gem.c revision 1.10 1 /* $NetBSD: gem.c,v 1.10 2001/11/13 13:14:37 lukem Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * All rights reserved.
7 *
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32 /*
33 * Driver for Sun GEM ethernet controllers.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.10 2001/11/13 13:14:37 lukem Exp $");
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/syslog.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52
53 #include <machine/endian.h>
54
55 #include <uvm/uvm_extern.h>
56
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <machine/bus.h>
67 #include <machine/intr.h>
68
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71 #include <dev/mii/mii_bitbang.h>
72
73 #include <dev/ic/gemreg.h>
74 #include <dev/ic/gemvar.h>
75
76 #define TRIES 10000
77
78 void gem_start __P((struct ifnet *));
79 void gem_stop __P((struct ifnet *, int));
80 int gem_ioctl __P((struct ifnet *, u_long, caddr_t));
81 void gem_tick __P((void *));
82 void gem_watchdog __P((struct ifnet *));
83 void gem_shutdown __P((void *));
84 int gem_init __P((struct ifnet *));
85 void gem_init_regs(struct gem_softc *sc);
86 static int gem_ringsize(int sz);
87 int gem_meminit __P((struct gem_softc *));
88 void gem_mifinit __P((struct gem_softc *));
89 void gem_reset __P((struct gem_softc *));
90 int gem_reset_rx(struct gem_softc *sc);
91 int gem_reset_tx(struct gem_softc *sc);
92 int gem_disable_rx(struct gem_softc *sc);
93 int gem_disable_tx(struct gem_softc *sc);
94 void gem_rxdrain(struct gem_softc *sc);
95 int gem_add_rxbuf(struct gem_softc *sc, int idx);
96 void gem_setladrf __P((struct gem_softc *));
97
98 /* MII methods & callbacks */
99 static int gem_mii_readreg __P((struct device *, int, int));
100 static void gem_mii_writereg __P((struct device *, int, int, int));
101 static void gem_mii_statchg __P((struct device *));
102
103 int gem_mediachange __P((struct ifnet *));
104 void gem_mediastatus __P((struct ifnet *, struct ifmediareq *));
105
106 struct mbuf *gem_get __P((struct gem_softc *, int, int));
107 int gem_put __P((struct gem_softc *, int, struct mbuf *));
108 void gem_read __P((struct gem_softc *, int, int));
109 int gem_eint __P((struct gem_softc *, u_int));
110 int gem_rint __P((struct gem_softc *));
111 int gem_tint __P((struct gem_softc *));
112 void gem_power __P((int, void *));
113
114 #ifdef GEM_DEBUG
115 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
116 printf x
117 #else
118 #define DPRINTF(sc, x) /* nothing */
119 #endif
120
121
122 /*
123 * gem_attach:
124 *
125 * Attach a Gem interface to the system.
126 */
127 void
128 gem_attach(sc, enaddr)
129 struct gem_softc *sc;
130 const uint8_t *enaddr;
131 {
132 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
133 struct mii_data *mii = &sc->sc_mii;
134 struct mii_softc *child;
135 int i, error;
136
137 /* Make sure the chip is stopped. */
138 ifp->if_softc = sc;
139 gem_reset(sc);
140
141 /*
142 * Allocate the control data structures, and create and load the
143 * DMA map for it.
144 */
145 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
146 sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
147 1, &sc->sc_cdnseg, 0)) != 0) {
148 printf("%s: unable to allocate control data, error = %d\n",
149 sc->sc_dev.dv_xname, error);
150 goto fail_0;
151 }
152
153 /* XXX should map this in with correct endianness */
154 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
155 sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
156 BUS_DMA_COHERENT)) != 0) {
157 printf("%s: unable to map control data, error = %d\n",
158 sc->sc_dev.dv_xname, error);
159 goto fail_1;
160 }
161
162 if ((error = bus_dmamap_create(sc->sc_dmatag,
163 sizeof(struct gem_control_data), 1,
164 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
165 printf("%s: unable to create control data DMA map, "
166 "error = %d\n", sc->sc_dev.dv_xname, error);
167 goto fail_2;
168 }
169
170 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
171 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
172 0)) != 0) {
173 printf("%s: unable to load control data DMA map, error = %d\n",
174 sc->sc_dev.dv_xname, error);
175 goto fail_3;
176 }
177
178 /*
179 * Initialize the transmit job descriptors.
180 */
181 SIMPLEQ_INIT(&sc->sc_txfreeq);
182 SIMPLEQ_INIT(&sc->sc_txdirtyq);
183
184 /*
185 * Create the transmit buffer DMA maps.
186 */
187 for (i = 0; i < GEM_TXQUEUELEN; i++) {
188 struct gem_txsoft *txs;
189
190 txs = &sc->sc_txsoft[i];
191 txs->txs_mbuf = NULL;
192 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
193 GEM_NTXSEGS, MCLBYTES, 0, 0,
194 &txs->txs_dmamap)) != 0) {
195 printf("%s: unable to create tx DMA map %d, "
196 "error = %d\n", sc->sc_dev.dv_xname, i, error);
197 goto fail_4;
198 }
199 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
200 }
201
202 /*
203 * Create the receive buffer DMA maps.
204 */
205 for (i = 0; i < GEM_NRXDESC; i++) {
206 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
207 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
208 printf("%s: unable to create rx DMA map %d, "
209 "error = %d\n", sc->sc_dev.dv_xname, i, error);
210 goto fail_5;
211 }
212 sc->sc_rxsoft[i].rxs_mbuf = NULL;
213 }
214
215 /*
216 * From this point forward, the attachment cannot fail. A failure
217 * before this point releases all resources that may have been
218 * allocated.
219 */
220
221 /* Announce ourselves. */
222 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
223 ether_sprintf(enaddr));
224
225 /* Initialize ifnet structure. */
226 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
227 ifp->if_softc = sc;
228 ifp->if_flags =
229 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
230 ifp->if_start = gem_start;
231 ifp->if_ioctl = gem_ioctl;
232 ifp->if_watchdog = gem_watchdog;
233 ifp->if_stop = gem_stop;
234 ifp->if_init = gem_init;
235 IFQ_SET_READY(&ifp->if_snd);
236
237 /* Initialize ifmedia structures and MII info */
238 mii->mii_ifp = ifp;
239 mii->mii_readreg = gem_mii_readreg;
240 mii->mii_writereg = gem_mii_writereg;
241 mii->mii_statchg = gem_mii_statchg;
242
243 ifmedia_init(&mii->mii_media, 0, gem_mediachange, gem_mediastatus);
244
245 gem_mifinit(sc);
246
247 mii_attach(&sc->sc_dev, mii, 0xffffffff,
248 MII_PHY_ANY, MII_OFFSET_ANY, 0);
249
250 child = LIST_FIRST(&mii->mii_phys);
251 if (child == NULL) {
252 /* No PHY attached */
253 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
254 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
255 } else {
256 /*
257 * Walk along the list of attached MII devices and
258 * establish an `MII instance' to `phy number'
259 * mapping. We'll use this mapping in media change
260 * requests to determine which phy to use to program
261 * the MIF configuration register.
262 */
263 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
264 /*
265 * Note: we support just two PHYs: the built-in
266 * internal device and an external on the MII
267 * connector.
268 */
269 if (child->mii_phy > 1 || child->mii_inst > 1) {
270 printf("%s: cannot accomodate MII device %s"
271 " at phy %d, instance %d\n",
272 sc->sc_dev.dv_xname,
273 child->mii_dev.dv_xname,
274 child->mii_phy, child->mii_inst);
275 continue;
276 }
277
278 sc->sc_phys[child->mii_inst] = child->mii_phy;
279 }
280
281 /*
282 * Now select and activate the PHY we will use.
283 *
284 * The order of preference is External (MDI1),
285 * Internal (MDI0), Serial Link (no MII).
286 */
287 if (sc->sc_phys[1]) {
288 #ifdef DEBUG
289 printf("using external phy\n");
290 #endif
291 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
292 } else {
293 #ifdef DEBUG
294 printf("using internal phy\n");
295 #endif
296 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
297 }
298 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
299 sc->sc_mif_config);
300
301 /*
302 * XXX - we can really do the following ONLY if the
303 * phy indeed has the auto negotiation capability!!
304 */
305 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
306 }
307
308 /* claim 802.1q capability */
309 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
310
311 /* Attach the interface. */
312 if_attach(ifp);
313 ether_ifattach(ifp, enaddr);
314
315 sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
316 if (sc->sc_sh == NULL)
317 panic("gem_config: can't establish shutdownhook");
318
319 #if NRND > 0
320 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
321 RND_TYPE_NET, 0);
322 #endif
323
324
325 #if notyet
326 /*
327 * Add a suspend hook to make sure we come back up after a
328 * resume.
329 */
330 sc->sc_powerhook = powerhook_establish(gem_power, sc);
331 if (sc->sc_powerhook == NULL)
332 printf("%s: WARNING: unable to establish power hook\n",
333 sc->sc_dev.dv_xname);
334 #endif
335
336 callout_init(&sc->sc_tick_ch);
337 return;
338
339 /*
340 * Free any resources we've allocated during the failed attach
341 * attempt. Do this in reverse order and fall through.
342 */
343 fail_5:
344 for (i = 0; i < GEM_NRXDESC; i++) {
345 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
346 bus_dmamap_destroy(sc->sc_dmatag,
347 sc->sc_rxsoft[i].rxs_dmamap);
348 }
349 fail_4:
350 for (i = 0; i < GEM_TXQUEUELEN; i++) {
351 if (sc->sc_txsoft[i].txs_dmamap != NULL)
352 bus_dmamap_destroy(sc->sc_dmatag,
353 sc->sc_txsoft[i].txs_dmamap);
354 }
355 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
356 fail_3:
357 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
358 fail_2:
359 bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
360 sizeof(struct gem_control_data));
361 fail_1:
362 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
363 fail_0:
364 return;
365 }
366
367
368 void
369 gem_tick(arg)
370 void *arg;
371 {
372 struct gem_softc *sc = arg;
373 int s;
374
375 s = splnet();
376 mii_tick(&sc->sc_mii);
377 splx(s);
378
379 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
380
381 }
382
383 void
384 gem_reset(sc)
385 struct gem_softc *sc;
386 {
387 bus_space_tag_t t = sc->sc_bustag;
388 bus_space_handle_t h = sc->sc_h;
389 int i;
390 int s;
391
392 s = splnet();
393 DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
394 gem_reset_rx(sc);
395 gem_reset_tx(sc);
396
397 /* Do a full reset */
398 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
399 for (i=TRIES; i--; delay(100))
400 if ((bus_space_read_4(t, h, GEM_RESET) &
401 (GEM_RESET_RX|GEM_RESET_TX)) == 0)
402 break;
403 if ((bus_space_read_4(t, h, GEM_RESET) &
404 (GEM_RESET_RX|GEM_RESET_TX)) != 0) {
405 printf("%s: cannot reset device\n",
406 sc->sc_dev.dv_xname);
407 }
408 splx(s);
409 }
410
411
412 /*
413 * gem_rxdrain:
414 *
415 * Drain the receive queue.
416 */
417 void
418 gem_rxdrain(struct gem_softc *sc)
419 {
420 struct gem_rxsoft *rxs;
421 int i;
422
423 for (i = 0; i < GEM_NRXDESC; i++) {
424 rxs = &sc->sc_rxsoft[i];
425 if (rxs->rxs_mbuf != NULL) {
426 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
427 m_freem(rxs->rxs_mbuf);
428 rxs->rxs_mbuf = NULL;
429 }
430 }
431 }
432
433 /*
434 * Reset the whole thing.
435 */
436 void
437 gem_stop(struct ifnet *ifp, int disable)
438 {
439 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
440 struct gem_txsoft *txs;
441
442 DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
443
444 callout_stop(&sc->sc_tick_ch);
445 mii_down(&sc->sc_mii);
446
447 /* XXX - Should we reset these instead? */
448 gem_disable_rx(sc);
449 gem_disable_rx(sc);
450
451 /*
452 * Release any queued transmit buffers.
453 */
454 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
455 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
456 if (txs->txs_mbuf != NULL) {
457 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
458 m_freem(txs->txs_mbuf);
459 txs->txs_mbuf = NULL;
460 }
461 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
462 }
463
464 if (disable) {
465 gem_rxdrain(sc);
466 }
467
468 /*
469 * Mark the interface down and cancel the watchdog timer.
470 */
471 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
472 ifp->if_timer = 0;
473 }
474
475
476 /*
477 * Reset the receiver
478 */
479 int
480 gem_reset_rx(struct gem_softc *sc)
481 {
482 bus_space_tag_t t = sc->sc_bustag;
483 bus_space_handle_t h = sc->sc_h;
484 int i;
485
486
487 /*
488 * Resetting while DMA is in progress can cause a bus hang, so we
489 * disable DMA first.
490 */
491 gem_disable_rx(sc);
492 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
493 /* Wait till it finishes */
494 for (i=TRIES; i--; delay(100))
495 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
496 break;
497 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
498 printf("%s: cannot disable read dma\n",
499 sc->sc_dev.dv_xname);
500
501 /* Wait 5ms extra. */
502 delay(5000);
503
504 /* Finally, reset the ERX */
505 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
506 /* Wait till it finishes */
507 for (i=TRIES; i--; delay(100))
508 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
509 break;
510 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
511 printf("%s: cannot reset receiver\n",
512 sc->sc_dev.dv_xname);
513 return (1);
514 }
515 return (0);
516 }
517
518
519 /*
520 * Reset the transmitter
521 */
522 int
523 gem_reset_tx(struct gem_softc *sc)
524 {
525 bus_space_tag_t t = sc->sc_bustag;
526 bus_space_handle_t h = sc->sc_h;
527 int i;
528
529 /*
530 * Resetting while DMA is in progress can cause a bus hang, so we
531 * disable DMA first.
532 */
533 gem_disable_tx(sc);
534 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
535 /* Wait till it finishes */
536 for (i=TRIES; i--; delay(100))
537 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
538 break;
539 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
540 printf("%s: cannot disable read dma\n",
541 sc->sc_dev.dv_xname);
542
543 /* Wait 5ms extra. */
544 delay(5000);
545
546 /* Finally, reset the ETX */
547 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
548 /* Wait till it finishes */
549 for (i=TRIES; i--; delay(100))
550 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
551 break;
552 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
553 printf("%s: cannot reset receiver\n",
554 sc->sc_dev.dv_xname);
555 return (1);
556 }
557 return (0);
558 }
559
560 /*
561 * disable receiver.
562 */
563 int
564 gem_disable_rx(struct gem_softc *sc)
565 {
566 bus_space_tag_t t = sc->sc_bustag;
567 bus_space_handle_t h = sc->sc_h;
568 int i;
569 u_int32_t cfg;
570
571 /* Flip the enable bit */
572 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
573 cfg &= ~GEM_MAC_RX_ENABLE;
574 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
575
576 /* Wait for it to finish */
577 for (i=TRIES; i--; delay(100))
578 if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
579 GEM_MAC_RX_ENABLE) == 0)
580 return (0);
581 return (1);
582 }
583
584 /*
585 * disable transmitter.
586 */
587 int
588 gem_disable_tx(struct gem_softc *sc)
589 {
590 bus_space_tag_t t = sc->sc_bustag;
591 bus_space_handle_t h = sc->sc_h;
592 int i;
593 u_int32_t cfg;
594
595 /* Flip the enable bit */
596 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
597 cfg &= ~GEM_MAC_TX_ENABLE;
598 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
599
600 /* Wait for it to finish */
601 for (i=TRIES; i--; delay(100))
602 if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
603 GEM_MAC_TX_ENABLE) == 0)
604 return (0);
605 return (1);
606 }
607
608 /*
609 * Initialize interface.
610 */
611 int
612 gem_meminit(struct gem_softc *sc)
613 {
614 struct gem_rxsoft *rxs;
615 int i, error;
616
617 /*
618 * Initialize the transmit descriptor ring.
619 */
620 memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
621 for (i = 0; i < GEM_NTXDESC; i++) {
622 sc->sc_txdescs[i].gd_flags = 0;
623 sc->sc_txdescs[i].gd_addr = 0;
624 }
625 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
626 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
627 sc->sc_txfree = GEM_NTXDESC;
628 sc->sc_txnext = 0;
629
630 /*
631 * Initialize the receive descriptor and receive job
632 * descriptor rings.
633 */
634 for (i = 0; i < GEM_NRXDESC; i++) {
635 rxs = &sc->sc_rxsoft[i];
636 if (rxs->rxs_mbuf == NULL) {
637 if ((error = gem_add_rxbuf(sc, i)) != 0) {
638 printf("%s: unable to allocate or map rx "
639 "buffer %d, error = %d\n",
640 sc->sc_dev.dv_xname, i, error);
641 /*
642 * XXX Should attempt to run with fewer receive
643 * XXX buffers instead of just failing.
644 */
645 gem_rxdrain(sc);
646 return (1);
647 }
648 } else
649 GEM_INIT_RXDESC(sc, i);
650 }
651 sc->sc_rxptr = 0;
652
653 return (0);
654 }
655
656 static int
657 gem_ringsize(int sz)
658 {
659 int v;
660
661 switch (sz) {
662 case 32:
663 v = GEM_RING_SZ_32;
664 break;
665 case 64:
666 v = GEM_RING_SZ_64;
667 break;
668 case 128:
669 v = GEM_RING_SZ_128;
670 break;
671 case 256:
672 v = GEM_RING_SZ_256;
673 break;
674 case 512:
675 v = GEM_RING_SZ_512;
676 break;
677 case 1024:
678 v = GEM_RING_SZ_1024;
679 break;
680 case 2048:
681 v = GEM_RING_SZ_2048;
682 break;
683 case 4096:
684 v = GEM_RING_SZ_4096;
685 break;
686 case 8192:
687 v = GEM_RING_SZ_8192;
688 break;
689 default:
690 printf("gem: invalid Receive Descriptor ring size\n");
691 break;
692 }
693 return (v);
694 }
695
696 /*
697 * Initialization of interface; set up initialization block
698 * and transmit/receive descriptor rings.
699 */
700 int
701 gem_init(struct ifnet *ifp)
702 {
703 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
704 bus_space_tag_t t = sc->sc_bustag;
705 bus_space_handle_t h = sc->sc_h;
706 int s;
707 u_int32_t v;
708
709 s = splnet();
710
711 DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
712 /*
713 * Initialization sequence. The numbered steps below correspond
714 * to the sequence outlined in section 6.3.5.1 in the Ethernet
715 * Channel Engine manual (part of the PCIO manual).
716 * See also the STP2002-STQ document from Sun Microsystems.
717 */
718
719 /* step 1 & 2. Reset the Ethernet Channel */
720 gem_stop(ifp, 0);
721 gem_reset(sc);
722 DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
723
724 /* Re-initialize the MIF */
725 gem_mifinit(sc);
726
727 /* Call MI reset function if any */
728 if (sc->sc_hwreset)
729 (*sc->sc_hwreset)(sc);
730
731 /* step 3. Setup data structures in host memory */
732 gem_meminit(sc);
733
734 /* step 4. TX MAC registers & counters */
735 gem_init_regs(sc);
736 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
737 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
738 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN + sizeof(struct ether_header):
739 ETHER_MAX_LEN + sizeof(struct ether_header)) | (0x2000<<16));
740
741 /* step 5. RX MAC registers & counters */
742 gem_setladrf(sc);
743
744 /* step 6 & 7. Program Descriptor Ring Base Addresses */
745 /* NOTE: we use only 32-bit DMA addresses here. */
746 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
747 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
748
749 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
750 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
751
752 /* step 8. Global Configuration & Interrupt Mask */
753 bus_space_write_4(t, h, GEM_INTMASK,
754 ~(GEM_INTR_TX_INTME|
755 GEM_INTR_TX_EMPTY|
756 GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
757 GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
758 GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
759 GEM_INTR_BERR));
760 bus_space_write_4(t, h, GEM_MAC_RX_MASK, 0); /* XXXX */
761 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
762 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
763
764 /* step 9. ETX Configuration: use mostly default values */
765
766 /* Enable DMA */
767 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
768 bus_space_write_4(t, h, GEM_TX_CONFIG,
769 v|GEM_TX_CONFIG_TXDMA_EN|
770 ((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
771 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
772
773 /* step 10. ERX Configuration */
774
775 /* Encode Receive Descriptor ring size: four possible values */
776 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
777
778 /* Enable DMA */
779 bus_space_write_4(t, h, GEM_RX_CONFIG,
780 v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
781 (2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
782 (0<<GEM_RX_CONFIG_CXM_START_SHFT));
783 /*
784 * The following value is for an OFF Threshold of about 15.5 Kbytes
785 * and an ON Threshold of 4K bytes.
786 */
787 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH, 0xf8 | (0x40 << 12));
788 bus_space_write_4(t, h, GEM_RX_BLANKING, (2<<12)|6);
789
790 /* step 11. Configure Media */
791 (void) gem_mediachange(ifp);
792
793 /* step 12. RX_MAC Configuration Register */
794 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
795 v |= GEM_MAC_RX_ENABLE;
796 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
797
798 /* step 14. Issue Transmit Pending command */
799
800 /* Call MI initialization function if any */
801 if (sc->sc_hwinit)
802 (*sc->sc_hwinit)(sc);
803
804
805 /* step 15. Give the reciever a swift kick */
806 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
807
808 /* Start the one second timer. */
809 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
810
811 ifp->if_flags |= IFF_RUNNING;
812 ifp->if_flags &= ~IFF_OACTIVE;
813 ifp->if_timer = 0;
814 splx(s);
815
816 return (0);
817 }
818
819 void
820 gem_init_regs(struct gem_softc *sc)
821 {
822 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
823 bus_space_tag_t t = sc->sc_bustag;
824 bus_space_handle_t h = sc->sc_h;
825
826 /* These regs are not cleared on reset */
827 sc->sc_inited = 0;
828 if (!sc->sc_inited) {
829
830 /* Wooo. Magic values. */
831 bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
832 bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
833 bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
834
835 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
836 /* Max frame and max burst size */
837 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
838 (ifp->if_mtu+18) | (0x2000<<16)/* Burst size */);
839 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
840 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
841 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
842 /* Dunno.... */
843 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
844 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
845 ((LLADDR(ifp->if_sadl)[5]<<8)|
846 LLADDR(ifp->if_sadl)[4])&0x3ff);
847 /* Secondary MAC addr set to 0:0:0:0:0:0 */
848 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
849 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
850 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
851 /* MAC control addr set to 0:1:c2:0:1:80 */
852 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
853 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
854 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
855
856 /* MAC filter addr set to 0:0:0:0:0:0 */
857 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
858 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
859 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
860
861 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
862 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
863
864 sc->sc_inited = 1;
865 }
866
867 /* Counters need to be zeroed */
868 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
869 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
870 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
871 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
872 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
873 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
874 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
875 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
876 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
877 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
878 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
879
880 /* Un-pause stuff */
881 #if 0
882 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
883 #else
884 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
885 #endif
886
887 /*
888 * Set the station address.
889 */
890 bus_space_write_4(t, h, GEM_MAC_ADDR0,
891 (LLADDR(ifp->if_sadl)[4]<<8) | LLADDR(ifp->if_sadl)[5]);
892 bus_space_write_4(t, h, GEM_MAC_ADDR1,
893 (LLADDR(ifp->if_sadl)[2]<<8) | LLADDR(ifp->if_sadl)[3]);
894 bus_space_write_4(t, h, GEM_MAC_ADDR2,
895 (LLADDR(ifp->if_sadl)[0]<<8) | LLADDR(ifp->if_sadl)[1]);
896
897 }
898
899
900
901 void
902 gem_start(ifp)
903 struct ifnet *ifp;
904 {
905 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
906 struct mbuf *m0, *m;
907 struct gem_txsoft *txs, *last_txs;
908 bus_dmamap_t dmamap;
909 int error, firsttx, nexttx, lasttx, ofree, seg;
910
911 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
912 return;
913
914 /*
915 * Remember the previous number of free descriptors and
916 * the first descriptor we'll use.
917 */
918 ofree = sc->sc_txfree;
919 firsttx = sc->sc_txnext;
920
921 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
922 sc->sc_dev.dv_xname, ofree, firsttx));
923
924 /*
925 * Loop through the send queue, setting up transmit descriptors
926 * until we drain the queue, or use up all available transmit
927 * descriptors.
928 */
929 for (;;) {
930 /*
931 * Grab a packet off the queue.
932 */
933 IFQ_POLL(&ifp->if_snd, m0);
934 if (m0 == NULL)
935 break;
936 m = NULL;
937
938 /* Get a work queue entry. */
939 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
940 /* We've run out. */
941 break;
942 }
943
944 dmamap = txs->txs_dmamap;
945
946 /*
947 * Load the DMA map. If this fails, the packet either
948 * didn't fit in the alloted number of segments, or we were
949 * short on resources. In this case, we'll copy and try
950 * again.
951 */
952 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
953 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
954 MGETHDR(m, M_DONTWAIT, MT_DATA);
955 if (m == NULL) {
956 printf("%s: unable to allocate Tx mbuf\n",
957 sc->sc_dev.dv_xname);
958 break;
959 }
960 if (m0->m_pkthdr.len > MHLEN) {
961 MCLGET(m, M_DONTWAIT);
962 if ((m->m_flags & M_EXT) == 0) {
963 printf("%s: unable to allocate Tx "
964 "cluster\n", sc->sc_dev.dv_xname);
965 m_freem(m);
966 break;
967 }
968 }
969 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
970 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
971 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
972 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
973 if (error) {
974 printf("%s: unable to load Tx buffer, "
975 "error = %d\n", sc->sc_dev.dv_xname, error);
976 break;
977 }
978 }
979
980 /*
981 * Ensure we have enough descriptors free to describe
982 * the packet. Note, we always reserve one descriptor
983 * at the end of the ring as a termination point, to
984 * prevent wrap-around.
985 */
986 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
987 /*
988 * Not enough free descriptors to transmit this
989 * packet. We haven't committed to anything yet,
990 * so just unload the DMA map, put the packet
991 * back on the queue, and punt. Notify the upper
992 * layer that there are no more slots left.
993 *
994 * XXX We could allocate an mbuf and copy, but
995 * XXX it is worth it?
996 */
997 ifp->if_flags |= IFF_OACTIVE;
998 bus_dmamap_unload(sc->sc_dmatag, dmamap);
999 if (m != NULL)
1000 m_freem(m);
1001 break;
1002 }
1003
1004 IFQ_DEQUEUE(&ifp->if_snd, m0);
1005 if (m != NULL) {
1006 m_freem(m0);
1007 m0 = m;
1008 }
1009
1010 /*
1011 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1012 */
1013
1014 /* Sync the DMA map. */
1015 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1016 BUS_DMASYNC_PREWRITE);
1017
1018 /*
1019 * Initialize the transmit descriptors.
1020 */
1021 for (nexttx = sc->sc_txnext, seg = 0;
1022 seg < dmamap->dm_nsegs;
1023 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1024 uint64_t flags;
1025
1026 /*
1027 * If this is the first descriptor we're
1028 * enqueueing, set the start of packet flag,
1029 * and the checksum stuff if we want the hardware
1030 * to do it.
1031 */
1032 sc->sc_txdescs[nexttx].gd_addr =
1033 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1034 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1035 if (nexttx == firsttx) {
1036 flags |= GEM_TD_START_OF_PACKET;
1037 }
1038 if (seg == dmamap->dm_nsegs - 1) {
1039 flags |= GEM_TD_END_OF_PACKET;
1040 }
1041 sc->sc_txdescs[nexttx].gd_flags =
1042 GEM_DMA_WRITE(sc, flags);
1043 lasttx = nexttx;
1044 }
1045
1046 #ifdef GEM_DEBUG
1047 if (ifp->if_flags & IFF_DEBUG) {
1048 printf(" gem_start %p transmit chain:\n", txs);
1049 for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1050 printf("descriptor %d:\t", seg);
1051 printf("gd_flags: 0x%016llx\t", (long long)
1052 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1053 printf("gd_addr: 0x%016llx\n", (long long)
1054 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1055 if (seg == lasttx)
1056 break;
1057 }
1058 }
1059 #endif
1060
1061 /* Sync the descriptors we're using. */
1062 GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1063 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1064
1065 /*
1066 * Store a pointer to the packet so we can free it later,
1067 * and remember what txdirty will be once the packet is
1068 * done.
1069 */
1070 txs->txs_mbuf = m0;
1071 txs->txs_firstdesc = sc->sc_txnext;
1072 txs->txs_lastdesc = lasttx;
1073 txs->txs_ndescs = dmamap->dm_nsegs;
1074
1075 /* Advance the tx pointer. */
1076 sc->sc_txfree -= dmamap->dm_nsegs;
1077 sc->sc_txnext = nexttx;
1078
1079 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1080 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1081
1082 last_txs = txs;
1083
1084 #if NBPFILTER > 0
1085 /*
1086 * Pass the packet to any BPF listeners.
1087 */
1088 if (ifp->if_bpf)
1089 bpf_mtap(ifp->if_bpf, m0);
1090 #endif /* NBPFILTER > 0 */
1091 }
1092
1093 if (txs == NULL || sc->sc_txfree == 0) {
1094 /* No more slots left; notify upper layer. */
1095 ifp->if_flags |= IFF_OACTIVE;
1096 }
1097
1098 if (sc->sc_txfree != ofree) {
1099 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1100 sc->sc_dev.dv_xname, lasttx, firsttx));
1101 /*
1102 * The entire packet chain is set up.
1103 * Kick the transmitter.
1104 */
1105 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1106 sc->sc_dev.dv_xname, nexttx));
1107 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1108 sc->sc_txnext);
1109
1110 /* Set a watchdog timer in case the chip flakes out. */
1111 ifp->if_timer = 5;
1112 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1113 sc->sc_dev.dv_xname, ifp->if_timer));
1114 }
1115 }
1116
1117 /*
1118 * Transmit interrupt.
1119 */
1120 int
1121 gem_tint(sc)
1122 struct gem_softc *sc;
1123 {
1124 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1125 bus_space_tag_t t = sc->sc_bustag;
1126 bus_space_handle_t mac = sc->sc_h;
1127 struct gem_txsoft *txs;
1128 int txlast;
1129
1130
1131 DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1132
1133 /*
1134 * Unload collision counters
1135 */
1136 ifp->if_collisions +=
1137 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1138 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1139 bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1140 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1141
1142 /*
1143 * then clear the hardware counters.
1144 */
1145 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1146 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1147 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1148 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1149
1150 /*
1151 * Go through our Tx list and free mbufs for those
1152 * frames that have been transmitted.
1153 */
1154 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1155 GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1156 txs->txs_ndescs,
1157 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1158
1159 #ifdef GEM_DEBUG
1160 if (ifp->if_flags & IFF_DEBUG) {
1161 int i;
1162 printf(" txsoft %p transmit chain:\n", txs);
1163 for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1164 printf("descriptor %d: ", i);
1165 printf("gd_flags: 0x%016llx\t", (long long)
1166 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1167 printf("gd_addr: 0x%016llx\n", (long long)
1168 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1169 if (i == txs->txs_lastdesc)
1170 break;
1171 }
1172 }
1173 #endif
1174
1175 /*
1176 * In theory, we could harveast some descriptors before
1177 * the ring is empty, but that's a bit complicated.
1178 *
1179 * GEM_TX_COMPLETION points to the last descriptor
1180 * processed +1.
1181 */
1182 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1183 DPRINTF(sc,
1184 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1185 txs->txs_lastdesc, txlast));
1186 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1187 if ((txlast >= txs->txs_firstdesc) &&
1188 (txlast <= txs->txs_lastdesc))
1189 break;
1190 } else {
1191 /* Ick -- this command wraps */
1192 if ((txlast >= txs->txs_firstdesc) ||
1193 (txlast <= txs->txs_lastdesc))
1194 break;
1195 }
1196
1197 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1198 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1199
1200 sc->sc_txfree += txs->txs_ndescs;
1201
1202 if (txs->txs_mbuf == NULL) {
1203 #ifdef DIAGNOSTIC
1204 panic("gem_txintr: null mbuf");
1205 #endif
1206 }
1207
1208 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1209 0, txs->txs_dmamap->dm_mapsize,
1210 BUS_DMASYNC_POSTWRITE);
1211 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1212 m_freem(txs->txs_mbuf);
1213 txs->txs_mbuf = NULL;
1214
1215 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1216
1217 ifp->if_opackets++;
1218 }
1219
1220 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1221 "GEM_TX_DATA_PTR %llx "
1222 "GEM_TX_COMPLETION %x\n",
1223 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1224 ((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1225 GEM_TX_DATA_PTR_HI) << 32) |
1226 bus_space_read_4(sc->sc_bustag, sc->sc_h,
1227 GEM_TX_DATA_PTR_LO),
1228 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1229
1230 gem_start(ifp);
1231
1232 if (SIMPLEQ_FIRST(&sc->sc_txdirtyq) == NULL)
1233 ifp->if_timer = 0;
1234 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1235 sc->sc_dev.dv_xname, ifp->if_timer));
1236
1237 return (1);
1238 }
1239
1240 /*
1241 * Receive interrupt.
1242 */
1243 int
1244 gem_rint(sc)
1245 struct gem_softc *sc;
1246 {
1247 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1248 bus_space_tag_t t = sc->sc_bustag;
1249 bus_space_handle_t h = sc->sc_h;
1250 struct ether_header *eh;
1251 struct gem_rxsoft *rxs;
1252 struct mbuf *m;
1253 u_int64_t rxstat;
1254 int i, len;
1255
1256 DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1257 /*
1258 * XXXX Read the lastrx only once at the top for speed.
1259 */
1260 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1261 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1262 for (i = sc->sc_rxptr; i != bus_space_read_4(t, h, GEM_RX_COMPLETION);
1263 i = GEM_NEXTRX(i)) {
1264 rxs = &sc->sc_rxsoft[i];
1265
1266 GEM_CDRXSYNC(sc, i,
1267 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1268
1269 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1270
1271 if (rxstat & GEM_RD_OWN) {
1272 printf("gem_rint: completed descriptor "
1273 "still owned %d\n", i);
1274 /*
1275 * We have processed all of the receive buffers.
1276 */
1277 break;
1278 }
1279
1280 if (rxstat & GEM_RD_BAD_CRC) {
1281 printf("%s: receive error: CRC error\n",
1282 sc->sc_dev.dv_xname);
1283 GEM_INIT_RXDESC(sc, i);
1284 continue;
1285 }
1286
1287 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1288 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1289 #ifdef GEM_DEBUG
1290 if (ifp->if_flags & IFF_DEBUG) {
1291 printf(" rxsoft %p descriptor %d: ", rxs, i);
1292 printf("gd_flags: 0x%016llx\t", (long long)
1293 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1294 printf("gd_addr: 0x%016llx\n", (long long)
1295 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1296 }
1297 #endif
1298
1299 /*
1300 * No errors; receive the packet. Note the Gem
1301 * includes the CRC with every packet.
1302 */
1303 len = GEM_RD_BUFLEN(rxstat);
1304
1305 /*
1306 * Allocate a new mbuf cluster. If that fails, we are
1307 * out of memory, and must drop the packet and recycle
1308 * the buffer that's already attached to this descriptor.
1309 */
1310 m = rxs->rxs_mbuf;
1311 if (gem_add_rxbuf(sc, i) != 0) {
1312 ifp->if_ierrors++;
1313 GEM_INIT_RXDESC(sc, i);
1314 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1315 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1316 continue;
1317 }
1318 m->m_data += 2; /* We're already off by two */
1319
1320 ifp->if_ipackets++;
1321 eh = mtod(m, struct ether_header *);
1322 m->m_flags |= M_HASFCS;
1323 m->m_pkthdr.rcvif = ifp;
1324 m->m_pkthdr.len = m->m_len = len;
1325
1326 #if NBPFILTER > 0
1327 /*
1328 * Pass this up to any BPF listeners, but only
1329 * pass it up the stack if its for us.
1330 */
1331 if (ifp->if_bpf)
1332 bpf_mtap(ifp->if_bpf, m);
1333 #endif /* NPBFILTER > 0 */
1334
1335 /* Pass it on. */
1336 (*ifp->if_input)(ifp, m);
1337 }
1338
1339 /* Update the receive pointer. */
1340 sc->sc_rxptr = i;
1341 bus_space_write_4(t, h, GEM_RX_KICK, i);
1342
1343 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1344 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1345
1346 return (1);
1347 }
1348
1349
1350 /*
1351 * gem_add_rxbuf:
1352 *
1353 * Add a receive buffer to the indicated descriptor.
1354 */
1355 int
1356 gem_add_rxbuf(struct gem_softc *sc, int idx)
1357 {
1358 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1359 struct mbuf *m;
1360 int error;
1361
1362 MGETHDR(m, M_DONTWAIT, MT_DATA);
1363 if (m == NULL)
1364 return (ENOBUFS);
1365
1366 MCLGET(m, M_DONTWAIT);
1367 if ((m->m_flags & M_EXT) == 0) {
1368 m_freem(m);
1369 return (ENOBUFS);
1370 }
1371
1372 #ifdef GEM_DEBUG
1373 /* bzero the packet to check dma */
1374 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1375 #endif
1376
1377 if (rxs->rxs_mbuf != NULL)
1378 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1379
1380 rxs->rxs_mbuf = m;
1381
1382 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1383 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1384 BUS_DMA_READ|BUS_DMA_NOWAIT);
1385 if (error) {
1386 printf("%s: can't load rx DMA map %d, error = %d\n",
1387 sc->sc_dev.dv_xname, idx, error);
1388 panic("gem_add_rxbuf"); /* XXX */
1389 }
1390
1391 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1392 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1393
1394 GEM_INIT_RXDESC(sc, idx);
1395
1396 return (0);
1397 }
1398
1399
1400 int
1401 gem_eint(sc, status)
1402 struct gem_softc *sc;
1403 u_int status;
1404 {
1405 char bits[128];
1406
1407 if ((status & GEM_INTR_MIF) != 0) {
1408 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1409 return (1);
1410 }
1411
1412 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1413 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1414 return (1);
1415 }
1416
1417
1418 int
1419 gem_intr(v)
1420 void *v;
1421 {
1422 struct gem_softc *sc = (struct gem_softc *)v;
1423 bus_space_tag_t t = sc->sc_bustag;
1424 bus_space_handle_t seb = sc->sc_h;
1425 u_int32_t status;
1426 int r = 0;
1427 #ifdef GEM_DEBUG
1428 char bits[128];
1429 #endif
1430
1431 status = bus_space_read_4(t, seb, GEM_STATUS);
1432 DPRINTF(sc, ("%s: gem_intr: cplt %xstatus %s\n",
1433 sc->sc_dev.dv_xname, (status>>19),
1434 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1435
1436 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1437 r |= gem_eint(sc, status);
1438
1439 if ((status &
1440 (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME))
1441 != 0)
1442 r |= gem_tint(sc);
1443
1444 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
1445 r |= gem_rint(sc);
1446
1447 /* We should eventually do more than just print out error stats. */
1448 if (status & GEM_INTR_TX_MAC) {
1449 int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1450 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1451 printf("MAC tx fault, status %x\n", txstat);
1452 }
1453 if (status & GEM_INTR_RX_MAC) {
1454 int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1455 if (rxstat & ~GEM_MAC_RX_DONE)
1456 printf("MAC rx fault, status %x\n", rxstat);
1457 }
1458 return (r);
1459 }
1460
1461
1462 void
1463 gem_watchdog(ifp)
1464 struct ifnet *ifp;
1465 {
1466 struct gem_softc *sc = ifp->if_softc;
1467
1468 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1469 "GEM_MAC_RX_CONFIG %x\n",
1470 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1471 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1472 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1473
1474 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1475 ++ifp->if_oerrors;
1476
1477 /* Try to get more packets going. */
1478 gem_start(ifp);
1479 }
1480
1481 /*
1482 * Initialize the MII Management Interface
1483 */
1484 void
1485 gem_mifinit(sc)
1486 struct gem_softc *sc;
1487 {
1488 bus_space_tag_t t = sc->sc_bustag;
1489 bus_space_handle_t mif = sc->sc_h;
1490
1491 /* Configure the MIF in frame mode */
1492 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1493 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1494 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1495 }
1496
1497 /*
1498 * MII interface
1499 *
1500 * The GEM MII interface supports at least three different operating modes:
1501 *
1502 * Bitbang mode is implemented using data, clock and output enable registers.
1503 *
1504 * Frame mode is implemented by loading a complete frame into the frame
1505 * register and polling the valid bit for completion.
1506 *
1507 * Polling mode uses the frame register but completion is indicated by
1508 * an interrupt.
1509 *
1510 */
1511 static int
1512 gem_mii_readreg(self, phy, reg)
1513 struct device *self;
1514 int phy, reg;
1515 {
1516 struct gem_softc *sc = (void *)self;
1517 bus_space_tag_t t = sc->sc_bustag;
1518 bus_space_handle_t mif = sc->sc_h;
1519 int n;
1520 u_int32_t v;
1521
1522 #ifdef GEM_DEBUG1
1523 if (sc->sc_debug)
1524 printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1525 #endif
1526
1527 #if 0
1528 /* Select the desired PHY in the MIF configuration register */
1529 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1530 /* Clear PHY select bit */
1531 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1532 if (phy == GEM_PHYAD_EXTERNAL)
1533 /* Set PHY select bit to get at external device */
1534 v |= GEM_MIF_CONFIG_PHY_SEL;
1535 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1536 #endif
1537
1538 /* Construct the frame command */
1539 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
1540 GEM_MIF_FRAME_READ;
1541
1542 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1543 for (n = 0; n < 100; n++) {
1544 DELAY(1);
1545 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1546 if (v & GEM_MIF_FRAME_TA0)
1547 return (v & GEM_MIF_FRAME_DATA);
1548 }
1549
1550 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1551 return (0);
1552 }
1553
1554 static void
1555 gem_mii_writereg(self, phy, reg, val)
1556 struct device *self;
1557 int phy, reg, val;
1558 {
1559 struct gem_softc *sc = (void *)self;
1560 bus_space_tag_t t = sc->sc_bustag;
1561 bus_space_handle_t mif = sc->sc_h;
1562 int n;
1563 u_int32_t v;
1564
1565 #ifdef GEM_DEBUG1
1566 if (sc->sc_debug)
1567 printf("gem_mii_writereg: phy %d reg %d val %x\n",
1568 phy, reg, val);
1569 #endif
1570
1571 #if 0
1572 /* Select the desired PHY in the MIF configuration register */
1573 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1574 /* Clear PHY select bit */
1575 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1576 if (phy == GEM_PHYAD_EXTERNAL)
1577 /* Set PHY select bit to get at external device */
1578 v |= GEM_MIF_CONFIG_PHY_SEL;
1579 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1580 #endif
1581 /* Construct the frame command */
1582 v = GEM_MIF_FRAME_WRITE |
1583 (phy << GEM_MIF_PHY_SHIFT) |
1584 (reg << GEM_MIF_REG_SHIFT) |
1585 (val & GEM_MIF_FRAME_DATA);
1586
1587 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1588 for (n = 0; n < 100; n++) {
1589 DELAY(1);
1590 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1591 if (v & GEM_MIF_FRAME_TA0)
1592 return;
1593 }
1594
1595 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1596 }
1597
1598 static void
1599 gem_mii_statchg(dev)
1600 struct device *dev;
1601 {
1602 struct gem_softc *sc = (void *)dev;
1603 #ifdef GEM_DEBUG
1604 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1605 #endif
1606 bus_space_tag_t t = sc->sc_bustag;
1607 bus_space_handle_t mac = sc->sc_h;
1608 u_int32_t v;
1609
1610 #ifdef GEM_DEBUG
1611 if (sc->sc_debug)
1612 printf("gem_mii_statchg: status change: phy = %d\n",
1613 sc->sc_phys[instance];);
1614 #endif
1615
1616
1617 /* Set tx full duplex options */
1618 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1619 delay(10000); /* reg must be cleared and delay before changing. */
1620 v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1621 GEM_MAC_TX_ENABLE;
1622 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1623 v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1624 }
1625 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1626
1627 /* XIF Configuration */
1628 /* We should really calculate all this rather than rely on defaults */
1629 v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1630 v = GEM_MAC_XIF_LINK_LED;
1631 v |= GEM_MAC_XIF_TX_MII_ENA;
1632 /* If an external transceiver is connected, enable its MII drivers */
1633 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1634 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1635 /* External MII needs echo disable if half duplex. */
1636 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1637 /* turn on full duplex LED */
1638 v |= GEM_MAC_XIF_FDPLX_LED;
1639 else
1640 /* half duplex -- disable echo */
1641 v |= GEM_MAC_XIF_ECHO_DISABL;
1642 } else
1643 /* Internal MII needs buf enable */
1644 v |= GEM_MAC_XIF_MII_BUF_ENA;
1645 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1646 }
1647
1648 int
1649 gem_mediachange(ifp)
1650 struct ifnet *ifp;
1651 {
1652 struct gem_softc *sc = ifp->if_softc;
1653
1654 /* XXX Add support for serial media. */
1655
1656 return (mii_mediachg(&sc->sc_mii));
1657 }
1658
1659 void
1660 gem_mediastatus(ifp, ifmr)
1661 struct ifnet *ifp;
1662 struct ifmediareq *ifmr;
1663 {
1664 struct gem_softc *sc = ifp->if_softc;
1665
1666 if ((ifp->if_flags & IFF_UP) == 0)
1667 return;
1668
1669 mii_pollstat(&sc->sc_mii);
1670 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1671 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1672 }
1673
1674 int gem_ioctldebug = 0;
1675 /*
1676 * Process an ioctl request.
1677 */
1678 int
1679 gem_ioctl(ifp, cmd, data)
1680 struct ifnet *ifp;
1681 u_long cmd;
1682 caddr_t data;
1683 {
1684 struct gem_softc *sc = ifp->if_softc;
1685 struct ifreq *ifr = (struct ifreq *)data;
1686 int s, error = 0;
1687
1688
1689 switch (cmd) {
1690 case SIOCGIFMEDIA:
1691 case SIOCSIFMEDIA:
1692 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1693 break;
1694
1695 default:
1696 error = ether_ioctl(ifp, cmd, data);
1697 if (error == ENETRESET) {
1698 /*
1699 * Multicast list has changed; set the hardware filter
1700 * accordingly.
1701 */
1702 if (gem_ioctldebug) printf("reset1\n");
1703 gem_init(ifp);
1704 delay(50000);
1705 error = 0;
1706 }
1707 break;
1708 }
1709
1710 /* Try to get things going again */
1711 if (ifp->if_flags & IFF_UP) {
1712 if (gem_ioctldebug) printf("start\n");
1713 gem_start(ifp);
1714 }
1715 splx(s);
1716 return (error);
1717 }
1718
1719
1720 void
1721 gem_shutdown(arg)
1722 void *arg;
1723 {
1724 struct gem_softc *sc = (struct gem_softc *)arg;
1725 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1726
1727 gem_stop(ifp, 1);
1728 }
1729
1730 /*
1731 * Set up the logical address filter.
1732 */
1733 void
1734 gem_setladrf(sc)
1735 struct gem_softc *sc;
1736 {
1737 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1738 struct ether_multi *enm;
1739 struct ether_multistep step;
1740 struct ethercom *ec = &sc->sc_ethercom;
1741 bus_space_tag_t t = sc->sc_bustag;
1742 bus_space_handle_t h = sc->sc_h;
1743 u_char *cp;
1744 u_int32_t crc;
1745 u_int32_t hash[16];
1746 u_int32_t v;
1747 int len;
1748
1749 /* Clear hash table */
1750 memset(hash, 0, sizeof(hash));
1751
1752 /* Get current RX configuration */
1753 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1754
1755 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1756 /* Turn on promiscuous mode; turn off the hash filter */
1757 v |= GEM_MAC_RX_PROMISCUOUS;
1758 v &= ~GEM_MAC_RX_HASH_FILTER;
1759 ifp->if_flags |= IFF_ALLMULTI;
1760 goto chipit;
1761 }
1762
1763 /* Turn off promiscuous mode; turn on the hash filter */
1764 v &= ~GEM_MAC_RX_PROMISCUOUS;
1765 v |= GEM_MAC_RX_HASH_FILTER;
1766
1767 /*
1768 * Set up multicast address filter by passing all multicast addresses
1769 * through a crc generator, and then using the high order 6 bits as an
1770 * index into the 256 bit logical address filter. The high order bit
1771 * selects the word, while the rest of the bits select the bit within
1772 * the word.
1773 */
1774
1775 ETHER_FIRST_MULTI(step, ec, enm);
1776 while (enm != NULL) {
1777 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1778 /*
1779 * We must listen to a range of multicast addresses.
1780 * For now, just accept all multicasts, rather than
1781 * trying to set only those filter bits needed to match
1782 * the range. (At this time, the only use of address
1783 * ranges is for IP multicast routing, for which the
1784 * range is big enough to require all bits set.)
1785 */
1786 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1787 ifp->if_flags |= IFF_ALLMULTI;
1788 goto chipit;
1789 }
1790
1791 cp = enm->enm_addrlo;
1792 crc = 0xffffffff;
1793 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1794 int octet = *cp++;
1795 int i;
1796
1797 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1798 for (i = 0; i < 8; i++) {
1799 if ((crc & 1) ^ (octet & 1)) {
1800 crc >>= 1;
1801 crc ^= MC_POLY_LE;
1802 } else {
1803 crc >>= 1;
1804 }
1805 octet >>= 1;
1806 }
1807 }
1808 /* Just want the 8 most significant bits. */
1809 crc >>= 24;
1810
1811 /* Set the corresponding bit in the filter. */
1812 hash[crc >> 4] |= 1 << (crc & 0xf);
1813
1814 ETHER_NEXT_MULTI(step, enm);
1815 }
1816
1817 ifp->if_flags &= ~IFF_ALLMULTI;
1818
1819 chipit:
1820 /* Now load the hash table into the chip */
1821 bus_space_write_4(t, h, GEM_MAC_HASH0, hash[0]);
1822 bus_space_write_4(t, h, GEM_MAC_HASH1, hash[1]);
1823 bus_space_write_4(t, h, GEM_MAC_HASH2, hash[2]);
1824 bus_space_write_4(t, h, GEM_MAC_HASH3, hash[3]);
1825 bus_space_write_4(t, h, GEM_MAC_HASH4, hash[4]);
1826 bus_space_write_4(t, h, GEM_MAC_HASH5, hash[5]);
1827 bus_space_write_4(t, h, GEM_MAC_HASH6, hash[6]);
1828 bus_space_write_4(t, h, GEM_MAC_HASH7, hash[7]);
1829 bus_space_write_4(t, h, GEM_MAC_HASH8, hash[8]);
1830 bus_space_write_4(t, h, GEM_MAC_HASH9, hash[9]);
1831 bus_space_write_4(t, h, GEM_MAC_HASH10, hash[10]);
1832 bus_space_write_4(t, h, GEM_MAC_HASH11, hash[11]);
1833 bus_space_write_4(t, h, GEM_MAC_HASH12, hash[12]);
1834 bus_space_write_4(t, h, GEM_MAC_HASH13, hash[13]);
1835 bus_space_write_4(t, h, GEM_MAC_HASH14, hash[14]);
1836 bus_space_write_4(t, h, GEM_MAC_HASH15, hash[15]);
1837
1838 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1839 }
1840
1841 #if notyet
1842
1843 /*
1844 * gem_power:
1845 *
1846 * Power management (suspend/resume) hook.
1847 */
1848 void
1849 gem_power(why, arg)
1850 int why;
1851 void *arg;
1852 {
1853 struct gem_softc *sc = arg;
1854 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1855 int s;
1856
1857 s = splnet();
1858 switch (why) {
1859 case PWR_SUSPEND:
1860 case PWR_STANDBY:
1861 gem_stop(ifp, 1);
1862 if (sc->sc_power != NULL)
1863 (*sc->sc_power)(sc, why);
1864 break;
1865 case PWR_RESUME:
1866 if (ifp->if_flags & IFF_UP) {
1867 if (sc->sc_power != NULL)
1868 (*sc->sc_power)(sc, why);
1869 gem_init(ifp);
1870 }
1871 break;
1872 case PWR_SOFTSUSPEND:
1873 case PWR_SOFTSTANDBY:
1874 case PWR_SOFTRESUME:
1875 break;
1876 }
1877 splx(s);
1878 }
1879 #endif
1880