gem.c revision 1.1 1 /* $NetBSD: gem.c,v 1.1 2001/09/16 00:11:43 eeh Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * All rights reserved.
7 *
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32 /*
33 * Driver for Sun GEM ethernet controllers.
34 */
35
36 #define GEM_DEBUG
37 int gem_opdebug = 0;
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/syslog.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52
53 #include <machine/endian.h>
54
55 #include <uvm/uvm_extern.h>
56
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <machine/bus.h>
67 #include <machine/intr.h>
68
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71 #include <dev/mii/mii_bitbang.h>
72
73 #include <dev/ic/gemreg.h>
74 #include <dev/ic/gemvar.h>
75
76 #define TRIES 10000
77
78 void gem_start __P((struct ifnet *));
79 void gem_stop __P((struct ifnet *, int));
80 int gem_ioctl __P((struct ifnet *, u_long, caddr_t));
81 void gem_tick __P((void *));
82 void gem_watchdog __P((struct ifnet *));
83 void gem_shutdown __P((void *));
84 int gem_init __P((struct ifnet *));
85 void gem_init_regs(struct gem_softc *sc);
86 static int gem_ringsize(int sz);
87 int gem_meminit __P((struct gem_softc *));
88 void gem_mifinit __P((struct gem_softc *));
89 void gem_reset __P((struct gem_softc *));
90 int gem_reset_rx(struct gem_softc *sc);
91 int gem_reset_tx(struct gem_softc *sc);
92 int gem_disable_rx(struct gem_softc *sc);
93 int gem_disable_tx(struct gem_softc *sc);
94 void gem_rxdrain(struct gem_softc *sc);
95 int gem_add_rxbuf(struct gem_softc *sc, int idx);
96 void gem_setladrf __P((struct gem_softc *));
97
98 /* MII methods & callbacks */
99 static int gem_mii_readreg __P((struct device *, int, int));
100 static void gem_mii_writereg __P((struct device *, int, int, int));
101 static void gem_mii_statchg __P((struct device *));
102
103 int gem_mediachange __P((struct ifnet *));
104 void gem_mediastatus __P((struct ifnet *, struct ifmediareq *));
105
106 struct mbuf *gem_get __P((struct gem_softc *, int, int));
107 int gem_put __P((struct gem_softc *, int, struct mbuf *));
108 void gem_read __P((struct gem_softc *, int, int));
109 int gem_eint __P((struct gem_softc *, u_int));
110 int gem_rint __P((struct gem_softc *));
111 int gem_tint __P((struct gem_softc *));
112 void gem_power __P((int, void *));
113
114 static int ether_cmp __P((u_char *, u_char *));
115
116 /* Default buffer copy routines */
117 void gem_copytobuf_contig __P((struct gem_softc *, void *, int, int));
118 void gem_copyfrombuf_contig __P((struct gem_softc *, void *, int, int));
119 void gem_zerobuf_contig __P((struct gem_softc *, int, int));
120
121
122 #ifdef GEM_DEBUG
123 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
124 printf x
125 #else
126 #define DPRINTF(sc, x) /* nothing */
127 #endif
128
129
130 /*
131 * gem_config:
132 *
133 * Attach a Gem interface to the system.
134 */
135 void
136 gem_config(sc)
137 struct gem_softc *sc;
138 {
139 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
140 struct mii_data *mii = &sc->sc_mii;
141 struct mii_softc *child;
142 int i, error;
143
144 /* Make sure the chip is stopped. */
145 ifp->if_softc = sc;
146 gem_reset(sc);
147
148 /*
149 * Allocate the control data structures, and create and load the
150 * DMA map for it.
151 */
152 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
153 sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
154 1, &sc->sc_cdnseg, 0)) != 0) {
155 printf("%s: unable to allocate control data, error = %d\n",
156 sc->sc_dev.dv_xname, error);
157 goto fail_0;
158 }
159
160 /* XXX should map this in with correct endianness */
161 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
162 sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
163 BUS_DMA_COHERENT)) != 0) {
164 printf("%s: unable to map control data, error = %d\n",
165 sc->sc_dev.dv_xname, error);
166 goto fail_1;
167 }
168
169 if ((error = bus_dmamap_create(sc->sc_dmatag,
170 sizeof(struct gem_control_data), 1,
171 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
172 printf("%s: unable to create control data DMA map, "
173 "error = %d\n", sc->sc_dev.dv_xname, error);
174 goto fail_2;
175 }
176
177 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
178 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
179 0)) != 0) {
180 printf("%s: unable to load control data DMA map, error = %d\n",
181 sc->sc_dev.dv_xname, error);
182 goto fail_3;
183 }
184
185 /*
186 * Initialize the transmit job descriptors.
187 */
188 SIMPLEQ_INIT(&sc->sc_txfreeq);
189 SIMPLEQ_INIT(&sc->sc_txdirtyq);
190
191 /*
192 * Create the transmit buffer DMA maps.
193 */
194 for (i = 0; i < GEM_TXQUEUELEN; i++) {
195 struct gem_txsoft *txs;
196
197 txs = &sc->sc_txsoft[i];
198 txs->txs_mbuf = NULL;
199 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
200 GEM_NTXSEGS, MCLBYTES, 0, 0,
201 &txs->txs_dmamap)) != 0) {
202 printf("%s: unable to create tx DMA map %d, "
203 "error = %d\n", sc->sc_dev.dv_xname, i, error);
204 goto fail_4;
205 }
206 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
207 }
208
209 /*
210 * Create the receive buffer DMA maps.
211 */
212 for (i = 0; i < GEM_NRXDESC; i++) {
213 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
214 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
215 printf("%s: unable to create rx DMA map %d, "
216 "error = %d\n", sc->sc_dev.dv_xname, i, error);
217 goto fail_5;
218 }
219 sc->sc_rxsoft[i].rxs_mbuf = NULL;
220 }
221
222 /*
223 * From this point forward, the attachment cannot fail. A failure
224 * before this point releases all resources that may have been
225 * allocated.
226 */
227 sc->sc_flags |= GEMF_ATTACHED;
228
229 /* Announce ourselves. */
230 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
231 ether_sprintf(sc->sc_enaddr));
232
233 /* Initialize ifnet structure. */
234 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
235 ifp->if_softc = sc;
236 ifp->if_flags =
237 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
238 ifp->if_start = gem_start;
239 ifp->if_ioctl = gem_ioctl;
240 ifp->if_watchdog = gem_watchdog;
241 ifp->if_stop = gem_stop;
242 ifp->if_init = gem_init;
243 IFQ_SET_READY(&ifp->if_snd);
244
245 /* Initialize ifmedia structures and MII info */
246 mii->mii_ifp = ifp;
247 mii->mii_readreg = gem_mii_readreg;
248 mii->mii_writereg = gem_mii_writereg;
249 mii->mii_statchg = gem_mii_statchg;
250
251 ifmedia_init(&mii->mii_media, 0, gem_mediachange, gem_mediastatus);
252
253 gem_mifinit(sc);
254
255 mii_attach(&sc->sc_dev, mii, 0xffffffff,
256 MII_PHY_ANY, MII_OFFSET_ANY, 0);
257
258 child = LIST_FIRST(&mii->mii_phys);
259 if (child == NULL) {
260 /* No PHY attached */
261 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
262 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
263 } else {
264 /*
265 * Walk along the list of attached MII devices and
266 * establish an `MII instance' to `phy number'
267 * mapping. We'll use this mapping in media change
268 * requests to determine which phy to use to program
269 * the MIF configuration register.
270 */
271 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
272 /*
273 * Note: we support just two PHYs: the built-in
274 * internal device and an external on the MII
275 * connector.
276 */
277 if (child->mii_phy > 1 || child->mii_inst > 1) {
278 printf("%s: cannot accomodate MII device %s"
279 " at phy %d, instance %d\n",
280 sc->sc_dev.dv_xname,
281 child->mii_dev.dv_xname,
282 child->mii_phy, child->mii_inst);
283 continue;
284 }
285
286 sc->sc_phys[child->mii_inst] = child->mii_phy;
287 }
288
289 /*
290 * Now select and activate the PHY we will use.
291 *
292 * The order of preference is External (MDI1),
293 * Internal (MDI0), Serial Link (no MII).
294 */
295 if (sc->sc_phys[1]) {
296 #ifdef DEBUG
297 printf("using external phy\n");
298 #endif
299 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
300 } else {
301 #ifdef DEBUG
302 printf("using internal phy\n");
303 #endif
304 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
305 }
306 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
307 sc->sc_mif_config);
308
309 /*
310 * XXX - we can really do the following ONLY if the
311 * phy indeed has the auto negotiation capability!!
312 */
313 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
314 }
315
316 /* claim 802.1q capability */
317 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
318
319 /* Attach the interface. */
320 if_attach(ifp);
321 ether_ifattach(ifp, sc->sc_enaddr);
322
323 sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
324 if (sc->sc_sh == NULL)
325 panic("gem_config: can't establish shutdownhook");
326
327 #if NRND > 0
328 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
329 RND_TYPE_NET, 0);
330 #endif
331
332
333 #if notyet
334 /*
335 * Add a suspend hook to make sure we come back up after a
336 * resume.
337 */
338 sc->sc_powerhook = powerhook_establish(gem_power, sc);
339 if (sc->sc_powerhook == NULL)
340 printf("%s: WARNING: unable to establish power hook\n",
341 sc->sc_dev.dv_xname);
342 #endif
343
344 callout_init(&sc->sc_tick_ch);
345 return;
346
347 /*
348 * Free any resources we've allocated during the failed attach
349 * attempt. Do this in reverse order and fall through.
350 */
351 fail_5:
352 for (i = 0; i < GEM_NRXDESC; i++) {
353 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
354 bus_dmamap_destroy(sc->sc_dmatag,
355 sc->sc_rxsoft[i].rxs_dmamap);
356 }
357 fail_4:
358 for (i = 0; i < GEM_TXQUEUELEN; i++) {
359 if (sc->sc_txsoft[i].txs_dmamap != NULL)
360 bus_dmamap_destroy(sc->sc_dmatag,
361 sc->sc_txsoft[i].txs_dmamap);
362 }
363 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
364 fail_3:
365 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
366 fail_2:
367 bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
368 sizeof(struct gem_control_data));
369 fail_1:
370 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
371 fail_0:
372 return;
373 }
374
375
376 void
377 gem_tick(arg)
378 void *arg;
379 {
380 struct gem_softc *sc = arg;
381 int s;
382
383 s = splnet();
384 mii_tick(&sc->sc_mii);
385 splx(s);
386
387 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
388
389 }
390
391 void
392 gem_reset(sc)
393 struct gem_softc *sc;
394 {
395 bus_space_tag_t t = sc->sc_bustag;
396 bus_space_handle_t h = sc->sc_h;
397 int i;
398 int s;
399
400 s = splnet();
401 DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
402 gem_reset_rx(sc);
403 gem_reset_tx(sc);
404
405 /* Do a full reset */
406 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
407 for (i=TRIES; i--; delay(100))
408 if ((bus_space_read_4(t, h, GEM_RESET) &
409 (GEM_RESET_RX|GEM_RESET_TX)) == 0)
410 break;
411 if ((bus_space_read_4(t, h, GEM_RESET) &
412 (GEM_RESET_RX|GEM_RESET_TX)) != 0) {
413 printf("%s: cannot reset device\n",
414 sc->sc_dev.dv_xname);
415 }
416 splx(s);
417 }
418
419
420 /*
421 * gem_rxdrain:
422 *
423 * Drain the receive queue.
424 */
425 void
426 gem_rxdrain(struct gem_softc *sc)
427 {
428 struct gem_rxsoft *rxs;
429 int i;
430
431 for (i = 0; i < GEM_NRXDESC; i++) {
432 rxs = &sc->sc_rxsoft[i];
433 if (rxs->rxs_mbuf != NULL) {
434 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
435 m_freem(rxs->rxs_mbuf);
436 rxs->rxs_mbuf = NULL;
437 }
438 }
439 }
440
441 /*
442 * Reset the whole thing.
443 */
444 void
445 gem_stop(struct ifnet *ifp, int disable)
446 {
447 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
448 struct gem_txsoft *txs;
449
450 if (gem_opdebug) printf("in stop %d\n", disable);
451 DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
452
453 callout_stop(&sc->sc_tick_ch);
454 mii_down(&sc->sc_mii);
455
456 /* XXX - Should we reset these instead? */
457 gem_disable_rx(sc);
458 gem_disable_rx(sc);
459
460 /*
461 * Release any queued transmit buffers.
462 */
463 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
464 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
465 if (txs->txs_mbuf != NULL) {
466 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
467 m_freem(txs->txs_mbuf);
468 txs->txs_mbuf = NULL;
469 }
470 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
471 }
472
473 if (disable) {
474 gem_rxdrain(sc);
475 }
476
477 /*
478 * Mark the interface down and cancel the watchdog timer.
479 */
480 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
481 ifp->if_timer = 0;
482 }
483
484
485 /*
486 * Reset the receiver
487 */
488 int
489 gem_reset_rx(struct gem_softc *sc)
490 {
491 bus_space_tag_t t = sc->sc_bustag;
492 bus_space_handle_t h = sc->sc_h;
493 int i;
494
495
496 /*
497 * Resetting while DMA is in progress can cause a bus hang, so we
498 * disable DMA first.
499 */
500 gem_disable_rx(sc);
501 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
502 /* Wait till it finishes */
503 for (i=TRIES; i--; delay(100))
504 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
505 break;
506 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
507 printf("%s: cannot disable read dma\n",
508 sc->sc_dev.dv_xname);
509
510 /* Wait 5ms extra. */
511 delay(5000);
512
513 /* Finally, reset the ERX */
514 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
515 /* Wait till it finishes */
516 for (i=TRIES; i--; delay(100))
517 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
518 break;
519 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
520 printf("%s: cannot reset receiver\n",
521 sc->sc_dev.dv_xname);
522 return (1);
523 }
524 return (0);
525 }
526
527
528 /*
529 * Reset the transmitter
530 */
531 int
532 gem_reset_tx(struct gem_softc *sc)
533 {
534 bus_space_tag_t t = sc->sc_bustag;
535 bus_space_handle_t h = sc->sc_h;
536 int i;
537
538 /*
539 * Resetting while DMA is in progress can cause a bus hang, so we
540 * disable DMA first.
541 */
542 gem_disable_tx(sc);
543 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
544 /* Wait till it finishes */
545 for (i=TRIES; i--; delay(100))
546 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
547 break;
548 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
549 printf("%s: cannot disable read dma\n",
550 sc->sc_dev.dv_xname);
551
552 /* Wait 5ms extra. */
553 delay(5000);
554
555 /* Finally, reset the ETX */
556 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
557 /* Wait till it finishes */
558 for (i=TRIES; i--; delay(100))
559 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
560 break;
561 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
562 printf("%s: cannot reset receiver\n",
563 sc->sc_dev.dv_xname);
564 return (1);
565 }
566 return (0);
567 }
568
569 /*
570 * disable receiver.
571 */
572 int
573 gem_disable_rx(struct gem_softc *sc)
574 {
575 bus_space_tag_t t = sc->sc_bustag;
576 bus_space_handle_t h = sc->sc_h;
577 int i;
578 u_int32_t cfg;
579
580 /* Flip the enable bit */
581 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
582 cfg &= ~GEM_MAC_RX_ENABLE;
583 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
584
585 /* Wait for it to finish */
586 for (i=TRIES; i--; delay(100))
587 if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
588 GEM_MAC_RX_ENABLE) == 0)
589 return (0);
590 return (1);
591 }
592
593 /*
594 * disable transmitter.
595 */
596 int
597 gem_disable_tx(struct gem_softc *sc)
598 {
599 bus_space_tag_t t = sc->sc_bustag;
600 bus_space_handle_t h = sc->sc_h;
601 int i;
602 u_int32_t cfg;
603
604 /* Flip the enable bit */
605 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
606 cfg &= ~GEM_MAC_TX_ENABLE;
607 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
608
609 /* Wait for it to finish */
610 for (i=TRIES; i--; delay(100))
611 if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
612 GEM_MAC_TX_ENABLE) == 0)
613 return (0);
614 return (1);
615 }
616
617 /*
618 * Initialize interface.
619 */
620 int
621 gem_meminit(struct gem_softc *sc)
622 {
623 struct gem_rxsoft *rxs;
624 int i, error;
625
626 /*
627 * Initialize the transmit descriptor ring.
628 */
629 memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
630 for (i = 0; i < GEM_NTXDESC; i++) {
631 sc->sc_txdescs[i].gd_flags = 0;
632 sc->sc_txdescs[i].gd_addr = 0;
633 }
634 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
635 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
636 sc->sc_txfree = GEM_NTXDESC;
637 sc->sc_txnext = 0;
638
639 /*
640 * Initialize the receive descriptor and receive job
641 * descriptor rings.
642 */
643 for (i = 0; i < GEM_NRXDESC; i++) {
644 rxs = &sc->sc_rxsoft[i];
645 if (rxs->rxs_mbuf == NULL) {
646 if ((error = gem_add_rxbuf(sc, i)) != 0) {
647 printf("%s: unable to allocate or map rx "
648 "buffer %d, error = %d\n",
649 sc->sc_dev.dv_xname, i, error);
650 /*
651 * XXX Should attempt to run with fewer receive
652 * XXX buffers instead of just failing.
653 */
654 gem_rxdrain(sc);
655 return (1);
656 }
657 } else
658 GEM_INIT_RXDESC(sc, i);
659 }
660 sc->sc_rxptr = 0;
661
662 return (0);
663 }
664
665 static int
666 gem_ringsize(int sz)
667 {
668 int v;
669
670 switch (sz) {
671 case 32:
672 v = GEM_RING_SZ_32;
673 break;
674 case 64:
675 v = GEM_RING_SZ_64;
676 break;
677 case 128:
678 v = GEM_RING_SZ_128;
679 break;
680 case 256:
681 v = GEM_RING_SZ_256;
682 break;
683 case 512:
684 v = GEM_RING_SZ_512;
685 break;
686 case 1024:
687 v = GEM_RING_SZ_1024;
688 break;
689 case 2048:
690 v = GEM_RING_SZ_2048;
691 break;
692 case 4096:
693 v = GEM_RING_SZ_4096;
694 break;
695 case 8192:
696 v = GEM_RING_SZ_8192;
697 break;
698 default:
699 printf("gem: invalid Receive Descriptor ring size\n");
700 break;
701 }
702 return (v);
703 }
704
705 /*
706 * Initialization of interface; set up initialization block
707 * and transmit/receive descriptor rings.
708 */
709 int
710 gem_init(struct ifnet *ifp)
711 {
712 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
713 bus_space_tag_t t = sc->sc_bustag;
714 bus_space_handle_t h = sc->sc_h;
715 int s;
716 u_int32_t v;
717
718 s = splnet();
719
720 DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
721 /*
722 * Initialization sequence. The numbered steps below correspond
723 * to the sequence outlined in section 6.3.5.1 in the Ethernet
724 * Channel Engine manual (part of the PCIO manual).
725 * See also the STP2002-STQ document from Sun Microsystems.
726 */
727
728 /* step 1 & 2. Reset the Ethernet Channel */
729 gem_stop(ifp, 0);
730 if (gem_opdebug) printf("in init\n");
731 gem_reset(sc);
732 DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
733
734 /* Re-initialize the MIF */
735 gem_mifinit(sc);
736
737 /* Call MI reset function if any */
738 if (sc->sc_hwreset)
739 (*sc->sc_hwreset)(sc);
740
741 /* step 3. Setup data structures in host memory */
742 gem_meminit(sc);
743
744 /* step 4. TX MAC registers & counters */
745 gem_init_regs(sc);
746 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
747 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
748 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN + sizeof(struct ether_header):
749 ETHER_MAX_LEN + sizeof(struct ether_header)) | (0x2000<<16));
750
751 /* step 5. RX MAC registers & counters */
752 gem_setladrf(sc);
753
754 /* step 6 & 7. Program Descriptor Ring Base Addresses */
755 bus_space_write_8(t, h, GEM_TX_RING_PTR,
756 GEM_CDTXADDR(sc, 0));
757 /* Yeeech. The following has endianness issues. */
758 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
759 (((uint64_t)GEM_CDRXADDR(sc, 0))>>32));
760 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO,
761 GEM_CDRXADDR(sc, 0));
762
763 /* step 8. Global Configuration & Interrupt Mask */
764 bus_space_write_4(t, h, GEM_INTMASK,
765 ~(GEM_INTR_TX_INTME|
766 GEM_INTR_TX_EMPTY|
767 GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
768 GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
769 GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
770 GEM_INTR_BERR));
771 bus_space_write_4(t, h, GEM_MAC_RX_MASK, 0); /* XXXX */
772 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
773 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
774 #if 0
775 if (!sc->sc_pci) {
776 /* Config SBus */
777 switch (sc->sc_burst) {
778 default:
779 v = 0;
780 break;
781 case 16:
782 v = GEM_SEB_CFG_BURST16;
783 break;
784 case 32:
785 v = GEM_SEB_CFG_BURST32;
786 break;
787 case 64:
788 v = GEM_SEB_CFG_BURST64;
789 break;
790 }
791 bus_space_write_4(t, seb, GEM_SEBI_CFG,
792 v|GE_SIOCFG_PARITY|GE_SIOCFG_BMODE64);
793 }
794 #endif
795 /* step 9. ETX Configuration: use mostly default values */
796
797 /* Enable DMA */
798 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
799 bus_space_write_4(t, h, GEM_TX_CONFIG,
800 v|GEM_TX_CONFIG_TXDMA_EN|
801 ((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
802 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
803
804 /* step 10. ERX Configuration */
805
806 /* Encode Receive Descriptor ring size: four possible values */
807 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
808
809 /* Enable DMA */
810 bus_space_write_4(t, h, GEM_RX_CONFIG,
811 v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
812 (2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
813 (0<<GEM_RX_CONFIG_CXM_START_SHFT));
814 /*
815 * The following value is for an OFF Threshold of about 15.5 Kbytes
816 * and an ON Threshold of 4K bytes.
817 */
818 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH, 0xf8 | (0x40 << 12));
819 bus_space_write_4(t, h, GEM_RX_BLANKING, (2<<12)|6);
820
821 /* step 11. Configure Media */
822 gem_mii_statchg(&sc->sc_dev);
823
824 /* XXXX Serial link needs a whole different setup. */
825
826
827 /* step 12. RX_MAC Configuration Register */
828 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
829 v |= GEM_MAC_RX_ENABLE;
830 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
831
832 /* step 14. Issue Transmit Pending command */
833
834 /* Call MI initialization function if any */
835 if (sc->sc_hwinit)
836 (*sc->sc_hwinit)(sc);
837
838
839 /* step 15. Give the reciever a swift kick */
840 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
841
842 /* Start the one second timer. */
843 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
844
845 ifp->if_flags |= IFF_RUNNING;
846 ifp->if_flags &= ~IFF_OACTIVE;
847 ifp->if_timer = 0;
848 splx(s);
849
850 return (0);
851 }
852
853 /*
854 * Compare two Ether/802 addresses for equality, inlined and unrolled for
855 * speed.
856 */
857 static __inline__ int
858 ether_cmp(a, b)
859 u_char *a, *b;
860 {
861
862 if (a[5] != b[5] || a[4] != b[4] || a[3] != b[3] ||
863 a[2] != b[2] || a[1] != b[1] || a[0] != b[0])
864 return (0);
865 return (1);
866 }
867
868
869 void
870 gem_init_regs(struct gem_softc *sc)
871 {
872 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
873 bus_space_tag_t t = sc->sc_bustag;
874 bus_space_handle_t h = sc->sc_h;
875
876 /* These regs are not cleared on reset */
877 sc->sc_inited = 0;
878 if (!sc->sc_inited) {
879
880 /* Wooo. Magic values. */
881 bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
882 bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
883 bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
884
885 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
886 /* Max frame and max burst size */
887 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
888 (ifp->if_mtu+18) | (0x2000<<16)/* Burst size */);
889 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
890 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
891 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
892 /* Dunno.... */
893 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
894 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
895 ((sc->sc_enaddr[5]<<8)|sc->sc_enaddr[4])&0x3ff);
896 /* Secondary MAC addr set to 0:0:0:0:0:0 */
897 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
898 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
899 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
900 /* MAC control addr set to 0:1:c2:0:1:80 */
901 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
902 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
903 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
904
905 /* MAC filter addr set to 0:0:0:0:0:0 */
906 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
907 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
908 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
909
910 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
911 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
912
913 sc->sc_inited = 1;
914 }
915
916 /* Counters need to be zeroed */
917 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
918 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
919 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
920 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
921 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
922 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
923 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
924 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
925 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
926 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
927 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
928
929 /* Un-pause stuff */
930 #if 0
931 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
932 #else
933 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
934 #endif
935
936 /*
937 * Set the station address.
938 */
939 bus_space_write_4(t, h, GEM_MAC_ADDR0,
940 (sc->sc_enaddr[4]<<8) | sc->sc_enaddr[5]);
941 bus_space_write_4(t, h, GEM_MAC_ADDR1,
942 (sc->sc_enaddr[2]<<8) | sc->sc_enaddr[3]);
943 bus_space_write_4(t, h, GEM_MAC_ADDR2,
944 (sc->sc_enaddr[0]<<8) | sc->sc_enaddr[1]);
945
946 }
947
948
949
950 void
951 gem_start(ifp)
952 struct ifnet *ifp;
953 {
954 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
955 struct mbuf *m0, *m;
956 struct gem_txsoft *txs, *last_txs;
957 bus_dmamap_t dmamap;
958 int error, firsttx, nexttx, lasttx, ofree, seg;
959
960 if (gem_opdebug) printf("in start free %x next %x kick %x\n",
961 sc->sc_txfree, sc->sc_txnext,
962 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK));
963 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
964 return;
965
966 /*
967 * Remember the previous number of free descriptors and
968 * the first descriptor we'll use.
969 */
970 ofree = sc->sc_txfree;
971 firsttx = sc->sc_txnext;
972
973 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
974 sc->sc_dev.dv_xname, ofree, firsttx));
975
976 /*
977 * Loop through the send queue, setting up transmit descriptors
978 * until we drain the queue, or use up all available transmit
979 * descriptors.
980 */
981 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
982 sc->sc_txfree != 0) {
983 /*
984 * Grab a packet off the queue.
985 */
986 IFQ_POLL(&ifp->if_snd, m0);
987 if (m0 == NULL)
988 break;
989 m = NULL;
990
991 dmamap = txs->txs_dmamap;
992
993 /*
994 * Load the DMA map. If this fails, the packet either
995 * didn't fit in the alloted number of segments, or we were
996 * short on resources. In this case, we'll copy and try
997 * again.
998 */
999 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1000 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1001 MGETHDR(m, M_DONTWAIT, MT_DATA);
1002 if (m == NULL) {
1003 printf("%s: unable to allocate Tx mbuf\n",
1004 sc->sc_dev.dv_xname);
1005 break;
1006 }
1007 if (m0->m_pkthdr.len > MHLEN) {
1008 MCLGET(m, M_DONTWAIT);
1009 if ((m->m_flags & M_EXT) == 0) {
1010 printf("%s: unable to allocate Tx "
1011 "cluster\n", sc->sc_dev.dv_xname);
1012 m_freem(m);
1013 break;
1014 }
1015 }
1016 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1017 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1018 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1019 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1020 if (error) {
1021 printf("%s: unable to load Tx buffer, "
1022 "error = %d\n", sc->sc_dev.dv_xname, error);
1023 break;
1024 }
1025 }
1026
1027 /*
1028 * Ensure we have enough descriptors free to describe
1029 * the packet.
1030 */
1031 if (dmamap->dm_nsegs > sc->sc_txfree) {
1032 /*
1033 * Not enough free descriptors to transmit this
1034 * packet. We haven't committed to anything yet,
1035 * so just unload the DMA map, put the packet
1036 * back on the queue, and punt. Notify the upper
1037 * layer that there are no more slots left.
1038 *
1039 * XXX We could allocate an mbuf and copy, but
1040 * XXX it is worth it?
1041 */
1042 ifp->if_flags |= IFF_OACTIVE;
1043 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1044 if (m != NULL)
1045 m_freem(m);
1046 break;
1047 }
1048
1049 IFQ_DEQUEUE(&ifp->if_snd, m0);
1050 if (m != NULL) {
1051 m_freem(m0);
1052 m0 = m;
1053 }
1054
1055 /*
1056 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1057 */
1058
1059 /* Sync the DMA map. */
1060 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1061 BUS_DMASYNC_PREWRITE);
1062
1063 /*
1064 * Initialize the transmit descriptors.
1065 */
1066 for (nexttx = sc->sc_txnext, seg = 0;
1067 seg < dmamap->dm_nsegs;
1068 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1069 uint64_t flags;
1070
1071 /*
1072 * If this is the first descriptor we're
1073 * enqueueing, set the start of packet flag,
1074 * and the checksum stuff if we want the hardware
1075 * to do it.
1076 */
1077 sc->sc_txdescs[nexttx].gd_addr =
1078 htole64(dmamap->dm_segs[seg].ds_addr);
1079 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1080 if (nexttx == firsttx) {
1081 flags |= GEM_TD_START_OF_PACKET;
1082 }
1083 if (seg == dmamap->dm_nsegs - 1) {
1084 flags |= GEM_TD_END_OF_PACKET;
1085 }
1086 sc->sc_txdescs[nexttx].gd_flags =
1087 htole64(flags);
1088 lasttx = nexttx;
1089 }
1090
1091 #ifdef GEM_DEBUG
1092 if (ifp->if_flags & IFF_DEBUG) {
1093 printf(" gem_start %p transmit chain:\n", txs);
1094 for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1095 printf("descriptor %d:\t", seg);
1096 printf("gd_flags: 0x%016llx\t", (long long)
1097 le64toh(sc->sc_txdescs[seg].gd_flags));
1098 printf("gd_addr: 0x%016llx\n", (long long)
1099 le64toh(sc->sc_txdescs[seg].gd_addr));
1100 if (seg == lasttx)
1101 break;
1102 }
1103 }
1104 #endif
1105
1106 /* Sync the descriptors we're using. */
1107 GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1108 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1109
1110 /*
1111 * Store a pointer to the packet so we can free it later,
1112 * and remember what txdirty will be once the packet is
1113 * done.
1114 */
1115 txs->txs_mbuf = m0;
1116 txs->txs_firstdesc = sc->sc_txnext;
1117 txs->txs_lastdesc = lasttx;
1118 txs->txs_ndescs = dmamap->dm_nsegs;
1119
1120 /* Advance the tx pointer. */
1121 sc->sc_txfree -= dmamap->dm_nsegs;
1122 sc->sc_txnext = nexttx;
1123
1124 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1125 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1126
1127 last_txs = txs;
1128
1129 #if NBPFILTER > 0
1130 /*
1131 * Pass the packet to any BPF listeners.
1132 */
1133 if (ifp->if_bpf)
1134 bpf_mtap(ifp->if_bpf, m0);
1135 #endif /* NBPFILTER > 0 */
1136 }
1137
1138 if (txs == NULL || sc->sc_txfree == 0) {
1139 /* No more slots left; notify upper layer. */
1140 ifp->if_flags |= IFF_OACTIVE;
1141 }
1142
1143 if (sc->sc_txfree != ofree) {
1144 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1145 sc->sc_dev.dv_xname, lasttx, firsttx));
1146 #if 0
1147 /*
1148 * Cause a transmit interrupt to happen on the
1149 * last packet we enqueued.
1150 */
1151 sc->sc_txdescs[lasttx].gd_flags |= htole64(GEM_TD_INTERRUPT_ME);
1152 GEM_CDTXSYNC(sc, lasttx, 1,
1153 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1154 #endif
1155 /*
1156 * The entire packet chain is set up.
1157 * Kick the transmitter.
1158 */
1159 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1160 sc->sc_dev.dv_xname, nexttx));
1161 if (gem_opdebug) {
1162 int i;
1163 int64_t pa;
1164 i = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK);
1165 printf("GEM_TX_KICK %x GEM_TX_DATA_PTR %llx GEM_TX_RING_PTR %llx\n",
1166 i,
1167 (long long)bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_DATA_PTR),
1168 (long long)bus_space_read_8(sc->sc_bustag, sc->sc_h, GEM_TX_RING_PTR));
1169 printf("descriptor %d: ", (i = lasttx));
1170 printf("gd_flags: 0x%016llx\t", (long long)
1171 le64toh(sc->sc_txdescs[i].gd_flags));
1172 pa = le64toh(sc->sc_txdescs[i].gd_addr);
1173 printf("gd_addr: 0x%016llx\n", (long long) pa);
1174 printf("GEM_TX_CONFIG %x GEM_MAC_XIF_CONFIG %x GEM_MAC_TX_CONFIG %x\n",
1175 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_CONFIG),
1176 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_XIF_CONFIG),
1177 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_TX_CONFIG));
1178 }
1179 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1180 sc->sc_txnext);
1181 if (gem_opdebug) printf("gem_start: txkick %x\n",
1182 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK));
1183
1184 /* Set a watchdog timer in case the chip flakes out. */
1185 ifp->if_timer = 5;
1186 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1187 sc->sc_dev.dv_xname, ifp->if_timer));
1188 }
1189 }
1190
1191 /*
1192 * Transmit interrupt.
1193 */
1194 int
1195 gem_tint(sc)
1196 struct gem_softc *sc;
1197 {
1198 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1199 bus_space_tag_t t = sc->sc_bustag;
1200 bus_space_handle_t mac = sc->sc_h;
1201 struct gem_txsoft *txs;
1202 int txlast;
1203
1204
1205 DPRINTF(sc, ("%s: gem_tint: sc_flags 0x%08x\n",
1206 sc->sc_dev.dv_xname, sc->sc_flags));
1207
1208 /*
1209 * Unload collision counters
1210 */
1211 ifp->if_collisions +=
1212 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1213 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1214 bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1215 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1216
1217 /*
1218 * then clear the hardware counters.
1219 */
1220 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1221 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1222 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1223 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1224
1225 /*
1226 * Go through our Tx list and free mbufs for those
1227 * frames that have been transmitted.
1228 */
1229 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1230 GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1231 txs->txs_ndescs,
1232 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1233
1234 #ifdef GEM_DEBUG
1235 if (ifp->if_flags & IFF_DEBUG) {
1236 int i;
1237 printf(" txsoft %p transmit chain:\n", txs);
1238 for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1239 printf("descriptor %d: ", i);
1240 printf("gd_flags: 0x%016llx\t", (long long)
1241 le64toh(sc->sc_txdescs[i].gd_flags));
1242 printf("gd_addr: 0x%016llx\n", (long long)
1243 le64toh(sc->sc_txdescs[i].gd_addr));
1244 if (i == txs->txs_lastdesc)
1245 break;
1246 }
1247 }
1248 #endif
1249
1250 /*
1251 * In theory, we could harveast some descriptors before
1252 * the ring is empty, but that's a bit complicated.
1253 *
1254 * GEM_TX_COMPLETION points to the last descriptor
1255 * processed +1.
1256 */
1257 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1258 DPRINTF(sc,
1259 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1260 txs->txs_lastdesc, txlast));
1261 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1262 if ((txlast >= txs->txs_firstdesc) &&
1263 (txlast <= txs->txs_lastdesc))
1264 break;
1265 } else {
1266 /* Ick -- this command wraps */
1267 if ((txlast >= txs->txs_firstdesc) ||
1268 (txlast <= txs->txs_lastdesc))
1269 break;
1270 }
1271
1272 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1273 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1274
1275 sc->sc_txfree += txs->txs_ndescs;
1276
1277 if (txs->txs_mbuf == NULL) {
1278 #ifdef DIAGNOSTIC
1279 panic("gem_txintr: null mbuf");
1280 #endif
1281 }
1282
1283 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1284 0, txs->txs_dmamap->dm_mapsize,
1285 BUS_DMASYNC_POSTWRITE);
1286 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1287 m_freem(txs->txs_mbuf);
1288 txs->txs_mbuf = NULL;
1289
1290 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1291
1292 ifp->if_opackets++;
1293 }
1294
1295 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1296 "GEM_TX_DATA_PTR %llx "
1297 "GEM_TX_COMPLETION %x\n",
1298 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1299 (long long)bus_space_read_8(sc->sc_bustag, sc->sc_h,
1300 GEM_TX_DATA_PTR),
1301 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1302
1303 gem_start(ifp);
1304
1305 if (SIMPLEQ_FIRST(&sc->sc_txdirtyq) == NULL)
1306 ifp->if_timer = 0;
1307 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1308 sc->sc_dev.dv_xname, ifp->if_timer));
1309
1310 return (1);
1311 }
1312
1313 /*
1314 * Receive interrupt.
1315 */
1316 int
1317 gem_rint(sc)
1318 struct gem_softc *sc;
1319 {
1320 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1321 bus_space_tag_t t = sc->sc_bustag;
1322 bus_space_handle_t h = sc->sc_h;
1323 struct ether_header *eh;
1324 struct gem_rxsoft *rxs;
1325 struct mbuf *m;
1326 u_int64_t rxstat;
1327 int i, len;
1328
1329 DPRINTF(sc, ("%s: gem_rint: sc_flags 0x%08x\n",
1330 sc->sc_dev.dv_xname, sc->sc_flags));
1331 /*
1332 * XXXX Read the lastrx only once at the top for speed.
1333 */
1334 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1335 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1336 for (i = sc->sc_rxptr; i != bus_space_read_4(t, h, GEM_RX_COMPLETION);
1337 i = GEM_NEXTRX(i)) {
1338 rxs = &sc->sc_rxsoft[i];
1339
1340 GEM_CDRXSYNC(sc, i,
1341 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1342
1343 rxstat = le64toh(sc->sc_rxdescs[i].gd_flags);
1344
1345 if (rxstat & GEM_RD_OWN) {
1346 printf("gem_rint: completed descriptor "
1347 "still owned %d\n", i);
1348 /*
1349 * We have processed all of the receive buffers.
1350 */
1351 break;
1352 }
1353
1354 if (rxstat & GEM_RD_BAD_CRC) {
1355 printf("%s: receive error: CRC error\n",
1356 sc->sc_dev.dv_xname);
1357 GEM_INIT_RXDESC(sc, i);
1358 continue;
1359 }
1360
1361 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1362 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1363 #ifdef GEM_DEBUG
1364 if (ifp->if_flags & IFF_DEBUG) {
1365 printf(" rxsoft %p descriptor %d: ", rxs, i);
1366 printf("gd_flags: 0x%016llx\t", (long long)
1367 le64toh(sc->sc_rxdescs[i].gd_flags));
1368 printf("gd_addr: 0x%016llx\n", (long long)
1369 le64toh(sc->sc_rxdescs[i].gd_addr));
1370 }
1371 #endif
1372
1373 /*
1374 * No errors; receive the packet. Note the Gem
1375 * includes the CRC with every packet.
1376 */
1377 len = GEM_RD_BUFLEN(rxstat);
1378
1379 /*
1380 * We align the mbuf data in gem_add_rxbuf() so
1381 * we can use __NO_STRICT_ALIGNMENT here
1382 */
1383 #define __NO_STRICT_ALIGNMENT
1384 #ifdef __NO_STRICT_ALIGNMENT
1385 /*
1386 * Allocate a new mbuf cluster. If that fails, we are
1387 * out of memory, and must drop the packet and recycle
1388 * the buffer that's already attached to this descriptor.
1389 */
1390 m = rxs->rxs_mbuf;
1391 if (gem_add_rxbuf(sc, i) != 0) {
1392 ifp->if_ierrors++;
1393 GEM_INIT_RXDESC(sc, i);
1394 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1395 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1396 continue;
1397 }
1398 m->m_data += 2; /* We're already off by two */
1399 #else
1400 /*
1401 * The Gem's receive buffers must be 4-byte aligned.
1402 * But this means that the data after the Ethernet header
1403 * is misaligned. We must allocate a new buffer and
1404 * copy the data, shifted forward 2 bytes.
1405 */
1406 MGETHDR(m, M_DONTWAIT, MT_DATA);
1407 if (m == NULL) {
1408 dropit:
1409 ifp->if_ierrors++;
1410 GEM_INIT_RXDESC(sc, i);
1411 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1412 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1413 continue;
1414 }
1415 if (len > (MHLEN - 2)) {
1416 MCLGET(m, M_DONTWAIT);
1417 if ((m->m_flags & M_EXT) == 0) {
1418 m_freem(m);
1419 goto dropit;
1420 }
1421 }
1422 m->m_data += 2;
1423
1424 /*
1425 * Note that we use clusters for incoming frames, so the
1426 * buffer is virtually contiguous.
1427 */
1428 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1429
1430 /* Allow the receive descriptor to continue using its mbuf. */
1431 GEM_INIT_RXDESC(sc, i);
1432 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1433 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1434 #endif /* __NO_STRICT_ALIGNMENT */
1435
1436 ifp->if_ipackets++;
1437 eh = mtod(m, struct ether_header *);
1438 m->m_flags |= M_HASFCS;
1439 m->m_pkthdr.rcvif = ifp;
1440 m->m_pkthdr.len = m->m_len = len;
1441
1442 #if NBPFILTER > 0
1443 /*
1444 * Pass this up to any BPF listeners, but only
1445 * pass it up the stack if its for us.
1446 */
1447 if (ifp->if_bpf)
1448 bpf_mtap(ifp->if_bpf, m);
1449 #endif /* NPBFILTER > 0 */
1450
1451 #if 0
1452 /*
1453 * We sometimes have to run the 21140 in Hash-Only
1454 * mode. If we're in that mode, and not in promiscuous
1455 * mode, and we have a unicast packet that isn't for
1456 * us, then drop it.
1457 */
1458 if (sc->sc_filtmode == TDCTL_Tx_FT_HASHONLY &&
1459 (ifp->if_flags & IFF_PROMISC) == 0 &&
1460 ETHER_IS_MULTICAST(eh->ether_dhost) == 0 &&
1461 memcmp(LLADDR(ifp->if_sadl), eh->ether_dhost,
1462 ETHER_ADDR_LEN) != 0) {
1463 m_freem(m);
1464 continue;
1465 }
1466 #endif
1467
1468 /* Pass it on. */
1469 (*ifp->if_input)(ifp, m);
1470 }
1471
1472 /* Update the receive pointer. */
1473 sc->sc_rxptr = i;
1474 bus_space_write_4(t, h, GEM_RX_KICK, i);
1475
1476 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1477 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1478
1479 return (1);
1480 }
1481
1482
1483 /*
1484 * gem_add_rxbuf:
1485 *
1486 * Add a receive buffer to the indicated descriptor.
1487 */
1488 int
1489 gem_add_rxbuf(struct gem_softc *sc, int idx)
1490 {
1491 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1492 struct mbuf *m;
1493 int error;
1494
1495 MGETHDR(m, M_DONTWAIT, MT_DATA);
1496 if (m == NULL)
1497 return (ENOBUFS);
1498
1499 MCLGET(m, M_DONTWAIT);
1500 if ((m->m_flags & M_EXT) == 0) {
1501 m_freem(m);
1502 return (ENOBUFS);
1503 }
1504
1505 #ifdef GEM_DEBUG
1506 /* bzero the packet to check dma */
1507 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1508 #endif
1509
1510 if (rxs->rxs_mbuf != NULL)
1511 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1512
1513 rxs->rxs_mbuf = m;
1514
1515 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1516 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1517 BUS_DMA_READ|BUS_DMA_NOWAIT);
1518 if (error) {
1519 printf("%s: can't load rx DMA map %d, error = %d\n",
1520 sc->sc_dev.dv_xname, idx, error);
1521 panic("gem_add_rxbuf"); /* XXX */
1522 }
1523
1524 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1525 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1526
1527 GEM_INIT_RXDESC(sc, idx);
1528
1529 return (0);
1530 }
1531
1532
1533 int
1534 gem_eint(sc, status)
1535 struct gem_softc *sc;
1536 u_int status;
1537 {
1538 char bits[128];
1539
1540 if ((status & GEM_INTR_MIF) != 0) {
1541 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1542 return (1);
1543 }
1544
1545 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1546 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1547 return (1);
1548 }
1549
1550
1551 int
1552 gem_intr(v)
1553 void *v;
1554 {
1555 struct gem_softc *sc = (struct gem_softc *)v;
1556 bus_space_tag_t t = sc->sc_bustag;
1557 bus_space_handle_t seb = sc->sc_h;
1558 u_int32_t status;
1559 int r = 0;
1560
1561 char bits[128];
1562
1563 status = bus_space_read_4(t, seb, GEM_STATUS);
1564 DPRINTF(sc, ("%s: gem_intr: cplt %xstatus %s\n",
1565 sc->sc_dev.dv_xname, (status>>19),
1566 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1567 if (gem_opdebug) printf("%s: gem_intr: cplt %x status %s\n",
1568 sc->sc_dev.dv_xname, (status>>19),
1569 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1570 if (gem_opdebug && (status & GEM_INTR_TX_DONE)) {
1571 int i;
1572 int64_t pa;
1573 i = bus_space_read_4(t, seb, GEM_TX_KICK);
1574 printf("GEM_TX_KICK %x GEM_TX_DATA_PTR %llx GEM_TX_RING_PTR %llx\n",
1575 i, (long long)bus_space_read_4(t, seb, GEM_TX_DATA_PTR),
1576 (long long)bus_space_read_8(t, seb, GEM_TX_RING_PTR));
1577 printf("descriptor %d: ", --i);
1578 printf("gd_flags: 0x%016llx\t", (long long)
1579 le64toh(sc->sc_txdescs[i].gd_flags));
1580 pa = le64toh(sc->sc_txdescs[i].gd_addr);
1581 printf("gd_addr: 0x%016llx\n", (long long) pa);
1582 printf("GEM_TX_CONFIG %x GEM_MAC_XIF_CONFIG %x GEM_MAC_TX_CONFIG %x "
1583 "GEM_MAC_TX_STATUS %x\n",
1584 bus_space_read_4(t, seb, GEM_TX_CONFIG),
1585 bus_space_read_4(t, seb, GEM_MAC_XIF_CONFIG),
1586 bus_space_read_4(t, seb, GEM_MAC_TX_CONFIG),
1587 bus_space_read_4(t, seb, GEM_MAC_TX_STATUS));
1588 }
1589
1590 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1591 r |= gem_eint(sc, status);
1592
1593 if ((status &
1594 (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME))
1595 != 0)
1596 r |= gem_tint(sc);
1597
1598 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
1599 r |= gem_rint(sc);
1600
1601 /* We should eventually do more than just print out error stats. */
1602 if (status & GEM_INTR_TX_MAC) {
1603 int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1604 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1605 printf("MAC tx fault, status %x\n", txstat);
1606 }
1607 if (status & GEM_INTR_RX_MAC) {
1608 int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1609 if (rxstat & ~GEM_MAC_RX_DONE)
1610 printf("MAC rx fault, status %x\n", rxstat);
1611 }
1612 return (r);
1613 }
1614
1615
1616 void
1617 gem_watchdog(ifp)
1618 struct ifnet *ifp;
1619 {
1620 struct gem_softc *sc = ifp->if_softc;
1621
1622 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1623 "GEM_MAC_RX_CONFIG %x\n",
1624 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1625 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1626 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1627
1628 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1629 ++ifp->if_oerrors;
1630
1631 /* Try to get more packets going. */
1632 // gem_reset(sc);
1633 gem_start(ifp);
1634 }
1635
1636 /*
1637 * Initialize the MII Management Interface
1638 */
1639 void
1640 gem_mifinit(sc)
1641 struct gem_softc *sc;
1642 {
1643 bus_space_tag_t t = sc->sc_bustag;
1644 bus_space_handle_t mif = sc->sc_h;
1645
1646 /* Configure the MIF in frame mode */
1647 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1648 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1649 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1650 }
1651
1652 /*
1653 * MII interface
1654 *
1655 * The GEM MII interface supports at least three different operating modes:
1656 *
1657 * Bitbang mode is implemented using data, clock and output enable registers.
1658 *
1659 * Frame mode is implemented by loading a complete frame into the frame
1660 * register and polling the valid bit for completion.
1661 *
1662 * Polling mode uses the frame register but completion is indicated by
1663 * an interrupt.
1664 *
1665 */
1666 static int
1667 gem_mii_readreg(self, phy, reg)
1668 struct device *self;
1669 int phy, reg;
1670 {
1671 struct gem_softc *sc = (void *)self;
1672 bus_space_tag_t t = sc->sc_bustag;
1673 bus_space_handle_t mif = sc->sc_h;
1674 int n;
1675 u_int32_t v;
1676
1677 #ifdef GEM_DEBUG1
1678 if (sc->sc_debug)
1679 printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1680 #endif
1681
1682 #if 0
1683 /* Select the desired PHY in the MIF configuration register */
1684 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1685 /* Clear PHY select bit */
1686 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1687 if (phy == GEM_PHYAD_EXTERNAL)
1688 /* Set PHY select bit to get at external device */
1689 v |= GEM_MIF_CONFIG_PHY_SEL;
1690 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1691 #endif
1692
1693 /* Construct the frame command */
1694 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
1695 GEM_MIF_FRAME_READ;
1696
1697 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1698 for (n = 0; n < 100; n++) {
1699 DELAY(1);
1700 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1701 if (v & GEM_MIF_FRAME_TA0)
1702 return (v & GEM_MIF_FRAME_DATA);
1703 }
1704
1705 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1706 return (0);
1707 }
1708
1709 static void
1710 gem_mii_writereg(self, phy, reg, val)
1711 struct device *self;
1712 int phy, reg, val;
1713 {
1714 struct gem_softc *sc = (void *)self;
1715 bus_space_tag_t t = sc->sc_bustag;
1716 bus_space_handle_t mif = sc->sc_h;
1717 int n;
1718 u_int32_t v;
1719
1720 #ifdef GEM_DEBUG1
1721 if (sc->sc_debug)
1722 printf("gem_mii_writereg: phy %d reg %d val %x\n",
1723 phy, reg, val);
1724 #endif
1725
1726 #if 0
1727 /* Select the desired PHY in the MIF configuration register */
1728 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1729 /* Clear PHY select bit */
1730 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1731 if (phy == GEM_PHYAD_EXTERNAL)
1732 /* Set PHY select bit to get at external device */
1733 v |= GEM_MIF_CONFIG_PHY_SEL;
1734 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1735 #endif
1736 /* Construct the frame command */
1737 v = GEM_MIF_FRAME_WRITE |
1738 (phy << GEM_MIF_PHY_SHIFT) |
1739 (reg << GEM_MIF_REG_SHIFT) |
1740 (val & GEM_MIF_FRAME_DATA);
1741
1742 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1743 for (n = 0; n < 100; n++) {
1744 DELAY(1);
1745 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1746 if (v & GEM_MIF_FRAME_TA0)
1747 return;
1748 }
1749
1750 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1751 }
1752
1753 static void
1754 gem_mii_statchg(dev)
1755 struct device *dev;
1756 {
1757 struct gem_softc *sc = (void *)dev;
1758 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1759 int phy = sc->sc_phys[instance];
1760 bus_space_tag_t t = sc->sc_bustag;
1761 bus_space_handle_t mac = sc->sc_h;
1762 u_int32_t v;
1763
1764 #ifdef GEM_DEBUG
1765 if (sc->sc_debug)
1766 printf("gem_mii_statchg: status change: phy = %d\n", phy);
1767 #endif
1768
1769
1770 /* Set tx full duplex options */
1771 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1772 delay(10000); /* reg must be cleared and delay before changing. */
1773 v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1774 GEM_MAC_TX_ENABLE;
1775 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1776 v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1777 }
1778 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1779
1780 /* XIF Configuration */
1781 /* We should really calculate all this rather than rely on defaults */
1782 v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1783 v = GEM_MAC_XIF_LINK_LED;
1784 v |= GEM_MAC_XIF_TX_MII_ENA;
1785 /* If an external transceiver is connected, enable its MII drivers */
1786 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1787 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1788 /* External MII needs echo disable if half duplex. */
1789 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1790 /* turn on full duplex LED */
1791 v |= GEM_MAC_XIF_FDPLX_LED;
1792 else
1793 /* half duplex -- disable echo */
1794 v |= GEM_MAC_XIF_ECHO_DISABL;
1795 } else
1796 /* Internal MII needs buf enable */
1797 v |= GEM_MAC_XIF_MII_BUF_ENA;
1798 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1799 }
1800
1801 int
1802 gem_mediachange(ifp)
1803 struct ifnet *ifp;
1804 {
1805 struct gem_softc *sc = ifp->if_softc;
1806
1807 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1808 return (EINVAL);
1809
1810 return (mii_mediachg(&sc->sc_mii));
1811 }
1812
1813 void
1814 gem_mediastatus(ifp, ifmr)
1815 struct ifnet *ifp;
1816 struct ifmediareq *ifmr;
1817 {
1818 struct gem_softc *sc = ifp->if_softc;
1819
1820 if ((ifp->if_flags & IFF_UP) == 0)
1821 return;
1822
1823 mii_pollstat(&sc->sc_mii);
1824 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1825 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1826 }
1827
1828 int gem_ioctldebug = 0;
1829 /*
1830 * Process an ioctl request.
1831 */
1832 int
1833 gem_ioctl(ifp, cmd, data)
1834 struct ifnet *ifp;
1835 u_long cmd;
1836 caddr_t data;
1837 {
1838 struct gem_softc *sc = ifp->if_softc;
1839 struct ifreq *ifr = (struct ifreq *)data;
1840 int s, error = 0;
1841
1842
1843 switch (cmd) {
1844 case SIOCGIFMEDIA:
1845 case SIOCSIFMEDIA:
1846 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1847 break;
1848
1849 default:
1850 error = ether_ioctl(ifp, cmd, data);
1851 if (error == ENETRESET) {
1852 /*
1853 * Multicast list has changed; set the hardware filter
1854 * accordingly.
1855 */
1856 if (gem_ioctldebug) printf("reset1\n");
1857 gem_init(ifp);
1858 delay(50000);
1859 error = 0;
1860 }
1861 break;
1862 }
1863
1864 /* Try to get things going again */
1865 if (ifp->if_flags & IFF_UP) {
1866 if (gem_ioctldebug) printf("start\n");
1867 gem_start(ifp);
1868 }
1869 splx(s);
1870 return (error);
1871 }
1872
1873
1874 void
1875 gem_shutdown(arg)
1876 void *arg;
1877 {
1878 struct gem_softc *sc = (struct gem_softc *)arg;
1879 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1880
1881 gem_stop(ifp, 1);
1882 }
1883
1884 /*
1885 * Set up the logical address filter.
1886 */
1887 void
1888 gem_setladrf(sc)
1889 struct gem_softc *sc;
1890 {
1891 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1892 struct ether_multi *enm;
1893 struct ether_multistep step;
1894 struct ethercom *ec = &sc->sc_ethercom;
1895 bus_space_tag_t t = sc->sc_bustag;
1896 bus_space_handle_t h = sc->sc_h;
1897 u_char *cp;
1898 u_int32_t crc;
1899 u_int32_t hash[16];
1900 u_int32_t v;
1901 int len;
1902
1903 /* Clear hash table */
1904 memset(hash, 0, sizeof(hash));
1905
1906 /* Get current RX configuration */
1907 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1908
1909 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1910 /* Turn on promiscuous mode; turn off the hash filter */
1911 v |= GEM_MAC_RX_PROMISCUOUS;
1912 v &= ~GEM_MAC_RX_HASH_FILTER;
1913 ifp->if_flags |= IFF_ALLMULTI;
1914 goto chipit;
1915 }
1916
1917 /* Turn off promiscuous mode; turn on the hash filter */
1918 v &= ~GEM_MAC_RX_PROMISCUOUS;
1919 v |= GEM_MAC_RX_HASH_FILTER;
1920
1921 /*
1922 * Set up multicast address filter by passing all multicast addresses
1923 * through a crc generator, and then using the high order 6 bits as an
1924 * index into the 256 bit logical address filter. The high order bit
1925 * selects the word, while the rest of the bits select the bit within
1926 * the word.
1927 */
1928
1929 ETHER_FIRST_MULTI(step, ec, enm);
1930 while (enm != NULL) {
1931 if (ether_cmp(enm->enm_addrlo, enm->enm_addrhi)) {
1932 /*
1933 * We must listen to a range of multicast addresses.
1934 * For now, just accept all multicasts, rather than
1935 * trying to set only those filter bits needed to match
1936 * the range. (At this time, the only use of address
1937 * ranges is for IP multicast routing, for which the
1938 * range is big enough to require all bits set.)
1939 */
1940 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1941 ifp->if_flags |= IFF_ALLMULTI;
1942 goto chipit;
1943 }
1944
1945 cp = enm->enm_addrlo;
1946 crc = 0xffffffff;
1947 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1948 int octet = *cp++;
1949 int i;
1950
1951 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1952 for (i = 0; i < 8; i++) {
1953 if ((crc & 1) ^ (octet & 1)) {
1954 crc >>= 1;
1955 crc ^= MC_POLY_LE;
1956 } else {
1957 crc >>= 1;
1958 }
1959 octet >>= 1;
1960 }
1961 }
1962 /* Just want the 8 most significant bits. */
1963 crc >>= 24;
1964
1965 /* Set the corresponding bit in the filter. */
1966 hash[crc >> 4] |= 1 << (crc & 0xf);
1967
1968 ETHER_NEXT_MULTI(step, enm);
1969 }
1970
1971 ifp->if_flags &= ~IFF_ALLMULTI;
1972
1973 chipit:
1974 /* Now load the hash table into the chip */
1975 bus_space_write_4(t, h, GEM_MAC_HASH0, hash[0]);
1976 bus_space_write_4(t, h, GEM_MAC_HASH1, hash[1]);
1977 bus_space_write_4(t, h, GEM_MAC_HASH2, hash[2]);
1978 bus_space_write_4(t, h, GEM_MAC_HASH3, hash[3]);
1979 bus_space_write_4(t, h, GEM_MAC_HASH4, hash[4]);
1980 bus_space_write_4(t, h, GEM_MAC_HASH5, hash[5]);
1981 bus_space_write_4(t, h, GEM_MAC_HASH6, hash[6]);
1982 bus_space_write_4(t, h, GEM_MAC_HASH7, hash[7]);
1983 bus_space_write_4(t, h, GEM_MAC_HASH8, hash[8]);
1984 bus_space_write_4(t, h, GEM_MAC_HASH9, hash[9]);
1985 bus_space_write_4(t, h, GEM_MAC_HASH10, hash[10]);
1986 bus_space_write_4(t, h, GEM_MAC_HASH11, hash[11]);
1987 bus_space_write_4(t, h, GEM_MAC_HASH12, hash[12]);
1988 bus_space_write_4(t, h, GEM_MAC_HASH13, hash[13]);
1989 bus_space_write_4(t, h, GEM_MAC_HASH14, hash[14]);
1990 bus_space_write_4(t, h, GEM_MAC_HASH15, hash[15]);
1991
1992 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1993 }
1994
1995 #if notyet
1996
1997 /*
1998 * gem_power:
1999 *
2000 * Power management (suspend/resume) hook.
2001 */
2002 void
2003 gem_power(why, arg)
2004 int why;
2005 void *arg;
2006 {
2007 struct gem_softc *sc = arg;
2008 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2009 int s;
2010
2011 s = splnet();
2012 switch (why) {
2013 case PWR_SUSPEND:
2014 case PWR_STANDBY:
2015 gem_stop(ifp, 1);
2016 if (sc->sc_power != NULL)
2017 (*sc->sc_power)(sc, why);
2018 break;
2019 case PWR_RESUME:
2020 if (ifp->if_flags & IFF_UP) {
2021 if (sc->sc_power != NULL)
2022 (*sc->sc_power)(sc, why);
2023 gem_init(ifp);
2024 }
2025 break;
2026 case PWR_SOFTSUSPEND:
2027 case PWR_SOFTSTANDBY:
2028 case PWR_SOFTRESUME:
2029 break;
2030 }
2031 splx(s);
2032 }
2033 #endif
2034