gem.c revision 1.35 1 1.35 heas /* $NetBSD: gem.c,v 1.35 2005/02/20 18:29:00 heas Exp $ */
2 1.1 eeh
3 1.1 eeh /*
4 1.31 heas *
5 1.1 eeh * Copyright (C) 2001 Eduardo Horvath.
6 1.1 eeh * All rights reserved.
7 1.1 eeh *
8 1.1 eeh *
9 1.1 eeh * Redistribution and use in source and binary forms, with or without
10 1.1 eeh * modification, are permitted provided that the following conditions
11 1.1 eeh * are met:
12 1.1 eeh * 1. Redistributions of source code must retain the above copyright
13 1.1 eeh * notice, this list of conditions and the following disclaimer.
14 1.1 eeh * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 eeh * notice, this list of conditions and the following disclaimer in the
16 1.1 eeh * documentation and/or other materials provided with the distribution.
17 1.31 heas *
18 1.1 eeh * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
19 1.1 eeh * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 1.1 eeh * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 1.1 eeh * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
22 1.1 eeh * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 1.1 eeh * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 1.1 eeh * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 1.1 eeh * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 1.1 eeh * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 1.1 eeh * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 1.1 eeh * SUCH DAMAGE.
29 1.1 eeh *
30 1.1 eeh */
31 1.1 eeh
32 1.1 eeh /*
33 1.1 eeh * Driver for Sun GEM ethernet controllers.
34 1.1 eeh */
35 1.10 lukem
36 1.10 lukem #include <sys/cdefs.h>
37 1.35 heas __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.35 2005/02/20 18:29:00 heas Exp $");
38 1.1 eeh
39 1.35 heas #include "opt_inet.h"
40 1.1 eeh #include "bpfilter.h"
41 1.1 eeh
42 1.1 eeh #include <sys/param.h>
43 1.31 heas #include <sys/systm.h>
44 1.1 eeh #include <sys/callout.h>
45 1.31 heas #include <sys/mbuf.h>
46 1.1 eeh #include <sys/syslog.h>
47 1.1 eeh #include <sys/malloc.h>
48 1.1 eeh #include <sys/kernel.h>
49 1.1 eeh #include <sys/socket.h>
50 1.1 eeh #include <sys/ioctl.h>
51 1.1 eeh #include <sys/errno.h>
52 1.1 eeh #include <sys/device.h>
53 1.1 eeh
54 1.1 eeh #include <machine/endian.h>
55 1.1 eeh
56 1.1 eeh #include <uvm/uvm_extern.h>
57 1.31 heas
58 1.1 eeh #include <net/if.h>
59 1.1 eeh #include <net/if_dl.h>
60 1.1 eeh #include <net/if_media.h>
61 1.1 eeh #include <net/if_ether.h>
62 1.1 eeh
63 1.35 heas #ifdef INET
64 1.35 heas #include <netinet/in.h>
65 1.35 heas #include <netinet/in_systm.h>
66 1.35 heas #include <netinet/in_var.h>
67 1.35 heas #include <netinet/ip.h>
68 1.35 heas #include <netinet/tcp.h>
69 1.35 heas #include <netinet/udp.h>
70 1.35 heas #endif
71 1.35 heas
72 1.31 heas #if NBPFILTER > 0
73 1.1 eeh #include <net/bpf.h>
74 1.31 heas #endif
75 1.1 eeh
76 1.1 eeh #include <machine/bus.h>
77 1.1 eeh #include <machine/intr.h>
78 1.1 eeh
79 1.1 eeh #include <dev/mii/mii.h>
80 1.1 eeh #include <dev/mii/miivar.h>
81 1.1 eeh #include <dev/mii/mii_bitbang.h>
82 1.1 eeh
83 1.1 eeh #include <dev/ic/gemreg.h>
84 1.1 eeh #include <dev/ic/gemvar.h>
85 1.1 eeh
86 1.1 eeh #define TRIES 10000
87 1.1 eeh
88 1.34 perry void gem_start(struct ifnet *);
89 1.34 perry void gem_stop(struct ifnet *, int);
90 1.34 perry int gem_ioctl(struct ifnet *, u_long, caddr_t);
91 1.34 perry void gem_tick(void *);
92 1.34 perry void gem_watchdog(struct ifnet *);
93 1.34 perry void gem_shutdown(void *);
94 1.34 perry int gem_init(struct ifnet *);
95 1.1 eeh void gem_init_regs(struct gem_softc *sc);
96 1.1 eeh static int gem_ringsize(int sz);
97 1.34 perry int gem_meminit(struct gem_softc *);
98 1.34 perry void gem_mifinit(struct gem_softc *);
99 1.34 perry void gem_reset(struct gem_softc *);
100 1.1 eeh int gem_reset_rx(struct gem_softc *sc);
101 1.1 eeh int gem_reset_tx(struct gem_softc *sc);
102 1.1 eeh int gem_disable_rx(struct gem_softc *sc);
103 1.1 eeh int gem_disable_tx(struct gem_softc *sc);
104 1.1 eeh void gem_rxdrain(struct gem_softc *sc);
105 1.1 eeh int gem_add_rxbuf(struct gem_softc *sc, int idx);
106 1.34 perry void gem_setladrf(struct gem_softc *);
107 1.1 eeh
108 1.1 eeh /* MII methods & callbacks */
109 1.34 perry static int gem_mii_readreg(struct device *, int, int);
110 1.34 perry static void gem_mii_writereg(struct device *, int, int, int);
111 1.34 perry static void gem_mii_statchg(struct device *);
112 1.34 perry
113 1.34 perry int gem_mediachange(struct ifnet *);
114 1.34 perry void gem_mediastatus(struct ifnet *, struct ifmediareq *);
115 1.34 perry
116 1.34 perry struct mbuf *gem_get(struct gem_softc *, int, int);
117 1.34 perry int gem_put(struct gem_softc *, int, struct mbuf *);
118 1.34 perry void gem_read(struct gem_softc *, int, int);
119 1.34 perry int gem_eint(struct gem_softc *, u_int);
120 1.34 perry int gem_rint(struct gem_softc *);
121 1.34 perry int gem_tint(struct gem_softc *);
122 1.34 perry void gem_power(int, void *);
123 1.1 eeh
124 1.1 eeh #ifdef GEM_DEBUG
125 1.1 eeh #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
126 1.1 eeh printf x
127 1.1 eeh #else
128 1.1 eeh #define DPRINTF(sc, x) /* nothing */
129 1.1 eeh #endif
130 1.1 eeh
131 1.1 eeh
132 1.1 eeh /*
133 1.6 thorpej * gem_attach:
134 1.1 eeh *
135 1.1 eeh * Attach a Gem interface to the system.
136 1.1 eeh */
137 1.1 eeh void
138 1.6 thorpej gem_attach(sc, enaddr)
139 1.1 eeh struct gem_softc *sc;
140 1.6 thorpej const uint8_t *enaddr;
141 1.1 eeh {
142 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
143 1.1 eeh struct mii_data *mii = &sc->sc_mii;
144 1.1 eeh struct mii_softc *child;
145 1.15 matt struct ifmedia_entry *ifm;
146 1.1 eeh int i, error;
147 1.15 matt u_int32_t v;
148 1.1 eeh
149 1.1 eeh /* Make sure the chip is stopped. */
150 1.1 eeh ifp->if_softc = sc;
151 1.1 eeh gem_reset(sc);
152 1.1 eeh
153 1.1 eeh /*
154 1.1 eeh * Allocate the control data structures, and create and load the
155 1.1 eeh * DMA map for it.
156 1.1 eeh */
157 1.1 eeh if ((error = bus_dmamem_alloc(sc->sc_dmatag,
158 1.1 eeh sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
159 1.1 eeh 1, &sc->sc_cdnseg, 0)) != 0) {
160 1.24 thorpej aprint_error(
161 1.24 thorpej "%s: unable to allocate control data, error = %d\n",
162 1.1 eeh sc->sc_dev.dv_xname, error);
163 1.1 eeh goto fail_0;
164 1.1 eeh }
165 1.1 eeh
166 1.1 eeh /* XXX should map this in with correct endianness */
167 1.1 eeh if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
168 1.1 eeh sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
169 1.1 eeh BUS_DMA_COHERENT)) != 0) {
170 1.24 thorpej aprint_error("%s: unable to map control data, error = %d\n",
171 1.1 eeh sc->sc_dev.dv_xname, error);
172 1.1 eeh goto fail_1;
173 1.1 eeh }
174 1.1 eeh
175 1.1 eeh if ((error = bus_dmamap_create(sc->sc_dmatag,
176 1.1 eeh sizeof(struct gem_control_data), 1,
177 1.1 eeh sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
178 1.24 thorpej aprint_error("%s: unable to create control data DMA map, "
179 1.1 eeh "error = %d\n", sc->sc_dev.dv_xname, error);
180 1.1 eeh goto fail_2;
181 1.1 eeh }
182 1.1 eeh
183 1.1 eeh if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
184 1.1 eeh sc->sc_control_data, sizeof(struct gem_control_data), NULL,
185 1.1 eeh 0)) != 0) {
186 1.24 thorpej aprint_error(
187 1.24 thorpej "%s: unable to load control data DMA map, error = %d\n",
188 1.1 eeh sc->sc_dev.dv_xname, error);
189 1.1 eeh goto fail_3;
190 1.1 eeh }
191 1.1 eeh
192 1.1 eeh /*
193 1.1 eeh * Initialize the transmit job descriptors.
194 1.1 eeh */
195 1.1 eeh SIMPLEQ_INIT(&sc->sc_txfreeq);
196 1.1 eeh SIMPLEQ_INIT(&sc->sc_txdirtyq);
197 1.1 eeh
198 1.1 eeh /*
199 1.1 eeh * Create the transmit buffer DMA maps.
200 1.1 eeh */
201 1.1 eeh for (i = 0; i < GEM_TXQUEUELEN; i++) {
202 1.1 eeh struct gem_txsoft *txs;
203 1.1 eeh
204 1.1 eeh txs = &sc->sc_txsoft[i];
205 1.1 eeh txs->txs_mbuf = NULL;
206 1.15 matt if ((error = bus_dmamap_create(sc->sc_dmatag,
207 1.15 matt ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
208 1.15 matt ETHER_MAX_LEN_JUMBO, 0, 0,
209 1.1 eeh &txs->txs_dmamap)) != 0) {
210 1.24 thorpej aprint_error("%s: unable to create tx DMA map %d, "
211 1.1 eeh "error = %d\n", sc->sc_dev.dv_xname, i, error);
212 1.1 eeh goto fail_4;
213 1.1 eeh }
214 1.1 eeh SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
215 1.1 eeh }
216 1.1 eeh
217 1.1 eeh /*
218 1.1 eeh * Create the receive buffer DMA maps.
219 1.1 eeh */
220 1.1 eeh for (i = 0; i < GEM_NRXDESC; i++) {
221 1.1 eeh if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
222 1.1 eeh MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
223 1.24 thorpej aprint_error("%s: unable to create rx DMA map %d, "
224 1.1 eeh "error = %d\n", sc->sc_dev.dv_xname, i, error);
225 1.1 eeh goto fail_5;
226 1.1 eeh }
227 1.1 eeh sc->sc_rxsoft[i].rxs_mbuf = NULL;
228 1.1 eeh }
229 1.1 eeh
230 1.1 eeh /*
231 1.1 eeh * From this point forward, the attachment cannot fail. A failure
232 1.1 eeh * before this point releases all resources that may have been
233 1.1 eeh * allocated.
234 1.1 eeh */
235 1.1 eeh
236 1.1 eeh /* Announce ourselves. */
237 1.24 thorpej aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
238 1.6 thorpej ether_sprintf(enaddr));
239 1.1 eeh
240 1.15 matt /* Get RX FIFO size */
241 1.15 matt sc->sc_rxfifosize = 64 *
242 1.31 heas bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
243 1.24 thorpej aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
244 1.15 matt
245 1.15 matt /* Get TX FIFO size */
246 1.31 heas v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
247 1.24 thorpej aprint_normal(", %uKB TX fifo\n", v / 16);
248 1.15 matt
249 1.1 eeh /* Initialize ifnet structure. */
250 1.1 eeh strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
251 1.1 eeh ifp->if_softc = sc;
252 1.1 eeh ifp->if_flags =
253 1.1 eeh IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
254 1.35 heas ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx
255 1.35 heas | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
256 1.1 eeh ifp->if_start = gem_start;
257 1.1 eeh ifp->if_ioctl = gem_ioctl;
258 1.1 eeh ifp->if_watchdog = gem_watchdog;
259 1.1 eeh ifp->if_stop = gem_stop;
260 1.1 eeh ifp->if_init = gem_init;
261 1.1 eeh IFQ_SET_READY(&ifp->if_snd);
262 1.1 eeh
263 1.1 eeh /* Initialize ifmedia structures and MII info */
264 1.1 eeh mii->mii_ifp = ifp;
265 1.31 heas mii->mii_readreg = gem_mii_readreg;
266 1.1 eeh mii->mii_writereg = gem_mii_writereg;
267 1.1 eeh mii->mii_statchg = gem_mii_statchg;
268 1.1 eeh
269 1.23 fair ifmedia_init(&mii->mii_media, IFM_IMASK, gem_mediachange, gem_mediastatus);
270 1.1 eeh
271 1.1 eeh gem_mifinit(sc);
272 1.1 eeh
273 1.1 eeh mii_attach(&sc->sc_dev, mii, 0xffffffff,
274 1.25 matt MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
275 1.1 eeh
276 1.1 eeh child = LIST_FIRST(&mii->mii_phys);
277 1.1 eeh if (child == NULL) {
278 1.1 eeh /* No PHY attached */
279 1.1 eeh ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
280 1.1 eeh ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
281 1.1 eeh } else {
282 1.1 eeh /*
283 1.1 eeh * Walk along the list of attached MII devices and
284 1.1 eeh * establish an `MII instance' to `phy number'
285 1.1 eeh * mapping. We'll use this mapping in media change
286 1.1 eeh * requests to determine which phy to use to program
287 1.1 eeh * the MIF configuration register.
288 1.1 eeh */
289 1.1 eeh for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
290 1.1 eeh /*
291 1.1 eeh * Note: we support just two PHYs: the built-in
292 1.1 eeh * internal device and an external on the MII
293 1.1 eeh * connector.
294 1.1 eeh */
295 1.1 eeh if (child->mii_phy > 1 || child->mii_inst > 1) {
296 1.24 thorpej aprint_error(
297 1.24 thorpej "%s: cannot accomodate MII device %s"
298 1.1 eeh " at phy %d, instance %d\n",
299 1.1 eeh sc->sc_dev.dv_xname,
300 1.1 eeh child->mii_dev.dv_xname,
301 1.1 eeh child->mii_phy, child->mii_inst);
302 1.1 eeh continue;
303 1.1 eeh }
304 1.1 eeh
305 1.1 eeh sc->sc_phys[child->mii_inst] = child->mii_phy;
306 1.1 eeh }
307 1.1 eeh
308 1.1 eeh /*
309 1.1 eeh * Now select and activate the PHY we will use.
310 1.1 eeh *
311 1.1 eeh * The order of preference is External (MDI1),
312 1.1 eeh * Internal (MDI0), Serial Link (no MII).
313 1.1 eeh */
314 1.1 eeh if (sc->sc_phys[1]) {
315 1.1 eeh #ifdef DEBUG
316 1.24 thorpej aprint_debug("using external phy\n");
317 1.1 eeh #endif
318 1.1 eeh sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
319 1.1 eeh } else {
320 1.1 eeh #ifdef DEBUG
321 1.24 thorpej aprint_debug("using internal phy\n");
322 1.1 eeh #endif
323 1.1 eeh sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
324 1.1 eeh }
325 1.31 heas bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
326 1.1 eeh sc->sc_mif_config);
327 1.1 eeh
328 1.1 eeh /*
329 1.1 eeh * XXX - we can really do the following ONLY if the
330 1.1 eeh * phy indeed has the auto negotiation capability!!
331 1.1 eeh */
332 1.1 eeh ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
333 1.1 eeh }
334 1.1 eeh
335 1.15 matt /*
336 1.15 matt * If we support GigE media, we support jumbo frames too.
337 1.15 matt * Unless we are Apple.
338 1.15 matt */
339 1.15 matt TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
340 1.15 matt if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
341 1.15 matt IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
342 1.15 matt IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
343 1.15 matt IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
344 1.15 matt if (sc->sc_variant != GEM_APPLE_GMAC)
345 1.15 matt sc->sc_ethercom.ec_capabilities
346 1.15 matt |= ETHERCAP_JUMBO_MTU;
347 1.15 matt
348 1.15 matt sc->sc_flags |= GEM_GIGABIT;
349 1.15 matt break;
350 1.15 matt }
351 1.15 matt }
352 1.15 matt
353 1.1 eeh /* claim 802.1q capability */
354 1.1 eeh sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
355 1.1 eeh
356 1.1 eeh /* Attach the interface. */
357 1.1 eeh if_attach(ifp);
358 1.6 thorpej ether_ifattach(ifp, enaddr);
359 1.1 eeh
360 1.1 eeh sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
361 1.1 eeh if (sc->sc_sh == NULL)
362 1.1 eeh panic("gem_config: can't establish shutdownhook");
363 1.1 eeh
364 1.1 eeh #if NRND > 0
365 1.1 eeh rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
366 1.1 eeh RND_TYPE_NET, 0);
367 1.1 eeh #endif
368 1.1 eeh
369 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
370 1.18 matt NULL, sc->sc_dev.dv_xname, "interrupts");
371 1.19 matt #ifdef GEM_COUNTERS
372 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
373 1.18 matt &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
374 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
375 1.18 matt &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
376 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
377 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
378 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
379 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
380 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
381 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
382 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
383 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
384 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
385 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
386 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
387 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
388 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
389 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
390 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
391 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
392 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
393 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
394 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
395 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
396 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
397 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
398 1.19 matt #endif
399 1.1 eeh
400 1.1 eeh #if notyet
401 1.1 eeh /*
402 1.1 eeh * Add a suspend hook to make sure we come back up after a
403 1.1 eeh * resume.
404 1.1 eeh */
405 1.1 eeh sc->sc_powerhook = powerhook_establish(gem_power, sc);
406 1.1 eeh if (sc->sc_powerhook == NULL)
407 1.24 thorpej aprint_error("%s: WARNING: unable to establish power hook\n",
408 1.1 eeh sc->sc_dev.dv_xname);
409 1.1 eeh #endif
410 1.1 eeh
411 1.1 eeh callout_init(&sc->sc_tick_ch);
412 1.1 eeh return;
413 1.1 eeh
414 1.1 eeh /*
415 1.1 eeh * Free any resources we've allocated during the failed attach
416 1.1 eeh * attempt. Do this in reverse order and fall through.
417 1.1 eeh */
418 1.1 eeh fail_5:
419 1.1 eeh for (i = 0; i < GEM_NRXDESC; i++) {
420 1.1 eeh if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
421 1.1 eeh bus_dmamap_destroy(sc->sc_dmatag,
422 1.1 eeh sc->sc_rxsoft[i].rxs_dmamap);
423 1.1 eeh }
424 1.1 eeh fail_4:
425 1.1 eeh for (i = 0; i < GEM_TXQUEUELEN; i++) {
426 1.1 eeh if (sc->sc_txsoft[i].txs_dmamap != NULL)
427 1.1 eeh bus_dmamap_destroy(sc->sc_dmatag,
428 1.1 eeh sc->sc_txsoft[i].txs_dmamap);
429 1.1 eeh }
430 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
431 1.1 eeh fail_3:
432 1.1 eeh bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
433 1.1 eeh fail_2:
434 1.1 eeh bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
435 1.1 eeh sizeof(struct gem_control_data));
436 1.1 eeh fail_1:
437 1.1 eeh bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
438 1.1 eeh fail_0:
439 1.1 eeh return;
440 1.1 eeh }
441 1.1 eeh
442 1.1 eeh
443 1.1 eeh void
444 1.1 eeh gem_tick(arg)
445 1.1 eeh void *arg;
446 1.1 eeh {
447 1.1 eeh struct gem_softc *sc = arg;
448 1.1 eeh int s;
449 1.1 eeh
450 1.1 eeh s = splnet();
451 1.1 eeh mii_tick(&sc->sc_mii);
452 1.1 eeh splx(s);
453 1.1 eeh
454 1.1 eeh callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
455 1.31 heas
456 1.1 eeh }
457 1.1 eeh
458 1.1 eeh void
459 1.1 eeh gem_reset(sc)
460 1.1 eeh struct gem_softc *sc;
461 1.1 eeh {
462 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
463 1.1 eeh bus_space_handle_t h = sc->sc_h;
464 1.1 eeh int i;
465 1.1 eeh int s;
466 1.1 eeh
467 1.1 eeh s = splnet();
468 1.1 eeh DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
469 1.1 eeh gem_reset_rx(sc);
470 1.1 eeh gem_reset_tx(sc);
471 1.1 eeh
472 1.1 eeh /* Do a full reset */
473 1.1 eeh bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
474 1.1 eeh for (i=TRIES; i--; delay(100))
475 1.31 heas if ((bus_space_read_4(t, h, GEM_RESET) &
476 1.1 eeh (GEM_RESET_RX|GEM_RESET_TX)) == 0)
477 1.1 eeh break;
478 1.1 eeh if ((bus_space_read_4(t, h, GEM_RESET) &
479 1.1 eeh (GEM_RESET_RX|GEM_RESET_TX)) != 0) {
480 1.1 eeh printf("%s: cannot reset device\n",
481 1.1 eeh sc->sc_dev.dv_xname);
482 1.1 eeh }
483 1.1 eeh splx(s);
484 1.1 eeh }
485 1.1 eeh
486 1.1 eeh
487 1.1 eeh /*
488 1.1 eeh * gem_rxdrain:
489 1.1 eeh *
490 1.1 eeh * Drain the receive queue.
491 1.1 eeh */
492 1.1 eeh void
493 1.1 eeh gem_rxdrain(struct gem_softc *sc)
494 1.1 eeh {
495 1.1 eeh struct gem_rxsoft *rxs;
496 1.1 eeh int i;
497 1.1 eeh
498 1.1 eeh for (i = 0; i < GEM_NRXDESC; i++) {
499 1.1 eeh rxs = &sc->sc_rxsoft[i];
500 1.1 eeh if (rxs->rxs_mbuf != NULL) {
501 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
502 1.1 eeh m_freem(rxs->rxs_mbuf);
503 1.1 eeh rxs->rxs_mbuf = NULL;
504 1.1 eeh }
505 1.1 eeh }
506 1.1 eeh }
507 1.1 eeh
508 1.31 heas /*
509 1.1 eeh * Reset the whole thing.
510 1.1 eeh */
511 1.1 eeh void
512 1.1 eeh gem_stop(struct ifnet *ifp, int disable)
513 1.1 eeh {
514 1.1 eeh struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
515 1.1 eeh struct gem_txsoft *txs;
516 1.1 eeh
517 1.1 eeh DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
518 1.1 eeh
519 1.1 eeh callout_stop(&sc->sc_tick_ch);
520 1.1 eeh mii_down(&sc->sc_mii);
521 1.1 eeh
522 1.1 eeh /* XXX - Should we reset these instead? */
523 1.1 eeh gem_disable_rx(sc);
524 1.22 matt gem_disable_tx(sc);
525 1.1 eeh
526 1.1 eeh /*
527 1.1 eeh * Release any queued transmit buffers.
528 1.1 eeh */
529 1.1 eeh while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
530 1.21 lukem SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
531 1.1 eeh if (txs->txs_mbuf != NULL) {
532 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
533 1.1 eeh m_freem(txs->txs_mbuf);
534 1.1 eeh txs->txs_mbuf = NULL;
535 1.1 eeh }
536 1.1 eeh SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
537 1.1 eeh }
538 1.1 eeh
539 1.1 eeh if (disable) {
540 1.1 eeh gem_rxdrain(sc);
541 1.1 eeh }
542 1.1 eeh
543 1.1 eeh /*
544 1.1 eeh * Mark the interface down and cancel the watchdog timer.
545 1.1 eeh */
546 1.1 eeh ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
547 1.1 eeh ifp->if_timer = 0;
548 1.1 eeh }
549 1.1 eeh
550 1.1 eeh
551 1.1 eeh /*
552 1.1 eeh * Reset the receiver
553 1.1 eeh */
554 1.1 eeh int
555 1.1 eeh gem_reset_rx(struct gem_softc *sc)
556 1.1 eeh {
557 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
558 1.1 eeh bus_space_handle_t h = sc->sc_h;
559 1.1 eeh int i;
560 1.1 eeh
561 1.1 eeh
562 1.1 eeh /*
563 1.1 eeh * Resetting while DMA is in progress can cause a bus hang, so we
564 1.1 eeh * disable DMA first.
565 1.1 eeh */
566 1.1 eeh gem_disable_rx(sc);
567 1.1 eeh bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
568 1.1 eeh /* Wait till it finishes */
569 1.1 eeh for (i=TRIES; i--; delay(100))
570 1.1 eeh if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
571 1.1 eeh break;
572 1.1 eeh if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
573 1.27 wiz printf("%s: cannot disable read DMA\n",
574 1.1 eeh sc->sc_dev.dv_xname);
575 1.1 eeh
576 1.1 eeh /* Wait 5ms extra. */
577 1.1 eeh delay(5000);
578 1.1 eeh
579 1.1 eeh /* Finally, reset the ERX */
580 1.1 eeh bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
581 1.1 eeh /* Wait till it finishes */
582 1.1 eeh for (i=TRIES; i--; delay(100))
583 1.1 eeh if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
584 1.1 eeh break;
585 1.1 eeh if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
586 1.1 eeh printf("%s: cannot reset receiver\n",
587 1.1 eeh sc->sc_dev.dv_xname);
588 1.1 eeh return (1);
589 1.1 eeh }
590 1.1 eeh return (0);
591 1.1 eeh }
592 1.1 eeh
593 1.1 eeh
594 1.1 eeh /*
595 1.1 eeh * Reset the transmitter
596 1.1 eeh */
597 1.1 eeh int
598 1.1 eeh gem_reset_tx(struct gem_softc *sc)
599 1.1 eeh {
600 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
601 1.1 eeh bus_space_handle_t h = sc->sc_h;
602 1.1 eeh int i;
603 1.1 eeh
604 1.1 eeh /*
605 1.1 eeh * Resetting while DMA is in progress can cause a bus hang, so we
606 1.1 eeh * disable DMA first.
607 1.1 eeh */
608 1.1 eeh gem_disable_tx(sc);
609 1.1 eeh bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
610 1.1 eeh /* Wait till it finishes */
611 1.1 eeh for (i=TRIES; i--; delay(100))
612 1.1 eeh if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
613 1.1 eeh break;
614 1.1 eeh if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
615 1.27 wiz printf("%s: cannot disable read DMA\n",
616 1.1 eeh sc->sc_dev.dv_xname);
617 1.1 eeh
618 1.1 eeh /* Wait 5ms extra. */
619 1.1 eeh delay(5000);
620 1.1 eeh
621 1.1 eeh /* Finally, reset the ETX */
622 1.1 eeh bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
623 1.1 eeh /* Wait till it finishes */
624 1.1 eeh for (i=TRIES; i--; delay(100))
625 1.1 eeh if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
626 1.1 eeh break;
627 1.1 eeh if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
628 1.1 eeh printf("%s: cannot reset receiver\n",
629 1.1 eeh sc->sc_dev.dv_xname);
630 1.1 eeh return (1);
631 1.1 eeh }
632 1.1 eeh return (0);
633 1.1 eeh }
634 1.1 eeh
635 1.1 eeh /*
636 1.1 eeh * disable receiver.
637 1.1 eeh */
638 1.1 eeh int
639 1.1 eeh gem_disable_rx(struct gem_softc *sc)
640 1.1 eeh {
641 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
642 1.1 eeh bus_space_handle_t h = sc->sc_h;
643 1.1 eeh int i;
644 1.1 eeh u_int32_t cfg;
645 1.1 eeh
646 1.1 eeh /* Flip the enable bit */
647 1.1 eeh cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
648 1.1 eeh cfg &= ~GEM_MAC_RX_ENABLE;
649 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
650 1.1 eeh
651 1.1 eeh /* Wait for it to finish */
652 1.31 heas for (i=TRIES; i--; delay(100))
653 1.1 eeh if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
654 1.1 eeh GEM_MAC_RX_ENABLE) == 0)
655 1.1 eeh return (0);
656 1.1 eeh return (1);
657 1.1 eeh }
658 1.1 eeh
659 1.1 eeh /*
660 1.1 eeh * disable transmitter.
661 1.1 eeh */
662 1.1 eeh int
663 1.1 eeh gem_disable_tx(struct gem_softc *sc)
664 1.1 eeh {
665 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
666 1.1 eeh bus_space_handle_t h = sc->sc_h;
667 1.1 eeh int i;
668 1.1 eeh u_int32_t cfg;
669 1.1 eeh
670 1.1 eeh /* Flip the enable bit */
671 1.1 eeh cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
672 1.1 eeh cfg &= ~GEM_MAC_TX_ENABLE;
673 1.1 eeh bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
674 1.1 eeh
675 1.1 eeh /* Wait for it to finish */
676 1.31 heas for (i=TRIES; i--; delay(100))
677 1.1 eeh if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
678 1.1 eeh GEM_MAC_TX_ENABLE) == 0)
679 1.1 eeh return (0);
680 1.1 eeh return (1);
681 1.1 eeh }
682 1.1 eeh
683 1.1 eeh /*
684 1.1 eeh * Initialize interface.
685 1.1 eeh */
686 1.1 eeh int
687 1.1 eeh gem_meminit(struct gem_softc *sc)
688 1.1 eeh {
689 1.1 eeh struct gem_rxsoft *rxs;
690 1.1 eeh int i, error;
691 1.1 eeh
692 1.1 eeh /*
693 1.1 eeh * Initialize the transmit descriptor ring.
694 1.1 eeh */
695 1.1 eeh memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
696 1.1 eeh for (i = 0; i < GEM_NTXDESC; i++) {
697 1.1 eeh sc->sc_txdescs[i].gd_flags = 0;
698 1.1 eeh sc->sc_txdescs[i].gd_addr = 0;
699 1.1 eeh }
700 1.1 eeh GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
701 1.1 eeh BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
702 1.14 matt sc->sc_txfree = GEM_NTXDESC-1;
703 1.1 eeh sc->sc_txnext = 0;
704 1.14 matt sc->sc_txwin = 0;
705 1.1 eeh
706 1.1 eeh /*
707 1.1 eeh * Initialize the receive descriptor and receive job
708 1.1 eeh * descriptor rings.
709 1.1 eeh */
710 1.1 eeh for (i = 0; i < GEM_NRXDESC; i++) {
711 1.1 eeh rxs = &sc->sc_rxsoft[i];
712 1.1 eeh if (rxs->rxs_mbuf == NULL) {
713 1.1 eeh if ((error = gem_add_rxbuf(sc, i)) != 0) {
714 1.1 eeh printf("%s: unable to allocate or map rx "
715 1.1 eeh "buffer %d, error = %d\n",
716 1.1 eeh sc->sc_dev.dv_xname, i, error);
717 1.1 eeh /*
718 1.1 eeh * XXX Should attempt to run with fewer receive
719 1.1 eeh * XXX buffers instead of just failing.
720 1.1 eeh */
721 1.1 eeh gem_rxdrain(sc);
722 1.1 eeh return (1);
723 1.1 eeh }
724 1.1 eeh } else
725 1.1 eeh GEM_INIT_RXDESC(sc, i);
726 1.1 eeh }
727 1.1 eeh sc->sc_rxptr = 0;
728 1.1 eeh
729 1.1 eeh return (0);
730 1.1 eeh }
731 1.1 eeh
732 1.1 eeh static int
733 1.1 eeh gem_ringsize(int sz)
734 1.1 eeh {
735 1.1 eeh switch (sz) {
736 1.1 eeh case 32:
737 1.29 christos return GEM_RING_SZ_32;
738 1.1 eeh case 64:
739 1.29 christos return GEM_RING_SZ_64;
740 1.1 eeh case 128:
741 1.29 christos return GEM_RING_SZ_128;
742 1.1 eeh case 256:
743 1.29 christos return GEM_RING_SZ_256;
744 1.1 eeh case 512:
745 1.29 christos return GEM_RING_SZ_512;
746 1.1 eeh case 1024:
747 1.29 christos return GEM_RING_SZ_1024;
748 1.1 eeh case 2048:
749 1.29 christos return GEM_RING_SZ_2048;
750 1.1 eeh case 4096:
751 1.29 christos return GEM_RING_SZ_4096;
752 1.1 eeh case 8192:
753 1.29 christos return GEM_RING_SZ_8192;
754 1.1 eeh default:
755 1.29 christos printf("gem: invalid Receive Descriptor ring size %d\n", sz);
756 1.29 christos return GEM_RING_SZ_32;
757 1.1 eeh }
758 1.1 eeh }
759 1.1 eeh
760 1.1 eeh /*
761 1.1 eeh * Initialization of interface; set up initialization block
762 1.1 eeh * and transmit/receive descriptor rings.
763 1.1 eeh */
764 1.1 eeh int
765 1.1 eeh gem_init(struct ifnet *ifp)
766 1.1 eeh {
767 1.1 eeh struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
768 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
769 1.1 eeh bus_space_handle_t h = sc->sc_h;
770 1.1 eeh int s;
771 1.15 matt u_int max_frame_size;
772 1.1 eeh u_int32_t v;
773 1.1 eeh
774 1.1 eeh s = splnet();
775 1.1 eeh
776 1.1 eeh DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
777 1.1 eeh /*
778 1.1 eeh * Initialization sequence. The numbered steps below correspond
779 1.1 eeh * to the sequence outlined in section 6.3.5.1 in the Ethernet
780 1.1 eeh * Channel Engine manual (part of the PCIO manual).
781 1.1 eeh * See also the STP2002-STQ document from Sun Microsystems.
782 1.1 eeh */
783 1.1 eeh
784 1.1 eeh /* step 1 & 2. Reset the Ethernet Channel */
785 1.1 eeh gem_stop(ifp, 0);
786 1.1 eeh gem_reset(sc);
787 1.1 eeh DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
788 1.1 eeh
789 1.1 eeh /* Re-initialize the MIF */
790 1.1 eeh gem_mifinit(sc);
791 1.1 eeh
792 1.1 eeh /* Call MI reset function if any */
793 1.1 eeh if (sc->sc_hwreset)
794 1.1 eeh (*sc->sc_hwreset)(sc);
795 1.1 eeh
796 1.1 eeh /* step 3. Setup data structures in host memory */
797 1.1 eeh gem_meminit(sc);
798 1.1 eeh
799 1.1 eeh /* step 4. TX MAC registers & counters */
800 1.1 eeh gem_init_regs(sc);
801 1.15 matt max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
802 1.15 matt max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
803 1.15 matt if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
804 1.15 matt max_frame_size += ETHER_VLAN_ENCAP_LEN;
805 1.1 eeh bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
806 1.15 matt max_frame_size|/* burst size */(0x2000<<16));
807 1.1 eeh
808 1.1 eeh /* step 5. RX MAC registers & counters */
809 1.1 eeh gem_setladrf(sc);
810 1.1 eeh
811 1.1 eeh /* step 6 & 7. Program Descriptor Ring Base Addresses */
812 1.4 thorpej /* NOTE: we use only 32-bit DMA addresses here. */
813 1.4 thorpej bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
814 1.4 thorpej bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
815 1.4 thorpej
816 1.4 thorpej bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
817 1.4 thorpej bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
818 1.1 eeh
819 1.1 eeh /* step 8. Global Configuration & Interrupt Mask */
820 1.1 eeh bus_space_write_4(t, h, GEM_INTMASK,
821 1.1 eeh ~(GEM_INTR_TX_INTME|
822 1.1 eeh GEM_INTR_TX_EMPTY|
823 1.1 eeh GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
824 1.1 eeh GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
825 1.1 eeh GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
826 1.1 eeh GEM_INTR_BERR));
827 1.16 matt bus_space_write_4(t, h, GEM_MAC_RX_MASK,
828 1.17 matt GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
829 1.1 eeh bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
830 1.1 eeh bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
831 1.5 thorpej
832 1.1 eeh /* step 9. ETX Configuration: use mostly default values */
833 1.1 eeh
834 1.1 eeh /* Enable DMA */
835 1.1 eeh v = gem_ringsize(GEM_NTXDESC /*XXX*/);
836 1.31 heas bus_space_write_4(t, h, GEM_TX_CONFIG,
837 1.1 eeh v|GEM_TX_CONFIG_TXDMA_EN|
838 1.1 eeh ((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
839 1.1 eeh bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
840 1.1 eeh
841 1.1 eeh /* step 10. ERX Configuration */
842 1.1 eeh
843 1.1 eeh /* Encode Receive Descriptor ring size: four possible values */
844 1.1 eeh v = gem_ringsize(GEM_NRXDESC /*XXX*/);
845 1.1 eeh
846 1.35 heas /* Set receive h/w checksum offset */
847 1.35 heas #ifdef INET
848 1.35 heas v |= (ETHER_HDR_LEN + sizeof(struct ip) +
849 1.35 heas ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
850 1.35 heas ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
851 1.35 heas #endif
852 1.35 heas
853 1.1 eeh /* Enable DMA */
854 1.31 heas bus_space_write_4(t, h, GEM_RX_CONFIG,
855 1.1 eeh v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
856 1.35 heas (2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN);
857 1.35 heas
858 1.1 eeh /*
859 1.15 matt * The following value is for an OFF Threshold of about 3/4 full
860 1.15 matt * and an ON Threshold of 1/4 full.
861 1.1 eeh */
862 1.15 matt bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
863 1.15 matt (3 * sc->sc_rxfifosize / 256) |
864 1.15 matt ( (sc->sc_rxfifosize / 256) << 12));
865 1.15 matt bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
866 1.1 eeh
867 1.1 eeh /* step 11. Configure Media */
868 1.15 matt mii_mediachg(&sc->sc_mii);
869 1.11 thorpej
870 1.11 thorpej /* XXXX Serial link needs a whole different setup. */
871 1.11 thorpej
872 1.1 eeh
873 1.1 eeh /* step 12. RX_MAC Configuration Register */
874 1.1 eeh v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
875 1.35 heas v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
876 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
877 1.1 eeh
878 1.1 eeh /* step 14. Issue Transmit Pending command */
879 1.1 eeh
880 1.1 eeh /* Call MI initialization function if any */
881 1.1 eeh if (sc->sc_hwinit)
882 1.1 eeh (*sc->sc_hwinit)(sc);
883 1.1 eeh
884 1.1 eeh
885 1.1 eeh /* step 15. Give the reciever a swift kick */
886 1.1 eeh bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
887 1.1 eeh
888 1.1 eeh /* Start the one second timer. */
889 1.1 eeh callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
890 1.1 eeh
891 1.1 eeh ifp->if_flags |= IFF_RUNNING;
892 1.1 eeh ifp->if_flags &= ~IFF_OACTIVE;
893 1.1 eeh ifp->if_timer = 0;
894 1.1 eeh splx(s);
895 1.1 eeh
896 1.1 eeh return (0);
897 1.1 eeh }
898 1.1 eeh
899 1.1 eeh void
900 1.1 eeh gem_init_regs(struct gem_softc *sc)
901 1.1 eeh {
902 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
903 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
904 1.1 eeh bus_space_handle_t h = sc->sc_h;
905 1.13 matt const u_char *laddr = LLADDR(ifp->if_sadl);
906 1.15 matt u_int32_t v;
907 1.1 eeh
908 1.1 eeh /* These regs are not cleared on reset */
909 1.1 eeh if (!sc->sc_inited) {
910 1.1 eeh
911 1.1 eeh /* Wooo. Magic values. */
912 1.1 eeh bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
913 1.1 eeh bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
914 1.1 eeh bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
915 1.1 eeh
916 1.1 eeh bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
917 1.1 eeh /* Max frame and max burst size */
918 1.1 eeh bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
919 1.15 matt ETHER_MAX_LEN | (0x2000<<16));
920 1.15 matt
921 1.1 eeh bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
922 1.1 eeh bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
923 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
924 1.1 eeh /* Dunno.... */
925 1.1 eeh bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
926 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
927 1.15 matt ((laddr[5]<<8)|laddr[4])&0x3ff);
928 1.13 matt
929 1.1 eeh /* Secondary MAC addr set to 0:0:0:0:0:0 */
930 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
931 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
932 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
933 1.13 matt
934 1.13 matt /* MAC control addr set to 01:80:c2:00:00:01 */
935 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
936 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
937 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
938 1.1 eeh
939 1.1 eeh /* MAC filter addr set to 0:0:0:0:0:0 */
940 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
941 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
942 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
943 1.1 eeh
944 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
945 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
946 1.1 eeh
947 1.1 eeh sc->sc_inited = 1;
948 1.1 eeh }
949 1.1 eeh
950 1.1 eeh /* Counters need to be zeroed */
951 1.1 eeh bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
952 1.1 eeh bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
953 1.1 eeh bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
954 1.1 eeh bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
955 1.1 eeh bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
956 1.1 eeh bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
957 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
958 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
959 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
960 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
961 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
962 1.1 eeh
963 1.1 eeh /* Un-pause stuff */
964 1.1 eeh #if 0
965 1.1 eeh bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
966 1.1 eeh #else
967 1.1 eeh bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
968 1.1 eeh #endif
969 1.1 eeh
970 1.1 eeh /*
971 1.1 eeh * Set the station address.
972 1.1 eeh */
973 1.13 matt bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
974 1.13 matt bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
975 1.13 matt bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
976 1.1 eeh
977 1.15 matt #if 0
978 1.15 matt if (sc->sc_variant != APPLE_GMAC)
979 1.15 matt return;
980 1.15 matt #endif
981 1.15 matt
982 1.15 matt /*
983 1.15 matt * Enable MII outputs. Enable GMII if there is a gigabit PHY.
984 1.15 matt */
985 1.15 matt sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
986 1.15 matt v = GEM_MAC_XIF_TX_MII_ENA;
987 1.15 matt if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
988 1.15 matt v |= GEM_MAC_XIF_FDPLX_LED;
989 1.15 matt if (sc->sc_flags & GEM_GIGABIT)
990 1.15 matt v |= GEM_MAC_XIF_GMII_MODE;
991 1.15 matt }
992 1.15 matt bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
993 1.1 eeh }
994 1.1 eeh
995 1.1 eeh void
996 1.1 eeh gem_start(ifp)
997 1.1 eeh struct ifnet *ifp;
998 1.1 eeh {
999 1.1 eeh struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1000 1.1 eeh struct mbuf *m0, *m;
1001 1.1 eeh struct gem_txsoft *txs, *last_txs;
1002 1.1 eeh bus_dmamap_t dmamap;
1003 1.30 christos int error, firsttx, nexttx, lasttx = -1, ofree, seg;
1004 1.1 eeh
1005 1.1 eeh if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1006 1.1 eeh return;
1007 1.1 eeh
1008 1.1 eeh /*
1009 1.1 eeh * Remember the previous number of free descriptors and
1010 1.1 eeh * the first descriptor we'll use.
1011 1.1 eeh */
1012 1.1 eeh ofree = sc->sc_txfree;
1013 1.1 eeh firsttx = sc->sc_txnext;
1014 1.1 eeh
1015 1.1 eeh DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1016 1.1 eeh sc->sc_dev.dv_xname, ofree, firsttx));
1017 1.1 eeh
1018 1.1 eeh /*
1019 1.1 eeh * Loop through the send queue, setting up transmit descriptors
1020 1.1 eeh * until we drain the queue, or use up all available transmit
1021 1.1 eeh * descriptors.
1022 1.1 eeh */
1023 1.11 thorpej while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1024 1.11 thorpej sc->sc_txfree != 0) {
1025 1.1 eeh /*
1026 1.1 eeh * Grab a packet off the queue.
1027 1.1 eeh */
1028 1.1 eeh IFQ_POLL(&ifp->if_snd, m0);
1029 1.1 eeh if (m0 == NULL)
1030 1.1 eeh break;
1031 1.1 eeh m = NULL;
1032 1.1 eeh
1033 1.1 eeh dmamap = txs->txs_dmamap;
1034 1.1 eeh
1035 1.1 eeh /*
1036 1.1 eeh * Load the DMA map. If this fails, the packet either
1037 1.1 eeh * didn't fit in the alloted number of segments, or we were
1038 1.1 eeh * short on resources. In this case, we'll copy and try
1039 1.1 eeh * again.
1040 1.1 eeh */
1041 1.1 eeh if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1042 1.1 eeh BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1043 1.15 matt if (m0->m_pkthdr.len > MCLBYTES) {
1044 1.15 matt printf("%s: unable to allocate jumbo Tx "
1045 1.15 matt "cluster\n", sc->sc_dev.dv_xname);
1046 1.15 matt IFQ_DEQUEUE(&ifp->if_snd, m0);
1047 1.15 matt m_freem(m0);
1048 1.15 matt continue;
1049 1.15 matt }
1050 1.1 eeh MGETHDR(m, M_DONTWAIT, MT_DATA);
1051 1.1 eeh if (m == NULL) {
1052 1.1 eeh printf("%s: unable to allocate Tx mbuf\n",
1053 1.1 eeh sc->sc_dev.dv_xname);
1054 1.1 eeh break;
1055 1.1 eeh }
1056 1.26 matt MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1057 1.1 eeh if (m0->m_pkthdr.len > MHLEN) {
1058 1.1 eeh MCLGET(m, M_DONTWAIT);
1059 1.1 eeh if ((m->m_flags & M_EXT) == 0) {
1060 1.1 eeh printf("%s: unable to allocate Tx "
1061 1.1 eeh "cluster\n", sc->sc_dev.dv_xname);
1062 1.1 eeh m_freem(m);
1063 1.1 eeh break;
1064 1.1 eeh }
1065 1.1 eeh }
1066 1.1 eeh m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1067 1.1 eeh m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1068 1.1 eeh error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1069 1.1 eeh m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1070 1.1 eeh if (error) {
1071 1.1 eeh printf("%s: unable to load Tx buffer, "
1072 1.1 eeh "error = %d\n", sc->sc_dev.dv_xname, error);
1073 1.1 eeh break;
1074 1.1 eeh }
1075 1.1 eeh }
1076 1.1 eeh
1077 1.1 eeh /*
1078 1.1 eeh * Ensure we have enough descriptors free to describe
1079 1.11 thorpej * the packet.
1080 1.1 eeh */
1081 1.11 thorpej if (dmamap->dm_nsegs > sc->sc_txfree) {
1082 1.1 eeh /*
1083 1.1 eeh * Not enough free descriptors to transmit this
1084 1.1 eeh * packet. We haven't committed to anything yet,
1085 1.1 eeh * so just unload the DMA map, put the packet
1086 1.1 eeh * back on the queue, and punt. Notify the upper
1087 1.1 eeh * layer that there are no more slots left.
1088 1.1 eeh *
1089 1.1 eeh * XXX We could allocate an mbuf and copy, but
1090 1.1 eeh * XXX it is worth it?
1091 1.1 eeh */
1092 1.1 eeh ifp->if_flags |= IFF_OACTIVE;
1093 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, dmamap);
1094 1.1 eeh if (m != NULL)
1095 1.1 eeh m_freem(m);
1096 1.1 eeh break;
1097 1.1 eeh }
1098 1.1 eeh
1099 1.1 eeh IFQ_DEQUEUE(&ifp->if_snd, m0);
1100 1.1 eeh if (m != NULL) {
1101 1.1 eeh m_freem(m0);
1102 1.1 eeh m0 = m;
1103 1.1 eeh }
1104 1.1 eeh
1105 1.1 eeh /*
1106 1.1 eeh * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1107 1.1 eeh */
1108 1.1 eeh
1109 1.1 eeh /* Sync the DMA map. */
1110 1.1 eeh bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1111 1.1 eeh BUS_DMASYNC_PREWRITE);
1112 1.1 eeh
1113 1.1 eeh /*
1114 1.1 eeh * Initialize the transmit descriptors.
1115 1.1 eeh */
1116 1.1 eeh for (nexttx = sc->sc_txnext, seg = 0;
1117 1.1 eeh seg < dmamap->dm_nsegs;
1118 1.1 eeh seg++, nexttx = GEM_NEXTTX(nexttx)) {
1119 1.1 eeh uint64_t flags;
1120 1.1 eeh
1121 1.1 eeh /*
1122 1.1 eeh * If this is the first descriptor we're
1123 1.1 eeh * enqueueing, set the start of packet flag,
1124 1.1 eeh * and the checksum stuff if we want the hardware
1125 1.1 eeh * to do it.
1126 1.1 eeh */
1127 1.1 eeh sc->sc_txdescs[nexttx].gd_addr =
1128 1.2 eeh GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1129 1.1 eeh flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1130 1.1 eeh if (nexttx == firsttx) {
1131 1.1 eeh flags |= GEM_TD_START_OF_PACKET;
1132 1.14 matt if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1133 1.14 matt sc->sc_txwin = 0;
1134 1.14 matt flags |= GEM_TD_INTERRUPT_ME;
1135 1.14 matt }
1136 1.35 heas
1137 1.35 heas #ifdef INET
1138 1.35 heas /* h/w checksum */
1139 1.35 heas if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 |
1140 1.35 heas M_CSUM_UDPv4) && m0->m_pkthdr.csum_flags &
1141 1.35 heas (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1142 1.35 heas struct ether_header *eh;
1143 1.35 heas uint16_t offset, start;
1144 1.35 heas
1145 1.35 heas eh = mtod(m0, struct ether_header *);
1146 1.35 heas switch (ntohs(eh->ether_type)) {
1147 1.35 heas case ETHERTYPE_IP:
1148 1.35 heas start = ETHER_HDR_LEN;
1149 1.35 heas break;
1150 1.35 heas case ETHERTYPE_VLAN:
1151 1.35 heas start = ETHER_HDR_LEN +
1152 1.35 heas ETHER_VLAN_ENCAP_LEN;
1153 1.35 heas break;
1154 1.35 heas default:
1155 1.35 heas /* unsupported, drop it */
1156 1.35 heas m_free(m0);
1157 1.35 heas continue;
1158 1.35 heas }
1159 1.35 heas start += m0->m_pkthdr.csum_data >> 16;
1160 1.35 heas offset = (m0->m_pkthdr.csum_data &
1161 1.35 heas 0xffff) + start;
1162 1.35 heas flags |= (start <<
1163 1.35 heas GEM_TD_CXSUM_STARTSHFT) |
1164 1.35 heas (offset <<
1165 1.35 heas GEM_TD_CXSUM_STUFFSHFT) |
1166 1.35 heas GEM_TD_CXSUM_ENABLE;
1167 1.35 heas }
1168 1.35 heas #endif
1169 1.1 eeh }
1170 1.1 eeh if (seg == dmamap->dm_nsegs - 1) {
1171 1.1 eeh flags |= GEM_TD_END_OF_PACKET;
1172 1.1 eeh }
1173 1.1 eeh sc->sc_txdescs[nexttx].gd_flags =
1174 1.2 eeh GEM_DMA_WRITE(sc, flags);
1175 1.1 eeh lasttx = nexttx;
1176 1.1 eeh }
1177 1.30 christos
1178 1.30 christos KASSERT(lasttx != -1);
1179 1.1 eeh
1180 1.1 eeh #ifdef GEM_DEBUG
1181 1.1 eeh if (ifp->if_flags & IFF_DEBUG) {
1182 1.1 eeh printf(" gem_start %p transmit chain:\n", txs);
1183 1.1 eeh for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1184 1.1 eeh printf("descriptor %d:\t", seg);
1185 1.1 eeh printf("gd_flags: 0x%016llx\t", (long long)
1186 1.2 eeh GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1187 1.1 eeh printf("gd_addr: 0x%016llx\n", (long long)
1188 1.2 eeh GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1189 1.1 eeh if (seg == lasttx)
1190 1.1 eeh break;
1191 1.1 eeh }
1192 1.1 eeh }
1193 1.1 eeh #endif
1194 1.1 eeh
1195 1.1 eeh /* Sync the descriptors we're using. */
1196 1.1 eeh GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1197 1.1 eeh BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1198 1.1 eeh
1199 1.1 eeh /*
1200 1.1 eeh * Store a pointer to the packet so we can free it later,
1201 1.1 eeh * and remember what txdirty will be once the packet is
1202 1.1 eeh * done.
1203 1.1 eeh */
1204 1.1 eeh txs->txs_mbuf = m0;
1205 1.1 eeh txs->txs_firstdesc = sc->sc_txnext;
1206 1.1 eeh txs->txs_lastdesc = lasttx;
1207 1.1 eeh txs->txs_ndescs = dmamap->dm_nsegs;
1208 1.1 eeh
1209 1.1 eeh /* Advance the tx pointer. */
1210 1.1 eeh sc->sc_txfree -= dmamap->dm_nsegs;
1211 1.1 eeh sc->sc_txnext = nexttx;
1212 1.1 eeh
1213 1.21 lukem SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1214 1.1 eeh SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1215 1.1 eeh
1216 1.1 eeh last_txs = txs;
1217 1.1 eeh
1218 1.1 eeh #if NBPFILTER > 0
1219 1.1 eeh /*
1220 1.1 eeh * Pass the packet to any BPF listeners.
1221 1.1 eeh */
1222 1.1 eeh if (ifp->if_bpf)
1223 1.1 eeh bpf_mtap(ifp->if_bpf, m0);
1224 1.1 eeh #endif /* NBPFILTER > 0 */
1225 1.1 eeh }
1226 1.1 eeh
1227 1.1 eeh if (txs == NULL || sc->sc_txfree == 0) {
1228 1.1 eeh /* No more slots left; notify upper layer. */
1229 1.1 eeh ifp->if_flags |= IFF_OACTIVE;
1230 1.1 eeh }
1231 1.1 eeh
1232 1.1 eeh if (sc->sc_txfree != ofree) {
1233 1.1 eeh DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1234 1.1 eeh sc->sc_dev.dv_xname, lasttx, firsttx));
1235 1.1 eeh /*
1236 1.31 heas * The entire packet chain is set up.
1237 1.1 eeh * Kick the transmitter.
1238 1.1 eeh */
1239 1.1 eeh DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1240 1.1 eeh sc->sc_dev.dv_xname, nexttx));
1241 1.1 eeh bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1242 1.1 eeh sc->sc_txnext);
1243 1.1 eeh
1244 1.1 eeh /* Set a watchdog timer in case the chip flakes out. */
1245 1.1 eeh ifp->if_timer = 5;
1246 1.1 eeh DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1247 1.1 eeh sc->sc_dev.dv_xname, ifp->if_timer));
1248 1.1 eeh }
1249 1.1 eeh }
1250 1.1 eeh
1251 1.1 eeh /*
1252 1.1 eeh * Transmit interrupt.
1253 1.1 eeh */
1254 1.1 eeh int
1255 1.1 eeh gem_tint(sc)
1256 1.1 eeh struct gem_softc *sc;
1257 1.1 eeh {
1258 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1259 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1260 1.1 eeh bus_space_handle_t mac = sc->sc_h;
1261 1.1 eeh struct gem_txsoft *txs;
1262 1.1 eeh int txlast;
1263 1.14 matt int progress = 0;
1264 1.1 eeh
1265 1.1 eeh
1266 1.2 eeh DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1267 1.1 eeh
1268 1.1 eeh /*
1269 1.1 eeh * Unload collision counters
1270 1.1 eeh */
1271 1.1 eeh ifp->if_collisions +=
1272 1.1 eeh bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1273 1.1 eeh bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1274 1.1 eeh bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1275 1.1 eeh bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1276 1.1 eeh
1277 1.1 eeh /*
1278 1.1 eeh * then clear the hardware counters.
1279 1.1 eeh */
1280 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1281 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1282 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1283 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1284 1.1 eeh
1285 1.1 eeh /*
1286 1.1 eeh * Go through our Tx list and free mbufs for those
1287 1.1 eeh * frames that have been transmitted.
1288 1.1 eeh */
1289 1.1 eeh while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1290 1.1 eeh GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1291 1.1 eeh txs->txs_ndescs,
1292 1.1 eeh BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1293 1.1 eeh
1294 1.1 eeh #ifdef GEM_DEBUG
1295 1.1 eeh if (ifp->if_flags & IFF_DEBUG) {
1296 1.1 eeh int i;
1297 1.1 eeh printf(" txsoft %p transmit chain:\n", txs);
1298 1.1 eeh for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1299 1.1 eeh printf("descriptor %d: ", i);
1300 1.1 eeh printf("gd_flags: 0x%016llx\t", (long long)
1301 1.2 eeh GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1302 1.1 eeh printf("gd_addr: 0x%016llx\n", (long long)
1303 1.2 eeh GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1304 1.1 eeh if (i == txs->txs_lastdesc)
1305 1.1 eeh break;
1306 1.1 eeh }
1307 1.1 eeh }
1308 1.1 eeh #endif
1309 1.1 eeh
1310 1.1 eeh /*
1311 1.1 eeh * In theory, we could harveast some descriptors before
1312 1.1 eeh * the ring is empty, but that's a bit complicated.
1313 1.1 eeh *
1314 1.1 eeh * GEM_TX_COMPLETION points to the last descriptor
1315 1.1 eeh * processed +1.
1316 1.1 eeh */
1317 1.1 eeh txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1318 1.1 eeh DPRINTF(sc,
1319 1.1 eeh ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1320 1.1 eeh txs->txs_lastdesc, txlast));
1321 1.1 eeh if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1322 1.1 eeh if ((txlast >= txs->txs_firstdesc) &&
1323 1.1 eeh (txlast <= txs->txs_lastdesc))
1324 1.1 eeh break;
1325 1.1 eeh } else {
1326 1.1 eeh /* Ick -- this command wraps */
1327 1.1 eeh if ((txlast >= txs->txs_firstdesc) ||
1328 1.1 eeh (txlast <= txs->txs_lastdesc))
1329 1.1 eeh break;
1330 1.1 eeh }
1331 1.1 eeh
1332 1.1 eeh DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1333 1.21 lukem SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1334 1.1 eeh
1335 1.1 eeh sc->sc_txfree += txs->txs_ndescs;
1336 1.1 eeh
1337 1.1 eeh if (txs->txs_mbuf == NULL) {
1338 1.1 eeh #ifdef DIAGNOSTIC
1339 1.1 eeh panic("gem_txintr: null mbuf");
1340 1.1 eeh #endif
1341 1.1 eeh }
1342 1.1 eeh
1343 1.1 eeh bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1344 1.1 eeh 0, txs->txs_dmamap->dm_mapsize,
1345 1.1 eeh BUS_DMASYNC_POSTWRITE);
1346 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1347 1.1 eeh m_freem(txs->txs_mbuf);
1348 1.1 eeh txs->txs_mbuf = NULL;
1349 1.1 eeh
1350 1.1 eeh SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1351 1.1 eeh
1352 1.1 eeh ifp->if_opackets++;
1353 1.14 matt progress = 1;
1354 1.1 eeh }
1355 1.1 eeh
1356 1.28 chs #if 0
1357 1.1 eeh DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1358 1.1 eeh "GEM_TX_DATA_PTR %llx "
1359 1.1 eeh "GEM_TX_COMPLETION %x\n",
1360 1.1 eeh bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1361 1.4 thorpej ((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1362 1.4 thorpej GEM_TX_DATA_PTR_HI) << 32) |
1363 1.4 thorpej bus_space_read_4(sc->sc_bustag, sc->sc_h,
1364 1.4 thorpej GEM_TX_DATA_PTR_LO),
1365 1.1 eeh bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1366 1.28 chs #endif
1367 1.1 eeh
1368 1.14 matt if (progress) {
1369 1.14 matt if (sc->sc_txfree == GEM_NTXDESC - 1)
1370 1.14 matt sc->sc_txwin = 0;
1371 1.14 matt
1372 1.14 matt ifp->if_flags &= ~IFF_OACTIVE;
1373 1.14 matt gem_start(ifp);
1374 1.1 eeh
1375 1.21 lukem if (SIMPLEQ_EMPTY(&sc->sc_txdirtyq))
1376 1.14 matt ifp->if_timer = 0;
1377 1.14 matt }
1378 1.1 eeh DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1379 1.1 eeh sc->sc_dev.dv_xname, ifp->if_timer));
1380 1.1 eeh
1381 1.1 eeh return (1);
1382 1.1 eeh }
1383 1.1 eeh
1384 1.1 eeh /*
1385 1.1 eeh * Receive interrupt.
1386 1.1 eeh */
1387 1.1 eeh int
1388 1.1 eeh gem_rint(sc)
1389 1.1 eeh struct gem_softc *sc;
1390 1.1 eeh {
1391 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1392 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1393 1.1 eeh bus_space_handle_t h = sc->sc_h;
1394 1.1 eeh struct gem_rxsoft *rxs;
1395 1.1 eeh struct mbuf *m;
1396 1.1 eeh u_int64_t rxstat;
1397 1.18 matt u_int32_t rxcomp;
1398 1.18 matt int i, len, progress = 0;
1399 1.1 eeh
1400 1.2 eeh DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1401 1.18 matt
1402 1.18 matt /*
1403 1.18 matt * Read the completion register once. This limits
1404 1.18 matt * how long the following loop can execute.
1405 1.18 matt */
1406 1.18 matt rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1407 1.18 matt
1408 1.1 eeh /*
1409 1.1 eeh * XXXX Read the lastrx only once at the top for speed.
1410 1.1 eeh */
1411 1.1 eeh DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1412 1.18 matt sc->sc_rxptr, rxcomp));
1413 1.18 matt
1414 1.18 matt /*
1415 1.18 matt * Go into the loop at least once.
1416 1.18 matt */
1417 1.18 matt for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1418 1.1 eeh i = GEM_NEXTRX(i)) {
1419 1.1 eeh rxs = &sc->sc_rxsoft[i];
1420 1.1 eeh
1421 1.1 eeh GEM_CDRXSYNC(sc, i,
1422 1.1 eeh BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1423 1.1 eeh
1424 1.2 eeh rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1425 1.1 eeh
1426 1.1 eeh if (rxstat & GEM_RD_OWN) {
1427 1.1 eeh /*
1428 1.1 eeh * We have processed all of the receive buffers.
1429 1.1 eeh */
1430 1.1 eeh break;
1431 1.1 eeh }
1432 1.1 eeh
1433 1.18 matt progress++;
1434 1.18 matt ifp->if_ipackets++;
1435 1.18 matt
1436 1.1 eeh if (rxstat & GEM_RD_BAD_CRC) {
1437 1.18 matt ifp->if_ierrors++;
1438 1.1 eeh printf("%s: receive error: CRC error\n",
1439 1.1 eeh sc->sc_dev.dv_xname);
1440 1.1 eeh GEM_INIT_RXDESC(sc, i);
1441 1.1 eeh continue;
1442 1.1 eeh }
1443 1.1 eeh
1444 1.1 eeh bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1445 1.1 eeh rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1446 1.1 eeh #ifdef GEM_DEBUG
1447 1.1 eeh if (ifp->if_flags & IFF_DEBUG) {
1448 1.1 eeh printf(" rxsoft %p descriptor %d: ", rxs, i);
1449 1.1 eeh printf("gd_flags: 0x%016llx\t", (long long)
1450 1.2 eeh GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1451 1.1 eeh printf("gd_addr: 0x%016llx\n", (long long)
1452 1.2 eeh GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1453 1.1 eeh }
1454 1.1 eeh #endif
1455 1.1 eeh
1456 1.35 heas /* No errors; receive the packet. */
1457 1.35 heas len = GEM_RD_BUFLEN(rxstat);
1458 1.1 eeh
1459 1.1 eeh /*
1460 1.1 eeh * Allocate a new mbuf cluster. If that fails, we are
1461 1.1 eeh * out of memory, and must drop the packet and recycle
1462 1.1 eeh * the buffer that's already attached to this descriptor.
1463 1.1 eeh */
1464 1.1 eeh m = rxs->rxs_mbuf;
1465 1.1 eeh if (gem_add_rxbuf(sc, i) != 0) {
1466 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1467 1.1 eeh ifp->if_ierrors++;
1468 1.1 eeh GEM_INIT_RXDESC(sc, i);
1469 1.1 eeh bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1470 1.1 eeh rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1471 1.1 eeh continue;
1472 1.1 eeh }
1473 1.1 eeh m->m_data += 2; /* We're already off by two */
1474 1.1 eeh
1475 1.1 eeh m->m_pkthdr.rcvif = ifp;
1476 1.1 eeh m->m_pkthdr.len = m->m_len = len;
1477 1.1 eeh
1478 1.1 eeh #if NBPFILTER > 0
1479 1.1 eeh /*
1480 1.1 eeh * Pass this up to any BPF listeners, but only
1481 1.1 eeh * pass it up the stack if its for us.
1482 1.1 eeh */
1483 1.1 eeh if (ifp->if_bpf)
1484 1.1 eeh bpf_mtap(ifp->if_bpf, m);
1485 1.1 eeh #endif /* NPBFILTER > 0 */
1486 1.1 eeh
1487 1.35 heas #ifdef INET
1488 1.35 heas /* hardware checksum */
1489 1.35 heas if (ifp->if_csum_flags_rx & (M_CSUM_UDPv4 | M_CSUM_TCPv4)) {
1490 1.35 heas struct ether_header *eh;
1491 1.35 heas struct ip *ip;
1492 1.35 heas struct udphdr *uh;
1493 1.35 heas int32_t hlen, pktlen;
1494 1.35 heas
1495 1.35 heas if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1496 1.35 heas pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1497 1.35 heas ETHER_VLAN_ENCAP_LEN;
1498 1.35 heas eh = (struct ether_header *) mtod(m, caddr_t) +
1499 1.35 heas ETHER_VLAN_ENCAP_LEN;
1500 1.35 heas } else {
1501 1.35 heas pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1502 1.35 heas eh = mtod(m, struct ether_header *);
1503 1.35 heas }
1504 1.35 heas if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1505 1.35 heas goto swcsum;
1506 1.35 heas ip = (struct ip *) ((caddr_t)eh + ETHER_HDR_LEN);
1507 1.35 heas
1508 1.35 heas /* IPv4 only */
1509 1.35 heas if (ip->ip_v != IPVERSION)
1510 1.35 heas goto swcsum;
1511 1.35 heas
1512 1.35 heas hlen = ip->ip_hl << 2;
1513 1.35 heas if (hlen < sizeof(struct ip))
1514 1.35 heas goto swcsum;
1515 1.35 heas
1516 1.35 heas /* too short, truncated, fragment */
1517 1.35 heas if ((ntohs(ip->ip_len) < hlen) ||
1518 1.35 heas (ntohs(ip->ip_len) > pktlen) ||
1519 1.35 heas (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1520 1.35 heas goto swcsum;
1521 1.35 heas
1522 1.35 heas switch (ip->ip_p) {
1523 1.35 heas case IPPROTO_TCP:
1524 1.35 heas if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1525 1.35 heas goto swcsum;
1526 1.35 heas if (pktlen < (hlen + sizeof(struct tcphdr)))
1527 1.35 heas goto swcsum;
1528 1.35 heas m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1529 1.35 heas break;
1530 1.35 heas case IPPROTO_UDP:
1531 1.35 heas if (! (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
1532 1.35 heas goto swcsum;
1533 1.35 heas if (pktlen < (hlen + sizeof(struct udphdr)))
1534 1.35 heas goto swcsum;
1535 1.35 heas uh = (struct udphdr *)((caddr_t)ip + hlen);
1536 1.35 heas /* no checksum */
1537 1.35 heas if (uh->uh_sum == 0)
1538 1.35 heas goto swcsum;
1539 1.35 heas m->m_pkthdr.csum_flags = M_CSUM_UDPv4;
1540 1.35 heas break;
1541 1.35 heas default:
1542 1.35 heas goto swcsum;
1543 1.35 heas }
1544 1.35 heas
1545 1.35 heas /* the uncomplemented sum is expected */
1546 1.35 heas m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1547 1.35 heas
1548 1.35 heas /* if the pkt had ip options, we have to deduct them */
1549 1.35 heas if (hlen > sizeof(struct ip)) {
1550 1.35 heas uint16_t *opts;
1551 1.35 heas uint32_t optsum, temp;
1552 1.35 heas
1553 1.35 heas optsum = 0;
1554 1.35 heas temp = hlen - sizeof(struct ip);
1555 1.35 heas opts = (uint16_t *) ((caddr_t) ip +
1556 1.35 heas sizeof(struct ip));
1557 1.35 heas
1558 1.35 heas while (temp > 1) {
1559 1.35 heas optsum += ntohs(*opts++);
1560 1.35 heas temp -= 2;
1561 1.35 heas }
1562 1.35 heas while (optsum >> 16)
1563 1.35 heas optsum = (optsum >> 16) +
1564 1.35 heas (optsum & 0xffff);
1565 1.35 heas
1566 1.35 heas /* Deduct ip opts sum from hwsum (rfc 1624). */
1567 1.35 heas m->m_pkthdr.csum_data =
1568 1.35 heas ~((~m->m_pkthdr.csum_data) - ~optsum);
1569 1.35 heas
1570 1.35 heas while (m->m_pkthdr.csum_data >> 16)
1571 1.35 heas m->m_pkthdr.csum_data =
1572 1.35 heas (m->m_pkthdr.csum_data >> 16) +
1573 1.35 heas (m->m_pkthdr.csum_data &
1574 1.35 heas 0xffff);
1575 1.35 heas }
1576 1.35 heas
1577 1.35 heas m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1578 1.35 heas M_CSUM_NO_PSEUDOHDR;
1579 1.35 heas } else
1580 1.35 heas swcsum:
1581 1.35 heas m->m_pkthdr.csum_flags = 0;
1582 1.35 heas #endif
1583 1.1 eeh /* Pass it on. */
1584 1.1 eeh (*ifp->if_input)(ifp, m);
1585 1.1 eeh }
1586 1.1 eeh
1587 1.18 matt if (progress) {
1588 1.18 matt /* Update the receive pointer. */
1589 1.18 matt if (i == sc->sc_rxptr) {
1590 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1591 1.19 matt #ifdef GEM_DEBUG
1592 1.28 chs if (ifp->if_flags & IFF_DEBUG)
1593 1.19 matt printf("%s: rint: ring wrap\n",
1594 1.19 matt sc->sc_dev.dv_xname);
1595 1.19 matt #endif
1596 1.18 matt }
1597 1.18 matt sc->sc_rxptr = i;
1598 1.18 matt bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1599 1.18 matt }
1600 1.19 matt #ifdef GEM_COUNTERS
1601 1.18 matt if (progress <= 4) {
1602 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1603 1.28 chs } else if (progress < 32) {
1604 1.18 matt if (progress < 16)
1605 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1606 1.18 matt else
1607 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1608 1.31 heas
1609 1.18 matt } else {
1610 1.18 matt if (progress < 64)
1611 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1612 1.18 matt else
1613 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1614 1.18 matt }
1615 1.19 matt #endif
1616 1.1 eeh
1617 1.1 eeh DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1618 1.1 eeh sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1619 1.1 eeh
1620 1.1 eeh return (1);
1621 1.1 eeh }
1622 1.1 eeh
1623 1.1 eeh
1624 1.1 eeh /*
1625 1.1 eeh * gem_add_rxbuf:
1626 1.1 eeh *
1627 1.1 eeh * Add a receive buffer to the indicated descriptor.
1628 1.1 eeh */
1629 1.1 eeh int
1630 1.1 eeh gem_add_rxbuf(struct gem_softc *sc, int idx)
1631 1.1 eeh {
1632 1.1 eeh struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1633 1.1 eeh struct mbuf *m;
1634 1.1 eeh int error;
1635 1.1 eeh
1636 1.1 eeh MGETHDR(m, M_DONTWAIT, MT_DATA);
1637 1.1 eeh if (m == NULL)
1638 1.1 eeh return (ENOBUFS);
1639 1.1 eeh
1640 1.26 matt MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1641 1.1 eeh MCLGET(m, M_DONTWAIT);
1642 1.1 eeh if ((m->m_flags & M_EXT) == 0) {
1643 1.1 eeh m_freem(m);
1644 1.1 eeh return (ENOBUFS);
1645 1.1 eeh }
1646 1.1 eeh
1647 1.1 eeh #ifdef GEM_DEBUG
1648 1.27 wiz /* bzero the packet to check DMA */
1649 1.1 eeh memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1650 1.1 eeh #endif
1651 1.1 eeh
1652 1.1 eeh if (rxs->rxs_mbuf != NULL)
1653 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1654 1.1 eeh
1655 1.1 eeh rxs->rxs_mbuf = m;
1656 1.1 eeh
1657 1.1 eeh error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1658 1.1 eeh m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1659 1.1 eeh BUS_DMA_READ|BUS_DMA_NOWAIT);
1660 1.1 eeh if (error) {
1661 1.1 eeh printf("%s: can't load rx DMA map %d, error = %d\n",
1662 1.1 eeh sc->sc_dev.dv_xname, idx, error);
1663 1.1 eeh panic("gem_add_rxbuf"); /* XXX */
1664 1.1 eeh }
1665 1.1 eeh
1666 1.1 eeh bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1667 1.1 eeh rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1668 1.1 eeh
1669 1.1 eeh GEM_INIT_RXDESC(sc, idx);
1670 1.1 eeh
1671 1.1 eeh return (0);
1672 1.1 eeh }
1673 1.1 eeh
1674 1.1 eeh
1675 1.1 eeh int
1676 1.1 eeh gem_eint(sc, status)
1677 1.1 eeh struct gem_softc *sc;
1678 1.1 eeh u_int status;
1679 1.1 eeh {
1680 1.1 eeh char bits[128];
1681 1.1 eeh
1682 1.1 eeh if ((status & GEM_INTR_MIF) != 0) {
1683 1.1 eeh printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1684 1.1 eeh return (1);
1685 1.1 eeh }
1686 1.1 eeh
1687 1.1 eeh printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1688 1.1 eeh bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1689 1.1 eeh return (1);
1690 1.1 eeh }
1691 1.1 eeh
1692 1.1 eeh
1693 1.1 eeh int
1694 1.1 eeh gem_intr(v)
1695 1.1 eeh void *v;
1696 1.1 eeh {
1697 1.1 eeh struct gem_softc *sc = (struct gem_softc *)v;
1698 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1699 1.1 eeh bus_space_handle_t seb = sc->sc_h;
1700 1.1 eeh u_int32_t status;
1701 1.1 eeh int r = 0;
1702 1.3 eeh #ifdef GEM_DEBUG
1703 1.1 eeh char bits[128];
1704 1.3 eeh #endif
1705 1.1 eeh
1706 1.19 matt sc->sc_ev_intr.ev_count++;
1707 1.19 matt
1708 1.1 eeh status = bus_space_read_4(t, seb, GEM_STATUS);
1709 1.28 chs DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
1710 1.28 chs sc->sc_dev.dv_xname, (status >> 19),
1711 1.1 eeh bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1712 1.1 eeh
1713 1.1 eeh if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1714 1.1 eeh r |= gem_eint(sc, status);
1715 1.1 eeh
1716 1.18 matt if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
1717 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_txint);
1718 1.1 eeh r |= gem_tint(sc);
1719 1.18 matt }
1720 1.1 eeh
1721 1.18 matt if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
1722 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxint);
1723 1.1 eeh r |= gem_rint(sc);
1724 1.18 matt }
1725 1.1 eeh
1726 1.1 eeh /* We should eventually do more than just print out error stats. */
1727 1.1 eeh if (status & GEM_INTR_TX_MAC) {
1728 1.1 eeh int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1729 1.1 eeh if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1730 1.14 matt printf("%s: MAC tx fault, status %x\n",
1731 1.14 matt sc->sc_dev.dv_xname, txstat);
1732 1.1 eeh }
1733 1.1 eeh if (status & GEM_INTR_RX_MAC) {
1734 1.1 eeh int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1735 1.1 eeh if (rxstat & ~GEM_MAC_RX_DONE)
1736 1.14 matt printf("%s: MAC rx fault, status %x\n",
1737 1.14 matt sc->sc_dev.dv_xname, rxstat);
1738 1.1 eeh }
1739 1.1 eeh return (r);
1740 1.1 eeh }
1741 1.1 eeh
1742 1.1 eeh
1743 1.1 eeh void
1744 1.1 eeh gem_watchdog(ifp)
1745 1.1 eeh struct ifnet *ifp;
1746 1.1 eeh {
1747 1.1 eeh struct gem_softc *sc = ifp->if_softc;
1748 1.1 eeh
1749 1.1 eeh DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1750 1.1 eeh "GEM_MAC_RX_CONFIG %x\n",
1751 1.1 eeh bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1752 1.1 eeh bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1753 1.1 eeh bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1754 1.1 eeh
1755 1.1 eeh log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1756 1.1 eeh ++ifp->if_oerrors;
1757 1.1 eeh
1758 1.1 eeh /* Try to get more packets going. */
1759 1.1 eeh gem_start(ifp);
1760 1.1 eeh }
1761 1.1 eeh
1762 1.1 eeh /*
1763 1.1 eeh * Initialize the MII Management Interface
1764 1.1 eeh */
1765 1.1 eeh void
1766 1.1 eeh gem_mifinit(sc)
1767 1.1 eeh struct gem_softc *sc;
1768 1.1 eeh {
1769 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1770 1.1 eeh bus_space_handle_t mif = sc->sc_h;
1771 1.1 eeh
1772 1.1 eeh /* Configure the MIF in frame mode */
1773 1.1 eeh sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1774 1.1 eeh sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1775 1.1 eeh bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1776 1.1 eeh }
1777 1.1 eeh
1778 1.1 eeh /*
1779 1.1 eeh * MII interface
1780 1.1 eeh *
1781 1.1 eeh * The GEM MII interface supports at least three different operating modes:
1782 1.1 eeh *
1783 1.1 eeh * Bitbang mode is implemented using data, clock and output enable registers.
1784 1.1 eeh *
1785 1.1 eeh * Frame mode is implemented by loading a complete frame into the frame
1786 1.1 eeh * register and polling the valid bit for completion.
1787 1.1 eeh *
1788 1.1 eeh * Polling mode uses the frame register but completion is indicated by
1789 1.1 eeh * an interrupt.
1790 1.1 eeh *
1791 1.1 eeh */
1792 1.1 eeh static int
1793 1.1 eeh gem_mii_readreg(self, phy, reg)
1794 1.1 eeh struct device *self;
1795 1.1 eeh int phy, reg;
1796 1.1 eeh {
1797 1.1 eeh struct gem_softc *sc = (void *)self;
1798 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1799 1.1 eeh bus_space_handle_t mif = sc->sc_h;
1800 1.1 eeh int n;
1801 1.1 eeh u_int32_t v;
1802 1.1 eeh
1803 1.1 eeh #ifdef GEM_DEBUG1
1804 1.1 eeh if (sc->sc_debug)
1805 1.1 eeh printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1806 1.1 eeh #endif
1807 1.1 eeh
1808 1.1 eeh #if 0
1809 1.1 eeh /* Select the desired PHY in the MIF configuration register */
1810 1.1 eeh v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1811 1.1 eeh /* Clear PHY select bit */
1812 1.1 eeh v &= ~GEM_MIF_CONFIG_PHY_SEL;
1813 1.1 eeh if (phy == GEM_PHYAD_EXTERNAL)
1814 1.1 eeh /* Set PHY select bit to get at external device */
1815 1.1 eeh v |= GEM_MIF_CONFIG_PHY_SEL;
1816 1.1 eeh bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1817 1.1 eeh #endif
1818 1.1 eeh
1819 1.1 eeh /* Construct the frame command */
1820 1.1 eeh v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
1821 1.1 eeh GEM_MIF_FRAME_READ;
1822 1.1 eeh
1823 1.1 eeh bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1824 1.1 eeh for (n = 0; n < 100; n++) {
1825 1.1 eeh DELAY(1);
1826 1.1 eeh v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1827 1.1 eeh if (v & GEM_MIF_FRAME_TA0)
1828 1.1 eeh return (v & GEM_MIF_FRAME_DATA);
1829 1.1 eeh }
1830 1.1 eeh
1831 1.1 eeh printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1832 1.1 eeh return (0);
1833 1.1 eeh }
1834 1.1 eeh
1835 1.1 eeh static void
1836 1.1 eeh gem_mii_writereg(self, phy, reg, val)
1837 1.1 eeh struct device *self;
1838 1.1 eeh int phy, reg, val;
1839 1.1 eeh {
1840 1.1 eeh struct gem_softc *sc = (void *)self;
1841 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1842 1.1 eeh bus_space_handle_t mif = sc->sc_h;
1843 1.1 eeh int n;
1844 1.1 eeh u_int32_t v;
1845 1.1 eeh
1846 1.1 eeh #ifdef GEM_DEBUG1
1847 1.1 eeh if (sc->sc_debug)
1848 1.31 heas printf("gem_mii_writereg: phy %d reg %d val %x\n",
1849 1.1 eeh phy, reg, val);
1850 1.1 eeh #endif
1851 1.1 eeh
1852 1.1 eeh #if 0
1853 1.1 eeh /* Select the desired PHY in the MIF configuration register */
1854 1.1 eeh v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1855 1.1 eeh /* Clear PHY select bit */
1856 1.1 eeh v &= ~GEM_MIF_CONFIG_PHY_SEL;
1857 1.1 eeh if (phy == GEM_PHYAD_EXTERNAL)
1858 1.1 eeh /* Set PHY select bit to get at external device */
1859 1.1 eeh v |= GEM_MIF_CONFIG_PHY_SEL;
1860 1.1 eeh bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1861 1.1 eeh #endif
1862 1.1 eeh /* Construct the frame command */
1863 1.1 eeh v = GEM_MIF_FRAME_WRITE |
1864 1.1 eeh (phy << GEM_MIF_PHY_SHIFT) |
1865 1.1 eeh (reg << GEM_MIF_REG_SHIFT) |
1866 1.1 eeh (val & GEM_MIF_FRAME_DATA);
1867 1.1 eeh
1868 1.1 eeh bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1869 1.1 eeh for (n = 0; n < 100; n++) {
1870 1.1 eeh DELAY(1);
1871 1.1 eeh v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1872 1.1 eeh if (v & GEM_MIF_FRAME_TA0)
1873 1.1 eeh return;
1874 1.1 eeh }
1875 1.1 eeh
1876 1.1 eeh printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1877 1.1 eeh }
1878 1.1 eeh
1879 1.1 eeh static void
1880 1.1 eeh gem_mii_statchg(dev)
1881 1.1 eeh struct device *dev;
1882 1.1 eeh {
1883 1.1 eeh struct gem_softc *sc = (void *)dev;
1884 1.3 eeh #ifdef GEM_DEBUG
1885 1.1 eeh int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1886 1.3 eeh #endif
1887 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1888 1.1 eeh bus_space_handle_t mac = sc->sc_h;
1889 1.1 eeh u_int32_t v;
1890 1.1 eeh
1891 1.1 eeh #ifdef GEM_DEBUG
1892 1.1 eeh if (sc->sc_debug)
1893 1.31 heas printf("gem_mii_statchg: status change: phy = %d\n",
1894 1.28 chs sc->sc_phys[instance]);
1895 1.1 eeh #endif
1896 1.1 eeh
1897 1.1 eeh
1898 1.1 eeh /* Set tx full duplex options */
1899 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1900 1.1 eeh delay(10000); /* reg must be cleared and delay before changing. */
1901 1.1 eeh v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1902 1.1 eeh GEM_MAC_TX_ENABLE;
1903 1.1 eeh if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1904 1.1 eeh v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1905 1.1 eeh }
1906 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1907 1.1 eeh
1908 1.1 eeh /* XIF Configuration */
1909 1.1 eeh /* We should really calculate all this rather than rely on defaults */
1910 1.1 eeh v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1911 1.1 eeh v = GEM_MAC_XIF_LINK_LED;
1912 1.1 eeh v |= GEM_MAC_XIF_TX_MII_ENA;
1913 1.15 matt
1914 1.1 eeh /* If an external transceiver is connected, enable its MII drivers */
1915 1.1 eeh sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1916 1.1 eeh if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1917 1.1 eeh /* External MII needs echo disable if half duplex. */
1918 1.1 eeh if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1919 1.1 eeh /* turn on full duplex LED */
1920 1.1 eeh v |= GEM_MAC_XIF_FDPLX_LED;
1921 1.15 matt else
1922 1.15 matt /* half duplex -- disable echo */
1923 1.15 matt v |= GEM_MAC_XIF_ECHO_DISABL;
1924 1.15 matt
1925 1.14 matt if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
1926 1.14 matt v |= GEM_MAC_XIF_GMII_MODE;
1927 1.14 matt else
1928 1.14 matt v &= ~GEM_MAC_XIF_GMII_MODE;
1929 1.31 heas } else
1930 1.1 eeh /* Internal MII needs buf enable */
1931 1.1 eeh v |= GEM_MAC_XIF_MII_BUF_ENA;
1932 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1933 1.1 eeh }
1934 1.1 eeh
1935 1.1 eeh int
1936 1.1 eeh gem_mediachange(ifp)
1937 1.1 eeh struct ifnet *ifp;
1938 1.1 eeh {
1939 1.1 eeh struct gem_softc *sc = ifp->if_softc;
1940 1.1 eeh
1941 1.11 thorpej if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1942 1.11 thorpej return (EINVAL);
1943 1.1 eeh
1944 1.1 eeh return (mii_mediachg(&sc->sc_mii));
1945 1.1 eeh }
1946 1.1 eeh
1947 1.1 eeh void
1948 1.1 eeh gem_mediastatus(ifp, ifmr)
1949 1.1 eeh struct ifnet *ifp;
1950 1.1 eeh struct ifmediareq *ifmr;
1951 1.1 eeh {
1952 1.1 eeh struct gem_softc *sc = ifp->if_softc;
1953 1.1 eeh
1954 1.1 eeh if ((ifp->if_flags & IFF_UP) == 0)
1955 1.1 eeh return;
1956 1.1 eeh
1957 1.1 eeh mii_pollstat(&sc->sc_mii);
1958 1.1 eeh ifmr->ifm_active = sc->sc_mii.mii_media_active;
1959 1.1 eeh ifmr->ifm_status = sc->sc_mii.mii_media_status;
1960 1.1 eeh }
1961 1.1 eeh
1962 1.1 eeh int gem_ioctldebug = 0;
1963 1.1 eeh /*
1964 1.1 eeh * Process an ioctl request.
1965 1.1 eeh */
1966 1.1 eeh int
1967 1.1 eeh gem_ioctl(ifp, cmd, data)
1968 1.1 eeh struct ifnet *ifp;
1969 1.1 eeh u_long cmd;
1970 1.1 eeh caddr_t data;
1971 1.1 eeh {
1972 1.1 eeh struct gem_softc *sc = ifp->if_softc;
1973 1.1 eeh struct ifreq *ifr = (struct ifreq *)data;
1974 1.1 eeh int s, error = 0;
1975 1.1 eeh
1976 1.20 matt s = splnet();
1977 1.1 eeh
1978 1.1 eeh switch (cmd) {
1979 1.1 eeh case SIOCGIFMEDIA:
1980 1.1 eeh case SIOCSIFMEDIA:
1981 1.1 eeh error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1982 1.1 eeh break;
1983 1.1 eeh
1984 1.1 eeh default:
1985 1.1 eeh error = ether_ioctl(ifp, cmd, data);
1986 1.31 heas if (error == ENETRESET) {
1987 1.1 eeh /*
1988 1.1 eeh * Multicast list has changed; set the hardware filter
1989 1.1 eeh * accordingly.
1990 1.1 eeh */
1991 1.32 thorpej if (ifp->if_flags & IFF_RUNNING) {
1992 1.1 eeh if (gem_ioctldebug) printf("reset1\n");
1993 1.32 thorpej gem_init(ifp);
1994 1.32 thorpej delay(50000);
1995 1.32 thorpej }
1996 1.1 eeh error = 0;
1997 1.1 eeh }
1998 1.1 eeh break;
1999 1.1 eeh }
2000 1.1 eeh
2001 1.1 eeh /* Try to get things going again */
2002 1.1 eeh if (ifp->if_flags & IFF_UP) {
2003 1.1 eeh if (gem_ioctldebug) printf("start\n");
2004 1.1 eeh gem_start(ifp);
2005 1.1 eeh }
2006 1.1 eeh splx(s);
2007 1.1 eeh return (error);
2008 1.1 eeh }
2009 1.1 eeh
2010 1.1 eeh
2011 1.1 eeh void
2012 1.1 eeh gem_shutdown(arg)
2013 1.1 eeh void *arg;
2014 1.1 eeh {
2015 1.1 eeh struct gem_softc *sc = (struct gem_softc *)arg;
2016 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2017 1.1 eeh
2018 1.1 eeh gem_stop(ifp, 1);
2019 1.1 eeh }
2020 1.1 eeh
2021 1.1 eeh /*
2022 1.1 eeh * Set up the logical address filter.
2023 1.1 eeh */
2024 1.1 eeh void
2025 1.1 eeh gem_setladrf(sc)
2026 1.1 eeh struct gem_softc *sc;
2027 1.1 eeh {
2028 1.15 matt struct ethercom *ec = &sc->sc_ethercom;
2029 1.15 matt struct ifnet *ifp = &ec->ec_if;
2030 1.1 eeh struct ether_multi *enm;
2031 1.1 eeh struct ether_multistep step;
2032 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
2033 1.1 eeh bus_space_handle_t h = sc->sc_h;
2034 1.1 eeh u_int32_t crc;
2035 1.1 eeh u_int32_t hash[16];
2036 1.1 eeh u_int32_t v;
2037 1.15 matt int i;
2038 1.1 eeh
2039 1.1 eeh /* Get current RX configuration */
2040 1.1 eeh v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2041 1.1 eeh
2042 1.15 matt /*
2043 1.15 matt * Turn off promiscuous mode, promiscuous group mode (all multicast),
2044 1.15 matt * and hash filter. Depending on the case, the right bit will be
2045 1.15 matt * enabled.
2046 1.15 matt */
2047 1.15 matt v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2048 1.15 matt GEM_MAC_RX_PROMISC_GRP);
2049 1.15 matt
2050 1.1 eeh if ((ifp->if_flags & IFF_PROMISC) != 0) {
2051 1.15 matt /* Turn on promiscuous mode */
2052 1.1 eeh v |= GEM_MAC_RX_PROMISCUOUS;
2053 1.1 eeh ifp->if_flags |= IFF_ALLMULTI;
2054 1.1 eeh goto chipit;
2055 1.1 eeh }
2056 1.1 eeh
2057 1.1 eeh /*
2058 1.1 eeh * Set up multicast address filter by passing all multicast addresses
2059 1.15 matt * through a crc generator, and then using the high order 8 bits as an
2060 1.15 matt * index into the 256 bit logical address filter. The high order 4
2061 1.15 matt * bits select the word, while the other 4 bits select the bit within
2062 1.15 matt * the word (where bit 0 is the MSB).
2063 1.1 eeh */
2064 1.1 eeh
2065 1.15 matt /* Clear hash table */
2066 1.15 matt memset(hash, 0, sizeof(hash));
2067 1.15 matt
2068 1.1 eeh ETHER_FIRST_MULTI(step, ec, enm);
2069 1.1 eeh while (enm != NULL) {
2070 1.6 thorpej if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2071 1.1 eeh /*
2072 1.1 eeh * We must listen to a range of multicast addresses.
2073 1.1 eeh * For now, just accept all multicasts, rather than
2074 1.1 eeh * trying to set only those filter bits needed to match
2075 1.1 eeh * the range. (At this time, the only use of address
2076 1.1 eeh * ranges is for IP multicast routing, for which the
2077 1.1 eeh * range is big enough to require all bits set.)
2078 1.15 matt * XXX use the addr filter for this
2079 1.1 eeh */
2080 1.1 eeh ifp->if_flags |= IFF_ALLMULTI;
2081 1.15 matt v |= GEM_MAC_RX_PROMISC_GRP;
2082 1.1 eeh goto chipit;
2083 1.1 eeh }
2084 1.1 eeh
2085 1.15 matt /* Get the LE CRC32 of the address */
2086 1.15 matt crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2087 1.1 eeh
2088 1.1 eeh /* Just want the 8 most significant bits. */
2089 1.1 eeh crc >>= 24;
2090 1.1 eeh
2091 1.1 eeh /* Set the corresponding bit in the filter. */
2092 1.15 matt hash[crc >> 4] |= 1 << (15 - (crc & 15));
2093 1.1 eeh
2094 1.1 eeh ETHER_NEXT_MULTI(step, enm);
2095 1.1 eeh }
2096 1.1 eeh
2097 1.15 matt v |= GEM_MAC_RX_HASH_FILTER;
2098 1.1 eeh ifp->if_flags &= ~IFF_ALLMULTI;
2099 1.1 eeh
2100 1.15 matt /* Now load the hash table into the chip (if we are using it) */
2101 1.15 matt for (i = 0; i < 16; i++) {
2102 1.15 matt bus_space_write_4(t, h,
2103 1.15 matt GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2104 1.15 matt hash[i]);
2105 1.15 matt }
2106 1.15 matt
2107 1.1 eeh chipit:
2108 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2109 1.1 eeh }
2110 1.1 eeh
2111 1.1 eeh #if notyet
2112 1.1 eeh
2113 1.1 eeh /*
2114 1.1 eeh * gem_power:
2115 1.1 eeh *
2116 1.1 eeh * Power management (suspend/resume) hook.
2117 1.1 eeh */
2118 1.1 eeh void
2119 1.1 eeh gem_power(why, arg)
2120 1.1 eeh int why;
2121 1.1 eeh void *arg;
2122 1.1 eeh {
2123 1.1 eeh struct gem_softc *sc = arg;
2124 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2125 1.1 eeh int s;
2126 1.1 eeh
2127 1.1 eeh s = splnet();
2128 1.1 eeh switch (why) {
2129 1.1 eeh case PWR_SUSPEND:
2130 1.1 eeh case PWR_STANDBY:
2131 1.1 eeh gem_stop(ifp, 1);
2132 1.1 eeh if (sc->sc_power != NULL)
2133 1.1 eeh (*sc->sc_power)(sc, why);
2134 1.1 eeh break;
2135 1.1 eeh case PWR_RESUME:
2136 1.1 eeh if (ifp->if_flags & IFF_UP) {
2137 1.1 eeh if (sc->sc_power != NULL)
2138 1.1 eeh (*sc->sc_power)(sc, why);
2139 1.1 eeh gem_init(ifp);
2140 1.1 eeh }
2141 1.1 eeh break;
2142 1.1 eeh case PWR_SOFTSUSPEND:
2143 1.1 eeh case PWR_SOFTSTANDBY:
2144 1.1 eeh case PWR_SOFTRESUME:
2145 1.1 eeh break;
2146 1.1 eeh }
2147 1.1 eeh splx(s);
2148 1.1 eeh }
2149 1.1 eeh #endif
2150