
258 1.1 eeh
259 1.1 eeh gem_mifinit(sc);
260 1.1 eeh
261 1.1 eeh mii_attach(&sc->sc_dev, mii, 0xffffffff,
262 1.25 matt MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
263 1.1 eeh
264 1.1 eeh child = LIST_FIRST(&mii->mii_phys);
265 1.1 eeh if (child == NULL) {
266 1.1 eeh /* No PHY attached */
267 1.1 eeh ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
268 1.1 eeh ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
269 1.1 eeh } else {
270 1.1 eeh /*
271 1.1 eeh * Walk along the list of attached MII devices and
272 1.1 eeh * establish an `MII instance' to `phy number'
273 1.1 eeh * mapping. We'll use this mapping in media change
274 1.1 eeh * requests to determine which phy to use to program
275 1.1 eeh * the MIF configuration register.
276 1.1 eeh */
277 1.1 eeh for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
278 1.1 eeh /*
279 1.1 eeh * Note: we support just two PHYs: the built-in
280 1.1 eeh * internal device and an external on the MII
281 1.1 eeh * connector.
282 1.1 eeh */
283 1.1 eeh if (child->mii_phy > 1 || child->mii_inst > 1) {
284 1.24 thorpej aprint_error(
285 1.24 thorpej "%s: cannot accomodate MII device %s"
286 1.1 eeh " at phy %d, instance %d\n",
287 1.1 eeh sc->sc_dev.dv_xname,
288 1.1 eeh child->mii_dev.dv_xname,
289 1.1 eeh child->mii_phy, child->mii_inst);
290 1.1 eeh continue;
291 1.1 eeh }
292 1.1 eeh
293 1.1 eeh sc->sc_phys[child->mii_inst] = child->mii_phy;
294 1.15 matt
295 1.1 eeh }
296 1.1 eeh
297 1.1 eeh /*
298 1.1 eeh * Now select and activate the PHY we will use.
299 1.1 eeh *
300 1.1 eeh * The order of preference is External (MDI1),
301 1.1 eeh * Internal (MDI0), Serial Link (no MII).
302 1.1 eeh */
303 1.1 eeh if (sc->sc_phys[1]) {
304 1.1 eeh #ifdef DEBUG
305 1.24 thorpej aprint_debug("using external phy\n");
306 1.1 eeh #endif
307 1.1 eeh sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
308 1.1 eeh } else {
309 1.1 eeh #ifdef DEBUG
310 1.24 thorpej aprint_debug("using internal phy\n");
311 1.1 eeh #endif
312 1.1 eeh sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
313 1.1 eeh }
314 1.1 eeh bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
315 1.1 eeh sc->sc_mif_config);
316 1.1 eeh
317 1.1 eeh /*
318 1.1 eeh * XXX - we can really do the following ONLY if the
319 1.1 eeh * phy indeed has the auto negotiation capability!!
320 1.1 eeh */
321 1.1 eeh ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
322 1.1 eeh }
323 1.1 eeh
324 1.15 matt /*
325 1.15 matt * If we support GigE media, we support jumbo frames too.
326 1.15 matt * Unless we are Apple.
327 1.15 matt */
328 1.15 matt TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
329 1.15 matt if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
330 1.15 matt IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
331 1.15 matt IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
332 1.15 matt IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
333 1.15 matt if (sc->sc_variant != GEM_APPLE_GMAC)
334 1.15 matt sc->sc_ethercom.ec_capabilities
335 1.15 matt |= ETHERCAP_JUMBO_MTU;
336 1.15 matt
337 1.15 matt sc->sc_flags |= GEM_GIGABIT;
338 1.15 matt break;
339 1.15 matt }
340 1.15 matt }
341 1.15 matt
342 1.1 eeh /* claim 802.1q capability */
343 1.1 eeh sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
344 1.1 eeh
345 1.1 eeh /* Attach the interface. */
346 1.1 eeh if_attach(ifp);
347 1.6 thorpej ether_ifattach(ifp, enaddr);
348 1.1 eeh
349 1.1 eeh sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
350 1.1 eeh if (sc->sc_sh == NULL)
351 1.1 eeh panic("gem_config: can't establish shutdownhook");
352 1.1 eeh
353 1.1 eeh #if NRND > 0
354 1.1 eeh rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
355 1.1 eeh RND_TYPE_NET, 0);
356 1.1 eeh #endif
357 1.1 eeh
358 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
359 1.18 matt NULL, sc->sc_dev.dv_xname, "interrupts");
360 1.19 matt #ifdef GEM_COUNTERS
361 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
362 1.18 matt &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
363 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
364 1.18 matt &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
365 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
366 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
367 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
368 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
369 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
370 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
371 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
372 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
373 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
374 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
375 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
376 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
377 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
378 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
379 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
380 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
381 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
382 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
383 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
384 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
385 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
386 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
387 1.19 matt #endif
388 1.1 eeh
389 1.1 eeh #if notyet
390 1.1 eeh /*
391 1.1 eeh * Add a suspend hook to make sure we come back up after a
392 1.1 eeh * resume.
393 1.1 eeh */
394 1.1 eeh sc->sc_powerhook = powerhook_establish(gem_power, sc);
395 1.1 eeh if (sc->sc_powerhook == NULL)
396 1.24 thorpej aprint_error("%s: WARNING: unable to establish power hook\n",
397 1.1 eeh sc->sc_dev.dv_xname);
398 1.1 eeh #endif
399 1.1 eeh
400 1.1 eeh callout_init(&sc->sc_tick_ch);
401 1.1 eeh return;
402 1.1 eeh
403 1.1 eeh /*
404 1.1 eeh * Free any resources we've allocated during the failed attach
405 1.1 eeh * attempt. Do this in reverse order and fall through.
406 1.1 eeh */
407 1.1 eeh fail_5:
408 1.1 eeh for (i = 0; i < GEM_NRXDESC; i++) {
409 1.1 eeh if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
410 1.1 eeh bus_dmamap_destroy(sc->sc_dmatag,
411 1.1 eeh sc->sc_rxsoft[i].rxs_dmamap);
412 1.1 eeh }
413 1.1 eeh fail_4:
414 1.1 eeh for (i = 0; i < GEM_TXQUEUELEN; i++) {
415 1.1 eeh if (sc->sc_txsoft[i].txs_dmamap != NULL)
416 1.1 eeh bus_dmamap_destroy(sc->sc_dmatag,
417 1.1 eeh sc->sc_txsoft[i].txs_dmamap);
418 1.1 eeh }
419 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
420 1.1 eeh fail_3:
421 1.1 eeh bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
422 1.1 eeh fail_2:
423 1.1 eeh bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
424 1.1 eeh sizeof(struct gem_control_data));
425 1.1 eeh fail_1:
426 1.1 eeh bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
427 1.1 eeh fail_0:
428 1.1 eeh return;
429 1.1 eeh }
430 1.1 eeh
431 1.1 eeh
432 1.1 eeh void
433 1.1 eeh gem_tick(arg)
434 1.1 eeh void *arg;
435 1.1 eeh {
436 1.1 eeh struct gem_softc *sc = arg;
437 1.1 eeh int s;
438 1.1 eeh
439 1.1 eeh s = splnet();
440 1.1 eeh mii_tick(&sc->sc_mii);
441 1.1 eeh splx(s);
442 1.1 eeh
443 1.1 eeh callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
444 1.1 eeh
445 1.1 eeh }
446 1.1 eeh
447 1.1 eeh void
448 1.1 eeh gem_reset(sc)
449 1.1 eeh struct gem_softc *sc;
450 1.1 eeh {
451 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
452 1.1 eeh bus_space_handle_t h = sc->sc_h;
453 1.1 eeh int i;
454 1.1 eeh int s;
455 1.1 eeh
456 1.1 eeh s = splnet();
457 1.1 eeh DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
458 1.1 eeh gem_reset_rx(sc);
459 1.1 eeh gem_reset_tx(sc);
460 1.1 eeh
461 1.1 eeh /* Do a full reset */
462 1.1 eeh bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
463 1.1 eeh for (i=TRIES; i--; delay(100))
464 1.1 eeh if ((bus_space_read_4(t, h, GEM_RESET) &
465 1.1 eeh (GEM_RESET_RX|GEM_RESET_TX)) == 0)
466 1.1 eeh break;
467 1.1 eeh if ((bus_space_read_4(t, h, GEM_RESET) &
468 1.1 eeh (GEM_RESET_RX|GEM_RESET_TX)) != 0) {
469 1.1 eeh printf("%s: cannot reset device\n",
470 1.1 eeh sc->sc_dev.dv_xname);
471 1.1 eeh }
472 1.1 eeh splx(s);
473 1.1 eeh }
474 1.1 eeh
475 1.1 eeh
476 1.1 eeh /*
477 1.1 eeh * gem_rxdrain:
478 1.1 eeh *
479 1.1 eeh * Drain the receive queue.
480 1.1 eeh */
481 1.1 eeh void
482 1.1 eeh gem_rxdrain(struct gem_softc *sc)
483 1.1 eeh {
484 1.1 eeh struct gem_rxsoft *rxs;
485 1.1 eeh int i;
486 1.1 eeh
487 1.1 eeh for (i = 0; i < GEM_NRXDESC; i++) {
488 1.1 eeh rxs = &sc->sc_rxsoft[i];
489 1.1 eeh if (rxs->rxs_mbuf != NULL) {
490 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
491 1.1 eeh m_freem(rxs->rxs_mbuf);
492 1.1 eeh rxs->rxs_mbuf = NULL;
493 1.1 eeh }
494 1.1 eeh }
495 1.1 eeh }
496 1.1 eeh
497 1.1 eeh /*
498 1.1 eeh * Reset the whole thing.
499 1.1 eeh */
500 1.1 eeh void
501 1.1 eeh gem_stop(struct ifnet *ifp, int disable)
502 1.1 eeh {
503 1.1 eeh struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
504 1.1 eeh struct gem_txsoft *txs;
505 1.1 eeh
506 1.1 eeh DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
507 1.1 eeh
508 1.1 eeh callout_stop(&sc->sc_tick_ch);
509 1.1 eeh mii_down(&sc->sc_mii);
510 1.1 eeh
511 1.1 eeh /* XXX - Should we reset these instead? */
512 1.1 eeh gem_disable_rx(sc);
513 1.22 matt gem_disable_tx(sc);
514 1.1 eeh
515 1.1 eeh /*
516 1.1 eeh * Release any queued transmit buffers.
517 1.1 eeh */
518 1.1 eeh while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
519 1.21 lukem SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
520 1.1 eeh if (txs->txs_mbuf != NULL) {
521 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
522 1.1 eeh m_freem(txs->txs_mbuf);
523 1.1 eeh txs->txs_mbuf = NULL;
524 1.1 eeh }
525 1.1 eeh SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
526 1.1 eeh }
527 1.1 eeh
528 1.1 eeh if (disable) {
529 1.1 eeh gem_rxdrain(sc);
530 1.1 eeh }
531 1.1 eeh
532 1.1 eeh /*
533 1.1 eeh * Mark the interface down and cancel the watchdog timer.
534 1.1 eeh */
535 1.1 eeh ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
536 1.1 eeh ifp->if_timer = 0;
537 1.1 eeh }
538 1.1 eeh
539 1.1 eeh
540 1.1 eeh /*
541 1.1 eeh * Reset the receiver
542 1.1 eeh */
543 1.1 eeh int
544 1.1 eeh gem_reset_rx(struct gem_softc *sc)
545 1.1 eeh {
546 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
547 1.1 eeh bus_space_handle_t h = sc->sc_h;
548 1.1 eeh int i;
549 1.1 eeh
550 1.1 eeh
551 1.1 eeh /*
552 1.1 eeh * Resetting while DMA is in progress can cause a bus hang, so we
553 1.1 eeh * disable DMA first.
554 1.1 eeh */
555 1.1 eeh gem_disable_rx(sc);
556 1.1 eeh bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
557 1.1 eeh /* Wait till it finishes */
558 1.1 eeh for (i=TRIES; i--; delay(100))
559 1.1 eeh if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
560 1.1 eeh break;
561 1.1 eeh if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
562 1.1 eeh printf("%s: cannot disable read dma\n",
563 1.1 eeh sc->sc_dev.dv_xname);
564 1.1 eeh
565 1.1 eeh /* Wait 5ms extra. */
566 1.1 eeh delay(5000);
567 1.1 eeh
568 1.1 eeh /* Finally, reset the ERX */
569 1.1 eeh bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
570 1.1 eeh /* Wait till it finishes */
571 1.1 eeh for (i=TRIES; i--; delay(100))
572 1.1 eeh if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
573 1.1 eeh break;
574 1.1 eeh if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
575 1.1 eeh printf("%s: cannot reset receiver\n",
576 1.1 eeh sc->sc_dev.dv_xname);
577 1.1 eeh return (1);
578 1.1 eeh }
579 1.1 eeh return (0);
580 1.1 eeh }
581 1.1 eeh
582 1.1 eeh
583 1.1 eeh /*
584 1.1 eeh * Reset the transmitter
585 1.1 eeh */
586 1.1 eeh int
587 1.1 eeh gem_reset_tx(struct gem_softc *sc)
588 1.1 eeh {
589 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
590 1.1 eeh bus_space_handle_t h = sc->sc_h;
591 1.1 eeh int i;
592 1.1 eeh
593 1.1 eeh /*
594 1.1 eeh * Resetting while DMA is in progress can cause a bus hang, so we
595 1.1 eeh * disable DMA first.
596 1.1 eeh */
597 1.1 eeh gem_disable_tx(sc);
598 1.1 eeh bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
599 1.1 eeh /* Wait till it finishes */
600 1.1 eeh for (i=TRIES; i--; delay(100))
601 1.1 eeh if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
602 1.1 eeh break;
603 1.1 eeh if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
604 1.1 eeh printf("%s: cannot disable read dma\n",
605 1.1 eeh sc->sc_dev.dv_xname);
606 1.1 eeh
607 1.1 eeh /* Wait 5ms extra. */
608 1.1 eeh delay(5000);
609 1.1 eeh
610 1.1 eeh /* Finally, reset the ETX */
611 1.1 eeh bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
612 1.1 eeh /* Wait till it finishes */
613 1.1 eeh for (i=TRIES; i--; delay(100))
614 1.1 eeh if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
615 1.1 eeh break;
616 1.1 eeh if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
617 1.1 eeh printf("%s: cannot reset receiver\n",
618 1.1 eeh sc->sc_dev.dv_xname);
619 1.1 eeh return (1);
620 1.1 eeh }
621 1.1 eeh return (0);
622 1.1 eeh }
623 1.1 eeh
624 1.1 eeh /*
625 1.1 eeh * disable receiver.
626 1.1 eeh */
627 1.1 eeh int
628 1.1 eeh gem_disable_rx(struct gem_softc *sc)
629 1.1 eeh {
630 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
631 1.1 eeh bus_space_handle_t h = sc->sc_h;
632 1.1 eeh int i;
633 1.1 eeh u_int32_t cfg;
634 1.1 eeh
635 1.1 eeh /* Flip the enable bit */
636 1.1 eeh cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
637 1.1 eeh cfg &= ~GEM_MAC_RX_ENABLE;
638 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
639 1.1 eeh
640 1.1 eeh /* Wait for it to finish */
641 1.1 eeh for (i=TRIES; i--; delay(100))
642 1.1 eeh if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
643 1.1 eeh GEM_MAC_RX_ENABLE) == 0)
644 1.1 eeh return (0);
645 1.1 eeh return (1);
646 1.1 eeh }
647 1.1 eeh
648 1.1 eeh /*
649 1.1 eeh * disable transmitter.
650 1.1 eeh */
651 1.1 eeh int
652 1.1 eeh gem_disable_tx(struct gem_softc *sc)
653 1.1 eeh {
654 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
655 1.1 eeh bus_space_handle_t h = sc->sc_h;
656 1.1 eeh int i;
657 1.1 eeh u_int32_t cfg;
658 1.1 eeh
659 1.1 eeh /* Flip the enable bit */
660 1.1 eeh cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
661 1.1 eeh cfg &= ~GEM_MAC_TX_ENABLE;
662 1.1 eeh bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
663 1.1 eeh
664 1.1 eeh /* Wait for it to finish */
665 1.1 eeh for (i=TRIES; i--; delay(100))
666 1.1 eeh if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
667 1.1 eeh GEM_MAC_TX_ENABLE) == 0)
668 1.1 eeh return (0);
669 1.1 eeh return (1);
670 1.1 eeh }
671 1.1 eeh
672 1.1 eeh /*
673 1.1 eeh * Initialize interface.
674 1.1 eeh */
675 1.1 eeh int
676 1.1 eeh gem_meminit(struct gem_softc *sc)
677 1.1 eeh {
678 1.1 eeh struct gem_rxsoft *rxs;
679 1.1 eeh int i, error;
680 1.1 eeh
681 1.1 eeh /*
682 1.1 eeh * Initialize the transmit descriptor ring.
683 1.1 eeh */
684 1.1 eeh memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
685 1.1 eeh for (i = 0; i < GEM_NTXDESC; i++) {
686 1.1 eeh sc->sc_txdescs[i].gd_flags = 0;
687 1.1 eeh sc->sc_txdescs[i].gd_addr = 0;
688 1.1 eeh }
689 1.1 eeh GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
690 1.1 eeh BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
691 1.14 matt sc->sc_txfree = GEM_NTXDESC-1;
692 1.1 eeh sc->sc_txnext = 0;
693 1.14 matt sc->sc_txwin = 0;
694 1.1 eeh
695 1.1 eeh /*
696 1.1 eeh * Initialize the receive descriptor and receive job
697 1.1 eeh * descriptor rings.
698 1.1 eeh */
699 1.1 eeh for (i = 0; i < GEM_NRXDESC; i++) {
700 1.1 eeh rxs = &sc->sc_rxsoft[i];
701 1.1 eeh if (rxs->rxs_mbuf == NULL) {
702 1.1 eeh if ((error = gem_add_rxbuf(sc, i)) != 0) {
703 1.1 eeh printf("%s: unable to allocate or map rx "
704 1.1 eeh "buffer %d, error = %d\n",
705 1.1 eeh sc->sc_dev.dv_xname, i, error);
706 1.1 eeh /*
707 1.1 eeh * XXX Should attempt to run with fewer receive
708 1.1 eeh * XXX buffers instead of just failing.
709 1.1 eeh */
710 1.1 eeh gem_rxdrain(sc);
711 1.1 eeh return (1);
712 1.1 eeh }
713 1.1 eeh } else
714 1.1 eeh GEM_INIT_RXDESC(sc, i);
715 1.1 eeh }
716 1.1 eeh sc->sc_rxptr = 0;
717 1.1 eeh
718 1.1 eeh return (0);
719 1.1 eeh }
720 1.1 eeh
721 1.1 eeh static int
722 1.1 eeh gem_ringsize(int sz)
723 1.1 eeh {
724 1.1 eeh int v;
725 1.1 eeh
726 1.1 eeh switch (sz) {
727 1.1 eeh case 32:
728 1.1 eeh v = GEM_RING_SZ_32;
729 1.1 eeh break;
730 1.1 eeh case 64:
731 1.1 eeh v = GEM_RING_SZ_64;
732 1.1 eeh break;
733 1.1 eeh case 128:
734 1.1 eeh v = GEM_RING_SZ_128;
735 1.1 eeh break;
736 1.1 eeh case 256:
737 1.1 eeh v = GEM_RING_SZ_256;
738 1.1 eeh break;
739 1.1 eeh case 512:
740 1.1 eeh v = GEM_RING_SZ_512;
741 1.1 eeh break;
742 1.1 eeh case 1024:
743 1.1 eeh v = GEM_RING_SZ_1024;
744 1.1 eeh break;
745 1.1 eeh case 2048:
746 1.1 eeh v = GEM_RING_SZ_2048;
747 1.1 eeh break;
748 1.1 eeh case 4096:
749 1.1 eeh v = GEM_RING_SZ_4096;
750 1.1 eeh break;
751 1.1 eeh case 8192:
752 1.1 eeh v = GEM_RING_SZ_8192;
753 1.1 eeh break;
754 1.1 eeh default:
755 1.1 eeh printf("gem: invalid Receive Descriptor ring size\n");
756 1.1 eeh break;
757 1.1 eeh }
758 1.1 eeh return (v);
759 1.1 eeh }
760 1.1 eeh
761 1.1 eeh /*
762 1.1 eeh * Initialization of interface; set up initialization block
763 1.1 eeh * and transmit/receive descriptor rings.
764 1.1 eeh */
765 1.1 eeh int
766 1.1 eeh gem_init(struct ifnet *ifp)
767 1.1 eeh {
768 1.1 eeh struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
769 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
770 1.1 eeh bus_space_handle_t h = sc->sc_h;
771 1.1 eeh int s;
772 1.15 matt u_int max_frame_size;
773 1.1 eeh u_int32_t v;
774 1.1 eeh
775 1.1 eeh s = splnet();
776 1.1 eeh
777 1.1 eeh DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
778 1.1 eeh /*
779 1.1 eeh * Initialization sequence. The numbered steps below correspond
780 1.1 eeh * to the sequence outlined in section 6.3.5.1 in the Ethernet
781 1.1 eeh * Channel Engine manual (part of the PCIO manual).
782 1.1 eeh * See also the STP2002-STQ document from Sun Microsystems.
783 1.1 eeh */
784 1.1 eeh
785 1.1 eeh /* step 1 & 2. Reset the Ethernet Channel */
786 1.1 eeh gem_stop(ifp, 0);
787 1.1 eeh gem_reset(sc);
788 1.1 eeh DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
789 1.1 eeh
790 1.1 eeh /* Re-initialize the MIF */
791 1.1 eeh gem_mifinit(sc);
792 1.1 eeh
793 1.1 eeh /* Call MI reset function if any */
794 1.1 eeh if (sc->sc_hwreset)
795 1.1 eeh (*sc->sc_hwreset)(sc);
796 1.1 eeh
797 1.1 eeh /* step 3. Setup data structures in host memory */
798 1.1 eeh gem_meminit(sc);
799 1.1 eeh
800 1.1 eeh /* step 4. TX MAC registers & counters */
801 1.1 eeh gem_init_regs(sc);
802 1.15 matt max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
803 1.15 matt max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
804 1.15 matt if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
805 1.15 matt max_frame_size += ETHER_VLAN_ENCAP_LEN;
806 1.1 eeh bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
807 1.15 matt max_frame_size|/* burst size */(0x2000<<16));
808 1.1 eeh
809 1.1 eeh /* step 5. RX MAC registers & counters */
810 1.1 eeh gem_setladrf(sc);
811 1.1 eeh
812 1.1 eeh /* step 6 & 7. Program Descriptor Ring Base Addresses */
813 1.4 thorpej /* NOTE: we use only 32-bit DMA addresses here. */
814 1.4 thorpej bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
815 1.4 thorpej bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
816 1.4 thorpej
817 1.4 thorpej bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
818 1.4 thorpej bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
819 1.1 eeh
820 1.1 eeh /* step 8. Global Configuration & Interrupt Mask */
821 1.1 eeh bus_space_write_4(t, h, GEM_INTMASK,
822 1.1 eeh ~(GEM_INTR_TX_INTME|
823 1.1 eeh GEM_INTR_TX_EMPTY|
824 1.1 eeh GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
825 1.1 eeh GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
826 1.1 eeh GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
827 1.1 eeh GEM_INTR_BERR));
828 1.16 matt bus_space_write_4(t, h, GEM_MAC_RX_MASK,
829 1.17 matt GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
830 1.1 eeh bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
831 1.1 eeh bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
832 1.5 thorpej
833 1.1 eeh /* step 9. ETX Configuration: use mostly default values */
834 1.1 eeh
835 1.1 eeh /* Enable DMA */
836 1.1 eeh v = gem_ringsize(GEM_NTXDESC /*XXX*/);
837 1.1 eeh bus_space_write_4(t, h, GEM_TX_CONFIG,
838 1.1 eeh v|GEM_TX_CONFIG_TXDMA_EN|
839 1.1 eeh ((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
840 1.1 eeh bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
841 1.1 eeh
842 1.1 eeh /* step 10. ERX Configuration */
843 1.1 eeh
844 1.1 eeh /* Encode Receive Descriptor ring size: four possible values */
845 1.1 eeh v = gem_ringsize(GEM_NRXDESC /*XXX*/);
846 1.1 eeh
847 1.1 eeh /* Enable DMA */
848 1.1 eeh bus_space_write_4(t, h, GEM_RX_CONFIG,
849 1.1 eeh v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
850 1.1 eeh (2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
851 1.1 eeh (0<<GEM_RX_CONFIG_CXM_START_SHFT));
852 1.1 eeh /*
853 1.15 matt * The following value is for an OFF Threshold of about 3/4 full
854 1.15 matt * and an ON Threshold of 1/4 full.
855 1.1 eeh */
856 1.15 matt bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
857 1.15 matt (3 * sc->sc_rxfifosize / 256) |
858 1.15 matt ( (sc->sc_rxfifosize / 256) << 12));
859 1.15 matt bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
860 1.1 eeh
861 1.1 eeh /* step 11. Configure Media */
862 1.15 matt mii_mediachg(&sc->sc_mii);
863 1.11 thorpej
864 1.11 thorpej /* XXXX Serial link needs a whole different setup. */
865 1.11 thorpej
866 1.1 eeh
867 1.1 eeh /* step 12. RX_MAC Configuration Register */
868 1.1 eeh v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
869 1.1 eeh v |= GEM_MAC_RX_ENABLE;
870 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
871 1.1 eeh
872 1.1 eeh /* step 14. Issue Transmit Pending command */
873 1.1 eeh
874 1.1 eeh /* Call MI initialization function if any */
875 1.1 eeh if (sc->sc_hwinit)
876 1.1 eeh (*sc->sc_hwinit)(sc);
877 1.1 eeh
878 1.1 eeh
879 1.1 eeh /* step 15. Give the reciever a swift kick */
880 1.1 eeh bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
881 1.1 eeh
882 1.1 eeh /* Start the one second timer. */
883 1.1 eeh callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
884 1.1 eeh
885 1.1 eeh ifp->if_flags |= IFF_RUNNING;
886 1.1 eeh ifp->if_flags &= ~IFF_OACTIVE;
887 1.1 eeh ifp->if_timer = 0;
888 1.1 eeh splx(s);
889 1.1 eeh
890 1.1 eeh return (0);
891 1.1 eeh }
892 1.1 eeh
893 1.1 eeh void
894 1.1 eeh gem_init_regs(struct gem_softc *sc)
895 1.1 eeh {
896 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
897 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
898 1.1 eeh bus_space_handle_t h = sc->sc_h;
899 1.13 matt const u_char *laddr = LLADDR(ifp->if_sadl);
900 1.15 matt u_int32_t v;
901 1.1 eeh
902 1.1 eeh /* These regs are not cleared on reset */
903 1.1 eeh if (!sc->sc_inited) {
904 1.1 eeh
905 1.1 eeh /* Wooo. Magic values. */
906 1.1 eeh bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
907 1.1 eeh bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
908 1.1 eeh bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
909 1.1 eeh
910 1.1 eeh bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
911 1.1 eeh /* Max frame and max burst size */
912 1.1 eeh bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
913 1.15 matt ETHER_MAX_LEN | (0x2000<<16));
914 1.15 matt
915 1.1 eeh bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
916 1.1 eeh bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
917 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
918 1.1 eeh /* Dunno.... */
919 1.1 eeh bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
920 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
921 1.15 matt ((laddr[5]<<8)|laddr[4])&0x3ff);
922 1.13 matt
923 1.1 eeh /* Secondary MAC addr set to 0:0:0:0:0:0 */
924 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
925 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
926 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
927 1.13 matt
928 1.13 matt /* MAC control addr set to 01:80:c2:00:00:01 */
929 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
930 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
931 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
932 1.1 eeh
933 1.1 eeh /* MAC filter addr set to 0:0:0:0:0:0 */
934 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
935 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
936 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
937 1.1 eeh
938 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
939 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
940 1.1 eeh
941 1.1 eeh sc->sc_inited = 1;
942 1.1 eeh }
943 1.1 eeh
944 1.1 eeh /* Counters need to be zeroed */
945 1.1 eeh bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
946 1.1 eeh bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
947 1.1 eeh bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
948 1.1 eeh bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
949 1.1 eeh bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
950 1.1 eeh bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
951 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
952 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
953 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
954 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
955 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
956 1.1 eeh
957 1.1 eeh /* Un-pause stuff */
958 1.1 eeh #if 0
959 1.1 eeh bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
960 1.1 eeh #else
961 1.1 eeh bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
962 1.1 eeh #endif
963 1.1 eeh
964 1.1 eeh /*
965 1.1 eeh * Set the station address.
966 1.1 eeh */
967 1.13 matt bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
968 1.13 matt bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
969 1.13 matt bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
970 1.1 eeh
971 1.15 matt #if 0
972 1.15 matt if (sc->sc_variant != APPLE_GMAC)
973 1.15 matt return;
974 1.15 matt #endif
975 1.15 matt
976 1.15 matt /*
977 1.15 matt * Enable MII outputs. Enable GMII if there is a gigabit PHY.
978 1.15 matt */
979 1.15 matt sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
980 1.15 matt v = GEM_MAC_XIF_TX_MII_ENA;
981 1.15 matt if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
982 1.15 matt v |= GEM_MAC_XIF_FDPLX_LED;
983 1.15 matt if (sc->sc_flags & GEM_GIGABIT)
984 1.15 matt v |= GEM_MAC_XIF_GMII_MODE;
985 1.15 matt }
986 1.15 matt bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
987 1.1 eeh }
988 1.1 eeh
989 1.1 eeh void
990 1.1 eeh gem_start(ifp)
991 1.1 eeh struct ifnet *ifp;
992 1.1 eeh {
993 1.1 eeh struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
994 1.1 eeh struct mbuf *m0, *m;
995 1.1 eeh struct gem_txsoft *txs, *last_txs;
996 1.1 eeh bus_dmamap_t dmamap;
997 1.1 eeh int error, firsttx, nexttx, lasttx, ofree, seg;
998 1.1 eeh
999 1.1 eeh if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1000 1.1 eeh return;
1001 1.1 eeh
1002 1.1 eeh /*
1003 1.1 eeh * Remember the previous number of free descriptors and
1004 1.1 eeh * the first descriptor we'll use.
1005 1.1 eeh */
1006 1.1 eeh ofree = sc->sc_txfree;
1007 1.1 eeh firsttx = sc->sc_txnext;
1008 1.1 eeh
1009 1.1 eeh DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1010 1.1 eeh sc->sc_dev.dv_xname, ofree, firsttx));
1011 1.1 eeh
1012 1.1 eeh /*
1013 1.1 eeh * Loop through the send queue, setting up transmit descriptors
1014 1.1 eeh * until we drain the queue, or use up all available transmit
1015 1.1 eeh * descriptors.
1016 1.1 eeh */
1017 1.11 thorpej while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1018 1.11 thorpej sc->sc_txfree != 0) {
1019 1.1 eeh /*
1020 1.1 eeh * Grab a packet off the queue.
1021 1.1 eeh */
1022 1.1 eeh IFQ_POLL(&ifp->if_snd, m0);
1023 1.1 eeh if (m0 == NULL)
1024 1.1 eeh break;
1025 1.1 eeh m = NULL;
1026 1.1 eeh
1027 1.1 eeh dmamap = txs->txs_dmamap;
1028 1.1 eeh
1029 1.1 eeh /*
1030 1.1 eeh * Load the DMA map. If this fails, the packet either
1031 1.1 eeh * didn't fit in the alloted number of segments, or we were
1032 1.1 eeh * short on resources. In this case, we'll copy and try
1033 1.1 eeh * again.
1034 1.1 eeh */
1035 1.1 eeh if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1036 1.1 eeh BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1037 1.15 matt if (m0->m_pkthdr.len > MCLBYTES) {
1038 1.15 matt printf("%s: unable to allocate jumbo Tx "
1039 1.15 matt "cluster\n", sc->sc_dev.dv_xname);
1040 1.15 matt IFQ_DEQUEUE(&ifp->if_snd, m0);
1041 1.15 matt m_freem(m0);
1042 1.15 matt continue;
1043 1.15 matt }
1044 1.1 eeh MGETHDR(m, M_DONTWAIT, MT_DATA);
1045 1.1 eeh if (m == NULL) {
1046 1.1 eeh printf("%s: unable to allocate Tx mbuf\n",
1047 1.1 eeh sc->sc_dev.dv_xname);
1048 1.1 eeh break;
1049 1.1 eeh }
1050 1.26 matt MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1051 1.1 eeh if (m0->m_pkthdr.len > MHLEN) {
1052 1.1 eeh MCLGET(m, M_DONTWAIT);
1053 1.1 eeh if ((m->m_flags & M_EXT) == 0) {
1054 1.1 eeh printf("%s: unable to allocate Tx "
1055 1.1 eeh "cluster\n", sc->sc_dev.dv_xname);
1056 1.1 eeh m_freem(m);
1057 1.1 eeh break;
1058 1.1 eeh }
1059 1.1 eeh }
1060 1.1 eeh m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1061 1.1 eeh m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1062 1.1 eeh error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1063 1.1 eeh m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1064 1.1 eeh if (error) {
1065 1.1 eeh printf("%s: unable to load Tx buffer, "
1066 1.1 eeh "error = %d\n", sc->sc_dev.dv_xname, error);
1067 1.1 eeh break;
1068 1.1 eeh }
1069 1.1 eeh }
1070 1.1 eeh
1071 1.1 eeh /*
1072 1.1 eeh * Ensure we have enough descriptors free to describe
1073 1.11 thorpej * the packet.
1074 1.1 eeh */
1075 1.11 thorpej if (dmamap->dm_nsegs > sc->sc_txfree) {
1076 1.1 eeh /*
1077 1.1 eeh * Not enough free descriptors to transmit this
1078 1.1 eeh * packet. We haven't committed to anything yet,
1079 1.1 eeh * so just unload the DMA map, put the packet
1080 1.1 eeh * back on the queue, and punt. Notify the upper
1081 1.1 eeh * layer that there are no more slots left.
1082 1.1 eeh *
1083 1.1 eeh * XXX We could allocate an mbuf and copy, but
1084 1.1 eeh * XXX it is worth it?
1085 1.1 eeh */
1086 1.1 eeh ifp->if_flags |= IFF_OACTIVE;
1087 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, dmamap);
1088 1.1 eeh if (m != NULL)
1089 1.1 eeh m_freem(m);
1090 1.1 eeh break;
1091 1.1 eeh }
1092 1.1 eeh
1093 1.1 eeh IFQ_DEQUEUE(&ifp->if_snd, m0);
1094 1.1 eeh if (m != NULL) {
1095 1.1 eeh m_freem(m0);
1096 1.1 eeh m0 = m;
1097 1.1 eeh }
1098 1.1 eeh
1099 1.1 eeh /*
1100 1.1 eeh * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1101 1.1 eeh */
1102 1.1 eeh
1103 1.1 eeh /* Sync the DMA map. */
1104 1.1 eeh bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1105 1.1 eeh BUS_DMASYNC_PREWRITE);
1106 1.1 eeh
1107 1.1 eeh /*
1108 1.1 eeh * Initialize the transmit descriptors.
1109 1.1 eeh */
1110 1.1 eeh for (nexttx = sc->sc_txnext, seg = 0;
1111 1.1 eeh seg < dmamap->dm_nsegs;
1112 1.1 eeh seg++, nexttx = GEM_NEXTTX(nexttx)) {
1113 1.1 eeh uint64_t flags;
1114 1.1 eeh
1115 1.1 eeh /*
1116 1.1 eeh * If this is the first descriptor we're
1117 1.1 eeh * enqueueing, set the start of packet flag,
1118 1.1 eeh * and the checksum stuff if we want the hardware
1119 1.1 eeh * to do it.
1120 1.1 eeh */
1121 1.1 eeh sc->sc_txdescs[nexttx].gd_addr =
1122 1.2 eeh GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1123 1.1 eeh flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1124 1.1 eeh if (nexttx == firsttx) {
1125 1.1 eeh flags |= GEM_TD_START_OF_PACKET;
1126 1.14 matt if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1127 1.14 matt sc->sc_txwin = 0;
1128 1.14 matt flags |= GEM_TD_INTERRUPT_ME;
1129 1.14 matt }
1130 1.1 eeh }
1131 1.1 eeh if (seg == dmamap->dm_nsegs - 1) {
1132 1.1 eeh flags |= GEM_TD_END_OF_PACKET;
1133 1.1 eeh }
1134 1.1 eeh sc->sc_txdescs[nexttx].gd_flags =
1135 1.2 eeh GEM_DMA_WRITE(sc, flags);
1136 1.1 eeh lasttx = nexttx;
1137 1.1 eeh }
1138 1.1 eeh
1139 1.1 eeh #ifdef GEM_DEBUG
1140 1.1 eeh if (ifp->if_flags & IFF_DEBUG) {
1141 1.1 eeh printf(" gem_start %p transmit chain:\n", txs);
1142 1.1 eeh for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1143 1.1 eeh printf("descriptor %d:\t", seg);
1144 1.1 eeh printf("gd_flags: 0x%016llx\t", (long long)
1145 1.2 eeh GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1146 1.1 eeh printf("gd_addr: 0x%016llx\n", (long long)
1147 1.2 eeh GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1148 1.1 eeh if (seg == lasttx)
1149 1.1 eeh break;
1150 1.1 eeh }
1151 1.1 eeh }
1152 1.1 eeh #endif
1153 1.1 eeh
1154 1.1 eeh /* Sync the descriptors we're using. */
1155 1.1 eeh GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1156 1.1 eeh BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1157 1.1 eeh
1158 1.1 eeh /*
1159 1.1 eeh * Store a pointer to the packet so we can free it later,
1160 1.1 eeh * and remember what txdirty will be once the packet is
1161 1.1 eeh * done.
1162 1.1 eeh */
1163 1.1 eeh txs->txs_mbuf = m0;
1164 1.1 eeh txs->txs_firstdesc = sc->sc_txnext;
1165 1.1 eeh txs->txs_lastdesc = lasttx;
1166 1.1 eeh txs->txs_ndescs = dmamap->dm_nsegs;
1167 1.1 eeh
1168 1.1 eeh /* Advance the tx pointer. */
1169 1.1 eeh sc->sc_txfree -= dmamap->dm_nsegs;
1170 1.1 eeh sc->sc_txnext = nexttx;
1171 1.1 eeh
1172 1.21 lukem SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1173 1.1 eeh SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1174 1.1 eeh
1175 1.1 eeh last_txs = txs;
1176 1.1 eeh
1177 1.1 eeh #if NBPFILTER > 0
1178 1.1 eeh /*
1179 1.1 eeh * Pass the packet to any BPF listeners.
1180 1.1 eeh */
1181 1.1 eeh if (ifp->if_bpf)
1182 1.1 eeh bpf_mtap(ifp->if_bpf, m0);
1183 1.1 eeh #endif /* NBPFILTER > 0 */
1184 1.1 eeh }
1185 1.1 eeh
1186 1.1 eeh if (txs == NULL || sc->sc_txfree == 0) {
1187 1.1 eeh /* No more slots left; notify upper layer. */
1188 1.1 eeh ifp->if_flags |= IFF_OACTIVE;
1189 1.1 eeh }
1190 1.1 eeh
1191 1.1 eeh if (sc->sc_txfree != ofree) {
1192 1.1 eeh DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1193 1.1 eeh sc->sc_dev.dv_xname, lasttx, firsttx));
1194 1.1 eeh /*
1195 1.1 eeh * The entire packet chain is set up.
1196 1.1 eeh * Kick the transmitter.
1197 1.1 eeh */
1198 1.1 eeh DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1199 1.1 eeh sc->sc_dev.dv_xname, nexttx));
1200 1.1 eeh bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1201 1.1 eeh sc->sc_txnext);
1202 1.1 eeh
1203 1.1 eeh /* Set a watchdog timer in case the chip flakes out. */
1204 1.1 eeh ifp->if_timer = 5;
1205 1.1 eeh DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1206 1.1 eeh sc->sc_dev.dv_xname, ifp->if_timer));
1207 1.1 eeh }
1208 1.1 eeh }
1209 1.1 eeh
1210 1.1 eeh /*
1211 1.1 eeh * Transmit interrupt.
1212 1.1 eeh */
1213 1.1 eeh int
1214 1.1 eeh gem_tint(sc)
1215 1.1 eeh struct gem_softc *sc;
1216 1.1 eeh {
1217 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1218 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1219 1.1 eeh bus_space_handle_t mac = sc->sc_h;
1220 1.1 eeh struct gem_txsoft *txs;
1221 1.1 eeh int txlast;
1222 1.14 matt int progress = 0;
1223 1.1 eeh
1224 1.1 eeh
1225 1.2 eeh DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1226 1.1 eeh
1227 1.1 eeh /*
1228 1.1 eeh * Unload collision counters
1229 1.1 eeh */
1230 1.1 eeh ifp->if_collisions +=
1231 1.1 eeh bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1232 1.1 eeh bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1233 1.1 eeh bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1234 1.1 eeh bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1235 1.1 eeh
1236 1.1 eeh /*
1237 1.1 eeh * then clear the hardware counters.
1238 1.1 eeh */
1239 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1240 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1241 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1242 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1243 1.1 eeh
1244 1.1 eeh /*
1245 1.1 eeh * Go through our Tx list and free mbufs for those
1246 1.1 eeh * frames that have been transmitted.
1247 1.1 eeh */
1248 1.1 eeh while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1249 1.1 eeh GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1250 1.1 eeh txs->txs_ndescs,
1251 1.1 eeh BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1252 1.1 eeh
1253 1.1 eeh #ifdef GEM_DEBUG
1254 1.1 eeh if (ifp->if_flags & IFF_DEBUG) {
1255 1.1 eeh int i;
1256 1.1 eeh printf(" txsoft %p transmit chain:\n", txs);
1257 1.1 eeh for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1258 1.1 eeh printf("descriptor %d: ", i);
1259 1.1 eeh printf("gd_flags: 0x%016llx\t", (long long)
1260 1.2 eeh GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1261 1.1 eeh printf("gd_addr: 0x%016llx\n", (long long)
1262 1.2 eeh GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1263 1.1 eeh if (i == txs->txs_lastdesc)
1264 1.1 eeh break;
1265 1.1 eeh }
1266 1.1 eeh }
1267 1.1 eeh #endif
1268 1.1 eeh
1269 1.1 eeh /*
1270 1.1 eeh * In theory, we could harveast some descriptors before
1271 1.1 eeh * the ring is empty, but that's a bit complicated.
1272 1.1 eeh *
1273 1.1 eeh * GEM_TX_COMPLETION points to the last descriptor
1274 1.1 eeh * processed +1.
1275 1.1 eeh */
1276 1.1 eeh txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1277 1.1 eeh DPRINTF(sc,
1278 1.1 eeh ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1279 1.1 eeh txs->txs_lastdesc, txlast));
1280 1.1 eeh if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1281 1.1 eeh if ((txlast >= txs->txs_firstdesc) &&
1282 1.1 eeh (txlast <= txs->txs_lastdesc))
1283 1.1 eeh break;
1284 1.1 eeh } else {
1285 1.1 eeh /* Ick -- this command wraps */
1286 1.1 eeh if ((txlast >= txs->txs_firstdesc) ||
1287 1.1 eeh (txlast <= txs->txs_lastdesc))
1288 1.1 eeh break;
1289 1.1 eeh }
1290 1.1 eeh
1291 1.1 eeh DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1292 1.21 lukem SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1293 1.1 eeh
1294 1.1 eeh sc->sc_txfree += txs->txs_ndescs;
1295 1.1 eeh
1296 1.1 eeh if (txs->txs_mbuf == NULL) {
1297 1.1 eeh #ifdef DIAGNOSTIC
1298 1.1 eeh panic("gem_txintr: null mbuf");
1299 1.1 eeh #endif
1300 1.1 eeh }
1301 1.1 eeh
1302 1.1 eeh bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1303 1.1 eeh 0, txs->txs_dmamap->dm_mapsize,
1304 1.1 eeh BUS_DMASYNC_POSTWRITE);
1305 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1306 1.1 eeh m_freem(txs->txs_mbuf);
1307 1.1 eeh txs->txs_mbuf = NULL;
1308 1.1 eeh
1309 1.1 eeh SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1310 1.1 eeh
1311 1.1 eeh ifp->if_opackets++;
1312 1.14 matt progress = 1;
1313 1.1 eeh }
1314 1.1 eeh
1315 1.1 eeh DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1316 1.1 eeh "GEM_TX_DATA_PTR %llx "
1317 1.1 eeh "GEM_TX_COMPLETION %x\n",
1318 1.1 eeh bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1319 1.4 thorpej ((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1320 1.4 thorpej GEM_TX_DATA_PTR_HI) << 32) |
1321 1.4 thorpej bus_space_read_4(sc->sc_bustag, sc->sc_h,
1322 1.4 thorpej GEM_TX_DATA_PTR_LO),
1323 1.1 eeh bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1324 1.1 eeh
1325 1.14 matt if (progress) {
1326 1.14 matt if (sc->sc_txfree == GEM_NTXDESC - 1)
1327 1.14 matt sc->sc_txwin = 0;
1328 1.14 matt
1329 1.14 matt ifp->if_flags &= ~IFF_OACTIVE;
1330 1.14 matt gem_start(ifp);
1331 1.1 eeh
1332 1.21 lukem if (SIMPLEQ_EMPTY(&sc->sc_txdirtyq))
1333 1.14 matt ifp->if_timer = 0;
1334 1.14 matt }
1335 1.1 eeh DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1336 1.1 eeh sc->sc_dev.dv_xname, ifp->if_timer));
1337 1.1 eeh
1338 1.1 eeh return (1);
1339 1.1 eeh }
1340 1.1 eeh
1341 1.1 eeh /*
1342 1.1 eeh * Receive interrupt.
1343 1.1 eeh */
1344 1.1 eeh int
1345 1.1 eeh gem_rint(sc)
1346 1.1 eeh struct gem_softc *sc;
1347 1.1 eeh {
1348 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1349 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1350 1.1 eeh bus_space_handle_t h = sc->sc_h;
1351 1.1 eeh struct ether_header *eh;
1352 1.1 eeh struct gem_rxsoft *rxs;
1353 1.1 eeh struct mbuf *m;
1354 1.1 eeh u_int64_t rxstat;
1355 1.18 matt u_int32_t rxcomp;
1356 1.18 matt int i, len, progress = 0;
1357 1.1 eeh
1358 1.2 eeh DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1359 1.18 matt
1360 1.18 matt /*
1361 1.18 matt * Read the completion register once. This limits
1362 1.18 matt * how long the following loop can execute.
1363 1.18 matt */
1364 1.18 matt rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1365 1.18 matt
1366 1.1 eeh /*
1367 1.1 eeh * XXXX Read the lastrx only once at the top for speed.
1368 1.1 eeh */
1369 1.1 eeh DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1370 1.18 matt sc->sc_rxptr, rxcomp));
1371 1.18 matt
1372 1.18 matt /*
1373 1.18 matt * Go into the loop at least once.
1374 1.18 matt */
1375 1.18 matt for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1376 1.1 eeh i = GEM_NEXTRX(i)) {
1377 1.1 eeh rxs = &sc->sc_rxsoft[i];
1378 1.1 eeh
1379 1.1 eeh GEM_CDRXSYNC(sc, i,
1380 1.1 eeh BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1381 1.1 eeh
1382 1.2 eeh rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1383 1.1 eeh
1384 1.1 eeh if (rxstat & GEM_RD_OWN) {
1385 1.1 eeh /*
1386 1.1 eeh * We have processed all of the receive buffers.
1387 1.1 eeh */
1388 1.1 eeh break;
1389 1.1 eeh }
1390 1.1 eeh
1391 1.18 matt progress++;
1392 1.18 matt ifp->if_ipackets++;
1393 1.18 matt
1394 1.1 eeh if (rxstat & GEM_RD_BAD_CRC) {
1395 1.18 matt ifp->if_ierrors++;
1396 1.1 eeh printf("%s: receive error: CRC error\n",
1397 1.1 eeh sc->sc_dev.dv_xname);
1398 1.1 eeh GEM_INIT_RXDESC(sc, i);
1399 1.1 eeh continue;
1400 1.1 eeh }
1401 1.1 eeh
1402 1.1 eeh bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1403 1.1 eeh rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1404 1.1 eeh #ifdef GEM_DEBUG
1405 1.1 eeh if (ifp->if_flags & IFF_DEBUG) {
1406 1.1 eeh printf(" rxsoft %p descriptor %d: ", rxs, i);
1407 1.1 eeh printf("gd_flags: 0x%016llx\t", (long long)
1408 1.2 eeh GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1409 1.1 eeh printf("gd_addr: 0x%016llx\n", (long long)
1410 1.2 eeh GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1411 1.1 eeh }
1412 1.1 eeh #endif
1413 1.1 eeh
1414 1.1 eeh /*
1415 1.1 eeh * No errors; receive the packet. Note the Gem
1416 1.1 eeh * includes the CRC with every packet.
1417 1.1 eeh */
1418 1.1 eeh len = GEM_RD_BUFLEN(rxstat);
1419 1.1 eeh
1420 1.1 eeh /*
1421 1.1 eeh * Allocate a new mbuf cluster. If that fails, we are
1422 1.1 eeh * out of memory, and must drop the packet and recycle
1423 1.1 eeh * the buffer that's already attached to this descriptor.
1424 1.1 eeh */
1425 1.1 eeh m = rxs->rxs_mbuf;
1426 1.1 eeh if (gem_add_rxbuf(sc, i) != 0) {
1427 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1428 1.1 eeh ifp->if_ierrors++;
1429 1.1 eeh GEM_INIT_RXDESC(sc, i);
1430 1.1 eeh bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1431 1.1 eeh rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1432 1.1 eeh continue;
1433 1.1 eeh }
1434 1.1 eeh m->m_data += 2; /* We're already off by two */
1435 1.1 eeh
1436 1.1 eeh eh = mtod(m, struct ether_header *);
1437 1.1 eeh m->m_flags |= M_HASFCS;
1438 1.1 eeh m->m_pkthdr.rcvif = ifp;
1439 1.1 eeh m->m_pkthdr.len = m->m_len = len;
1440 1.1 eeh
1441 1.1 eeh #if NBPFILTER > 0
1442 1.1 eeh /*
1443 1.1 eeh * Pass this up to any BPF listeners, but only
1444 1.1 eeh * pass it up the stack if its for us.
1445 1.1 eeh */
1446 1.1 eeh if (ifp->if_bpf)
1447 1.1 eeh bpf_mtap(ifp->if_bpf, m);
1448 1.1 eeh #endif /* NPBFILTER > 0 */
1449 1.1 eeh
1450 1.1 eeh /* Pass it on. */
1451 1.1 eeh (*ifp->if_input)(ifp, m);
1452 1.1 eeh }
1453 1.1 eeh
1454 1.18 matt if (progress) {
1455 1.18 matt /* Update the receive pointer. */
1456 1.18 matt if (i == sc->sc_rxptr) {
1457 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1458 1.19 matt #ifdef GEM_DEBUG
1459 1.19 matt if (ifp->if_flags & GEM_DEBUG)
1460 1.19 matt printf("%s: rint: ring wrap\n",
1461 1.19 matt sc->sc_dev.dv_xname);
1462 1.19 matt #endif
1463 1.18 matt }
1464 1.18 matt sc->sc_rxptr = i;
1465 1.18 matt bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1466 1.18 matt }
1467 1.19 matt #ifdef GEM_COUNTERS
1468 1.18 matt if (progress <= 4) {
1469 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1470 1.18 matt } else if (progress > 31) {
1471 1.18 matt if (progress < 16)
1472 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1473 1.18 matt else
1474 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1475 1.18 matt
1476 1.18 matt } else {
1477 1.18 matt if (progress < 64)
1478 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1479 1.18 matt else
1480 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1481 1.18 matt }
1482 1.19 matt #endif
1483 1.1 eeh
1484 1.1 eeh DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1485 1.1 eeh sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1486 1.1 eeh
1487 1.1 eeh return (1);
1488 1.1 eeh }
1489 1.1 eeh
1490 1.1 eeh
1491 1.1 eeh /*
1492 1.1 eeh * gem_add_rxbuf:
1493 1.1 eeh *
1494 1.1 eeh * Add a receive buffer to the indicated descriptor.
1495 1.1 eeh */
1496 1.1 eeh int
1497 1.1 eeh gem_add_rxbuf(struct gem_softc *sc, int idx)
1498 1.1 eeh {
1499 1.1 eeh struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1500 1.1 eeh struct mbuf *m;
1501 1.1 eeh int error;
1502 1.1 eeh
1503 1.1 eeh MGETHDR(m, M_DONTWAIT, MT_DATA);
1504 1.1 eeh if (m == NULL)
1505 1.1 eeh return (ENOBUFS);
1506 1.1 eeh
1507 1.26 matt MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1508 1.1 eeh MCLGET(m, M_DONTWAIT);
1509 1.1 eeh if ((m->m_flags & M_EXT) == 0) {
1510 1.1 eeh m_freem(m);
1511 1.1 eeh return (ENOBUFS);
1512 1.1 eeh }
1513 1.1 eeh
1514 1.1 eeh #ifdef GEM_DEBUG
1515 1.1 eeh /* bzero the packet to check dma */
1516 1.1 eeh memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1517 1.1 eeh #endif
1518 1.1 eeh
1519 1.1 eeh if (rxs->rxs_mbuf != NULL)
1520 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1521 1.1 eeh
1522 1.1 eeh rxs->rxs_mbuf = m;
1523 1.1 eeh
1524 1.1 eeh error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1525 1.1 eeh m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1526 1.1 eeh BUS_DMA_READ|BUS_DMA_NOWAIT);
1527 1.1 eeh if (error) {
1528 1.1 eeh printf("%s: can't load rx DMA map %d, error = %d\n",
1529 1.1 eeh sc->sc_dev.dv_xname, idx, error);
1530 1.1 eeh panic("gem_add_rxbuf"); /* XXX */
1531 1.1 eeh }
1532 1.1 eeh
1533 1.1 eeh bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1534 1.1 eeh rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1535 1.1 eeh
1536 1.1 eeh GEM_INIT_RXDESC(sc, idx);
1537 1.1 eeh
1538 1.1 eeh return (0);
1539 1.1 eeh }
1540 1.1 eeh
1541 1.1 eeh
1542 1.1 eeh int
1543 1.1 eeh gem_eint(sc, status)
1544 1.1 eeh struct gem_softc *sc;
1545 1.1 eeh u_int status;
1546 1.1 eeh {
1547 1.1 eeh char bits[128];
1548 1.1 eeh
1549 1.1 eeh if ((status & GEM_INTR_MIF) != 0) {
1550 1.1 eeh printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1551 1.1 eeh return (1);
1552 1.1 eeh }
1553 1.1 eeh
1554 1.1 eeh printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1555 1.1 eeh bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1556 1.1 eeh return (1);
1557 1.1 eeh }
1558 1.1 eeh
1559 1.1 eeh
1560 1.1 eeh int
1561 1.1 eeh gem_intr(v)
1562 1.1 eeh void *v;
1563 1.1 eeh {
1564 1.1 eeh struct gem_softc *sc = (struct gem_softc *)v;
1565 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1566 1.1 eeh bus_space_handle_t seb = sc->sc_h;
1567 1.1 eeh u_int32_t status;
1568 1.1 eeh int r = 0;
1569 1.3 eeh #ifdef GEM_DEBUG
1570 1.1 eeh char bits[128];
1571 1.3 eeh #endif
1572 1.1 eeh
1573 1.19 matt sc->sc_ev_intr.ev_count++;
1574 1.19 matt
1575 1.1 eeh status = bus_space_read_4(t, seb, GEM_STATUS);
1576 1.1 eeh DPRINTF(sc, ("%s: gem_intr: cplt %xstatus %s\n",
1577 1.1 eeh sc->sc_dev.dv_xname, (status>>19),
1578 1.1 eeh bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1579 1.1 eeh
1580 1.1 eeh if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1581 1.1 eeh r |= gem_eint(sc, status);
1582 1.1 eeh
1583 1.18 matt if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
1584 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_txint);
1585 1.1 eeh r |= gem_tint(sc);
1586 1.18 matt }
1587 1.1 eeh
1588 1.18 matt if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
1589 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxint);
1590 1.1 eeh r |= gem_rint(sc);
1591 1.18 matt }
1592 1.1 eeh
1593 1.1 eeh /* We should eventually do more than just print out error stats. */
1594 1.1 eeh if (status & GEM_INTR_TX_MAC) {
1595 1.1 eeh int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1596 1.1 eeh if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1597 1.14 matt printf("%s: MAC tx fault, status %x\n",
1598 1.14 matt sc->sc_dev.dv_xname, txstat);
1599 1.1 eeh }
1600 1.1 eeh if (status & GEM_INTR_RX_MAC) {
1601 1.1 eeh int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1602 1.1 eeh if (rxstat & ~GEM_MAC_RX_DONE)
1603 1.14 matt printf("%s: MAC rx fault, status %x\n",
1604 1.14 matt sc->sc_dev.dv_xname, rxstat);
1605 1.1 eeh }
1606 1.1 eeh return (r);
1607 1.1 eeh }
1608 1.1 eeh
1609 1.1 eeh
1610 1.1 eeh void
1611 1.1 eeh gem_watchdog(ifp)
1612 1.1 eeh struct ifnet *ifp;
1613 1.1 eeh {
1614 1.1 eeh struct gem_softc *sc = ifp->if_softc;
1615 1.1 eeh
1616 1.1 eeh DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1617 1.1 eeh "GEM_MAC_RX_CONFIG %x\n",
1618 1.1 eeh bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1619 1.1 eeh bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1620 1.1 eeh bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1621 1.1 eeh
1622 1.1 eeh log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1623 1.1 eeh ++ifp->if_oerrors;
1624 1.1 eeh
1625 1.1 eeh /* Try to get more packets going. */
1626 1.1 eeh gem_start(ifp);
1627 1.1 eeh }
1628 1.1 eeh
1629 1.1 eeh /*
1630 1.1 eeh * Initialize the MII Management Interface
1631 1.1 eeh */
1632 1.1 eeh void
1633 1.1 eeh gem_mifinit(sc)
1634 1.1 eeh struct gem_softc *sc;
1635 1.1 eeh {
1636 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1637 1.1 eeh bus_space_handle_t mif = sc->sc_h;
1638 1.1 eeh
1639 1.1 eeh /* Configure the MIF in frame mode */
1640 1.1 eeh sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1641 1.1 eeh sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1642 1.1 eeh bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1643 1.1 eeh }
1644 1.1 eeh
1645 1.1 eeh /*
1646 1.1 eeh * MII interface
1647 1.1 eeh *
1648 1.1 eeh * The GEM MII interface supports at least three different operating modes:
1649 1.1 eeh *
1650 1.1 eeh * Bitbang mode is implemented using data, clock and output enable registers.
1651 1.1 eeh *
1652 1.1 eeh * Frame mode is implemented by loading a complete frame into the frame
1653 1.1 eeh * register and polling the valid bit for completion.
1654 1.1 eeh *
1655 1.1 eeh * Polling mode uses the frame register but completion is indicated by
1656 1.1 eeh * an interrupt.
1657 1.1 eeh *
1658 1.1 eeh */
1659 1.1 eeh static int
1660 1.1 eeh gem_mii_readreg(self, phy, reg)
1661 1.1 eeh struct device *self;
1662 1.1 eeh int phy, reg;
1663 1.1 eeh {
1664 1.1 eeh struct gem_softc *sc = (void *)self;
1665 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1666 1.1 eeh bus_space_handle_t mif = sc->sc_h;
1667 1.1 eeh int n;
1668 1.1 eeh u_int32_t v;
1669 1.1 eeh
1670 1.1 eeh #ifdef GEM_DEBUG1
1671 1.1 eeh if (sc->sc_debug)
1672 1.1 eeh printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1673 1.1 eeh #endif
1674 1.1 eeh
1675 1.1 eeh #if 0
1676 1.1 eeh /* Select the desired PHY in the MIF configuration register */
1677 1.1 eeh v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1678 1.1 eeh /* Clear PHY select bit */
1679 1.1 eeh v &= ~GEM_MIF_CONFIG_PHY_SEL;
1680 1.1 eeh if (phy == GEM_PHYAD_EXTERNAL)
1681 1.1 eeh /* Set PHY select bit to get at external device */
1682 1.1 eeh v |= GEM_MIF_CONFIG_PHY_SEL;
1683 1.1 eeh bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1684 1.1 eeh #endif
1685 1.1 eeh
1686 1.1 eeh /* Construct the frame command */
1687 1.1 eeh v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
1688 1.1 eeh GEM_MIF_FRAME_READ;
1689 1.1 eeh
1690 1.1 eeh bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1691 1.1 eeh for (n = 0; n < 100; n++) {
1692 1.1 eeh DELAY(1);
1693 1.1 eeh v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1694 1.1 eeh if (v & GEM_MIF_FRAME_TA0)
1695 1.1 eeh return (v & GEM_MIF_FRAME_DATA);
1696 1.1 eeh }
1697 1.1 eeh
1698 1.1 eeh printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1699 1.1 eeh return (0);
1700 1.1 eeh }
1701 1.1 eeh
1702 1.1 eeh static void
1703 1.1 eeh gem_mii_writereg(self, phy, reg, val)
1704 1.1 eeh struct device *self;
1705 1.1 eeh int phy, reg, val;
1706 1.1 eeh {
1707 1.1 eeh struct gem_softc *sc = (void *)self;
1708 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1709 1.1 eeh bus_space_handle_t mif = sc->sc_h;
1710 1.1 eeh int n;
1711 1.1 eeh u_int32_t v;
1712 1.1 eeh
1713 1.1 eeh #ifdef GEM_DEBUG1
1714 1.1 eeh if (sc->sc_debug)
1715 1.1 eeh printf("gem_mii_writereg: phy %d reg %d val %x\n",
1716 1.1 eeh phy, reg, val);
1717 1.1 eeh #endif
1718 1.1 eeh
1719 1.1 eeh #if 0
1720 1.1 eeh /* Select the desired PHY in the MIF configuration register */
1721 1.1 eeh v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1722 1.1 eeh /* Clear PHY select bit */
1723 1.1 eeh v &= ~GEM_MIF_CONFIG_PHY_SEL;
1724 1.1 eeh if (phy == GEM_PHYAD_EXTERNAL)
1725 1.1 eeh /* Set PHY select bit to get at external device */
1726 1.1 eeh v |= GEM_MIF_CONFIG_PHY_SEL;
1727 1.1 eeh bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1728 1.1 eeh #endif
1729 1.1 eeh /* Construct the frame command */
1730 1.1 eeh v = GEM_MIF_FRAME_WRITE |
1731 1.1 eeh (phy << GEM_MIF_PHY_SHIFT) |
1732 1.1 eeh (reg << GEM_MIF_REG_SHIFT) |
1733 1.1 eeh (val & GEM_MIF_FRAME_DATA);
1734 1.1 eeh
1735 1.1 eeh bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1736 1.1 eeh for (n = 0; n < 100; n++) {
1737 1.1 eeh DELAY(1);
1738 1.1 eeh v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1739 1.1 eeh if (v & GEM_MIF_FRAME_TA0)
1740 1.1 eeh return;
1741 1.1 eeh }
1742 1.1 eeh
1743 1.1 eeh printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1744 1.1 eeh }
1745 1.1 eeh
1746 1.1 eeh static void
1747 1.1 eeh gem_mii_statchg(dev)
1748 1.1 eeh struct device *dev;
1749 1.1 eeh {
1750 1.1 eeh struct gem_softc *sc = (void *)dev;
1751 1.3 eeh #ifdef GEM_DEBUG
1752 1.1 eeh int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1753 1.3 eeh #endif
1754 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1755 1.1 eeh bus_space_handle_t mac = sc->sc_h;
1756 1.1 eeh u_int32_t v;
1757 1.1 eeh
1758 1.1 eeh #ifdef GEM_DEBUG
1759 1.1 eeh if (sc->sc_debug)
1760 1.3 eeh printf("gem_mii_statchg: status change: phy = %d\n",
1761 1.3 eeh sc->sc_phys[instance];);
1762 1.1 eeh #endif
1763 1.1 eeh
1764 1.1 eeh
1765 1.1 eeh /* Set tx full duplex options */
1766 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1767 1.1 eeh delay(10000); /* reg must be cleared and delay before changing. */
1768 1.1 eeh v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1769 1.1 eeh GEM_MAC_TX_ENABLE;
1770 1.1 eeh if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1771 1.1 eeh v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1772 1.1 eeh }
1773 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1774 1.1 eeh
1775 1.1 eeh /* XIF Configuration */
1776 1.1 eeh /* We should really calculate all this rather than rely on defaults */
1777 1.1 eeh v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1778 1.1 eeh v = GEM_MAC_XIF_LINK_LED;
1779 1.1 eeh v |= GEM_MAC_XIF_TX_MII_ENA;
1780 1.15 matt
1781 1.1 eeh /* If an external transceiver is connected, enable its MII drivers */
1782 1.1 eeh sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1783 1.1 eeh if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1784 1.1 eeh /* External MII needs echo disable if half duplex. */
1785 1.1 eeh if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1786 1.1 eeh /* turn on full duplex LED */
1787 1.1 eeh v |= GEM_MAC_XIF_FDPLX_LED;
1788 1.15 matt else
1789 1.15 matt /* half duplex -- disable echo */
1790 1.15 matt v |= GEM_MAC_XIF_ECHO_DISABL;
1791 1.15 matt
1792 1.14 matt if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
1793 1.14 matt v |= GEM_MAC_XIF_GMII_MODE;
1794 1.14 matt else
1795 1.14 matt v &= ~GEM_MAC_XIF_GMII_MODE;
1796 1.1 eeh } else
1797 1.1 eeh /* Internal MII needs buf enable */
1798 1.1 eeh v |= GEM_MAC_XIF_MII_BUF_ENA;
1799 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1800 1.1 eeh }
1801 1.1 eeh
1802 1.1 eeh int
1803 1.1 eeh gem_mediachange(ifp)
1804 1.1 eeh struct ifnet *ifp;
1805 1.1 eeh {
1806 1.1 eeh struct gem_softc *sc = ifp->if_softc;
1807 1.1 eeh
1808 1.11 thorpej if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1809 1.11 thorpej return (EINVAL);
1810 1.1 eeh
1811 1.1 eeh return (mii_mediachg(&sc->sc_mii));
1812 1.1 eeh }
1813 1.1 eeh
1814 1.1 eeh void
1815 1.1 eeh gem_mediastatus(ifp, ifmr)
1816 1.1 eeh struct ifnet *ifp;
1817 1.1 eeh struct ifmediareq *ifmr;
1818 1.1 eeh {
1819 1.1 eeh struct gem_softc *sc = ifp->if_softc;
1820 1.1 eeh
1821 1.1 eeh if ((ifp->if_flags & IFF_UP) == 0)
1822 1.1 eeh return;
1823 1.1 eeh
1824 1.1 eeh mii_pollstat(&sc->sc_mii);
1825 1.1 eeh ifmr->ifm_active = sc->sc_mii.mii_media_active;
1826 1.1 eeh ifmr->ifm_status = sc->sc_mii.mii_media_status;
1827 1.1 eeh }
1828 1.1 eeh
1829 1.1 eeh int gem_ioctldebug = 0;
1830 1.1 eeh /*
1831 1.1 eeh * Process an ioctl request.
1832 1.1 eeh */
1833 1.1 eeh int
1834 1.1 eeh gem_ioctl(ifp, cmd, data)
1835 1.1 eeh struct ifnet *ifp;
1836 1.1 eeh u_long cmd;
1837 1.1 eeh caddr_t data;
1838 1.1 eeh {
1839 1.1 eeh struct gem_softc *sc = ifp->if_softc;
1840 1.1 eeh struct ifreq *ifr = (struct ifreq *)data;
1841 1.1 eeh int s, error = 0;
1842 1.1 eeh
1843 1.20 matt s = splnet();
1844 1.1 eeh
1845 1.1 eeh switch (cmd) {
1846 1.1 eeh case SIOCGIFMEDIA:
1847 1.1 eeh case SIOCSIFMEDIA:
1848 1.1 eeh error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1849 1.1 eeh break;
1850 1.1 eeh
1851 1.1 eeh default:
1852 1.1 eeh error = ether_ioctl(ifp, cmd, data);
1853 1.1 eeh if (error == ENETRESET) {
1854 1.1 eeh /*
1855 1.1 eeh * Multicast list has changed; set the hardware filter
1856 1.1 eeh * accordingly.
1857 1.1 eeh */
1858 1.1 eeh if (gem_ioctldebug) printf("reset1\n");
1859 1.1 eeh gem_init(ifp);
1860 1.1 eeh delay(50000);
1861 1.1 eeh error = 0;
1862 1.1 eeh }
1863 1.1 eeh break;
1864 1.1 eeh }
1865 1.1 eeh
1866 1.1 eeh /* Try to get things going again */
1867 1.1 eeh if (ifp->if_flags & IFF_UP) {
1868 1.1 eeh if (gem_ioctldebug) printf("start\n");
1869 1.1 eeh gem_start(ifp);
1870 1.1 eeh }
1871 1.1 eeh splx(s);
1872 1.1 eeh return (error);
1873 1.1 eeh }
1874 1.1 eeh
1875 1.1 eeh
1876 1.1 eeh void
1877 1.1 eeh gem_shutdown(arg)
1878 1.1 eeh void *arg;
1879 1.1 eeh {
1880 1.1 eeh struct gem_softc *sc = (struct gem_softc *)arg;
1881 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1882 1.1 eeh
1883 1.1 eeh gem_stop(ifp, 1);
1884 1.1 eeh }
1885 1.1 eeh
1886 1.1 eeh /*
1887 1.1 eeh * Set up the logical address filter.
1888 1.1 eeh */
1889 1.1 eeh void
1890 1.1 eeh gem_setladrf(sc)
1891 1.1 eeh struct gem_softc *sc;
1892 1.1 eeh {
1893 1.15 matt struct ethercom *ec = &sc->sc_ethercom;
1894 1.15 matt struct ifnet *ifp = &ec->ec_if;
1895 1.1 eeh struct ether_multi *enm;
1896 1.1 eeh struct ether_multistep step;
1897 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1898 1.1 eeh bus_space_handle_t h = sc->sc_h;
1899 1.1 eeh u_int32_t crc;
1900 1.1 eeh u_int32_t hash[16];
1901 1.1 eeh u_int32_t v;
1902 1.15 matt int i;
1903 1.1 eeh
1904 1.1 eeh /* Get current RX configuration */
1905 1.1 eeh v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1906 1.1 eeh
1907 1.15 matt /*
1908 1.15 matt * Turn off promiscuous mode, promiscuous group mode (all multicast),
1909 1.15 matt * and hash filter. Depending on the case, the right bit will be
1910 1.15 matt * enabled.
1911 1.15 matt */
1912 1.15 matt v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
1913 1.15 matt GEM_MAC_RX_PROMISC_GRP);
1914 1.15 matt
1915 1.1 eeh if ((ifp->if_flags & IFF_PROMISC) != 0) {
1916 1.15 matt /* Turn on promiscuous mode */
1917 1.1 eeh v |= GEM_MAC_RX_PROMISCUOUS;
1918 1.1 eeh ifp->if_flags |= IFF_ALLMULTI;
1919 1.1 eeh goto chipit;
1920 1.1 eeh }
1921 1.1 eeh
1922 1.1 eeh /*
1923 1.1 eeh * Set up multicast address filter by passing all multicast addresses
1924 1.15 matt * through a crc generator, and then using the high order 8 bits as an
1925 1.15 matt * index into the 256 bit logical address filter. The high order 4
1926 1.15 matt * bits select the word, while the other 4 bits select the bit within
1927 1.15 matt * the word (where bit 0 is the MSB).
1928 1.1 eeh */
1929 1.1 eeh
1930 1.15 matt /* Clear hash table */
1931 1.15 matt memset(hash, 0, sizeof(hash));
1932 1.15 matt
1933 1.1 eeh ETHER_FIRST_MULTI(step, ec, enm);
1934 1.1 eeh while (enm != NULL) {
1935 1.6 thorpej if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1936 1.1 eeh /*
1937 1.1 eeh * We must listen to a range of multicast addresses.
1938 1.1 eeh * For now, just accept all multicasts, rather than
1939 1.1 eeh * trying to set only those filter bits needed to match
1940 1.1 eeh * the range. (At this time, the only use of address
1941 1.1 eeh * ranges is for IP multicast routing, for which the
1942 1.1 eeh * range is big enough to require all bits set.)
1943 1.15 matt * XXX use the addr filter for this
1944 1.1 eeh */
1945 1.1 eeh ifp->if_flags |= IFF_ALLMULTI;
1946 1.15 matt v |= GEM_MAC_RX_PROMISC_GRP;
1947 1.1 eeh goto chipit;
1948 1.1 eeh }
1949 1.1 eeh
1950 1.15 matt /* Get the LE CRC32 of the address */
1951 1.15 matt crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
1952 1.1 eeh
1953 1.1 eeh /* Just want the 8 most significant bits. */
1954 1.1 eeh crc >>= 24;
1955 1.1 eeh
1956 1.1 eeh /* Set the corresponding bit in the filter. */
1957 1.15 matt hash[crc >> 4] |= 1 << (15 - (crc & 15));
1958 1.1 eeh
1959 1.1 eeh ETHER_NEXT_MULTI(step, enm);
1960 1.1 eeh }
1961 1.1 eeh
1962 1.15 matt v |= GEM_MAC_RX_HASH_FILTER;
1963 1.1 eeh ifp->if_flags &= ~IFF_ALLMULTI;
1964 1.1 eeh
1965 1.15 matt /* Now load the hash table into the chip (if we are using it) */
1966 1.15 matt for (i = 0; i < 16; i++) {
1967 1.15 matt bus_space_write_4(t, h,
1968 1.15 matt GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
1969 1.15 matt hash[i]);
1970 1.15 matt }
1971 1.15 matt
1972 1.1 eeh chipit:
1973 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1974 1.1 eeh }
1975 1.1 eeh
1976 1.1 eeh #if notyet
1977 1.1 eeh
1978 1.1 eeh /*
1979 1.1 eeh * gem_power:
1980 1.1 eeh *
1981 1.1 eeh * Power management (suspend/resume) hook.
1982 1.1 eeh */
1983 1.1 eeh void
1984 1.1 eeh gem_power(why, arg)
1985 1.1 eeh int why;
1986 1.1 eeh void *arg;
1987 1.1 eeh {
1988 1.1 eeh struct gem_softc *sc = arg;
1989 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1990 1.1 eeh int s;
1991 1.1 eeh
1992 1.1 eeh s = splnet();
1993 1.1 eeh switch (why) {
1994 1.1 eeh case PWR_SUSPEND:
1995 1.1 eeh case PWR_STANDBY:
1996 1.1 eeh gem_stop(ifp, 1);
1997 1.1 eeh if (sc->sc_power != NULL)
1998 1.1 eeh (*sc->sc_power)(sc, why);
1999 1.1 eeh break;
2000 1.1 eeh case PWR_RESUME:
2001 1.1 eeh if (ifp->if_flags & IFF_UP) {
2002 1.1 eeh if (sc->sc_power != NULL)
2003 1.1 eeh (*sc->sc_power)(sc, why);
2004 1.1 eeh gem_init(ifp);
2005 1.1 eeh }
2006 1.1 eeh break;
2007 1.1 eeh case PWR_SOFTSUSPEND:
2008 1.1 eeh case PWR_SOFTSTANDBY:
2009 1.1 eeh case PWR_SOFTRESUME:
2010 1.1 eeh break;
2011 1.1 eeh }
2012 1.1 eeh splx(s);
2013 1.1 eeh }
2014 1.1 eeh #endif
2015