gem.c revision 1.74 1 1.74 dyoung /* $NetBSD: gem.c,v 1.74 2008/02/07 01:21:53 dyoung Exp $ */
2 1.1 eeh
3 1.1 eeh /*
4 1.31 heas *
5 1.1 eeh * Copyright (C) 2001 Eduardo Horvath.
6 1.68 jdc * Copyright (c) 2001-2003 Thomas Moestl
7 1.1 eeh * All rights reserved.
8 1.1 eeh *
9 1.1 eeh *
10 1.1 eeh * Redistribution and use in source and binary forms, with or without
11 1.1 eeh * modification, are permitted provided that the following conditions
12 1.1 eeh * are met:
13 1.1 eeh * 1. Redistributions of source code must retain the above copyright
14 1.1 eeh * notice, this list of conditions and the following disclaimer.
15 1.1 eeh * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 eeh * notice, this list of conditions and the following disclaimer in the
17 1.1 eeh * documentation and/or other materials provided with the distribution.
18 1.31 heas *
19 1.1 eeh * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
20 1.1 eeh * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.1 eeh * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 eeh * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
23 1.1 eeh * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 eeh * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.1 eeh * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 eeh * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 eeh * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 eeh * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 eeh * SUCH DAMAGE.
30 1.1 eeh *
31 1.1 eeh */
32 1.1 eeh
33 1.1 eeh /*
34 1.68 jdc * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35 1.68 jdc * See `GEM Gigabit Ethernet ASIC Specification'
36 1.68 jdc * http://www.sun.com/processors/manuals/ge.pdf
37 1.1 eeh */
38 1.10 lukem
39 1.10 lukem #include <sys/cdefs.h>
40 1.74 dyoung __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.74 2008/02/07 01:21:53 dyoung Exp $");
41 1.1 eeh
42 1.35 heas #include "opt_inet.h"
43 1.1 eeh #include "bpfilter.h"
44 1.1 eeh
45 1.1 eeh #include <sys/param.h>
46 1.31 heas #include <sys/systm.h>
47 1.1 eeh #include <sys/callout.h>
48 1.31 heas #include <sys/mbuf.h>
49 1.1 eeh #include <sys/syslog.h>
50 1.1 eeh #include <sys/malloc.h>
51 1.1 eeh #include <sys/kernel.h>
52 1.1 eeh #include <sys/socket.h>
53 1.1 eeh #include <sys/ioctl.h>
54 1.1 eeh #include <sys/errno.h>
55 1.1 eeh #include <sys/device.h>
56 1.1 eeh
57 1.1 eeh #include <machine/endian.h>
58 1.1 eeh
59 1.1 eeh #include <uvm/uvm_extern.h>
60 1.31 heas
61 1.1 eeh #include <net/if.h>
62 1.1 eeh #include <net/if_dl.h>
63 1.1 eeh #include <net/if_media.h>
64 1.1 eeh #include <net/if_ether.h>
65 1.1 eeh
66 1.35 heas #ifdef INET
67 1.35 heas #include <netinet/in.h>
68 1.35 heas #include <netinet/in_systm.h>
69 1.35 heas #include <netinet/in_var.h>
70 1.35 heas #include <netinet/ip.h>
71 1.35 heas #include <netinet/tcp.h>
72 1.35 heas #include <netinet/udp.h>
73 1.35 heas #endif
74 1.35 heas
75 1.31 heas #if NBPFILTER > 0
76 1.1 eeh #include <net/bpf.h>
77 1.31 heas #endif
78 1.1 eeh
79 1.60 ad #include <sys/bus.h>
80 1.60 ad #include <sys/intr.h>
81 1.1 eeh
82 1.1 eeh #include <dev/mii/mii.h>
83 1.1 eeh #include <dev/mii/miivar.h>
84 1.1 eeh #include <dev/mii/mii_bitbang.h>
85 1.1 eeh
86 1.1 eeh #include <dev/ic/gemreg.h>
87 1.1 eeh #include <dev/ic/gemvar.h>
88 1.1 eeh
89 1.1 eeh #define TRIES 10000
90 1.1 eeh
91 1.41 christos static void gem_start(struct ifnet *);
92 1.41 christos static void gem_stop(struct ifnet *, int);
93 1.53 christos int gem_ioctl(struct ifnet *, u_long, void *);
94 1.34 perry void gem_tick(void *);
95 1.34 perry void gem_watchdog(struct ifnet *);
96 1.34 perry void gem_shutdown(void *);
97 1.68 jdc void gem_pcs_start(struct gem_softc *sc);
98 1.68 jdc void gem_pcs_stop(struct gem_softc *sc, int);
99 1.34 perry int gem_init(struct ifnet *);
100 1.1 eeh void gem_init_regs(struct gem_softc *sc);
101 1.1 eeh static int gem_ringsize(int sz);
102 1.41 christos static int gem_meminit(struct gem_softc *);
103 1.34 perry void gem_mifinit(struct gem_softc *);
104 1.50 martin static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
105 1.50 martin u_int32_t, u_int32_t);
106 1.34 perry void gem_reset(struct gem_softc *);
107 1.1 eeh int gem_reset_rx(struct gem_softc *sc);
108 1.68 jdc static void gem_reset_rxdma(struct gem_softc *sc);
109 1.68 jdc static void gem_rx_common(struct gem_softc *sc);
110 1.1 eeh int gem_reset_tx(struct gem_softc *sc);
111 1.1 eeh int gem_disable_rx(struct gem_softc *sc);
112 1.1 eeh int gem_disable_tx(struct gem_softc *sc);
113 1.41 christos static void gem_rxdrain(struct gem_softc *sc);
114 1.1 eeh int gem_add_rxbuf(struct gem_softc *sc, int idx);
115 1.34 perry void gem_setladrf(struct gem_softc *);
116 1.1 eeh
117 1.1 eeh /* MII methods & callbacks */
118 1.34 perry static int gem_mii_readreg(struct device *, int, int);
119 1.34 perry static void gem_mii_writereg(struct device *, int, int, int);
120 1.34 perry static void gem_mii_statchg(struct device *);
121 1.34 perry
122 1.68 jdc void gem_statuschange(struct gem_softc *);
123 1.68 jdc
124 1.69 dyoung int gem_ser_mediachange(struct ifnet *);
125 1.69 dyoung void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
126 1.34 perry
127 1.34 perry struct mbuf *gem_get(struct gem_softc *, int, int);
128 1.34 perry int gem_put(struct gem_softc *, int, struct mbuf *);
129 1.34 perry void gem_read(struct gem_softc *, int, int);
130 1.68 jdc int gem_pint(struct gem_softc *);
131 1.34 perry int gem_eint(struct gem_softc *, u_int);
132 1.34 perry int gem_rint(struct gem_softc *);
133 1.34 perry int gem_tint(struct gem_softc *);
134 1.34 perry void gem_power(int, void *);
135 1.1 eeh
136 1.1 eeh #ifdef GEM_DEBUG
137 1.67 dyoung static void gem_txsoft_print(const struct gem_softc *, int, int);
138 1.1 eeh #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
139 1.1 eeh printf x
140 1.1 eeh #else
141 1.1 eeh #define DPRINTF(sc, x) /* nothing */
142 1.1 eeh #endif
143 1.1 eeh
144 1.40 bouyer #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
145 1.40 bouyer
146 1.1 eeh
147 1.1 eeh /*
148 1.6 thorpej * gem_attach:
149 1.1 eeh *
150 1.1 eeh * Attach a Gem interface to the system.
151 1.1 eeh */
152 1.1 eeh void
153 1.6 thorpej gem_attach(sc, enaddr)
154 1.1 eeh struct gem_softc *sc;
155 1.6 thorpej const uint8_t *enaddr;
156 1.1 eeh {
157 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
158 1.1 eeh struct mii_data *mii = &sc->sc_mii;
159 1.68 jdc bus_space_tag_t t = sc->sc_bustag;
160 1.68 jdc bus_space_handle_t h = sc->sc_h1;
161 1.15 matt struct ifmedia_entry *ifm;
162 1.1 eeh int i, error;
163 1.15 matt u_int32_t v;
164 1.40 bouyer char *nullbuf;
165 1.1 eeh
166 1.1 eeh /* Make sure the chip is stopped. */
167 1.1 eeh ifp->if_softc = sc;
168 1.1 eeh gem_reset(sc);
169 1.1 eeh
170 1.1 eeh /*
171 1.1 eeh * Allocate the control data structures, and create and load the
172 1.40 bouyer * DMA map for it. gem_control_data is 9216 bytes, we have space for
173 1.40 bouyer * the padding buffer in the bus_dmamem_alloc()'d memory.
174 1.1 eeh */
175 1.1 eeh if ((error = bus_dmamem_alloc(sc->sc_dmatag,
176 1.40 bouyer sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
177 1.40 bouyer 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
178 1.24 thorpej aprint_error(
179 1.24 thorpej "%s: unable to allocate control data, error = %d\n",
180 1.1 eeh sc->sc_dev.dv_xname, error);
181 1.1 eeh goto fail_0;
182 1.1 eeh }
183 1.1 eeh
184 1.68 jdc /* XXX should map this in with correct endianness */
185 1.1 eeh if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
186 1.53 christos sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
187 1.1 eeh BUS_DMA_COHERENT)) != 0) {
188 1.24 thorpej aprint_error("%s: unable to map control data, error = %d\n",
189 1.1 eeh sc->sc_dev.dv_xname, error);
190 1.1 eeh goto fail_1;
191 1.1 eeh }
192 1.1 eeh
193 1.40 bouyer nullbuf =
194 1.54 christos (char *)sc->sc_control_data + sizeof(struct gem_control_data);
195 1.40 bouyer
196 1.1 eeh if ((error = bus_dmamap_create(sc->sc_dmatag,
197 1.1 eeh sizeof(struct gem_control_data), 1,
198 1.1 eeh sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
199 1.24 thorpej aprint_error("%s: unable to create control data DMA map, "
200 1.1 eeh "error = %d\n", sc->sc_dev.dv_xname, error);
201 1.1 eeh goto fail_2;
202 1.1 eeh }
203 1.1 eeh
204 1.1 eeh if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
205 1.1 eeh sc->sc_control_data, sizeof(struct gem_control_data), NULL,
206 1.1 eeh 0)) != 0) {
207 1.24 thorpej aprint_error(
208 1.24 thorpej "%s: unable to load control data DMA map, error = %d\n",
209 1.1 eeh sc->sc_dev.dv_xname, error);
210 1.1 eeh goto fail_3;
211 1.1 eeh }
212 1.1 eeh
213 1.40 bouyer memset(nullbuf, 0, ETHER_MIN_TX);
214 1.40 bouyer if ((error = bus_dmamap_create(sc->sc_dmatag,
215 1.40 bouyer ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
216 1.40 bouyer aprint_error("%s: unable to create padding DMA map, "
217 1.40 bouyer "error = %d\n", sc->sc_dev.dv_xname, error);
218 1.40 bouyer goto fail_4;
219 1.40 bouyer }
220 1.40 bouyer
221 1.40 bouyer if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
222 1.40 bouyer nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
223 1.40 bouyer aprint_error(
224 1.40 bouyer "%s: unable to load padding DMA map, error = %d\n",
225 1.40 bouyer sc->sc_dev.dv_xname, error);
226 1.40 bouyer goto fail_5;
227 1.40 bouyer }
228 1.40 bouyer
229 1.40 bouyer bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
230 1.40 bouyer BUS_DMASYNC_PREWRITE);
231 1.40 bouyer
232 1.1 eeh /*
233 1.1 eeh * Initialize the transmit job descriptors.
234 1.1 eeh */
235 1.1 eeh SIMPLEQ_INIT(&sc->sc_txfreeq);
236 1.1 eeh SIMPLEQ_INIT(&sc->sc_txdirtyq);
237 1.1 eeh
238 1.1 eeh /*
239 1.1 eeh * Create the transmit buffer DMA maps.
240 1.1 eeh */
241 1.1 eeh for (i = 0; i < GEM_TXQUEUELEN; i++) {
242 1.1 eeh struct gem_txsoft *txs;
243 1.1 eeh
244 1.1 eeh txs = &sc->sc_txsoft[i];
245 1.1 eeh txs->txs_mbuf = NULL;
246 1.15 matt if ((error = bus_dmamap_create(sc->sc_dmatag,
247 1.15 matt ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
248 1.15 matt ETHER_MAX_LEN_JUMBO, 0, 0,
249 1.1 eeh &txs->txs_dmamap)) != 0) {
250 1.24 thorpej aprint_error("%s: unable to create tx DMA map %d, "
251 1.1 eeh "error = %d\n", sc->sc_dev.dv_xname, i, error);
252 1.40 bouyer goto fail_6;
253 1.1 eeh }
254 1.1 eeh SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
255 1.1 eeh }
256 1.1 eeh
257 1.1 eeh /*
258 1.1 eeh * Create the receive buffer DMA maps.
259 1.1 eeh */
260 1.1 eeh for (i = 0; i < GEM_NRXDESC; i++) {
261 1.1 eeh if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
262 1.1 eeh MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
263 1.24 thorpej aprint_error("%s: unable to create rx DMA map %d, "
264 1.1 eeh "error = %d\n", sc->sc_dev.dv_xname, i, error);
265 1.40 bouyer goto fail_7;
266 1.1 eeh }
267 1.1 eeh sc->sc_rxsoft[i].rxs_mbuf = NULL;
268 1.1 eeh }
269 1.1 eeh
270 1.68 jdc /* Initialize ifmedia structures and MII info */
271 1.68 jdc mii->mii_ifp = ifp;
272 1.68 jdc mii->mii_readreg = gem_mii_readreg;
273 1.68 jdc mii->mii_writereg = gem_mii_writereg;
274 1.68 jdc mii->mii_statchg = gem_mii_statchg;
275 1.68 jdc
276 1.69 dyoung sc->sc_ethercom.ec_mii = mii;
277 1.68 jdc
278 1.68 jdc /*
279 1.68 jdc * Initialization based on `GEM Gigabit Ethernet ASIC Specification'
280 1.68 jdc * Section 3.2.1 `Initialization Sequence'.
281 1.68 jdc * However, we can't assume SERDES or Serialink if neither
282 1.68 jdc * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
283 1.68 jdc * being set, as both are set on Sun X1141A (with SERDES). So,
284 1.68 jdc * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
285 1.70 jdc * Also, for Apple variants with 2 PHY's, we prefer the external
286 1.70 jdc * PHY over the internal PHY.
287 1.68 jdc */
288 1.68 jdc gem_mifinit(sc);
289 1.68 jdc
290 1.68 jdc if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
291 1.69 dyoung ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
292 1.69 dyoung ether_mediastatus);
293 1.68 jdc mii_attach(&sc->sc_dev, mii, 0xffffffff,
294 1.68 jdc MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
295 1.69 dyoung if (LIST_EMPTY(&mii->mii_phys)) {
296 1.68 jdc /* No PHY attached */
297 1.68 jdc aprint_error("%s: PHY probe failed\n",
298 1.68 jdc sc->sc_dev.dv_xname);
299 1.68 jdc goto fail_7;
300 1.68 jdc } else {
301 1.69 dyoung struct mii_softc *child;
302 1.69 dyoung
303 1.68 jdc /*
304 1.68 jdc * Walk along the list of attached MII devices and
305 1.68 jdc * establish an `MII instance' to `PHY number'
306 1.68 jdc * mapping.
307 1.68 jdc */
308 1.69 dyoung LIST_FOREACH(child, &mii->mii_phys, mii_list) {
309 1.68 jdc /*
310 1.68 jdc * Note: we support just one PHY: the internal
311 1.68 jdc * or external MII is already selected for us
312 1.68 jdc * by the GEM_MIF_CONFIG register.
313 1.68 jdc */
314 1.68 jdc if (child->mii_phy > 1 || child->mii_inst > 0) {
315 1.68 jdc aprint_error(
316 1.68 jdc "%s: cannot accommodate MII device"
317 1.68 jdc " %s at PHY %d, instance %d\n",
318 1.68 jdc sc->sc_dev.dv_xname,
319 1.68 jdc child->mii_dev.dv_xname,
320 1.68 jdc child->mii_phy, child->mii_inst);
321 1.68 jdc continue;
322 1.68 jdc }
323 1.68 jdc sc->sc_phys[child->mii_inst] = child->mii_phy;
324 1.68 jdc }
325 1.68 jdc
326 1.70 jdc /*
327 1.70 jdc * Now select and activate the PHY we will use.
328 1.70 jdc *
329 1.70 jdc * The order of preference is External (MDI1),
330 1.70 jdc * then Internal (MDI0),
331 1.70 jdc */
332 1.70 jdc if (sc->sc_phys[1]) {
333 1.68 jdc #ifdef GEM_DEBUG
334 1.70 jdc aprint_debug("%s: using external PHY\n",
335 1.68 jdc sc->sc_dev.dv_xname);
336 1.68 jdc #endif
337 1.70 jdc sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
338 1.68 jdc } else {
339 1.68 jdc #ifdef GEM_DEBUG
340 1.70 jdc aprint_debug("%s: using internal PHY\n",
341 1.68 jdc sc->sc_dev.dv_xname);
342 1.70 jdc sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
343 1.68 jdc #endif
344 1.68 jdc }
345 1.70 jdc bus_space_write_4(t, h, GEM_MIF_CONFIG,
346 1.70 jdc sc->sc_mif_config);
347 1.68 jdc if (sc->sc_variant != GEM_SUN_ERI)
348 1.68 jdc bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
349 1.68 jdc GEM_MII_DATAPATH_MII);
350 1.68 jdc
351 1.68 jdc /*
352 1.68 jdc * XXX - we can really do the following ONLY if the
353 1.68 jdc * PHY indeed has the auto negotiation capability!!
354 1.68 jdc */
355 1.69 dyoung ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
356 1.68 jdc }
357 1.68 jdc } else {
358 1.69 dyoung ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
359 1.69 dyoung gem_ser_mediastatus);
360 1.68 jdc /* SERDES or Serialink */
361 1.68 jdc if (sc->sc_flags & GEM_SERDES) {
362 1.68 jdc bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
363 1.68 jdc GEM_MII_DATAPATH_SERDES);
364 1.68 jdc } else {
365 1.68 jdc sc->sc_flags |= GEM_SERIAL;
366 1.68 jdc bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
367 1.68 jdc GEM_MII_DATAPATH_SERIAL);
368 1.68 jdc }
369 1.68 jdc
370 1.68 jdc aprint_normal("%s: using external PCS %s: ",
371 1.68 jdc sc->sc_dev.dv_xname,
372 1.68 jdc sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
373 1.68 jdc
374 1.69 dyoung ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
375 1.68 jdc /* Check for FDX and HDX capabilities */
376 1.68 jdc sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
377 1.68 jdc if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
378 1.69 dyoung ifmedia_add(&sc->sc_mii.mii_media,
379 1.68 jdc IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
380 1.68 jdc aprint_normal("1000baseSX-FDX, ");
381 1.68 jdc }
382 1.68 jdc if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
383 1.69 dyoung ifmedia_add(&sc->sc_mii.mii_media,
384 1.68 jdc IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
385 1.68 jdc aprint_normal("1000baseSX-HDX, ");
386 1.68 jdc }
387 1.69 dyoung ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
388 1.68 jdc sc->sc_mii_media = IFM_AUTO;
389 1.68 jdc aprint_normal("auto\n");
390 1.68 jdc
391 1.68 jdc gem_pcs_stop(sc, 1);
392 1.68 jdc }
393 1.68 jdc
394 1.1 eeh /*
395 1.1 eeh * From this point forward, the attachment cannot fail. A failure
396 1.1 eeh * before this point releases all resources that may have been
397 1.1 eeh * allocated.
398 1.1 eeh */
399 1.1 eeh
400 1.1 eeh /* Announce ourselves. */
401 1.24 thorpej aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
402 1.6 thorpej ether_sprintf(enaddr));
403 1.1 eeh
404 1.15 matt /* Get RX FIFO size */
405 1.15 matt sc->sc_rxfifosize = 64 *
406 1.68 jdc bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
407 1.24 thorpej aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
408 1.15 matt
409 1.15 matt /* Get TX FIFO size */
410 1.68 jdc v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
411 1.24 thorpej aprint_normal(", %uKB TX fifo\n", v / 16);
412 1.15 matt
413 1.1 eeh /* Initialize ifnet structure. */
414 1.1 eeh strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
415 1.1 eeh ifp->if_softc = sc;
416 1.1 eeh ifp->if_flags =
417 1.1 eeh IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
418 1.41 christos sc->sc_if_flags = ifp->if_flags;
419 1.73 jdc /*
420 1.73 jdc * The GEM hardware supports basic TCP checksum offloading only.
421 1.73 jdc * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
422 1.73 jdc * have bugs in the receive checksum, so don't enable it for now.
423 1.73 jdc if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
424 1.73 jdc (GEM_IS_APPLE(sc) &&
425 1.73 jdc (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
426 1.73 jdc ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
427 1.73 jdc */
428 1.73 jdc ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
429 1.1 eeh ifp->if_start = gem_start;
430 1.1 eeh ifp->if_ioctl = gem_ioctl;
431 1.1 eeh ifp->if_watchdog = gem_watchdog;
432 1.1 eeh ifp->if_stop = gem_stop;
433 1.1 eeh ifp->if_init = gem_init;
434 1.1 eeh IFQ_SET_READY(&ifp->if_snd);
435 1.1 eeh
436 1.15 matt /*
437 1.15 matt * If we support GigE media, we support jumbo frames too.
438 1.15 matt * Unless we are Apple.
439 1.15 matt */
440 1.69 dyoung TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
441 1.15 matt if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
442 1.15 matt IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
443 1.15 matt IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
444 1.15 matt IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
445 1.70 jdc if (!GEM_IS_APPLE(sc))
446 1.15 matt sc->sc_ethercom.ec_capabilities
447 1.15 matt |= ETHERCAP_JUMBO_MTU;
448 1.15 matt sc->sc_flags |= GEM_GIGABIT;
449 1.15 matt break;
450 1.15 matt }
451 1.15 matt }
452 1.15 matt
453 1.1 eeh /* claim 802.1q capability */
454 1.1 eeh sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
455 1.1 eeh
456 1.1 eeh /* Attach the interface. */
457 1.1 eeh if_attach(ifp);
458 1.6 thorpej ether_ifattach(ifp, enaddr);
459 1.1 eeh
460 1.1 eeh sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
461 1.1 eeh if (sc->sc_sh == NULL)
462 1.1 eeh panic("gem_config: can't establish shutdownhook");
463 1.1 eeh
464 1.1 eeh #if NRND > 0
465 1.1 eeh rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
466 1.1 eeh RND_TYPE_NET, 0);
467 1.1 eeh #endif
468 1.1 eeh
469 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
470 1.18 matt NULL, sc->sc_dev.dv_xname, "interrupts");
471 1.19 matt #ifdef GEM_COUNTERS
472 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
473 1.18 matt &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
474 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
475 1.18 matt &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
476 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
477 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
478 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
479 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
480 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
481 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
482 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
483 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
484 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
485 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
486 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
487 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
488 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
489 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
490 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
491 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
492 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
493 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
494 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
495 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
496 1.18 matt evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
497 1.18 matt &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
498 1.19 matt #endif
499 1.1 eeh
500 1.1 eeh #if notyet
501 1.1 eeh /*
502 1.1 eeh * Add a suspend hook to make sure we come back up after a
503 1.1 eeh * resume.
504 1.1 eeh */
505 1.48 jmcneill sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
506 1.48 jmcneill gem_power, sc);
507 1.1 eeh if (sc->sc_powerhook == NULL)
508 1.24 thorpej aprint_error("%s: WARNING: unable to establish power hook\n",
509 1.1 eeh sc->sc_dev.dv_xname);
510 1.1 eeh #endif
511 1.1 eeh
512 1.57 ad callout_init(&sc->sc_tick_ch, 0);
513 1.1 eeh return;
514 1.1 eeh
515 1.1 eeh /*
516 1.1 eeh * Free any resources we've allocated during the failed attach
517 1.1 eeh * attempt. Do this in reverse order and fall through.
518 1.1 eeh */
519 1.40 bouyer fail_7:
520 1.1 eeh for (i = 0; i < GEM_NRXDESC; i++) {
521 1.1 eeh if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
522 1.1 eeh bus_dmamap_destroy(sc->sc_dmatag,
523 1.1 eeh sc->sc_rxsoft[i].rxs_dmamap);
524 1.1 eeh }
525 1.40 bouyer fail_6:
526 1.1 eeh for (i = 0; i < GEM_TXQUEUELEN; i++) {
527 1.1 eeh if (sc->sc_txsoft[i].txs_dmamap != NULL)
528 1.1 eeh bus_dmamap_destroy(sc->sc_dmatag,
529 1.1 eeh sc->sc_txsoft[i].txs_dmamap);
530 1.1 eeh }
531 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
532 1.40 bouyer fail_5:
533 1.40 bouyer bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
534 1.40 bouyer fail_4:
535 1.53 christos bus_dmamem_unmap(sc->sc_dmatag, (void *)nullbuf, ETHER_MIN_TX);
536 1.1 eeh fail_3:
537 1.1 eeh bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
538 1.1 eeh fail_2:
539 1.53 christos bus_dmamem_unmap(sc->sc_dmatag, (void *)sc->sc_control_data,
540 1.1 eeh sizeof(struct gem_control_data));
541 1.1 eeh fail_1:
542 1.1 eeh bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
543 1.1 eeh fail_0:
544 1.1 eeh return;
545 1.1 eeh }
546 1.1 eeh
547 1.1 eeh
548 1.1 eeh void
549 1.1 eeh gem_tick(arg)
550 1.1 eeh void *arg;
551 1.1 eeh {
552 1.1 eeh struct gem_softc *sc = arg;
553 1.1 eeh int s;
554 1.1 eeh
555 1.68 jdc if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
556 1.68 jdc /*
557 1.68 jdc * We have to reset everything if we failed to get a
558 1.68 jdc * PCS interrupt. Restarting the callout is handled
559 1.68 jdc * in gem_pcs_start().
560 1.68 jdc */
561 1.68 jdc gem_init(&sc->sc_ethercom.ec_if);
562 1.68 jdc } else {
563 1.68 jdc s = splnet();
564 1.68 jdc mii_tick(&sc->sc_mii);
565 1.68 jdc splx(s);
566 1.68 jdc callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
567 1.68 jdc }
568 1.1 eeh }
569 1.1 eeh
570 1.41 christos static int
571 1.50 martin gem_bitwait(sc, h, r, clr, set)
572 1.41 christos struct gem_softc *sc;
573 1.50 martin bus_space_handle_t h;
574 1.41 christos int r;
575 1.41 christos u_int32_t clr;
576 1.41 christos u_int32_t set;
577 1.41 christos {
578 1.41 christos int i;
579 1.41 christos u_int32_t reg;
580 1.46 blymn
581 1.41 christos for (i = TRIES; i--; DELAY(100)) {
582 1.50 martin reg = bus_space_read_4(sc->sc_bustag, h, r);
583 1.50 martin if ((reg & clr) == 0 && (reg & set) == set)
584 1.41 christos return (1);
585 1.41 christos }
586 1.41 christos return (0);
587 1.41 christos }
588 1.41 christos
589 1.1 eeh void
590 1.1 eeh gem_reset(sc)
591 1.1 eeh struct gem_softc *sc;
592 1.1 eeh {
593 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
594 1.50 martin bus_space_handle_t h = sc->sc_h2;
595 1.1 eeh int s;
596 1.1 eeh
597 1.1 eeh s = splnet();
598 1.51 martin DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
599 1.1 eeh gem_reset_rx(sc);
600 1.1 eeh gem_reset_tx(sc);
601 1.1 eeh
602 1.1 eeh /* Do a full reset */
603 1.1 eeh bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
604 1.50 martin if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
605 1.41 christos printf("%s: cannot reset device\n", sc->sc_dev.dv_xname);
606 1.1 eeh splx(s);
607 1.1 eeh }
608 1.1 eeh
609 1.1 eeh
610 1.1 eeh /*
611 1.1 eeh * gem_rxdrain:
612 1.1 eeh *
613 1.1 eeh * Drain the receive queue.
614 1.1 eeh */
615 1.41 christos static void
616 1.1 eeh gem_rxdrain(struct gem_softc *sc)
617 1.1 eeh {
618 1.1 eeh struct gem_rxsoft *rxs;
619 1.1 eeh int i;
620 1.1 eeh
621 1.1 eeh for (i = 0; i < GEM_NRXDESC; i++) {
622 1.1 eeh rxs = &sc->sc_rxsoft[i];
623 1.1 eeh if (rxs->rxs_mbuf != NULL) {
624 1.41 christos bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
625 1.41 christos rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
626 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
627 1.1 eeh m_freem(rxs->rxs_mbuf);
628 1.1 eeh rxs->rxs_mbuf = NULL;
629 1.1 eeh }
630 1.1 eeh }
631 1.1 eeh }
632 1.1 eeh
633 1.31 heas /*
634 1.1 eeh * Reset the whole thing.
635 1.1 eeh */
636 1.41 christos static void
637 1.1 eeh gem_stop(struct ifnet *ifp, int disable)
638 1.1 eeh {
639 1.1 eeh struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
640 1.1 eeh struct gem_txsoft *txs;
641 1.1 eeh
642 1.1 eeh DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
643 1.1 eeh
644 1.1 eeh callout_stop(&sc->sc_tick_ch);
645 1.68 jdc if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
646 1.68 jdc gem_pcs_stop(sc, disable);
647 1.68 jdc else
648 1.68 jdc mii_down(&sc->sc_mii);
649 1.1 eeh
650 1.1 eeh /* XXX - Should we reset these instead? */
651 1.68 jdc gem_disable_tx(sc);
652 1.1 eeh gem_disable_rx(sc);
653 1.1 eeh
654 1.1 eeh /*
655 1.1 eeh * Release any queued transmit buffers.
656 1.1 eeh */
657 1.1 eeh while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
658 1.21 lukem SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
659 1.1 eeh if (txs->txs_mbuf != NULL) {
660 1.41 christos bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
661 1.41 christos txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
662 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
663 1.1 eeh m_freem(txs->txs_mbuf);
664 1.1 eeh txs->txs_mbuf = NULL;
665 1.1 eeh }
666 1.1 eeh SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
667 1.1 eeh }
668 1.1 eeh
669 1.1 eeh if (disable) {
670 1.1 eeh gem_rxdrain(sc);
671 1.1 eeh }
672 1.1 eeh
673 1.1 eeh /*
674 1.1 eeh * Mark the interface down and cancel the watchdog timer.
675 1.1 eeh */
676 1.1 eeh ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
677 1.41 christos sc->sc_if_flags = ifp->if_flags;
678 1.1 eeh ifp->if_timer = 0;
679 1.1 eeh }
680 1.1 eeh
681 1.1 eeh
682 1.1 eeh /*
683 1.1 eeh * Reset the receiver
684 1.1 eeh */
685 1.1 eeh int
686 1.1 eeh gem_reset_rx(struct gem_softc *sc)
687 1.1 eeh {
688 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
689 1.50 martin bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
690 1.1 eeh
691 1.1 eeh /*
692 1.1 eeh * Resetting while DMA is in progress can cause a bus hang, so we
693 1.1 eeh * disable DMA first.
694 1.1 eeh */
695 1.1 eeh gem_disable_rx(sc);
696 1.1 eeh bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
697 1.68 jdc bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
698 1.1 eeh /* Wait till it finishes */
699 1.50 martin if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
700 1.41 christos printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
701 1.1 eeh
702 1.1 eeh /* Finally, reset the ERX */
703 1.50 martin bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
704 1.68 jdc bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
705 1.1 eeh /* Wait till it finishes */
706 1.50 martin if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
707 1.41 christos printf("%s: cannot reset receiver\n", sc->sc_dev.dv_xname);
708 1.1 eeh return (1);
709 1.1 eeh }
710 1.1 eeh return (0);
711 1.1 eeh }
712 1.1 eeh
713 1.1 eeh
714 1.1 eeh /*
715 1.68 jdc * Reset the receiver DMA engine.
716 1.68 jdc *
717 1.68 jdc * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
718 1.68 jdc * etc in order to reset the receiver DMA engine only and not do a full
719 1.68 jdc * reset which amongst others also downs the link and clears the FIFOs.
720 1.68 jdc */
721 1.68 jdc static void
722 1.68 jdc gem_reset_rxdma(struct gem_softc *sc)
723 1.68 jdc {
724 1.68 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
725 1.68 jdc bus_space_tag_t t = sc->sc_bustag;
726 1.68 jdc bus_space_handle_t h = sc->sc_h1;
727 1.68 jdc int i;
728 1.68 jdc
729 1.68 jdc if (gem_reset_rx(sc) != 0) {
730 1.68 jdc gem_init(ifp);
731 1.68 jdc return;
732 1.68 jdc }
733 1.68 jdc for (i = 0; i < GEM_NRXDESC; i++)
734 1.68 jdc if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
735 1.68 jdc GEM_UPDATE_RXDESC(sc, i);
736 1.68 jdc sc->sc_rxptr = 0;
737 1.68 jdc GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
738 1.68 jdc GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
739 1.68 jdc
740 1.68 jdc /* Reprogram Descriptor Ring Base Addresses */
741 1.68 jdc /* NOTE: we use only 32-bit DMA addresses here. */
742 1.68 jdc bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
743 1.68 jdc bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
744 1.68 jdc
745 1.68 jdc /* Redo ERX Configuration */
746 1.68 jdc gem_rx_common(sc);
747 1.68 jdc
748 1.68 jdc /* Give the reciever a swift kick */
749 1.68 jdc bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
750 1.68 jdc }
751 1.68 jdc
752 1.68 jdc /*
753 1.68 jdc * Common RX configuration for gem_init() and gem_reset_rxdma().
754 1.68 jdc */
755 1.68 jdc static void
756 1.68 jdc gem_rx_common(struct gem_softc *sc)
757 1.68 jdc {
758 1.68 jdc bus_space_tag_t t = sc->sc_bustag;
759 1.68 jdc bus_space_handle_t h = sc->sc_h1;
760 1.68 jdc u_int32_t v;
761 1.68 jdc
762 1.68 jdc /* Encode Receive Descriptor ring size: four possible values */
763 1.68 jdc v = gem_ringsize(GEM_NRXDESC /*XXX*/);
764 1.68 jdc
765 1.68 jdc /* Set receive h/w checksum offset */
766 1.68 jdc #ifdef INET
767 1.68 jdc v |= (ETHER_HDR_LEN + sizeof(struct ip) +
768 1.68 jdc ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
769 1.68 jdc ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
770 1.68 jdc #endif
771 1.68 jdc
772 1.68 jdc /* Enable RX DMA */
773 1.68 jdc bus_space_write_4(t, h, GEM_RX_CONFIG,
774 1.68 jdc v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
775 1.68 jdc (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
776 1.68 jdc
777 1.68 jdc /*
778 1.68 jdc * The following value is for an OFF Threshold of about 3/4 full
779 1.68 jdc * and an ON Threshold of 1/4 full.
780 1.68 jdc */
781 1.68 jdc bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
782 1.68 jdc (3 * sc->sc_rxfifosize / 256) |
783 1.68 jdc ((sc->sc_rxfifosize / 256) << 12));
784 1.68 jdc bus_space_write_4(t, h, GEM_RX_BLANKING,
785 1.68 jdc (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
786 1.68 jdc }
787 1.68 jdc
788 1.68 jdc /*
789 1.1 eeh * Reset the transmitter
790 1.1 eeh */
791 1.1 eeh int
792 1.1 eeh gem_reset_tx(struct gem_softc *sc)
793 1.1 eeh {
794 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
795 1.50 martin bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
796 1.1 eeh
797 1.1 eeh /*
798 1.1 eeh * Resetting while DMA is in progress can cause a bus hang, so we
799 1.1 eeh * disable DMA first.
800 1.1 eeh */
801 1.1 eeh gem_disable_tx(sc);
802 1.1 eeh bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
803 1.68 jdc bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
804 1.1 eeh /* Wait till it finishes */
805 1.50 martin if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
806 1.41 christos printf("%s: cannot disable read dma\n", sc->sc_dev.dv_xname);
807 1.1 eeh /* Wait 5ms extra. */
808 1.1 eeh delay(5000);
809 1.1 eeh
810 1.1 eeh /* Finally, reset the ETX */
811 1.50 martin bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
812 1.68 jdc bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
813 1.1 eeh /* Wait till it finishes */
814 1.50 martin if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
815 1.1 eeh printf("%s: cannot reset receiver\n",
816 1.1 eeh sc->sc_dev.dv_xname);
817 1.1 eeh return (1);
818 1.1 eeh }
819 1.1 eeh return (0);
820 1.1 eeh }
821 1.1 eeh
822 1.1 eeh /*
823 1.1 eeh * disable receiver.
824 1.1 eeh */
825 1.1 eeh int
826 1.1 eeh gem_disable_rx(struct gem_softc *sc)
827 1.1 eeh {
828 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
829 1.50 martin bus_space_handle_t h = sc->sc_h1;
830 1.1 eeh u_int32_t cfg;
831 1.1 eeh
832 1.1 eeh /* Flip the enable bit */
833 1.1 eeh cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
834 1.1 eeh cfg &= ~GEM_MAC_RX_ENABLE;
835 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
836 1.68 jdc bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
837 1.1 eeh /* Wait for it to finish */
838 1.50 martin return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
839 1.1 eeh }
840 1.1 eeh
841 1.1 eeh /*
842 1.1 eeh * disable transmitter.
843 1.1 eeh */
844 1.1 eeh int
845 1.1 eeh gem_disable_tx(struct gem_softc *sc)
846 1.1 eeh {
847 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
848 1.50 martin bus_space_handle_t h = sc->sc_h1;
849 1.1 eeh u_int32_t cfg;
850 1.1 eeh
851 1.1 eeh /* Flip the enable bit */
852 1.1 eeh cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
853 1.1 eeh cfg &= ~GEM_MAC_TX_ENABLE;
854 1.1 eeh bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
855 1.68 jdc bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
856 1.1 eeh /* Wait for it to finish */
857 1.50 martin return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
858 1.1 eeh }
859 1.1 eeh
860 1.1 eeh /*
861 1.1 eeh * Initialize interface.
862 1.1 eeh */
863 1.1 eeh int
864 1.1 eeh gem_meminit(struct gem_softc *sc)
865 1.1 eeh {
866 1.1 eeh struct gem_rxsoft *rxs;
867 1.1 eeh int i, error;
868 1.1 eeh
869 1.1 eeh /*
870 1.1 eeh * Initialize the transmit descriptor ring.
871 1.1 eeh */
872 1.1 eeh memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
873 1.1 eeh for (i = 0; i < GEM_NTXDESC; i++) {
874 1.1 eeh sc->sc_txdescs[i].gd_flags = 0;
875 1.1 eeh sc->sc_txdescs[i].gd_addr = 0;
876 1.1 eeh }
877 1.1 eeh GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
878 1.1 eeh BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
879 1.14 matt sc->sc_txfree = GEM_NTXDESC-1;
880 1.1 eeh sc->sc_txnext = 0;
881 1.14 matt sc->sc_txwin = 0;
882 1.1 eeh
883 1.1 eeh /*
884 1.1 eeh * Initialize the receive descriptor and receive job
885 1.1 eeh * descriptor rings.
886 1.1 eeh */
887 1.1 eeh for (i = 0; i < GEM_NRXDESC; i++) {
888 1.1 eeh rxs = &sc->sc_rxsoft[i];
889 1.1 eeh if (rxs->rxs_mbuf == NULL) {
890 1.1 eeh if ((error = gem_add_rxbuf(sc, i)) != 0) {
891 1.1 eeh printf("%s: unable to allocate or map rx "
892 1.1 eeh "buffer %d, error = %d\n",
893 1.1 eeh sc->sc_dev.dv_xname, i, error);
894 1.1 eeh /*
895 1.1 eeh * XXX Should attempt to run with fewer receive
896 1.1 eeh * XXX buffers instead of just failing.
897 1.1 eeh */
898 1.1 eeh gem_rxdrain(sc);
899 1.1 eeh return (1);
900 1.1 eeh }
901 1.1 eeh } else
902 1.1 eeh GEM_INIT_RXDESC(sc, i);
903 1.1 eeh }
904 1.1 eeh sc->sc_rxptr = 0;
905 1.68 jdc sc->sc_meminited = 1;
906 1.68 jdc GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
907 1.68 jdc GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
908 1.1 eeh
909 1.1 eeh return (0);
910 1.1 eeh }
911 1.1 eeh
912 1.1 eeh static int
913 1.1 eeh gem_ringsize(int sz)
914 1.1 eeh {
915 1.1 eeh switch (sz) {
916 1.1 eeh case 32:
917 1.29 christos return GEM_RING_SZ_32;
918 1.1 eeh case 64:
919 1.29 christos return GEM_RING_SZ_64;
920 1.1 eeh case 128:
921 1.29 christos return GEM_RING_SZ_128;
922 1.1 eeh case 256:
923 1.29 christos return GEM_RING_SZ_256;
924 1.1 eeh case 512:
925 1.29 christos return GEM_RING_SZ_512;
926 1.1 eeh case 1024:
927 1.29 christos return GEM_RING_SZ_1024;
928 1.1 eeh case 2048:
929 1.29 christos return GEM_RING_SZ_2048;
930 1.1 eeh case 4096:
931 1.29 christos return GEM_RING_SZ_4096;
932 1.1 eeh case 8192:
933 1.29 christos return GEM_RING_SZ_8192;
934 1.1 eeh default:
935 1.29 christos printf("gem: invalid Receive Descriptor ring size %d\n", sz);
936 1.29 christos return GEM_RING_SZ_32;
937 1.1 eeh }
938 1.1 eeh }
939 1.1 eeh
940 1.68 jdc
941 1.68 jdc /*
942 1.68 jdc * Start PCS
943 1.68 jdc */
944 1.68 jdc void
945 1.68 jdc gem_pcs_start(struct gem_softc *sc)
946 1.68 jdc {
947 1.68 jdc bus_space_tag_t t = sc->sc_bustag;
948 1.68 jdc bus_space_handle_t h = sc->sc_h1;
949 1.68 jdc uint32_t v;
950 1.68 jdc
951 1.68 jdc #ifdef GEM_DEBUG
952 1.68 jdc aprint_debug("%s: gem_pcs_start()\n", sc->sc_dev.dv_xname);
953 1.68 jdc #endif
954 1.68 jdc
955 1.68 jdc /*
956 1.68 jdc * Set up. We must disable the MII before modifying the
957 1.68 jdc * GEM_MII_ANAR register
958 1.68 jdc */
959 1.68 jdc if (sc->sc_flags & GEM_SERDES) {
960 1.68 jdc bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
961 1.68 jdc GEM_MII_DATAPATH_SERDES);
962 1.68 jdc bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
963 1.68 jdc GEM_MII_SLINK_LOOPBACK);
964 1.68 jdc } else {
965 1.68 jdc bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
966 1.68 jdc GEM_MII_DATAPATH_SERIAL);
967 1.68 jdc bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
968 1.68 jdc }
969 1.68 jdc bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
970 1.68 jdc v = bus_space_read_4(t, h, GEM_MII_ANAR);
971 1.68 jdc v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
972 1.68 jdc if (sc->sc_mii_media == IFM_AUTO)
973 1.68 jdc v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
974 1.68 jdc else if (sc->sc_mii_media == IFM_FDX) {
975 1.68 jdc v |= GEM_MII_ANEG_FUL_DUPLX;
976 1.68 jdc v &= ~GEM_MII_ANEG_HLF_DUPLX;
977 1.68 jdc } else if (sc->sc_mii_media == IFM_HDX) {
978 1.68 jdc v &= ~GEM_MII_ANEG_FUL_DUPLX;
979 1.68 jdc v |= GEM_MII_ANEG_HLF_DUPLX;
980 1.68 jdc }
981 1.68 jdc
982 1.68 jdc /* Configure link. */
983 1.68 jdc bus_space_write_4(t, h, GEM_MII_ANAR, v);
984 1.68 jdc bus_space_write_4(t, h, GEM_MII_CONTROL,
985 1.68 jdc GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
986 1.68 jdc bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
987 1.68 jdc gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
988 1.68 jdc
989 1.68 jdc /* Start the 10 second timer */
990 1.68 jdc callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
991 1.68 jdc }
992 1.68 jdc
993 1.68 jdc /*
994 1.68 jdc * Stop PCS
995 1.68 jdc */
996 1.68 jdc void
997 1.68 jdc gem_pcs_stop(struct gem_softc *sc, int disable)
998 1.68 jdc {
999 1.68 jdc bus_space_tag_t t = sc->sc_bustag;
1000 1.68 jdc bus_space_handle_t h = sc->sc_h1;
1001 1.68 jdc
1002 1.68 jdc #ifdef GEM_DEBUG
1003 1.68 jdc aprint_debug("%s: gem_pcs_stop()\n", sc->sc_dev.dv_xname);
1004 1.68 jdc #endif
1005 1.68 jdc
1006 1.68 jdc /* Tell link partner that we're going away */
1007 1.68 jdc bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1008 1.68 jdc
1009 1.68 jdc /*
1010 1.68 jdc * Disable PCS MII. The documentation suggests that setting
1011 1.68 jdc * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1012 1.68 jdc * negotiation will shut down the link. However, it appears
1013 1.68 jdc * that we also need to unset the datapath mode.
1014 1.68 jdc */
1015 1.68 jdc bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1016 1.68 jdc bus_space_write_4(t, h, GEM_MII_CONTROL,
1017 1.68 jdc GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1018 1.68 jdc bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1019 1.68 jdc bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1020 1.68 jdc
1021 1.68 jdc if (disable) {
1022 1.68 jdc if (sc->sc_flags & GEM_SERDES)
1023 1.68 jdc bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1024 1.68 jdc GEM_MII_SLINK_POWER_OFF);
1025 1.68 jdc else
1026 1.68 jdc bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1027 1.68 jdc GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1028 1.68 jdc }
1029 1.68 jdc
1030 1.68 jdc sc->sc_flags &= ~GEM_LINK;
1031 1.68 jdc sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1032 1.68 jdc sc->sc_mii.mii_media_status = IFM_AVALID;
1033 1.68 jdc }
1034 1.68 jdc
1035 1.68 jdc
1036 1.1 eeh /*
1037 1.1 eeh * Initialization of interface; set up initialization block
1038 1.1 eeh * and transmit/receive descriptor rings.
1039 1.1 eeh */
1040 1.1 eeh int
1041 1.1 eeh gem_init(struct ifnet *ifp)
1042 1.1 eeh {
1043 1.1 eeh struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1044 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1045 1.50 martin bus_space_handle_t h = sc->sc_h1;
1046 1.69 dyoung int rc = 0, s;
1047 1.15 matt u_int max_frame_size;
1048 1.1 eeh u_int32_t v;
1049 1.1 eeh
1050 1.1 eeh s = splnet();
1051 1.1 eeh
1052 1.1 eeh DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
1053 1.1 eeh /*
1054 1.1 eeh * Initialization sequence. The numbered steps below correspond
1055 1.1 eeh * to the sequence outlined in section 6.3.5.1 in the Ethernet
1056 1.1 eeh * Channel Engine manual (part of the PCIO manual).
1057 1.1 eeh * See also the STP2002-STQ document from Sun Microsystems.
1058 1.1 eeh */
1059 1.1 eeh
1060 1.1 eeh /* step 1 & 2. Reset the Ethernet Channel */
1061 1.1 eeh gem_stop(ifp, 0);
1062 1.1 eeh gem_reset(sc);
1063 1.1 eeh DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
1064 1.1 eeh
1065 1.1 eeh /* Re-initialize the MIF */
1066 1.1 eeh gem_mifinit(sc);
1067 1.1 eeh
1068 1.68 jdc /* Set up correct datapath for non-SERDES/Serialink */
1069 1.68 jdc if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1070 1.68 jdc sc->sc_variant != GEM_SUN_ERI)
1071 1.68 jdc bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1072 1.68 jdc GEM_MII_DATAPATH_MII);
1073 1.68 jdc
1074 1.1 eeh /* Call MI reset function if any */
1075 1.1 eeh if (sc->sc_hwreset)
1076 1.1 eeh (*sc->sc_hwreset)(sc);
1077 1.1 eeh
1078 1.1 eeh /* step 3. Setup data structures in host memory */
1079 1.68 jdc if (gem_meminit(sc) != 0)
1080 1.68 jdc return 1;
1081 1.1 eeh
1082 1.1 eeh /* step 4. TX MAC registers & counters */
1083 1.1 eeh gem_init_regs(sc);
1084 1.15 matt max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1085 1.15 matt max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1086 1.15 matt if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1087 1.15 matt max_frame_size += ETHER_VLAN_ENCAP_LEN;
1088 1.1 eeh bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1089 1.15 matt max_frame_size|/* burst size */(0x2000<<16));
1090 1.1 eeh
1091 1.1 eeh /* step 5. RX MAC registers & counters */
1092 1.1 eeh gem_setladrf(sc);
1093 1.1 eeh
1094 1.1 eeh /* step 6 & 7. Program Descriptor Ring Base Addresses */
1095 1.4 thorpej /* NOTE: we use only 32-bit DMA addresses here. */
1096 1.4 thorpej bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1097 1.4 thorpej bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1098 1.4 thorpej
1099 1.4 thorpej bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1100 1.4 thorpej bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1101 1.1 eeh
1102 1.1 eeh /* step 8. Global Configuration & Interrupt Mask */
1103 1.68 jdc if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1104 1.68 jdc v = GEM_INTR_PCS;
1105 1.68 jdc else
1106 1.68 jdc v = GEM_INTR_MIF;
1107 1.1 eeh bus_space_write_4(t, h, GEM_INTMASK,
1108 1.68 jdc ~(GEM_INTR_TX_INTME |
1109 1.68 jdc GEM_INTR_TX_EMPTY |
1110 1.68 jdc GEM_INTR_TX_MAC |
1111 1.68 jdc GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
1112 1.68 jdc GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
1113 1.68 jdc GEM_INTR_BERR | v));
1114 1.16 matt bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1115 1.68 jdc GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1116 1.68 jdc bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1117 1.68 jdc bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1118 1.68 jdc GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1119 1.5 thorpej
1120 1.1 eeh /* step 9. ETX Configuration: use mostly default values */
1121 1.1 eeh
1122 1.68 jdc /* Enable TX DMA */
1123 1.1 eeh v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1124 1.31 heas bus_space_write_4(t, h, GEM_TX_CONFIG,
1125 1.1 eeh v|GEM_TX_CONFIG_TXDMA_EN|
1126 1.68 jdc ((0x4FF<<10)&GEM_TX_CONFIG_TXFIFO_TH));
1127 1.1 eeh bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1128 1.1 eeh
1129 1.1 eeh /* step 10. ERX Configuration */
1130 1.68 jdc gem_rx_common(sc);
1131 1.1 eeh
1132 1.1 eeh /* step 11. Configure Media */
1133 1.69 dyoung if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1134 1.69 dyoung (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1135 1.69 dyoung goto out;
1136 1.1 eeh
1137 1.1 eeh /* step 12. RX_MAC Configuration Register */
1138 1.1 eeh v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1139 1.35 heas v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1140 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1141 1.1 eeh
1142 1.1 eeh /* step 14. Issue Transmit Pending command */
1143 1.1 eeh
1144 1.1 eeh /* Call MI initialization function if any */
1145 1.1 eeh if (sc->sc_hwinit)
1146 1.1 eeh (*sc->sc_hwinit)(sc);
1147 1.1 eeh
1148 1.1 eeh
1149 1.1 eeh /* step 15. Give the reciever a swift kick */
1150 1.1 eeh bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1151 1.1 eeh
1152 1.68 jdc if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1153 1.68 jdc /* Configure PCS */
1154 1.68 jdc gem_pcs_start(sc);
1155 1.68 jdc else
1156 1.68 jdc /* Start the one second timer. */
1157 1.68 jdc callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1158 1.1 eeh
1159 1.68 jdc sc->sc_flags &= ~GEM_LINK;
1160 1.1 eeh ifp->if_flags |= IFF_RUNNING;
1161 1.1 eeh ifp->if_flags &= ~IFF_OACTIVE;
1162 1.1 eeh ifp->if_timer = 0;
1163 1.41 christos sc->sc_if_flags = ifp->if_flags;
1164 1.69 dyoung out:
1165 1.1 eeh splx(s);
1166 1.1 eeh
1167 1.1 eeh return (0);
1168 1.1 eeh }
1169 1.1 eeh
1170 1.1 eeh void
1171 1.1 eeh gem_init_regs(struct gem_softc *sc)
1172 1.1 eeh {
1173 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1174 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1175 1.50 martin bus_space_handle_t h = sc->sc_h1;
1176 1.58 dyoung const u_char *laddr = CLLADDR(ifp->if_sadl);
1177 1.15 matt u_int32_t v;
1178 1.1 eeh
1179 1.1 eeh /* These regs are not cleared on reset */
1180 1.1 eeh if (!sc->sc_inited) {
1181 1.1 eeh
1182 1.68 jdc /* Load recommended values */
1183 1.68 jdc bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1184 1.68 jdc bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1185 1.68 jdc bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1186 1.1 eeh
1187 1.1 eeh bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1188 1.1 eeh /* Max frame and max burst size */
1189 1.1 eeh bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1190 1.68 jdc ETHER_MAX_LEN | (0x2000<<16));
1191 1.15 matt
1192 1.68 jdc bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1193 1.68 jdc bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1194 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1195 1.1 eeh bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1196 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1197 1.15 matt ((laddr[5]<<8)|laddr[4])&0x3ff);
1198 1.13 matt
1199 1.1 eeh /* Secondary MAC addr set to 0:0:0:0:0:0 */
1200 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1201 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1202 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1203 1.13 matt
1204 1.13 matt /* MAC control addr set to 01:80:c2:00:00:01 */
1205 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1206 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1207 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1208 1.1 eeh
1209 1.1 eeh /* MAC filter addr set to 0:0:0:0:0:0 */
1210 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1211 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1212 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1213 1.1 eeh
1214 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1215 1.1 eeh bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1216 1.1 eeh
1217 1.1 eeh sc->sc_inited = 1;
1218 1.1 eeh }
1219 1.1 eeh
1220 1.1 eeh /* Counters need to be zeroed */
1221 1.1 eeh bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1222 1.1 eeh bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1223 1.1 eeh bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1224 1.1 eeh bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1225 1.1 eeh bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1226 1.1 eeh bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1227 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1228 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1229 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1230 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1231 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1232 1.1 eeh
1233 1.68 jdc /* Set XOFF PAUSE time. */
1234 1.1 eeh bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1235 1.68 jdc
1236 1.68 jdc /*
1237 1.68 jdc * Set the internal arbitration to "infinite" bursts of the
1238 1.68 jdc * maximum length of 31 * 64 bytes so DMA transfers aren't
1239 1.68 jdc * split up in cache line size chunks. This greatly improves
1240 1.68 jdc * especially RX performance.
1241 1.68 jdc * Enable silicon bug workarounds for the Apple variants.
1242 1.68 jdc */
1243 1.68 jdc bus_space_write_4(t, h, GEM_CONFIG,
1244 1.68 jdc GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1245 1.68 jdc GEM_CONFIG_BURST_INF | (GEM_IS_APPLE(sc) ?
1246 1.68 jdc GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1247 1.1 eeh
1248 1.1 eeh /*
1249 1.1 eeh * Set the station address.
1250 1.1 eeh */
1251 1.13 matt bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1252 1.13 matt bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1253 1.13 matt bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1254 1.1 eeh
1255 1.15 matt /*
1256 1.15 matt * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1257 1.15 matt */
1258 1.70 jdc sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1259 1.15 matt v = GEM_MAC_XIF_TX_MII_ENA;
1260 1.70 jdc if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1261 1.70 jdc if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1262 1.70 jdc v |= GEM_MAC_XIF_FDPLX_LED;
1263 1.70 jdc if (sc->sc_flags & GEM_GIGABIT)
1264 1.70 jdc v |= GEM_MAC_XIF_GMII_MODE;
1265 1.70 jdc }
1266 1.70 jdc } else {
1267 1.68 jdc v |= GEM_MAC_XIF_GMII_MODE;
1268 1.70 jdc }
1269 1.15 matt bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1270 1.1 eeh }
1271 1.1 eeh
1272 1.67 dyoung #ifdef GEM_DEBUG
1273 1.67 dyoung static void
1274 1.67 dyoung gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1275 1.67 dyoung {
1276 1.67 dyoung int i;
1277 1.67 dyoung
1278 1.67 dyoung for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1279 1.67 dyoung printf("descriptor %d:\t", i);
1280 1.67 dyoung printf("gd_flags: 0x%016" PRIx64 "\t",
1281 1.67 dyoung GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1282 1.67 dyoung printf("gd_addr: 0x%016" PRIx64 "\n",
1283 1.67 dyoung GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1284 1.67 dyoung if (i == lastdesc)
1285 1.67 dyoung break;
1286 1.67 dyoung }
1287 1.67 dyoung }
1288 1.67 dyoung #endif
1289 1.67 dyoung
1290 1.41 christos static void
1291 1.1 eeh gem_start(ifp)
1292 1.1 eeh struct ifnet *ifp;
1293 1.1 eeh {
1294 1.1 eeh struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1295 1.1 eeh struct mbuf *m0, *m;
1296 1.64 dyoung struct gem_txsoft *txs;
1297 1.1 eeh bus_dmamap_t dmamap;
1298 1.49 martin int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1299 1.40 bouyer uint64_t flags = 0;
1300 1.1 eeh
1301 1.1 eeh if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1302 1.1 eeh return;
1303 1.1 eeh
1304 1.1 eeh /*
1305 1.1 eeh * Remember the previous number of free descriptors and
1306 1.1 eeh * the first descriptor we'll use.
1307 1.1 eeh */
1308 1.1 eeh ofree = sc->sc_txfree;
1309 1.1 eeh firsttx = sc->sc_txnext;
1310 1.1 eeh
1311 1.1 eeh DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1312 1.1 eeh sc->sc_dev.dv_xname, ofree, firsttx));
1313 1.1 eeh
1314 1.1 eeh /*
1315 1.1 eeh * Loop through the send queue, setting up transmit descriptors
1316 1.1 eeh * until we drain the queue, or use up all available transmit
1317 1.1 eeh * descriptors.
1318 1.1 eeh */
1319 1.11 thorpej while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1320 1.68 jdc sc->sc_txfree != 0) {
1321 1.1 eeh /*
1322 1.1 eeh * Grab a packet off the queue.
1323 1.1 eeh */
1324 1.1 eeh IFQ_POLL(&ifp->if_snd, m0);
1325 1.1 eeh if (m0 == NULL)
1326 1.1 eeh break;
1327 1.1 eeh m = NULL;
1328 1.1 eeh
1329 1.1 eeh dmamap = txs->txs_dmamap;
1330 1.1 eeh
1331 1.1 eeh /*
1332 1.1 eeh * Load the DMA map. If this fails, the packet either
1333 1.1 eeh * didn't fit in the alloted number of segments, or we were
1334 1.1 eeh * short on resources. In this case, we'll copy and try
1335 1.1 eeh * again.
1336 1.1 eeh */
1337 1.1 eeh if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1338 1.40 bouyer BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1339 1.40 bouyer (m0->m_pkthdr.len < ETHER_MIN_TX &&
1340 1.40 bouyer dmamap->dm_nsegs == GEM_NTXSEGS)) {
1341 1.15 matt if (m0->m_pkthdr.len > MCLBYTES) {
1342 1.15 matt printf("%s: unable to allocate jumbo Tx "
1343 1.15 matt "cluster\n", sc->sc_dev.dv_xname);
1344 1.15 matt IFQ_DEQUEUE(&ifp->if_snd, m0);
1345 1.15 matt m_freem(m0);
1346 1.15 matt continue;
1347 1.15 matt }
1348 1.1 eeh MGETHDR(m, M_DONTWAIT, MT_DATA);
1349 1.1 eeh if (m == NULL) {
1350 1.1 eeh printf("%s: unable to allocate Tx mbuf\n",
1351 1.1 eeh sc->sc_dev.dv_xname);
1352 1.1 eeh break;
1353 1.1 eeh }
1354 1.26 matt MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1355 1.1 eeh if (m0->m_pkthdr.len > MHLEN) {
1356 1.1 eeh MCLGET(m, M_DONTWAIT);
1357 1.1 eeh if ((m->m_flags & M_EXT) == 0) {
1358 1.1 eeh printf("%s: unable to allocate Tx "
1359 1.1 eeh "cluster\n", sc->sc_dev.dv_xname);
1360 1.1 eeh m_freem(m);
1361 1.1 eeh break;
1362 1.1 eeh }
1363 1.1 eeh }
1364 1.53 christos m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1365 1.1 eeh m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1366 1.1 eeh error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1367 1.1 eeh m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1368 1.1 eeh if (error) {
1369 1.1 eeh printf("%s: unable to load Tx buffer, "
1370 1.1 eeh "error = %d\n", sc->sc_dev.dv_xname, error);
1371 1.1 eeh break;
1372 1.1 eeh }
1373 1.1 eeh }
1374 1.1 eeh
1375 1.1 eeh /*
1376 1.1 eeh * Ensure we have enough descriptors free to describe
1377 1.11 thorpej * the packet.
1378 1.1 eeh */
1379 1.40 bouyer if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1380 1.40 bouyer (sc->sc_txfree - 1) : sc->sc_txfree)) {
1381 1.1 eeh /*
1382 1.1 eeh * Not enough free descriptors to transmit this
1383 1.1 eeh * packet. We haven't committed to anything yet,
1384 1.1 eeh * so just unload the DMA map, put the packet
1385 1.1 eeh * back on the queue, and punt. Notify the upper
1386 1.1 eeh * layer that there are no more slots left.
1387 1.1 eeh *
1388 1.1 eeh * XXX We could allocate an mbuf and copy, but
1389 1.1 eeh * XXX it is worth it?
1390 1.1 eeh */
1391 1.1 eeh ifp->if_flags |= IFF_OACTIVE;
1392 1.41 christos sc->sc_if_flags = ifp->if_flags;
1393 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, dmamap);
1394 1.1 eeh if (m != NULL)
1395 1.1 eeh m_freem(m);
1396 1.1 eeh break;
1397 1.1 eeh }
1398 1.1 eeh
1399 1.1 eeh IFQ_DEQUEUE(&ifp->if_snd, m0);
1400 1.1 eeh if (m != NULL) {
1401 1.1 eeh m_freem(m0);
1402 1.1 eeh m0 = m;
1403 1.1 eeh }
1404 1.1 eeh
1405 1.1 eeh /*
1406 1.1 eeh * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1407 1.1 eeh */
1408 1.1 eeh
1409 1.1 eeh /* Sync the DMA map. */
1410 1.1 eeh bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1411 1.1 eeh BUS_DMASYNC_PREWRITE);
1412 1.1 eeh
1413 1.1 eeh /*
1414 1.1 eeh * Initialize the transmit descriptors.
1415 1.1 eeh */
1416 1.1 eeh for (nexttx = sc->sc_txnext, seg = 0;
1417 1.1 eeh seg < dmamap->dm_nsegs;
1418 1.1 eeh seg++, nexttx = GEM_NEXTTX(nexttx)) {
1419 1.1 eeh
1420 1.1 eeh /*
1421 1.1 eeh * If this is the first descriptor we're
1422 1.1 eeh * enqueueing, set the start of packet flag,
1423 1.1 eeh * and the checksum stuff if we want the hardware
1424 1.1 eeh * to do it.
1425 1.1 eeh */
1426 1.1 eeh sc->sc_txdescs[nexttx].gd_addr =
1427 1.2 eeh GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1428 1.1 eeh flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1429 1.1 eeh if (nexttx == firsttx) {
1430 1.1 eeh flags |= GEM_TD_START_OF_PACKET;
1431 1.14 matt if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1432 1.14 matt sc->sc_txwin = 0;
1433 1.14 matt flags |= GEM_TD_INTERRUPT_ME;
1434 1.14 matt }
1435 1.35 heas
1436 1.35 heas #ifdef INET
1437 1.35 heas /* h/w checksum */
1438 1.68 jdc if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1439 1.68 jdc m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1440 1.35 heas struct ether_header *eh;
1441 1.35 heas uint16_t offset, start;
1442 1.35 heas
1443 1.35 heas eh = mtod(m0, struct ether_header *);
1444 1.35 heas switch (ntohs(eh->ether_type)) {
1445 1.35 heas case ETHERTYPE_IP:
1446 1.35 heas start = ETHER_HDR_LEN;
1447 1.35 heas break;
1448 1.35 heas case ETHERTYPE_VLAN:
1449 1.35 heas start = ETHER_HDR_LEN +
1450 1.35 heas ETHER_VLAN_ENCAP_LEN;
1451 1.37 perry break;
1452 1.35 heas default:
1453 1.37 perry /* unsupported, drop it */
1454 1.35 heas m_free(m0);
1455 1.35 heas continue;
1456 1.35 heas }
1457 1.36 thorpej start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1458 1.36 thorpej offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1459 1.35 heas flags |= (start <<
1460 1.35 heas GEM_TD_CXSUM_STARTSHFT) |
1461 1.35 heas (offset <<
1462 1.35 heas GEM_TD_CXSUM_STUFFSHFT) |
1463 1.35 heas GEM_TD_CXSUM_ENABLE;
1464 1.35 heas }
1465 1.35 heas #endif
1466 1.1 eeh }
1467 1.1 eeh if (seg == dmamap->dm_nsegs - 1) {
1468 1.1 eeh flags |= GEM_TD_END_OF_PACKET;
1469 1.40 bouyer } else {
1470 1.40 bouyer /* last flag set outside of loop */
1471 1.40 bouyer sc->sc_txdescs[nexttx].gd_flags =
1472 1.40 bouyer GEM_DMA_WRITE(sc, flags);
1473 1.1 eeh }
1474 1.1 eeh lasttx = nexttx;
1475 1.1 eeh }
1476 1.40 bouyer if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1477 1.40 bouyer /* add padding buffer at end of chain */
1478 1.40 bouyer flags &= ~GEM_TD_END_OF_PACKET;
1479 1.40 bouyer sc->sc_txdescs[lasttx].gd_flags =
1480 1.40 bouyer GEM_DMA_WRITE(sc, flags);
1481 1.40 bouyer
1482 1.40 bouyer sc->sc_txdescs[nexttx].gd_addr =
1483 1.40 bouyer GEM_DMA_WRITE(sc,
1484 1.40 bouyer sc->sc_nulldmamap->dm_segs[0].ds_addr);
1485 1.40 bouyer flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1486 1.40 bouyer GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1487 1.40 bouyer lasttx = nexttx;
1488 1.40 bouyer nexttx = GEM_NEXTTX(nexttx);
1489 1.40 bouyer seg++;
1490 1.40 bouyer }
1491 1.40 bouyer sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1492 1.30 christos
1493 1.30 christos KASSERT(lasttx != -1);
1494 1.1 eeh
1495 1.40 bouyer /*
1496 1.40 bouyer * Store a pointer to the packet so we can free it later,
1497 1.40 bouyer * and remember what txdirty will be once the packet is
1498 1.40 bouyer * done.
1499 1.40 bouyer */
1500 1.40 bouyer txs->txs_mbuf = m0;
1501 1.40 bouyer txs->txs_firstdesc = sc->sc_txnext;
1502 1.40 bouyer txs->txs_lastdesc = lasttx;
1503 1.40 bouyer txs->txs_ndescs = seg;
1504 1.40 bouyer
1505 1.1 eeh #ifdef GEM_DEBUG
1506 1.1 eeh if (ifp->if_flags & IFF_DEBUG) {
1507 1.1 eeh printf(" gem_start %p transmit chain:\n", txs);
1508 1.67 dyoung gem_txsoft_print(sc, txs->txs_firstdesc,
1509 1.67 dyoung txs->txs_lastdesc);
1510 1.1 eeh }
1511 1.1 eeh #endif
1512 1.1 eeh
1513 1.1 eeh /* Sync the descriptors we're using. */
1514 1.65 dyoung GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1515 1.1 eeh BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1516 1.1 eeh
1517 1.1 eeh /* Advance the tx pointer. */
1518 1.40 bouyer sc->sc_txfree -= txs->txs_ndescs;
1519 1.1 eeh sc->sc_txnext = nexttx;
1520 1.1 eeh
1521 1.21 lukem SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1522 1.1 eeh SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1523 1.1 eeh
1524 1.1 eeh #if NBPFILTER > 0
1525 1.1 eeh /*
1526 1.1 eeh * Pass the packet to any BPF listeners.
1527 1.1 eeh */
1528 1.1 eeh if (ifp->if_bpf)
1529 1.1 eeh bpf_mtap(ifp->if_bpf, m0);
1530 1.1 eeh #endif /* NBPFILTER > 0 */
1531 1.1 eeh }
1532 1.1 eeh
1533 1.1 eeh if (txs == NULL || sc->sc_txfree == 0) {
1534 1.1 eeh /* No more slots left; notify upper layer. */
1535 1.1 eeh ifp->if_flags |= IFF_OACTIVE;
1536 1.41 christos sc->sc_if_flags = ifp->if_flags;
1537 1.1 eeh }
1538 1.1 eeh
1539 1.1 eeh if (sc->sc_txfree != ofree) {
1540 1.1 eeh DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1541 1.1 eeh sc->sc_dev.dv_xname, lasttx, firsttx));
1542 1.1 eeh /*
1543 1.31 heas * The entire packet chain is set up.
1544 1.1 eeh * Kick the transmitter.
1545 1.1 eeh */
1546 1.1 eeh DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1547 1.1 eeh sc->sc_dev.dv_xname, nexttx));
1548 1.50 martin bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1549 1.1 eeh sc->sc_txnext);
1550 1.1 eeh
1551 1.1 eeh /* Set a watchdog timer in case the chip flakes out. */
1552 1.1 eeh ifp->if_timer = 5;
1553 1.1 eeh DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1554 1.1 eeh sc->sc_dev.dv_xname, ifp->if_timer));
1555 1.1 eeh }
1556 1.1 eeh }
1557 1.1 eeh
1558 1.1 eeh /*
1559 1.1 eeh * Transmit interrupt.
1560 1.1 eeh */
1561 1.1 eeh int
1562 1.1 eeh gem_tint(sc)
1563 1.1 eeh struct gem_softc *sc;
1564 1.1 eeh {
1565 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1566 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1567 1.50 martin bus_space_handle_t mac = sc->sc_h1;
1568 1.1 eeh struct gem_txsoft *txs;
1569 1.1 eeh int txlast;
1570 1.14 matt int progress = 0;
1571 1.71 jdc u_int32_t v;
1572 1.1 eeh
1573 1.2 eeh DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1574 1.1 eeh
1575 1.71 jdc /* Unload collision counters ... */
1576 1.71 jdc v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1577 1.71 jdc bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1578 1.71 jdc ifp->if_collisions += v +
1579 1.71 jdc bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1580 1.71 jdc bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1581 1.71 jdc ifp->if_oerrors += v;
1582 1.1 eeh
1583 1.71 jdc /* ... then clear the hardware counters. */
1584 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1585 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1586 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1587 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1588 1.1 eeh
1589 1.1 eeh /*
1590 1.1 eeh * Go through our Tx list and free mbufs for those
1591 1.1 eeh * frames that have been transmitted.
1592 1.1 eeh */
1593 1.1 eeh while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1594 1.1 eeh /*
1595 1.68 jdc * In theory, we could harvest some descriptors before
1596 1.1 eeh * the ring is empty, but that's a bit complicated.
1597 1.1 eeh *
1598 1.1 eeh * GEM_TX_COMPLETION points to the last descriptor
1599 1.1 eeh * processed +1.
1600 1.62 dyoung *
1601 1.62 dyoung * Let's assume that the NIC writes back to the Tx
1602 1.62 dyoung * descriptors before it updates the completion
1603 1.62 dyoung * register. If the NIC has posted writes to the
1604 1.62 dyoung * Tx descriptors, PCI ordering requires that the
1605 1.62 dyoung * posted writes flush to RAM before the register-read
1606 1.62 dyoung * finishes. So let's read the completion register,
1607 1.62 dyoung * before syncing the descriptors, so that we
1608 1.62 dyoung * examine Tx descriptors that are at least as
1609 1.62 dyoung * current as the completion register.
1610 1.1 eeh */
1611 1.1 eeh txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1612 1.1 eeh DPRINTF(sc,
1613 1.1 eeh ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1614 1.1 eeh txs->txs_lastdesc, txlast));
1615 1.1 eeh if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1616 1.63 dyoung if (txlast >= txs->txs_firstdesc &&
1617 1.63 dyoung txlast <= txs->txs_lastdesc)
1618 1.1 eeh break;
1619 1.63 dyoung } else if (txlast >= txs->txs_firstdesc ||
1620 1.68 jdc txlast <= txs->txs_lastdesc)
1621 1.63 dyoung break;
1622 1.1 eeh
1623 1.66 dyoung GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1624 1.62 dyoung BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1625 1.62 dyoung
1626 1.62 dyoung #ifdef GEM_DEBUG /* XXX DMA synchronization? */
1627 1.62 dyoung if (ifp->if_flags & IFF_DEBUG) {
1628 1.62 dyoung printf(" txsoft %p transmit chain:\n", txs);
1629 1.67 dyoung gem_txsoft_print(sc, txs->txs_firstdesc,
1630 1.67 dyoung txs->txs_lastdesc);
1631 1.62 dyoung }
1632 1.62 dyoung #endif
1633 1.62 dyoung
1634 1.62 dyoung
1635 1.1 eeh DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1636 1.21 lukem SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1637 1.1 eeh
1638 1.1 eeh sc->sc_txfree += txs->txs_ndescs;
1639 1.1 eeh
1640 1.1 eeh bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1641 1.1 eeh 0, txs->txs_dmamap->dm_mapsize,
1642 1.1 eeh BUS_DMASYNC_POSTWRITE);
1643 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1644 1.68 jdc if (txs->txs_mbuf != NULL) {
1645 1.68 jdc m_freem(txs->txs_mbuf);
1646 1.68 jdc txs->txs_mbuf = NULL;
1647 1.68 jdc }
1648 1.1 eeh
1649 1.1 eeh SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1650 1.1 eeh
1651 1.1 eeh ifp->if_opackets++;
1652 1.14 matt progress = 1;
1653 1.1 eeh }
1654 1.1 eeh
1655 1.28 chs #if 0
1656 1.1 eeh DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1657 1.55 dyoung "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1658 1.50 martin bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1659 1.55 dyoung ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1660 1.4 thorpej GEM_TX_DATA_PTR_HI) << 32) |
1661 1.50 martin bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1662 1.4 thorpej GEM_TX_DATA_PTR_LO),
1663 1.50 martin bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1664 1.28 chs #endif
1665 1.1 eeh
1666 1.14 matt if (progress) {
1667 1.14 matt if (sc->sc_txfree == GEM_NTXDESC - 1)
1668 1.14 matt sc->sc_txwin = 0;
1669 1.14 matt
1670 1.68 jdc /* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1671 1.14 matt ifp->if_flags &= ~IFF_OACTIVE;
1672 1.41 christos sc->sc_if_flags = ifp->if_flags;
1673 1.68 jdc ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1674 1.14 matt gem_start(ifp);
1675 1.14 matt }
1676 1.1 eeh DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1677 1.1 eeh sc->sc_dev.dv_xname, ifp->if_timer));
1678 1.1 eeh
1679 1.1 eeh return (1);
1680 1.1 eeh }
1681 1.1 eeh
1682 1.1 eeh /*
1683 1.1 eeh * Receive interrupt.
1684 1.1 eeh */
1685 1.1 eeh int
1686 1.1 eeh gem_rint(sc)
1687 1.1 eeh struct gem_softc *sc;
1688 1.1 eeh {
1689 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1690 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
1691 1.50 martin bus_space_handle_t h = sc->sc_h1;
1692 1.1 eeh struct gem_rxsoft *rxs;
1693 1.1 eeh struct mbuf *m;
1694 1.1 eeh u_int64_t rxstat;
1695 1.18 matt u_int32_t rxcomp;
1696 1.18 matt int i, len, progress = 0;
1697 1.1 eeh
1698 1.2 eeh DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1699 1.18 matt
1700 1.18 matt /*
1701 1.68 jdc * Ignore spurious interrupt that sometimes occurs before
1702 1.68 jdc * we are set up when we network boot.
1703 1.68 jdc */
1704 1.68 jdc if (!sc->sc_meminited)
1705 1.68 jdc return 1;
1706 1.68 jdc
1707 1.68 jdc /*
1708 1.18 matt * Read the completion register once. This limits
1709 1.18 matt * how long the following loop can execute.
1710 1.18 matt */
1711 1.18 matt rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1712 1.18 matt
1713 1.1 eeh /*
1714 1.68 jdc * XXX Read the lastrx only once at the top for speed.
1715 1.1 eeh */
1716 1.1 eeh DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1717 1.18 matt sc->sc_rxptr, rxcomp));
1718 1.18 matt
1719 1.18 matt /*
1720 1.18 matt * Go into the loop at least once.
1721 1.18 matt */
1722 1.18 matt for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1723 1.1 eeh i = GEM_NEXTRX(i)) {
1724 1.1 eeh rxs = &sc->sc_rxsoft[i];
1725 1.1 eeh
1726 1.1 eeh GEM_CDRXSYNC(sc, i,
1727 1.1 eeh BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1728 1.1 eeh
1729 1.2 eeh rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1730 1.1 eeh
1731 1.1 eeh if (rxstat & GEM_RD_OWN) {
1732 1.56 dyoung GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1733 1.1 eeh /*
1734 1.1 eeh * We have processed all of the receive buffers.
1735 1.1 eeh */
1736 1.1 eeh break;
1737 1.1 eeh }
1738 1.1 eeh
1739 1.18 matt progress++;
1740 1.18 matt ifp->if_ipackets++;
1741 1.18 matt
1742 1.1 eeh if (rxstat & GEM_RD_BAD_CRC) {
1743 1.18 matt ifp->if_ierrors++;
1744 1.1 eeh printf("%s: receive error: CRC error\n",
1745 1.1 eeh sc->sc_dev.dv_xname);
1746 1.1 eeh GEM_INIT_RXDESC(sc, i);
1747 1.1 eeh continue;
1748 1.1 eeh }
1749 1.1 eeh
1750 1.1 eeh bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1751 1.1 eeh rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1752 1.1 eeh #ifdef GEM_DEBUG
1753 1.1 eeh if (ifp->if_flags & IFF_DEBUG) {
1754 1.1 eeh printf(" rxsoft %p descriptor %d: ", rxs, i);
1755 1.1 eeh printf("gd_flags: 0x%016llx\t", (long long)
1756 1.2 eeh GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1757 1.1 eeh printf("gd_addr: 0x%016llx\n", (long long)
1758 1.2 eeh GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1759 1.1 eeh }
1760 1.1 eeh #endif
1761 1.1 eeh
1762 1.35 heas /* No errors; receive the packet. */
1763 1.35 heas len = GEM_RD_BUFLEN(rxstat);
1764 1.1 eeh
1765 1.1 eeh /*
1766 1.1 eeh * Allocate a new mbuf cluster. If that fails, we are
1767 1.1 eeh * out of memory, and must drop the packet and recycle
1768 1.1 eeh * the buffer that's already attached to this descriptor.
1769 1.1 eeh */
1770 1.1 eeh m = rxs->rxs_mbuf;
1771 1.1 eeh if (gem_add_rxbuf(sc, i) != 0) {
1772 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1773 1.1 eeh ifp->if_ierrors++;
1774 1.1 eeh GEM_INIT_RXDESC(sc, i);
1775 1.1 eeh bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1776 1.1 eeh rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1777 1.1 eeh continue;
1778 1.1 eeh }
1779 1.1 eeh m->m_data += 2; /* We're already off by two */
1780 1.1 eeh
1781 1.1 eeh m->m_pkthdr.rcvif = ifp;
1782 1.1 eeh m->m_pkthdr.len = m->m_len = len;
1783 1.1 eeh
1784 1.1 eeh #if NBPFILTER > 0
1785 1.1 eeh /*
1786 1.1 eeh * Pass this up to any BPF listeners, but only
1787 1.61 tsutsui * pass it up the stack if it's for us.
1788 1.1 eeh */
1789 1.1 eeh if (ifp->if_bpf)
1790 1.1 eeh bpf_mtap(ifp->if_bpf, m);
1791 1.59 scw #endif /* NBPFILTER > 0 */
1792 1.1 eeh
1793 1.35 heas #ifdef INET
1794 1.35 heas /* hardware checksum */
1795 1.68 jdc if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1796 1.35 heas struct ether_header *eh;
1797 1.35 heas struct ip *ip;
1798 1.35 heas int32_t hlen, pktlen;
1799 1.35 heas
1800 1.35 heas if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1801 1.35 heas pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1802 1.35 heas ETHER_VLAN_ENCAP_LEN;
1803 1.72 jdc eh = (struct ether_header *) (mtod(m, char *) +
1804 1.72 jdc ETHER_VLAN_ENCAP_LEN);
1805 1.35 heas } else {
1806 1.35 heas pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1807 1.35 heas eh = mtod(m, struct ether_header *);
1808 1.35 heas }
1809 1.35 heas if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1810 1.35 heas goto swcsum;
1811 1.54 christos ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1812 1.35 heas
1813 1.35 heas /* IPv4 only */
1814 1.35 heas if (ip->ip_v != IPVERSION)
1815 1.35 heas goto swcsum;
1816 1.35 heas
1817 1.35 heas hlen = ip->ip_hl << 2;
1818 1.35 heas if (hlen < sizeof(struct ip))
1819 1.35 heas goto swcsum;
1820 1.35 heas
1821 1.38 heas /*
1822 1.38 heas * bail if too short, has random trailing garbage,
1823 1.38 heas * truncated, fragment, or has ethernet pad.
1824 1.38 heas */
1825 1.35 heas if ((ntohs(ip->ip_len) < hlen) ||
1826 1.38 heas (ntohs(ip->ip_len) != pktlen) ||
1827 1.35 heas (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1828 1.35 heas goto swcsum;
1829 1.35 heas
1830 1.35 heas switch (ip->ip_p) {
1831 1.35 heas case IPPROTO_TCP:
1832 1.35 heas if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1833 1.35 heas goto swcsum;
1834 1.35 heas if (pktlen < (hlen + sizeof(struct tcphdr)))
1835 1.35 heas goto swcsum;
1836 1.35 heas m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1837 1.35 heas break;
1838 1.35 heas case IPPROTO_UDP:
1839 1.68 jdc /* FALLTHROUGH */
1840 1.35 heas default:
1841 1.35 heas goto swcsum;
1842 1.35 heas }
1843 1.35 heas
1844 1.35 heas /* the uncomplemented sum is expected */
1845 1.35 heas m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1846 1.35 heas
1847 1.35 heas /* if the pkt had ip options, we have to deduct them */
1848 1.35 heas if (hlen > sizeof(struct ip)) {
1849 1.35 heas uint16_t *opts;
1850 1.35 heas uint32_t optsum, temp;
1851 1.35 heas
1852 1.35 heas optsum = 0;
1853 1.35 heas temp = hlen - sizeof(struct ip);
1854 1.54 christos opts = (uint16_t *) ((char *) ip +
1855 1.35 heas sizeof(struct ip));
1856 1.35 heas
1857 1.35 heas while (temp > 1) {
1858 1.35 heas optsum += ntohs(*opts++);
1859 1.35 heas temp -= 2;
1860 1.35 heas }
1861 1.35 heas while (optsum >> 16)
1862 1.35 heas optsum = (optsum >> 16) +
1863 1.35 heas (optsum & 0xffff);
1864 1.35 heas
1865 1.35 heas /* Deduct ip opts sum from hwsum (rfc 1624). */
1866 1.35 heas m->m_pkthdr.csum_data =
1867 1.35 heas ~((~m->m_pkthdr.csum_data) - ~optsum);
1868 1.35 heas
1869 1.35 heas while (m->m_pkthdr.csum_data >> 16)
1870 1.35 heas m->m_pkthdr.csum_data =
1871 1.35 heas (m->m_pkthdr.csum_data >> 16) +
1872 1.35 heas (m->m_pkthdr.csum_data &
1873 1.35 heas 0xffff);
1874 1.35 heas }
1875 1.35 heas
1876 1.35 heas m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1877 1.35 heas M_CSUM_NO_PSEUDOHDR;
1878 1.35 heas } else
1879 1.35 heas swcsum:
1880 1.35 heas m->m_pkthdr.csum_flags = 0;
1881 1.35 heas #endif
1882 1.1 eeh /* Pass it on. */
1883 1.1 eeh (*ifp->if_input)(ifp, m);
1884 1.1 eeh }
1885 1.1 eeh
1886 1.18 matt if (progress) {
1887 1.18 matt /* Update the receive pointer. */
1888 1.18 matt if (i == sc->sc_rxptr) {
1889 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1890 1.19 matt #ifdef GEM_DEBUG
1891 1.28 chs if (ifp->if_flags & IFF_DEBUG)
1892 1.19 matt printf("%s: rint: ring wrap\n",
1893 1.19 matt sc->sc_dev.dv_xname);
1894 1.19 matt #endif
1895 1.18 matt }
1896 1.18 matt sc->sc_rxptr = i;
1897 1.18 matt bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1898 1.18 matt }
1899 1.19 matt #ifdef GEM_COUNTERS
1900 1.18 matt if (progress <= 4) {
1901 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1902 1.28 chs } else if (progress < 32) {
1903 1.18 matt if (progress < 16)
1904 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1905 1.18 matt else
1906 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1907 1.31 heas
1908 1.18 matt } else {
1909 1.18 matt if (progress < 64)
1910 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1911 1.18 matt else
1912 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1913 1.18 matt }
1914 1.19 matt #endif
1915 1.1 eeh
1916 1.1 eeh DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1917 1.1 eeh sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1918 1.1 eeh
1919 1.71 jdc /* Read error counters ... */
1920 1.71 jdc ifp->if_ierrors +=
1921 1.71 jdc bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1922 1.71 jdc bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1923 1.71 jdc bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1924 1.71 jdc bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1925 1.71 jdc
1926 1.71 jdc /* ... then clear the hardware counters. */
1927 1.71 jdc bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1928 1.71 jdc bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1929 1.71 jdc bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1930 1.71 jdc bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1931 1.71 jdc
1932 1.1 eeh return (1);
1933 1.1 eeh }
1934 1.1 eeh
1935 1.1 eeh
1936 1.1 eeh /*
1937 1.1 eeh * gem_add_rxbuf:
1938 1.1 eeh *
1939 1.1 eeh * Add a receive buffer to the indicated descriptor.
1940 1.1 eeh */
1941 1.1 eeh int
1942 1.1 eeh gem_add_rxbuf(struct gem_softc *sc, int idx)
1943 1.1 eeh {
1944 1.1 eeh struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1945 1.1 eeh struct mbuf *m;
1946 1.1 eeh int error;
1947 1.1 eeh
1948 1.1 eeh MGETHDR(m, M_DONTWAIT, MT_DATA);
1949 1.1 eeh if (m == NULL)
1950 1.1 eeh return (ENOBUFS);
1951 1.1 eeh
1952 1.26 matt MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1953 1.1 eeh MCLGET(m, M_DONTWAIT);
1954 1.1 eeh if ((m->m_flags & M_EXT) == 0) {
1955 1.1 eeh m_freem(m);
1956 1.1 eeh return (ENOBUFS);
1957 1.1 eeh }
1958 1.1 eeh
1959 1.1 eeh #ifdef GEM_DEBUG
1960 1.27 wiz /* bzero the packet to check DMA */
1961 1.1 eeh memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1962 1.1 eeh #endif
1963 1.1 eeh
1964 1.1 eeh if (rxs->rxs_mbuf != NULL)
1965 1.1 eeh bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1966 1.1 eeh
1967 1.1 eeh rxs->rxs_mbuf = m;
1968 1.1 eeh
1969 1.1 eeh error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1970 1.1 eeh m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1971 1.1 eeh BUS_DMA_READ|BUS_DMA_NOWAIT);
1972 1.1 eeh if (error) {
1973 1.1 eeh printf("%s: can't load rx DMA map %d, error = %d\n",
1974 1.1 eeh sc->sc_dev.dv_xname, idx, error);
1975 1.1 eeh panic("gem_add_rxbuf"); /* XXX */
1976 1.1 eeh }
1977 1.1 eeh
1978 1.1 eeh bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1979 1.1 eeh rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1980 1.1 eeh
1981 1.1 eeh GEM_INIT_RXDESC(sc, idx);
1982 1.1 eeh
1983 1.1 eeh return (0);
1984 1.1 eeh }
1985 1.1 eeh
1986 1.1 eeh
1987 1.1 eeh int
1988 1.68 jdc gem_eint(struct gem_softc *sc, u_int status)
1989 1.1 eeh {
1990 1.1 eeh char bits[128];
1991 1.68 jdc u_int32_t v;
1992 1.1 eeh
1993 1.1 eeh if ((status & GEM_INTR_MIF) != 0) {
1994 1.1 eeh printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1995 1.1 eeh return (1);
1996 1.1 eeh }
1997 1.1 eeh
1998 1.68 jdc if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
1999 1.68 jdc gem_reset_rxdma(sc);
2000 1.68 jdc return (1);
2001 1.68 jdc }
2002 1.68 jdc
2003 1.68 jdc if (status & GEM_INTR_BERR) {
2004 1.68 jdc bus_space_read_4(sc->sc_bustag, sc->sc_h2, GEM_ERROR_STATUS);
2005 1.68 jdc v = bus_space_read_4(sc->sc_bustag, sc->sc_h2,
2006 1.68 jdc GEM_ERROR_STATUS);
2007 1.68 jdc printf("%s: bus error interrupt: 0x%02x\n",
2008 1.68 jdc sc->sc_dev.dv_xname, v);
2009 1.68 jdc return (1);
2010 1.68 jdc }
2011 1.68 jdc
2012 1.1 eeh printf("%s: status=%s\n", sc->sc_dev.dv_xname,
2013 1.1 eeh bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
2014 1.1 eeh return (1);
2015 1.1 eeh }
2016 1.1 eeh
2017 1.1 eeh
2018 1.68 jdc /*
2019 1.68 jdc * PCS interrupts.
2020 1.68 jdc * We should receive these when the link status changes, but sometimes
2021 1.68 jdc * we don't receive them for link up. We compensate for this in the
2022 1.68 jdc * gem_tick() callout.
2023 1.68 jdc */
2024 1.68 jdc int
2025 1.68 jdc gem_pint(struct gem_softc *sc)
2026 1.68 jdc {
2027 1.68 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2028 1.68 jdc bus_space_tag_t t = sc->sc_bustag;
2029 1.68 jdc bus_space_handle_t h = sc->sc_h1;
2030 1.68 jdc u_int32_t v, v2;
2031 1.68 jdc
2032 1.68 jdc /*
2033 1.68 jdc * Clear the PCS interrupt from GEM_STATUS. The PCS register is
2034 1.68 jdc * latched, so we have to read it twice. There is only one bit in
2035 1.68 jdc * use, so the value is meaningless.
2036 1.68 jdc */
2037 1.68 jdc bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2038 1.68 jdc bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2039 1.68 jdc
2040 1.68 jdc if ((ifp->if_flags & IFF_UP) == 0)
2041 1.68 jdc return 1;
2042 1.68 jdc
2043 1.68 jdc if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2044 1.68 jdc return 1;
2045 1.68 jdc
2046 1.68 jdc v = bus_space_read_4(t, h, GEM_MII_STATUS);
2047 1.68 jdc /* If we see remote fault, our link partner is probably going away */
2048 1.68 jdc if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2049 1.68 jdc gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2050 1.68 jdc v = bus_space_read_4(t, h, GEM_MII_STATUS);
2051 1.68 jdc /* Otherwise, we may need to wait after auto-negotiation completes */
2052 1.68 jdc } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2053 1.68 jdc GEM_MII_STATUS_ANEG_CPT) {
2054 1.68 jdc gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2055 1.68 jdc v = bus_space_read_4(t, h, GEM_MII_STATUS);
2056 1.68 jdc }
2057 1.68 jdc if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2058 1.68 jdc if (sc->sc_flags & GEM_LINK) {
2059 1.68 jdc return 1;
2060 1.68 jdc }
2061 1.68 jdc callout_stop(&sc->sc_tick_ch);
2062 1.68 jdc v = bus_space_read_4(t, h, GEM_MII_ANAR);
2063 1.68 jdc v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2064 1.68 jdc sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2065 1.68 jdc sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2066 1.68 jdc v &= v2;
2067 1.68 jdc if (v & GEM_MII_ANEG_FUL_DUPLX) {
2068 1.68 jdc sc->sc_mii.mii_media_active |= IFM_FDX;
2069 1.68 jdc #ifdef GEM_DEBUG
2070 1.68 jdc aprint_debug("%s: link up: full duplex\n",
2071 1.68 jdc sc->sc_dev.dv_xname);
2072 1.68 jdc #endif
2073 1.68 jdc } else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2074 1.68 jdc sc->sc_mii.mii_media_active |= IFM_HDX;
2075 1.68 jdc #ifdef GEM_DEBUG
2076 1.68 jdc aprint_debug("%s: link up: half duplex\n",
2077 1.68 jdc sc->sc_dev.dv_xname);
2078 1.68 jdc #endif
2079 1.68 jdc } else {
2080 1.68 jdc #ifdef GEM_DEBUG
2081 1.68 jdc aprint_debug("%s: duplex mismatch\n",
2082 1.68 jdc sc->sc_dev.dv_xname);
2083 1.68 jdc #endif
2084 1.68 jdc }
2085 1.68 jdc gem_statuschange(sc);
2086 1.68 jdc } else {
2087 1.68 jdc if ((sc->sc_flags & GEM_LINK) == 0) {
2088 1.68 jdc return 1;
2089 1.68 jdc }
2090 1.68 jdc sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2091 1.68 jdc sc->sc_mii.mii_media_status = IFM_AVALID;
2092 1.68 jdc #ifdef GEM_DEBUG
2093 1.68 jdc aprint_debug("%s: link down\n",
2094 1.68 jdc sc->sc_dev.dv_xname);
2095 1.68 jdc #endif
2096 1.68 jdc gem_statuschange(sc);
2097 1.68 jdc
2098 1.68 jdc /* Start the 10 second timer */
2099 1.68 jdc callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2100 1.68 jdc }
2101 1.68 jdc return 1;
2102 1.68 jdc }
2103 1.68 jdc
2104 1.68 jdc
2105 1.68 jdc
2106 1.1 eeh int
2107 1.1 eeh gem_intr(v)
2108 1.1 eeh void *v;
2109 1.1 eeh {
2110 1.1 eeh struct gem_softc *sc = (struct gem_softc *)v;
2111 1.41 christos struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2112 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
2113 1.68 jdc bus_space_handle_t h = sc->sc_h1;
2114 1.1 eeh u_int32_t status;
2115 1.1 eeh int r = 0;
2116 1.3 eeh #ifdef GEM_DEBUG
2117 1.1 eeh char bits[128];
2118 1.3 eeh #endif
2119 1.1 eeh
2120 1.68 jdc /* XXX We should probably mask out interrupts until we're done */
2121 1.68 jdc
2122 1.19 matt sc->sc_ev_intr.ev_count++;
2123 1.19 matt
2124 1.68 jdc status = bus_space_read_4(t, h, GEM_STATUS);
2125 1.28 chs DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2126 1.28 chs sc->sc_dev.dv_xname, (status >> 19),
2127 1.1 eeh bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
2128 1.1 eeh
2129 1.1 eeh if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2130 1.1 eeh r |= gem_eint(sc, status);
2131 1.1 eeh
2132 1.68 jdc /* We don't bother with GEM_INTR_TX_DONE */
2133 1.18 matt if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2134 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_txint);
2135 1.1 eeh r |= gem_tint(sc);
2136 1.18 matt }
2137 1.1 eeh
2138 1.18 matt if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2139 1.19 matt GEM_COUNTER_INCR(sc, sc_ev_rxint);
2140 1.1 eeh r |= gem_rint(sc);
2141 1.18 matt }
2142 1.1 eeh
2143 1.1 eeh /* We should eventually do more than just print out error stats. */
2144 1.1 eeh if (status & GEM_INTR_TX_MAC) {
2145 1.68 jdc int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2146 1.1 eeh if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2147 1.14 matt printf("%s: MAC tx fault, status %x\n",
2148 1.14 matt sc->sc_dev.dv_xname, txstat);
2149 1.41 christos if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2150 1.41 christos gem_init(ifp);
2151 1.1 eeh }
2152 1.1 eeh if (status & GEM_INTR_RX_MAC) {
2153 1.68 jdc int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2154 1.41 christos /*
2155 1.68 jdc * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2156 1.68 jdc * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2157 1.68 jdc * silicon bug so handle them silently. Moreover, it's
2158 1.68 jdc * likely that the receiver has hung so we reset it.
2159 1.41 christos */
2160 1.68 jdc if (rxstat & GEM_MAC_RX_OVERFLOW) {
2161 1.68 jdc ifp->if_ierrors++;
2162 1.68 jdc gem_reset_rxdma(sc);
2163 1.68 jdc } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2164 1.73 jdc printf("%s: MAC rx fault, status 0x%02x\n",
2165 1.41 christos sc->sc_dev.dv_xname, rxstat);
2166 1.1 eeh }
2167 1.68 jdc if (status & GEM_INTR_PCS) {
2168 1.68 jdc r |= gem_pint(sc);
2169 1.68 jdc }
2170 1.68 jdc
2171 1.68 jdc /* Do we need to do anything with these?
2172 1.68 jdc if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2173 1.68 jdc status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2174 1.68 jdc if ((status2 & GEM_MAC_PAUSED) != 0)
2175 1.68 jdc aprintf_debug("%s: PAUSE received (%d slots)\n",
2176 1.68 jdc GEM_MAC_PAUSE_TIME(status2), sc->sc_dev.dv_xname);
2177 1.68 jdc if ((status2 & GEM_MAC_PAUSE) != 0)
2178 1.68 jdc aprintf_debug("%s: transited to PAUSE state\n",
2179 1.68 jdc sc->sc_dev.dv_xname);
2180 1.68 jdc if ((status2 & GEM_MAC_RESUME) != 0)
2181 1.68 jdc aprintf_debug("%s: transited to non-PAUSE state\n",
2182 1.68 jdc sc->sc_dev.dv_xname);
2183 1.68 jdc }
2184 1.68 jdc if ((status & GEM_INTR_MIF) != 0)
2185 1.68 jdc aprintf_debug("%s: MIF interrupt\n", sc->sc_dev.dv_xname);
2186 1.68 jdc */
2187 1.45 heas #if NRND > 0
2188 1.45 heas rnd_add_uint32(&sc->rnd_source, status);
2189 1.45 heas #endif
2190 1.1 eeh return (r);
2191 1.1 eeh }
2192 1.1 eeh
2193 1.1 eeh
2194 1.1 eeh void
2195 1.1 eeh gem_watchdog(ifp)
2196 1.1 eeh struct ifnet *ifp;
2197 1.1 eeh {
2198 1.1 eeh struct gem_softc *sc = ifp->if_softc;
2199 1.1 eeh
2200 1.1 eeh DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2201 1.1 eeh "GEM_MAC_RX_CONFIG %x\n",
2202 1.50 martin bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2203 1.50 martin bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2204 1.50 martin bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2205 1.1 eeh
2206 1.1 eeh log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
2207 1.1 eeh ++ifp->if_oerrors;
2208 1.1 eeh
2209 1.1 eeh /* Try to get more packets going. */
2210 1.1 eeh gem_start(ifp);
2211 1.1 eeh }
2212 1.1 eeh
2213 1.1 eeh /*
2214 1.1 eeh * Initialize the MII Management Interface
2215 1.1 eeh */
2216 1.1 eeh void
2217 1.1 eeh gem_mifinit(sc)
2218 1.1 eeh struct gem_softc *sc;
2219 1.1 eeh {
2220 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
2221 1.50 martin bus_space_handle_t mif = sc->sc_h1;
2222 1.1 eeh
2223 1.1 eeh /* Configure the MIF in frame mode */
2224 1.1 eeh sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2225 1.1 eeh sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2226 1.1 eeh bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2227 1.1 eeh }
2228 1.1 eeh
2229 1.1 eeh /*
2230 1.1 eeh * MII interface
2231 1.1 eeh *
2232 1.1 eeh * The GEM MII interface supports at least three different operating modes:
2233 1.1 eeh *
2234 1.1 eeh * Bitbang mode is implemented using data, clock and output enable registers.
2235 1.1 eeh *
2236 1.1 eeh * Frame mode is implemented by loading a complete frame into the frame
2237 1.1 eeh * register and polling the valid bit for completion.
2238 1.1 eeh *
2239 1.1 eeh * Polling mode uses the frame register but completion is indicated by
2240 1.1 eeh * an interrupt.
2241 1.1 eeh *
2242 1.1 eeh */
2243 1.1 eeh static int
2244 1.1 eeh gem_mii_readreg(self, phy, reg)
2245 1.1 eeh struct device *self;
2246 1.1 eeh int phy, reg;
2247 1.1 eeh {
2248 1.1 eeh struct gem_softc *sc = (void *)self;
2249 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
2250 1.50 martin bus_space_handle_t mif = sc->sc_h1;
2251 1.1 eeh int n;
2252 1.1 eeh u_int32_t v;
2253 1.1 eeh
2254 1.1 eeh #ifdef GEM_DEBUG1
2255 1.1 eeh if (sc->sc_debug)
2256 1.68 jdc printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2257 1.1 eeh #endif
2258 1.1 eeh
2259 1.1 eeh /* Construct the frame command */
2260 1.1 eeh v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
2261 1.1 eeh GEM_MIF_FRAME_READ;
2262 1.1 eeh
2263 1.1 eeh bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2264 1.1 eeh for (n = 0; n < 100; n++) {
2265 1.1 eeh DELAY(1);
2266 1.1 eeh v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2267 1.1 eeh if (v & GEM_MIF_FRAME_TA0)
2268 1.1 eeh return (v & GEM_MIF_FRAME_DATA);
2269 1.1 eeh }
2270 1.1 eeh
2271 1.1 eeh printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
2272 1.1 eeh return (0);
2273 1.1 eeh }
2274 1.1 eeh
2275 1.1 eeh static void
2276 1.1 eeh gem_mii_writereg(self, phy, reg, val)
2277 1.1 eeh struct device *self;
2278 1.1 eeh int phy, reg, val;
2279 1.1 eeh {
2280 1.1 eeh struct gem_softc *sc = (void *)self;
2281 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
2282 1.50 martin bus_space_handle_t mif = sc->sc_h1;
2283 1.1 eeh int n;
2284 1.1 eeh u_int32_t v;
2285 1.1 eeh
2286 1.1 eeh #ifdef GEM_DEBUG1
2287 1.1 eeh if (sc->sc_debug)
2288 1.68 jdc printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2289 1.1 eeh phy, reg, val);
2290 1.1 eeh #endif
2291 1.1 eeh
2292 1.1 eeh /* Construct the frame command */
2293 1.1 eeh v = GEM_MIF_FRAME_WRITE |
2294 1.1 eeh (phy << GEM_MIF_PHY_SHIFT) |
2295 1.1 eeh (reg << GEM_MIF_REG_SHIFT) |
2296 1.1 eeh (val & GEM_MIF_FRAME_DATA);
2297 1.1 eeh
2298 1.1 eeh bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2299 1.1 eeh for (n = 0; n < 100; n++) {
2300 1.1 eeh DELAY(1);
2301 1.1 eeh v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2302 1.1 eeh if (v & GEM_MIF_FRAME_TA0)
2303 1.1 eeh return;
2304 1.1 eeh }
2305 1.1 eeh
2306 1.1 eeh printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
2307 1.1 eeh }
2308 1.1 eeh
2309 1.1 eeh static void
2310 1.1 eeh gem_mii_statchg(dev)
2311 1.1 eeh struct device *dev;
2312 1.1 eeh {
2313 1.1 eeh struct gem_softc *sc = (void *)dev;
2314 1.3 eeh #ifdef GEM_DEBUG
2315 1.1 eeh int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2316 1.3 eeh #endif
2317 1.1 eeh
2318 1.1 eeh #ifdef GEM_DEBUG
2319 1.1 eeh if (sc->sc_debug)
2320 1.31 heas printf("gem_mii_statchg: status change: phy = %d\n",
2321 1.28 chs sc->sc_phys[instance]);
2322 1.1 eeh #endif
2323 1.68 jdc gem_statuschange(sc);
2324 1.68 jdc }
2325 1.1 eeh
2326 1.68 jdc /*
2327 1.68 jdc * Common status change for gem_mii_statchg() and gem_pint()
2328 1.68 jdc */
2329 1.68 jdc void
2330 1.68 jdc gem_statuschange(struct gem_softc* sc)
2331 1.68 jdc {
2332 1.68 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2333 1.68 jdc bus_space_tag_t t = sc->sc_bustag;
2334 1.68 jdc bus_space_handle_t mac = sc->sc_h1;
2335 1.68 jdc int gigabit;
2336 1.68 jdc u_int32_t rxcfg, txcfg, v;
2337 1.68 jdc
2338 1.68 jdc if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2339 1.68 jdc IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2340 1.68 jdc sc->sc_flags |= GEM_LINK;
2341 1.68 jdc else
2342 1.68 jdc sc->sc_flags &= ~GEM_LINK;
2343 1.68 jdc
2344 1.70 jdc if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2345 1.68 jdc gigabit = 1;
2346 1.70 jdc else
2347 1.68 jdc gigabit = 0;
2348 1.1 eeh
2349 1.68 jdc /*
2350 1.68 jdc * The configuration done here corresponds to the steps F) and
2351 1.68 jdc * G) and as far as enabling of RX and TX MAC goes also step H)
2352 1.68 jdc * of the initialization sequence outlined in section 3.2.1 of
2353 1.68 jdc * the GEM Gigabit Ethernet ASIC Specification.
2354 1.68 jdc */
2355 1.68 jdc
2356 1.68 jdc rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2357 1.68 jdc rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2358 1.68 jdc txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2359 1.68 jdc if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2360 1.68 jdc txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2361 1.68 jdc else if (gigabit) {
2362 1.68 jdc rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2363 1.68 jdc txcfg |= GEM_MAC_RX_CARR_EXTEND;
2364 1.68 jdc }
2365 1.1 eeh bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2366 1.68 jdc bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2367 1.68 jdc BUS_SPACE_BARRIER_WRITE);
2368 1.68 jdc if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2369 1.68 jdc aprint_normal("%s: cannot disable TX MAC\n",
2370 1.68 jdc sc->sc_dev.dv_xname);
2371 1.68 jdc bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2372 1.68 jdc bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2373 1.68 jdc bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2374 1.68 jdc BUS_SPACE_BARRIER_WRITE);
2375 1.68 jdc if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2376 1.68 jdc aprint_normal("%s: cannot disable RX MAC\n",
2377 1.68 jdc sc->sc_dev.dv_xname);
2378 1.68 jdc bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2379 1.68 jdc
2380 1.68 jdc v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2381 1.68 jdc ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2382 1.68 jdc bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2383 1.68 jdc
2384 1.68 jdc if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2385 1.68 jdc gigabit != 0)
2386 1.68 jdc bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2387 1.68 jdc GEM_MAC_SLOT_TIME_CARR_EXTEND);
2388 1.68 jdc else
2389 1.68 jdc bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2390 1.68 jdc GEM_MAC_SLOT_TIME_NORMAL);
2391 1.1 eeh
2392 1.1 eeh /* XIF Configuration */
2393 1.68 jdc if (sc->sc_flags & GEM_LINK)
2394 1.68 jdc v = GEM_MAC_XIF_LINK_LED;
2395 1.68 jdc else
2396 1.68 jdc v = 0;
2397 1.1 eeh v |= GEM_MAC_XIF_TX_MII_ENA;
2398 1.70 jdc
2399 1.70 jdc /* If an external transceiver is connected, enable its MII drivers */
2400 1.70 jdc sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2401 1.70 jdc if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2402 1.70 jdc if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2403 1.70 jdc /* External MII needs echo disable if half duplex. */
2404 1.70 jdc if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) &
2405 1.70 jdc IFM_FDX) != 0)
2406 1.70 jdc /* turn on full duplex LED */
2407 1.70 jdc v |= GEM_MAC_XIF_FDPLX_LED;
2408 1.70 jdc else
2409 1.70 jdc /* half duplex -- disable echo */
2410 1.70 jdc v |= GEM_MAC_XIF_ECHO_DISABL;
2411 1.70 jdc if (gigabit)
2412 1.70 jdc v |= GEM_MAC_XIF_GMII_MODE;
2413 1.70 jdc else
2414 1.70 jdc v &= ~GEM_MAC_XIF_GMII_MODE;
2415 1.70 jdc } else
2416 1.70 jdc /* Internal MII needs buf enable */
2417 1.70 jdc v |= GEM_MAC_XIF_MII_BUF_ENA;
2418 1.68 jdc } else {
2419 1.70 jdc if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2420 1.70 jdc v |= GEM_MAC_XIF_FDPLX_LED;
2421 1.70 jdc v |= GEM_MAC_XIF_GMII_MODE;
2422 1.68 jdc }
2423 1.70 jdc bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2424 1.70 jdc
2425 1.68 jdc if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2426 1.68 jdc (sc->sc_flags & GEM_LINK) != 0) {
2427 1.68 jdc bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2428 1.68 jdc txcfg | GEM_MAC_TX_ENABLE);
2429 1.68 jdc bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2430 1.68 jdc rxcfg | GEM_MAC_RX_ENABLE);
2431 1.68 jdc }
2432 1.1 eeh }
2433 1.1 eeh
2434 1.1 eeh int
2435 1.69 dyoung gem_ser_mediachange(struct ifnet *ifp)
2436 1.1 eeh {
2437 1.1 eeh struct gem_softc *sc = ifp->if_softc;
2438 1.68 jdc u_int s, t;
2439 1.1 eeh
2440 1.69 dyoung if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2441 1.68 jdc return EINVAL;
2442 1.1 eeh
2443 1.69 dyoung s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2444 1.69 dyoung if (s == IFM_AUTO) {
2445 1.69 dyoung if (sc->sc_mii_media != s) {
2446 1.69 dyoung #ifdef GEM_DEBUG
2447 1.69 dyoung aprint_debug("%s: setting media to auto\n",
2448 1.69 dyoung sc->sc_dev.dv_xname);
2449 1.69 dyoung #endif
2450 1.69 dyoung sc->sc_mii_media = s;
2451 1.69 dyoung if (ifp->if_flags & IFF_UP) {
2452 1.69 dyoung gem_pcs_stop(sc, 0);
2453 1.69 dyoung gem_pcs_start(sc);
2454 1.69 dyoung }
2455 1.69 dyoung }
2456 1.69 dyoung return 0;
2457 1.69 dyoung }
2458 1.69 dyoung if (s == IFM_1000_SX) {
2459 1.69 dyoung t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2460 1.69 dyoung if (t == IFM_FDX || t == IFM_HDX) {
2461 1.69 dyoung if (sc->sc_mii_media != t) {
2462 1.69 dyoung sc->sc_mii_media = t;
2463 1.68 jdc #ifdef GEM_DEBUG
2464 1.69 dyoung aprint_debug("%s:"
2465 1.69 dyoung " setting media to 1000baseSX-%s\n",
2466 1.69 dyoung sc->sc_dev.dv_xname,
2467 1.69 dyoung t == IFM_FDX ? "FDX" : "HDX");
2468 1.68 jdc #endif
2469 1.68 jdc if (ifp->if_flags & IFF_UP) {
2470 1.68 jdc gem_pcs_stop(sc, 0);
2471 1.68 jdc gem_pcs_start(sc);
2472 1.68 jdc }
2473 1.68 jdc }
2474 1.68 jdc return 0;
2475 1.68 jdc }
2476 1.69 dyoung }
2477 1.69 dyoung return EINVAL;
2478 1.1 eeh }
2479 1.1 eeh
2480 1.1 eeh void
2481 1.69 dyoung gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2482 1.1 eeh {
2483 1.1 eeh struct gem_softc *sc = ifp->if_softc;
2484 1.1 eeh
2485 1.1 eeh if ((ifp->if_flags & IFF_UP) == 0)
2486 1.1 eeh return;
2487 1.1 eeh ifmr->ifm_active = sc->sc_mii.mii_media_active;
2488 1.1 eeh ifmr->ifm_status = sc->sc_mii.mii_media_status;
2489 1.1 eeh }
2490 1.1 eeh
2491 1.1 eeh /*
2492 1.1 eeh * Process an ioctl request.
2493 1.1 eeh */
2494 1.1 eeh int
2495 1.1 eeh gem_ioctl(ifp, cmd, data)
2496 1.1 eeh struct ifnet *ifp;
2497 1.1 eeh u_long cmd;
2498 1.53 christos void *data;
2499 1.1 eeh {
2500 1.1 eeh struct gem_softc *sc = ifp->if_softc;
2501 1.1 eeh int s, error = 0;
2502 1.1 eeh
2503 1.20 matt s = splnet();
2504 1.1 eeh
2505 1.1 eeh switch (cmd) {
2506 1.41 christos case SIOCSIFFLAGS:
2507 1.41 christos #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
2508 1.41 christos if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
2509 1.41 christos == (IFF_UP|IFF_RUNNING))
2510 1.41 christos && ((ifp->if_flags & (~RESETIGN))
2511 1.41 christos == (sc->sc_if_flags & (~RESETIGN)))) {
2512 1.41 christos gem_setladrf(sc);
2513 1.41 christos break;
2514 1.41 christos }
2515 1.41 christos #undef RESETIGN
2516 1.41 christos /*FALLTHROUGH*/
2517 1.1 eeh default:
2518 1.74 dyoung if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
2519 1.74 dyoung break;
2520 1.74 dyoung
2521 1.74 dyoung error = 0;
2522 1.74 dyoung
2523 1.74 dyoung if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2524 1.74 dyoung ;
2525 1.74 dyoung else if (ifp->if_flags & IFF_RUNNING) {
2526 1.1 eeh /*
2527 1.1 eeh * Multicast list has changed; set the hardware filter
2528 1.1 eeh * accordingly.
2529 1.1 eeh */
2530 1.74 dyoung gem_setladrf(sc);
2531 1.1 eeh }
2532 1.1 eeh break;
2533 1.1 eeh }
2534 1.1 eeh
2535 1.1 eeh /* Try to get things going again */
2536 1.43 christos if (ifp->if_flags & IFF_UP)
2537 1.1 eeh gem_start(ifp);
2538 1.1 eeh splx(s);
2539 1.1 eeh return (error);
2540 1.1 eeh }
2541 1.1 eeh
2542 1.1 eeh
2543 1.1 eeh void
2544 1.1 eeh gem_shutdown(arg)
2545 1.1 eeh void *arg;
2546 1.1 eeh {
2547 1.1 eeh struct gem_softc *sc = (struct gem_softc *)arg;
2548 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2549 1.1 eeh
2550 1.1 eeh gem_stop(ifp, 1);
2551 1.1 eeh }
2552 1.1 eeh
2553 1.1 eeh /*
2554 1.1 eeh * Set up the logical address filter.
2555 1.1 eeh */
2556 1.1 eeh void
2557 1.1 eeh gem_setladrf(sc)
2558 1.1 eeh struct gem_softc *sc;
2559 1.1 eeh {
2560 1.15 matt struct ethercom *ec = &sc->sc_ethercom;
2561 1.15 matt struct ifnet *ifp = &ec->ec_if;
2562 1.1 eeh struct ether_multi *enm;
2563 1.1 eeh struct ether_multistep step;
2564 1.1 eeh bus_space_tag_t t = sc->sc_bustag;
2565 1.50 martin bus_space_handle_t h = sc->sc_h1;
2566 1.1 eeh u_int32_t crc;
2567 1.1 eeh u_int32_t hash[16];
2568 1.1 eeh u_int32_t v;
2569 1.15 matt int i;
2570 1.1 eeh
2571 1.1 eeh /* Get current RX configuration */
2572 1.1 eeh v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2573 1.1 eeh
2574 1.15 matt /*
2575 1.15 matt * Turn off promiscuous mode, promiscuous group mode (all multicast),
2576 1.15 matt * and hash filter. Depending on the case, the right bit will be
2577 1.15 matt * enabled.
2578 1.15 matt */
2579 1.15 matt v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2580 1.15 matt GEM_MAC_RX_PROMISC_GRP);
2581 1.15 matt
2582 1.1 eeh if ((ifp->if_flags & IFF_PROMISC) != 0) {
2583 1.15 matt /* Turn on promiscuous mode */
2584 1.1 eeh v |= GEM_MAC_RX_PROMISCUOUS;
2585 1.1 eeh ifp->if_flags |= IFF_ALLMULTI;
2586 1.1 eeh goto chipit;
2587 1.1 eeh }
2588 1.1 eeh
2589 1.1 eeh /*
2590 1.1 eeh * Set up multicast address filter by passing all multicast addresses
2591 1.15 matt * through a crc generator, and then using the high order 8 bits as an
2592 1.15 matt * index into the 256 bit logical address filter. The high order 4
2593 1.41 christos * bits selects the word, while the other 4 bits select the bit within
2594 1.15 matt * the word (where bit 0 is the MSB).
2595 1.1 eeh */
2596 1.1 eeh
2597 1.15 matt /* Clear hash table */
2598 1.15 matt memset(hash, 0, sizeof(hash));
2599 1.15 matt
2600 1.1 eeh ETHER_FIRST_MULTI(step, ec, enm);
2601 1.1 eeh while (enm != NULL) {
2602 1.6 thorpej if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2603 1.1 eeh /*
2604 1.1 eeh * We must listen to a range of multicast addresses.
2605 1.1 eeh * For now, just accept all multicasts, rather than
2606 1.1 eeh * trying to set only those filter bits needed to match
2607 1.1 eeh * the range. (At this time, the only use of address
2608 1.1 eeh * ranges is for IP multicast routing, for which the
2609 1.1 eeh * range is big enough to require all bits set.)
2610 1.68 jdc * XXX should use the address filters for this
2611 1.1 eeh */
2612 1.1 eeh ifp->if_flags |= IFF_ALLMULTI;
2613 1.15 matt v |= GEM_MAC_RX_PROMISC_GRP;
2614 1.1 eeh goto chipit;
2615 1.1 eeh }
2616 1.1 eeh
2617 1.15 matt /* Get the LE CRC32 of the address */
2618 1.15 matt crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2619 1.1 eeh
2620 1.1 eeh /* Just want the 8 most significant bits. */
2621 1.1 eeh crc >>= 24;
2622 1.1 eeh
2623 1.1 eeh /* Set the corresponding bit in the filter. */
2624 1.15 matt hash[crc >> 4] |= 1 << (15 - (crc & 15));
2625 1.1 eeh
2626 1.1 eeh ETHER_NEXT_MULTI(step, enm);
2627 1.1 eeh }
2628 1.1 eeh
2629 1.15 matt v |= GEM_MAC_RX_HASH_FILTER;
2630 1.1 eeh ifp->if_flags &= ~IFF_ALLMULTI;
2631 1.1 eeh
2632 1.15 matt /* Now load the hash table into the chip (if we are using it) */
2633 1.15 matt for (i = 0; i < 16; i++) {
2634 1.15 matt bus_space_write_4(t, h,
2635 1.15 matt GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2636 1.15 matt hash[i]);
2637 1.15 matt }
2638 1.15 matt
2639 1.1 eeh chipit:
2640 1.41 christos sc->sc_if_flags = ifp->if_flags;
2641 1.1 eeh bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2642 1.1 eeh }
2643 1.1 eeh
2644 1.1 eeh #if notyet
2645 1.1 eeh
2646 1.1 eeh /*
2647 1.1 eeh * gem_power:
2648 1.1 eeh *
2649 1.1 eeh * Power management (suspend/resume) hook.
2650 1.1 eeh */
2651 1.1 eeh void
2652 1.1 eeh gem_power(why, arg)
2653 1.1 eeh int why;
2654 1.1 eeh void *arg;
2655 1.1 eeh {
2656 1.1 eeh struct gem_softc *sc = arg;
2657 1.1 eeh struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2658 1.1 eeh int s;
2659 1.1 eeh
2660 1.1 eeh s = splnet();
2661 1.1 eeh switch (why) {
2662 1.1 eeh case PWR_SUSPEND:
2663 1.1 eeh case PWR_STANDBY:
2664 1.1 eeh gem_stop(ifp, 1);
2665 1.1 eeh if (sc->sc_power != NULL)
2666 1.1 eeh (*sc->sc_power)(sc, why);
2667 1.1 eeh break;
2668 1.1 eeh case PWR_RESUME:
2669 1.1 eeh if (ifp->if_flags & IFF_UP) {
2670 1.1 eeh if (sc->sc_power != NULL)
2671 1.1 eeh (*sc->sc_power)(sc, why);
2672 1.1 eeh gem_init(ifp);
2673 1.1 eeh }
2674 1.1 eeh break;
2675 1.1 eeh case PWR_SOFTSUSPEND:
2676 1.1 eeh case PWR_SOFTSTANDBY:
2677 1.1 eeh case PWR_SOFTRESUME:
2678 1.1 eeh break;
2679 1.1 eeh }
2680 1.1 eeh splx(s);
2681 1.1 eeh }
2682 1.1 eeh #endif
2683