gem.c revision 1.101 1 /* $NetBSD: gem.c,v 1.101 2013/02/04 18:29:55 jdc Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * Copyright (c) 2001-2003 Thomas Moestl
7 * All rights reserved.
8 *
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 /*
34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35 * See `GEM Gigabit Ethernet ASIC Specification'
36 * http://www.sun.com/processors/manuals/ge.pdf
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.101 2013/02/04 18:29:55 jdc Exp $");
41
42 #include "opt_inet.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/mbuf.h>
48 #include <sys/syslog.h>
49 #include <sys/malloc.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/ioctl.h>
53 #include <sys/errno.h>
54 #include <sys/device.h>
55
56 #include <machine/endian.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71
72 #include <net/bpf.h>
73
74 #include <sys/bus.h>
75 #include <sys/intr.h>
76
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 #include <dev/mii/mii_bitbang.h>
80
81 #include <dev/ic/gemreg.h>
82 #include <dev/ic/gemvar.h>
83
84 #define TRIES 10000
85
86 static void gem_inten(struct gem_softc *);
87 static void gem_start(struct ifnet *);
88 static void gem_stop(struct ifnet *, int);
89 int gem_ioctl(struct ifnet *, u_long, void *);
90 void gem_tick(void *);
91 void gem_watchdog(struct ifnet *);
92 void gem_rx_watchdog(void *);
93 void gem_pcs_start(struct gem_softc *sc);
94 void gem_pcs_stop(struct gem_softc *sc, int);
95 int gem_init(struct ifnet *);
96 void gem_init_regs(struct gem_softc *sc);
97 static int gem_ringsize(int sz);
98 static int gem_meminit(struct gem_softc *);
99 void gem_mifinit(struct gem_softc *);
100 static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
101 u_int32_t, u_int32_t);
102 void gem_reset(struct gem_softc *);
103 int gem_reset_rx(struct gem_softc *sc);
104 static void gem_reset_rxdma(struct gem_softc *sc);
105 static void gem_rx_common(struct gem_softc *sc);
106 int gem_reset_tx(struct gem_softc *sc);
107 int gem_disable_rx(struct gem_softc *sc);
108 int gem_disable_tx(struct gem_softc *sc);
109 static void gem_rxdrain(struct gem_softc *sc);
110 int gem_add_rxbuf(struct gem_softc *sc, int idx);
111 void gem_setladrf(struct gem_softc *);
112
113 /* MII methods & callbacks */
114 static int gem_mii_readreg(device_t, int, int);
115 static void gem_mii_writereg(device_t, int, int, int);
116 static void gem_mii_statchg(struct ifnet *);
117
118 static int gem_ifflags_cb(struct ethercom *);
119
120 void gem_statuschange(struct gem_softc *);
121
122 int gem_ser_mediachange(struct ifnet *);
123 void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
124
125 static void gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
126
127 struct mbuf *gem_get(struct gem_softc *, int, int);
128 int gem_put(struct gem_softc *, int, struct mbuf *);
129 void gem_read(struct gem_softc *, int, int);
130 int gem_pint(struct gem_softc *);
131 int gem_eint(struct gem_softc *, u_int);
132 int gem_rint(struct gem_softc *);
133 int gem_tint(struct gem_softc *);
134 void gem_power(int, void *);
135
136 #ifdef GEM_DEBUG
137 static void gem_txsoft_print(const struct gem_softc *, int, int);
138 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
139 printf x
140 #else
141 #define DPRINTF(sc, x) /* nothing */
142 #endif
143
144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
145
146 int
147 gem_detach(struct gem_softc *sc, int flags)
148 {
149 int i;
150 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
151 bus_space_tag_t t = sc->sc_bustag;
152 bus_space_handle_t h = sc->sc_h1;
153
154 /*
155 * Free any resources we've allocated during the attach.
156 * Do this in reverse order and fall through.
157 */
158 switch (sc->sc_att_stage) {
159 case GEM_ATT_BACKEND_2:
160 case GEM_ATT_BACKEND_1:
161 case GEM_ATT_FINISHED:
162 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
163 gem_stop(&sc->sc_ethercom.ec_if, 1);
164
165 #ifdef GEM_COUNTERS
166 for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
167 evcnt_detach(&sc->sc_ev_rxhist[i]);
168 evcnt_detach(&sc->sc_ev_rxnobuf);
169 evcnt_detach(&sc->sc_ev_rxfull);
170 evcnt_detach(&sc->sc_ev_rxint);
171 evcnt_detach(&sc->sc_ev_txint);
172 #endif
173 evcnt_detach(&sc->sc_ev_intr);
174
175 rnd_detach_source(&sc->rnd_source);
176 ether_ifdetach(ifp);
177 if_detach(ifp);
178 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
179
180 callout_destroy(&sc->sc_tick_ch);
181 callout_destroy(&sc->sc_rx_watchdog);
182
183 /*FALLTHROUGH*/
184 case GEM_ATT_MII:
185 sc->sc_att_stage = GEM_ATT_MII;
186 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
187 /*FALLTHROUGH*/
188 case GEM_ATT_7:
189 for (i = 0; i < GEM_NRXDESC; i++) {
190 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
191 bus_dmamap_destroy(sc->sc_dmatag,
192 sc->sc_rxsoft[i].rxs_dmamap);
193 }
194 /*FALLTHROUGH*/
195 case GEM_ATT_6:
196 for (i = 0; i < GEM_TXQUEUELEN; i++) {
197 if (sc->sc_txsoft[i].txs_dmamap != NULL)
198 bus_dmamap_destroy(sc->sc_dmatag,
199 sc->sc_txsoft[i].txs_dmamap);
200 }
201 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
202 /*FALLTHROUGH*/
203 case GEM_ATT_5:
204 bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
205 /*FALLTHROUGH*/
206 case GEM_ATT_4:
207 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
208 /*FALLTHROUGH*/
209 case GEM_ATT_3:
210 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
211 /*FALLTHROUGH*/
212 case GEM_ATT_2:
213 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
214 sizeof(struct gem_control_data));
215 /*FALLTHROUGH*/
216 case GEM_ATT_1:
217 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
218 /*FALLTHROUGH*/
219 case GEM_ATT_0:
220 sc->sc_att_stage = GEM_ATT_0;
221 /*FALLTHROUGH*/
222 case GEM_ATT_BACKEND_0:
223 break;
224 }
225 return 0;
226 }
227
228 static void
229 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
230 {
231 cfattach_t ca = device_cfattach(sc->sc_dev);
232
233 sc->sc_att_stage = stage;
234 (*ca->ca_detach)(sc->sc_dev, 0);
235 }
236
237 /*
238 * gem_attach:
239 *
240 * Attach a Gem interface to the system.
241 */
242 void
243 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
244 {
245 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
246 struct mii_data *mii = &sc->sc_mii;
247 bus_space_tag_t t = sc->sc_bustag;
248 bus_space_handle_t h = sc->sc_h1;
249 struct ifmedia_entry *ifm;
250 int i, error, phyaddr;
251 u_int32_t v;
252 char *nullbuf;
253
254 /* Make sure the chip is stopped. */
255 ifp->if_softc = sc;
256 gem_reset(sc);
257
258 /*
259 * Allocate the control data structures, and create and load the
260 * DMA map for it. gem_control_data is 9216 bytes, we have space for
261 * the padding buffer in the bus_dmamem_alloc()'d memory.
262 */
263 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
264 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
265 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
266 aprint_error_dev(sc->sc_dev,
267 "unable to allocate control data, error = %d\n",
268 error);
269 gem_partial_detach(sc, GEM_ATT_0);
270 return;
271 }
272
273 /* XXX should map this in with correct endianness */
274 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
275 sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
276 BUS_DMA_COHERENT)) != 0) {
277 aprint_error_dev(sc->sc_dev,
278 "unable to map control data, error = %d\n", error);
279 gem_partial_detach(sc, GEM_ATT_1);
280 return;
281 }
282
283 nullbuf =
284 (char *)sc->sc_control_data + sizeof(struct gem_control_data);
285
286 if ((error = bus_dmamap_create(sc->sc_dmatag,
287 sizeof(struct gem_control_data), 1,
288 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
289 aprint_error_dev(sc->sc_dev,
290 "unable to create control data DMA map, error = %d\n",
291 error);
292 gem_partial_detach(sc, GEM_ATT_2);
293 return;
294 }
295
296 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
297 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
298 0)) != 0) {
299 aprint_error_dev(sc->sc_dev,
300 "unable to load control data DMA map, error = %d\n",
301 error);
302 gem_partial_detach(sc, GEM_ATT_3);
303 return;
304 }
305
306 memset(nullbuf, 0, ETHER_MIN_TX);
307 if ((error = bus_dmamap_create(sc->sc_dmatag,
308 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
309 aprint_error_dev(sc->sc_dev,
310 "unable to create padding DMA map, error = %d\n", error);
311 gem_partial_detach(sc, GEM_ATT_4);
312 return;
313 }
314
315 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
316 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
317 aprint_error_dev(sc->sc_dev,
318 "unable to load padding DMA map, error = %d\n", error);
319 gem_partial_detach(sc, GEM_ATT_5);
320 return;
321 }
322
323 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
324 BUS_DMASYNC_PREWRITE);
325
326 /*
327 * Initialize the transmit job descriptors.
328 */
329 SIMPLEQ_INIT(&sc->sc_txfreeq);
330 SIMPLEQ_INIT(&sc->sc_txdirtyq);
331
332 /*
333 * Create the transmit buffer DMA maps.
334 */
335 for (i = 0; i < GEM_TXQUEUELEN; i++) {
336 struct gem_txsoft *txs;
337
338 txs = &sc->sc_txsoft[i];
339 txs->txs_mbuf = NULL;
340 if ((error = bus_dmamap_create(sc->sc_dmatag,
341 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
342 ETHER_MAX_LEN_JUMBO, 0, 0,
343 &txs->txs_dmamap)) != 0) {
344 aprint_error_dev(sc->sc_dev,
345 "unable to create tx DMA map %d, error = %d\n",
346 i, error);
347 gem_partial_detach(sc, GEM_ATT_6);
348 return;
349 }
350 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
351 }
352
353 /*
354 * Create the receive buffer DMA maps.
355 */
356 for (i = 0; i < GEM_NRXDESC; i++) {
357 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
358 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
359 aprint_error_dev(sc->sc_dev,
360 "unable to create rx DMA map %d, error = %d\n",
361 i, error);
362 gem_partial_detach(sc, GEM_ATT_7);
363 return;
364 }
365 sc->sc_rxsoft[i].rxs_mbuf = NULL;
366 }
367
368 /* Initialize ifmedia structures and MII info */
369 mii->mii_ifp = ifp;
370 mii->mii_readreg = gem_mii_readreg;
371 mii->mii_writereg = gem_mii_writereg;
372 mii->mii_statchg = gem_mii_statchg;
373
374 sc->sc_ethercom.ec_mii = mii;
375
376 /*
377 * Initialization based on `GEM Gigabit Ethernet ASIC Specification'
378 * Section 3.2.1 `Initialization Sequence'.
379 * However, we can't assume SERDES or Serialink if neither
380 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
381 * being set, as both are set on Sun X1141A (with SERDES). So,
382 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
383 * Also, for variants that report 2 PHY's, we prefer the external
384 * PHY over the internal PHY, so we look for that first.
385 */
386 gem_mifinit(sc);
387
388 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
389 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
390 ether_mediastatus);
391 /* Look for external PHY */
392 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
393 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
394 bus_space_write_4(t, h, GEM_MIF_CONFIG,
395 sc->sc_mif_config);
396 switch (sc->sc_variant) {
397 case GEM_SUN_ERI:
398 phyaddr = GEM_PHYAD_EXTERNAL;
399 break;
400 default:
401 phyaddr = MII_PHY_ANY;
402 break;
403 }
404 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
405 MII_OFFSET_ANY, MIIF_FORCEANEG);
406 }
407 #ifdef GEM_DEBUG
408 else
409 aprint_debug_dev(sc->sc_dev, "using external PHY\n");
410 #endif
411 /* Look for internal PHY if no external PHY was found */
412 if (LIST_EMPTY(&mii->mii_phys) &&
413 sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) {
414 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
415 bus_space_write_4(t, h, GEM_MIF_CONFIG,
416 sc->sc_mif_config);
417 switch (sc->sc_variant) {
418 case GEM_SUN_ERI:
419 case GEM_APPLE_K2_GMAC:
420 phyaddr = GEM_PHYAD_INTERNAL;
421 break;
422 case GEM_APPLE_GMAC:
423 phyaddr = GEM_PHYAD_EXTERNAL;
424 break;
425 default:
426 phyaddr = MII_PHY_ANY;
427 break;
428 }
429 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
430 MII_OFFSET_ANY, MIIF_FORCEANEG);
431 #ifdef GEM_DEBUG
432 if (!LIST_EMPTY(&mii->mii_phys))
433 aprint_debug_dev(sc->sc_dev,
434 "using internal PHY\n");
435 #endif
436 }
437 if (LIST_EMPTY(&mii->mii_phys)) {
438 /* No PHY attached */
439 aprint_error_dev(sc->sc_dev,
440 "PHY probe failed\n");
441 gem_partial_detach(sc, GEM_ATT_MII);
442 return;
443 } else {
444 struct mii_softc *child;
445
446 /*
447 * Walk along the list of attached MII devices and
448 * establish an `MII instance' to `PHY number'
449 * mapping.
450 */
451 LIST_FOREACH(child, &mii->mii_phys, mii_list) {
452 /*
453 * Note: we support just one PHY: the internal
454 * or external MII is already selected for us
455 * by the GEM_MIF_CONFIG register.
456 */
457 if (child->mii_phy > 1 || child->mii_inst > 0) {
458 aprint_error_dev(sc->sc_dev,
459 "cannot accommodate MII device"
460 " %s at PHY %d, instance %d\n",
461 device_xname(child->mii_dev),
462 child->mii_phy, child->mii_inst);
463 continue;
464 }
465 sc->sc_phys[child->mii_inst] = child->mii_phy;
466 }
467
468 if (sc->sc_variant != GEM_SUN_ERI)
469 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
470 GEM_MII_DATAPATH_MII);
471
472 /*
473 * XXX - we can really do the following ONLY if the
474 * PHY indeed has the auto negotiation capability!!
475 */
476 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
477 }
478 } else {
479 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
480 gem_ser_mediastatus);
481 /* SERDES or Serialink */
482 if (sc->sc_flags & GEM_SERDES) {
483 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
484 GEM_MII_DATAPATH_SERDES);
485 } else {
486 sc->sc_flags |= GEM_SERIAL;
487 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
488 GEM_MII_DATAPATH_SERIAL);
489 }
490
491 aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
492 sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
493
494 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
495 /* Check for FDX and HDX capabilities */
496 sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
497 if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
498 ifmedia_add(&sc->sc_mii.mii_media,
499 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
500 aprint_normal("1000baseSX-FDX, ");
501 }
502 if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
503 ifmedia_add(&sc->sc_mii.mii_media,
504 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
505 aprint_normal("1000baseSX-HDX, ");
506 }
507 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
508 sc->sc_mii_media = IFM_AUTO;
509 aprint_normal("auto\n");
510
511 gem_pcs_stop(sc, 1);
512 }
513
514 /*
515 * From this point forward, the attachment cannot fail. A failure
516 * before this point releases all resources that may have been
517 * allocated.
518 */
519
520 /* Announce ourselves. */
521 aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
522 ether_sprintf(enaddr));
523
524 /* Get RX FIFO size */
525 sc->sc_rxfifosize = 64 *
526 bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
527 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
528
529 /* Get TX FIFO size */
530 v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
531 aprint_normal(", %uKB TX fifo\n", v / 16);
532
533 /* Initialize ifnet structure. */
534 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
535 ifp->if_softc = sc;
536 ifp->if_flags =
537 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
538 sc->sc_if_flags = ifp->if_flags;
539 #if 0
540 /*
541 * The GEM hardware supports basic TCP checksum offloading only.
542 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
543 * have bugs in the receive checksum, so don't enable it for now.
544 */
545 if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
546 (GEM_IS_APPLE(sc) &&
547 (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
548 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
549 #endif
550 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
551 ifp->if_start = gem_start;
552 ifp->if_ioctl = gem_ioctl;
553 ifp->if_watchdog = gem_watchdog;
554 ifp->if_stop = gem_stop;
555 ifp->if_init = gem_init;
556 IFQ_SET_READY(&ifp->if_snd);
557
558 /*
559 * If we support GigE media, we support jumbo frames too.
560 * Unless we are Apple.
561 */
562 TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
563 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
564 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
565 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
566 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
567 if (!GEM_IS_APPLE(sc))
568 sc->sc_ethercom.ec_capabilities
569 |= ETHERCAP_JUMBO_MTU;
570 sc->sc_flags |= GEM_GIGABIT;
571 break;
572 }
573 }
574
575 /* claim 802.1q capability */
576 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
577
578 /* Attach the interface. */
579 if_attach(ifp);
580 ether_ifattach(ifp, enaddr);
581 ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
582
583 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
584 RND_TYPE_NET, 0);
585
586 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
587 NULL, device_xname(sc->sc_dev), "interrupts");
588 #ifdef GEM_COUNTERS
589 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
590 &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
591 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
592 &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
593 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
594 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
595 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
596 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
597 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
598 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
599 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
600 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
601 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
602 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
603 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
604 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
605 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
606 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
607 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
608 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
609 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
610 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
611 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
612 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
613 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
614 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
615 #endif
616
617 callout_init(&sc->sc_tick_ch, 0);
618 callout_init(&sc->sc_rx_watchdog, 0);
619 callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
620
621 sc->sc_att_stage = GEM_ATT_FINISHED;
622
623 return;
624 }
625
626 void
627 gem_tick(void *arg)
628 {
629 struct gem_softc *sc = arg;
630 int s;
631
632 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
633 /*
634 * We have to reset everything if we failed to get a
635 * PCS interrupt. Restarting the callout is handled
636 * in gem_pcs_start().
637 */
638 gem_init(&sc->sc_ethercom.ec_if);
639 } else {
640 s = splnet();
641 mii_tick(&sc->sc_mii);
642 splx(s);
643 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
644 }
645 }
646
647 static int
648 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
649 {
650 int i;
651 u_int32_t reg;
652
653 for (i = TRIES; i--; DELAY(100)) {
654 reg = bus_space_read_4(sc->sc_bustag, h, r);
655 if ((reg & clr) == 0 && (reg & set) == set)
656 return (1);
657 }
658 return (0);
659 }
660
661 void
662 gem_reset(struct gem_softc *sc)
663 {
664 bus_space_tag_t t = sc->sc_bustag;
665 bus_space_handle_t h = sc->sc_h2;
666 int s;
667
668 s = splnet();
669 DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
670 gem_reset_rx(sc);
671 gem_reset_tx(sc);
672
673 /* Do a full reset */
674 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
675 if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
676 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
677 splx(s);
678 }
679
680
681 /*
682 * gem_rxdrain:
683 *
684 * Drain the receive queue.
685 */
686 static void
687 gem_rxdrain(struct gem_softc *sc)
688 {
689 struct gem_rxsoft *rxs;
690 int i;
691
692 for (i = 0; i < GEM_NRXDESC; i++) {
693 rxs = &sc->sc_rxsoft[i];
694 if (rxs->rxs_mbuf != NULL) {
695 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
696 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
697 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
698 m_freem(rxs->rxs_mbuf);
699 rxs->rxs_mbuf = NULL;
700 }
701 }
702 }
703
704 /*
705 * Reset the whole thing.
706 */
707 static void
708 gem_stop(struct ifnet *ifp, int disable)
709 {
710 struct gem_softc *sc = ifp->if_softc;
711 struct gem_txsoft *txs;
712
713 DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
714
715 callout_halt(&sc->sc_tick_ch, NULL);
716 callout_halt(&sc->sc_rx_watchdog, NULL);
717 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
718 gem_pcs_stop(sc, disable);
719 else
720 mii_down(&sc->sc_mii);
721
722 /* XXX - Should we reset these instead? */
723 gem_disable_tx(sc);
724 gem_disable_rx(sc);
725
726 /*
727 * Release any queued transmit buffers.
728 */
729 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
730 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
731 if (txs->txs_mbuf != NULL) {
732 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
733 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
734 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
735 m_freem(txs->txs_mbuf);
736 txs->txs_mbuf = NULL;
737 }
738 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
739 }
740
741 /*
742 * Mark the interface down and cancel the watchdog timer.
743 */
744 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
745 sc->sc_if_flags = ifp->if_flags;
746 ifp->if_timer = 0;
747
748 if (disable)
749 gem_rxdrain(sc);
750 }
751
752
753 /*
754 * Reset the receiver
755 */
756 int
757 gem_reset_rx(struct gem_softc *sc)
758 {
759 bus_space_tag_t t = sc->sc_bustag;
760 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
761
762 /*
763 * Resetting while DMA is in progress can cause a bus hang, so we
764 * disable DMA first.
765 */
766 gem_disable_rx(sc);
767 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
768 bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
769 /* Wait till it finishes */
770 if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
771 aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
772 /* Wait 5ms extra. */
773 delay(5000);
774
775 /* Finally, reset the ERX */
776 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
777 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
778 /* Wait till it finishes */
779 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
780 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
781 return (1);
782 }
783 return (0);
784 }
785
786
787 /*
788 * Reset the receiver DMA engine.
789 *
790 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
791 * etc in order to reset the receiver DMA engine only and not do a full
792 * reset which amongst others also downs the link and clears the FIFOs.
793 */
794 static void
795 gem_reset_rxdma(struct gem_softc *sc)
796 {
797 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
798 bus_space_tag_t t = sc->sc_bustag;
799 bus_space_handle_t h = sc->sc_h1;
800 int i;
801
802 if (gem_reset_rx(sc) != 0) {
803 gem_init(ifp);
804 return;
805 }
806 for (i = 0; i < GEM_NRXDESC; i++)
807 if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
808 GEM_UPDATE_RXDESC(sc, i);
809 sc->sc_rxptr = 0;
810 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
811 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
812
813 /* Reprogram Descriptor Ring Base Addresses */
814 /* NOTE: we use only 32-bit DMA addresses here. */
815 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
816 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
817
818 /* Redo ERX Configuration */
819 gem_rx_common(sc);
820
821 /* Give the reciever a swift kick */
822 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
823 }
824
825 /*
826 * Common RX configuration for gem_init() and gem_reset_rxdma().
827 */
828 static void
829 gem_rx_common(struct gem_softc *sc)
830 {
831 bus_space_tag_t t = sc->sc_bustag;
832 bus_space_handle_t h = sc->sc_h1;
833 u_int32_t v;
834
835 /* Encode Receive Descriptor ring size: four possible values */
836 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
837
838 /* Set receive h/w checksum offset */
839 #ifdef INET
840 v |= (ETHER_HDR_LEN + sizeof(struct ip) +
841 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
842 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
843 #endif
844
845 /* Enable RX DMA */
846 bus_space_write_4(t, h, GEM_RX_CONFIG,
847 v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
848 (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
849
850 /*
851 * The following value is for an OFF Threshold of about 3/4 full
852 * and an ON Threshold of 1/4 full.
853 */
854 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
855 (3 * sc->sc_rxfifosize / 256) |
856 ((sc->sc_rxfifosize / 256) << 12));
857 bus_space_write_4(t, h, GEM_RX_BLANKING,
858 (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
859 }
860
861 /*
862 * Reset the transmitter
863 */
864 int
865 gem_reset_tx(struct gem_softc *sc)
866 {
867 bus_space_tag_t t = sc->sc_bustag;
868 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
869
870 /*
871 * Resetting while DMA is in progress can cause a bus hang, so we
872 * disable DMA first.
873 */
874 gem_disable_tx(sc);
875 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
876 bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
877 /* Wait till it finishes */
878 if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
879 aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
880 /* Wait 5ms extra. */
881 delay(5000);
882
883 /* Finally, reset the ETX */
884 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
885 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
886 /* Wait till it finishes */
887 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
888 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
889 return (1);
890 }
891 return (0);
892 }
893
894 /*
895 * disable receiver.
896 */
897 int
898 gem_disable_rx(struct gem_softc *sc)
899 {
900 bus_space_tag_t t = sc->sc_bustag;
901 bus_space_handle_t h = sc->sc_h1;
902 u_int32_t cfg;
903
904 /* Flip the enable bit */
905 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
906 cfg &= ~GEM_MAC_RX_ENABLE;
907 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
908 bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
909 /* Wait for it to finish */
910 return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
911 }
912
913 /*
914 * disable transmitter.
915 */
916 int
917 gem_disable_tx(struct gem_softc *sc)
918 {
919 bus_space_tag_t t = sc->sc_bustag;
920 bus_space_handle_t h = sc->sc_h1;
921 u_int32_t cfg;
922
923 /* Flip the enable bit */
924 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
925 cfg &= ~GEM_MAC_TX_ENABLE;
926 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
927 bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
928 /* Wait for it to finish */
929 return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
930 }
931
932 /*
933 * Initialize interface.
934 */
935 int
936 gem_meminit(struct gem_softc *sc)
937 {
938 struct gem_rxsoft *rxs;
939 int i, error;
940
941 /*
942 * Initialize the transmit descriptor ring.
943 */
944 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
945 for (i = 0; i < GEM_NTXDESC; i++) {
946 sc->sc_txdescs[i].gd_flags = 0;
947 sc->sc_txdescs[i].gd_addr = 0;
948 }
949 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
950 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
951 sc->sc_txfree = GEM_NTXDESC-1;
952 sc->sc_txnext = 0;
953 sc->sc_txwin = 0;
954
955 /*
956 * Initialize the receive descriptor and receive job
957 * descriptor rings.
958 */
959 for (i = 0; i < GEM_NRXDESC; i++) {
960 rxs = &sc->sc_rxsoft[i];
961 if (rxs->rxs_mbuf == NULL) {
962 if ((error = gem_add_rxbuf(sc, i)) != 0) {
963 aprint_error_dev(sc->sc_dev,
964 "unable to allocate or map rx "
965 "buffer %d, error = %d\n",
966 i, error);
967 /*
968 * XXX Should attempt to run with fewer receive
969 * XXX buffers instead of just failing.
970 */
971 gem_rxdrain(sc);
972 return (1);
973 }
974 } else
975 GEM_INIT_RXDESC(sc, i);
976 }
977 sc->sc_rxptr = 0;
978 sc->sc_meminited = 1;
979 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
980 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
981
982 return (0);
983 }
984
985 static int
986 gem_ringsize(int sz)
987 {
988 switch (sz) {
989 case 32:
990 return GEM_RING_SZ_32;
991 case 64:
992 return GEM_RING_SZ_64;
993 case 128:
994 return GEM_RING_SZ_128;
995 case 256:
996 return GEM_RING_SZ_256;
997 case 512:
998 return GEM_RING_SZ_512;
999 case 1024:
1000 return GEM_RING_SZ_1024;
1001 case 2048:
1002 return GEM_RING_SZ_2048;
1003 case 4096:
1004 return GEM_RING_SZ_4096;
1005 case 8192:
1006 return GEM_RING_SZ_8192;
1007 default:
1008 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1009 return GEM_RING_SZ_32;
1010 }
1011 }
1012
1013
1014 /*
1015 * Start PCS
1016 */
1017 void
1018 gem_pcs_start(struct gem_softc *sc)
1019 {
1020 bus_space_tag_t t = sc->sc_bustag;
1021 bus_space_handle_t h = sc->sc_h1;
1022 uint32_t v;
1023
1024 #ifdef GEM_DEBUG
1025 aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1026 #endif
1027
1028 /*
1029 * Set up. We must disable the MII before modifying the
1030 * GEM_MII_ANAR register
1031 */
1032 if (sc->sc_flags & GEM_SERDES) {
1033 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1034 GEM_MII_DATAPATH_SERDES);
1035 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1036 GEM_MII_SLINK_LOOPBACK);
1037 } else {
1038 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1039 GEM_MII_DATAPATH_SERIAL);
1040 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1041 }
1042 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1043 v = bus_space_read_4(t, h, GEM_MII_ANAR);
1044 v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1045 if (sc->sc_mii_media == IFM_AUTO)
1046 v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1047 else if (sc->sc_mii_media == IFM_FDX) {
1048 v |= GEM_MII_ANEG_FUL_DUPLX;
1049 v &= ~GEM_MII_ANEG_HLF_DUPLX;
1050 } else if (sc->sc_mii_media == IFM_HDX) {
1051 v &= ~GEM_MII_ANEG_FUL_DUPLX;
1052 v |= GEM_MII_ANEG_HLF_DUPLX;
1053 }
1054
1055 /* Configure link. */
1056 bus_space_write_4(t, h, GEM_MII_ANAR, v);
1057 bus_space_write_4(t, h, GEM_MII_CONTROL,
1058 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1059 bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1060 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1061
1062 /* Start the 10 second timer */
1063 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
1064 }
1065
1066 /*
1067 * Stop PCS
1068 */
1069 void
1070 gem_pcs_stop(struct gem_softc *sc, int disable)
1071 {
1072 bus_space_tag_t t = sc->sc_bustag;
1073 bus_space_handle_t h = sc->sc_h1;
1074
1075 #ifdef GEM_DEBUG
1076 aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1077 #endif
1078
1079 /* Tell link partner that we're going away */
1080 bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1081
1082 /*
1083 * Disable PCS MII. The documentation suggests that setting
1084 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1085 * negotiation will shut down the link. However, it appears
1086 * that we also need to unset the datapath mode.
1087 */
1088 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1089 bus_space_write_4(t, h, GEM_MII_CONTROL,
1090 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1091 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1092 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1093
1094 if (disable) {
1095 if (sc->sc_flags & GEM_SERDES)
1096 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1097 GEM_MII_SLINK_POWER_OFF);
1098 else
1099 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1100 GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1101 }
1102
1103 sc->sc_flags &= ~GEM_LINK;
1104 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1105 sc->sc_mii.mii_media_status = IFM_AVALID;
1106 }
1107
1108
1109 /*
1110 * Initialization of interface; set up initialization block
1111 * and transmit/receive descriptor rings.
1112 */
1113 int
1114 gem_init(struct ifnet *ifp)
1115 {
1116 struct gem_softc *sc = ifp->if_softc;
1117 bus_space_tag_t t = sc->sc_bustag;
1118 bus_space_handle_t h = sc->sc_h1;
1119 int rc = 0, s;
1120 u_int max_frame_size;
1121 u_int32_t v;
1122
1123 s = splnet();
1124
1125 DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1126 /*
1127 * Initialization sequence. The numbered steps below correspond
1128 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1129 * Channel Engine manual (part of the PCIO manual).
1130 * See also the STP2002-STQ document from Sun Microsystems.
1131 */
1132
1133 /* step 1 & 2. Reset the Ethernet Channel */
1134 gem_stop(ifp, 0);
1135 gem_reset(sc);
1136 DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1137
1138 /* Re-initialize the MIF */
1139 gem_mifinit(sc);
1140
1141 /* Set up correct datapath for non-SERDES/Serialink */
1142 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1143 sc->sc_variant != GEM_SUN_ERI)
1144 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1145 GEM_MII_DATAPATH_MII);
1146
1147 /* Call MI reset function if any */
1148 if (sc->sc_hwreset)
1149 (*sc->sc_hwreset)(sc);
1150
1151 /* step 3. Setup data structures in host memory */
1152 if (gem_meminit(sc) != 0)
1153 return 1;
1154
1155 /* step 4. TX MAC registers & counters */
1156 gem_init_regs(sc);
1157 max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1158 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1159 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1160 max_frame_size += ETHER_VLAN_ENCAP_LEN;
1161 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1162 max_frame_size|/* burst size */(0x2000<<16));
1163
1164 /* step 5. RX MAC registers & counters */
1165 gem_setladrf(sc);
1166
1167 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1168 /* NOTE: we use only 32-bit DMA addresses here. */
1169 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1170 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1171
1172 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1173 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1174
1175 /* step 8. Global Configuration & Interrupt Mask */
1176 gem_inten(sc);
1177 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1178 GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1179 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1180 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1181 GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1182
1183 /* step 9. ETX Configuration: use mostly default values */
1184
1185 /* Enable TX DMA */
1186 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1187 bus_space_write_4(t, h, GEM_TX_CONFIG,
1188 v | GEM_TX_CONFIG_TXDMA_EN |
1189 (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1190 GEM_TX_CONFIG_TXFIFO_TH));
1191 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1192
1193 /* step 10. ERX Configuration */
1194 gem_rx_common(sc);
1195
1196 /* step 11. Configure Media */
1197 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1198 (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1199 goto out;
1200
1201 /* step 12. RX_MAC Configuration Register */
1202 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1203 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1204 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1205
1206 /* step 14. Issue Transmit Pending command */
1207
1208 /* Call MI initialization function if any */
1209 if (sc->sc_hwinit)
1210 (*sc->sc_hwinit)(sc);
1211
1212
1213 /* step 15. Give the reciever a swift kick */
1214 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1215
1216 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1217 /* Configure PCS */
1218 gem_pcs_start(sc);
1219 else
1220 /* Start the one second timer. */
1221 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1222
1223 sc->sc_flags &= ~GEM_LINK;
1224 ifp->if_flags |= IFF_RUNNING;
1225 ifp->if_flags &= ~IFF_OACTIVE;
1226 ifp->if_timer = 0;
1227 sc->sc_if_flags = ifp->if_flags;
1228 out:
1229 splx(s);
1230
1231 return (0);
1232 }
1233
1234 void
1235 gem_init_regs(struct gem_softc *sc)
1236 {
1237 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1238 bus_space_tag_t t = sc->sc_bustag;
1239 bus_space_handle_t h = sc->sc_h1;
1240 const u_char *laddr = CLLADDR(ifp->if_sadl);
1241 u_int32_t v;
1242
1243 /* These regs are not cleared on reset */
1244 if (!sc->sc_inited) {
1245
1246 /* Load recommended values */
1247 bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1248 bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1249 bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1250
1251 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1252 /* Max frame and max burst size */
1253 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1254 ETHER_MAX_LEN | (0x2000<<16));
1255
1256 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1257 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1258 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1259 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1260 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1261 ((laddr[5]<<8)|laddr[4])&0x3ff);
1262
1263 /* Secondary MAC addr set to 0:0:0:0:0:0 */
1264 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1265 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1266 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1267
1268 /* MAC control addr set to 01:80:c2:00:00:01 */
1269 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1270 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1271 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1272
1273 /* MAC filter addr set to 0:0:0:0:0:0 */
1274 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1275 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1276 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1277
1278 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1279 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1280
1281 sc->sc_inited = 1;
1282 }
1283
1284 /* Counters need to be zeroed */
1285 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1286 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1287 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1288 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1289 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1290 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1291 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1292 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1293 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1294 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1295 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1296
1297 /* Set XOFF PAUSE time. */
1298 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1299
1300 /*
1301 * Set the internal arbitration to "infinite" bursts of the
1302 * maximum length of 31 * 64 bytes so DMA transfers aren't
1303 * split up in cache line size chunks. This greatly improves
1304 * especially RX performance.
1305 * Enable silicon bug workarounds for the Apple variants.
1306 */
1307 bus_space_write_4(t, h, GEM_CONFIG,
1308 GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1309 ((sc->sc_flags & GEM_PCI) ?
1310 GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1311 GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1312
1313 /*
1314 * Set the station address.
1315 */
1316 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1317 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1318 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1319
1320 /*
1321 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1322 */
1323 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1324 v = GEM_MAC_XIF_TX_MII_ENA;
1325 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1326 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1327 v |= GEM_MAC_XIF_FDPLX_LED;
1328 if (sc->sc_flags & GEM_GIGABIT)
1329 v |= GEM_MAC_XIF_GMII_MODE;
1330 }
1331 } else {
1332 v |= GEM_MAC_XIF_GMII_MODE;
1333 }
1334 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1335 }
1336
1337 #ifdef GEM_DEBUG
1338 static void
1339 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1340 {
1341 int i;
1342
1343 for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1344 printf("descriptor %d:\t", i);
1345 printf("gd_flags: 0x%016" PRIx64 "\t",
1346 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1347 printf("gd_addr: 0x%016" PRIx64 "\n",
1348 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1349 if (i == lastdesc)
1350 break;
1351 }
1352 }
1353 #endif
1354
1355 static void
1356 gem_start(struct ifnet *ifp)
1357 {
1358 struct gem_softc *sc = ifp->if_softc;
1359 struct mbuf *m0, *m;
1360 struct gem_txsoft *txs;
1361 bus_dmamap_t dmamap;
1362 int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1363 uint64_t flags = 0;
1364
1365 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1366 return;
1367
1368 /*
1369 * Remember the previous number of free descriptors and
1370 * the first descriptor we'll use.
1371 */
1372 ofree = sc->sc_txfree;
1373 firsttx = sc->sc_txnext;
1374
1375 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1376 device_xname(sc->sc_dev), ofree, firsttx));
1377
1378 /*
1379 * Loop through the send queue, setting up transmit descriptors
1380 * until we drain the queue, or use up all available transmit
1381 * descriptors.
1382 */
1383 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1384 sc->sc_txfree != 0) {
1385 /*
1386 * Grab a packet off the queue.
1387 */
1388 IFQ_POLL(&ifp->if_snd, m0);
1389 if (m0 == NULL)
1390 break;
1391 m = NULL;
1392
1393 dmamap = txs->txs_dmamap;
1394
1395 /*
1396 * Load the DMA map. If this fails, the packet either
1397 * didn't fit in the alloted number of segments, or we were
1398 * short on resources. In this case, we'll copy and try
1399 * again.
1400 */
1401 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1402 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1403 (m0->m_pkthdr.len < ETHER_MIN_TX &&
1404 dmamap->dm_nsegs == GEM_NTXSEGS)) {
1405 if (m0->m_pkthdr.len > MCLBYTES) {
1406 aprint_error_dev(sc->sc_dev,
1407 "unable to allocate jumbo Tx cluster\n");
1408 IFQ_DEQUEUE(&ifp->if_snd, m0);
1409 m_freem(m0);
1410 continue;
1411 }
1412 MGETHDR(m, M_DONTWAIT, MT_DATA);
1413 if (m == NULL) {
1414 aprint_error_dev(sc->sc_dev,
1415 "unable to allocate Tx mbuf\n");
1416 break;
1417 }
1418 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1419 if (m0->m_pkthdr.len > MHLEN) {
1420 MCLGET(m, M_DONTWAIT);
1421 if ((m->m_flags & M_EXT) == 0) {
1422 aprint_error_dev(sc->sc_dev,
1423 "unable to allocate Tx cluster\n");
1424 m_freem(m);
1425 break;
1426 }
1427 }
1428 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1429 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1430 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1431 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1432 if (error) {
1433 aprint_error_dev(sc->sc_dev,
1434 "unable to load Tx buffer, error = %d\n",
1435 error);
1436 break;
1437 }
1438 }
1439
1440 /*
1441 * Ensure we have enough descriptors free to describe
1442 * the packet.
1443 */
1444 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1445 (sc->sc_txfree - 1) : sc->sc_txfree)) {
1446 /*
1447 * Not enough free descriptors to transmit this
1448 * packet. We haven't committed to anything yet,
1449 * so just unload the DMA map, put the packet
1450 * back on the queue, and punt. Notify the upper
1451 * layer that there are no more slots left.
1452 *
1453 * XXX We could allocate an mbuf and copy, but
1454 * XXX it is worth it?
1455 */
1456 ifp->if_flags |= IFF_OACTIVE;
1457 sc->sc_if_flags = ifp->if_flags;
1458 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1459 if (m != NULL)
1460 m_freem(m);
1461 break;
1462 }
1463
1464 IFQ_DEQUEUE(&ifp->if_snd, m0);
1465 if (m != NULL) {
1466 m_freem(m0);
1467 m0 = m;
1468 }
1469
1470 /*
1471 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1472 */
1473
1474 /* Sync the DMA map. */
1475 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1476 BUS_DMASYNC_PREWRITE);
1477
1478 /*
1479 * Initialize the transmit descriptors.
1480 */
1481 for (nexttx = sc->sc_txnext, seg = 0;
1482 seg < dmamap->dm_nsegs;
1483 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1484
1485 /*
1486 * If this is the first descriptor we're
1487 * enqueueing, set the start of packet flag,
1488 * and the checksum stuff if we want the hardware
1489 * to do it.
1490 */
1491 sc->sc_txdescs[nexttx].gd_addr =
1492 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1493 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1494 if (nexttx == firsttx) {
1495 flags |= GEM_TD_START_OF_PACKET;
1496 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1497 sc->sc_txwin = 0;
1498 flags |= GEM_TD_INTERRUPT_ME;
1499 }
1500
1501 #ifdef INET
1502 /* h/w checksum */
1503 if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1504 m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1505 struct ether_header *eh;
1506 uint16_t offset, start;
1507
1508 eh = mtod(m0, struct ether_header *);
1509 switch (ntohs(eh->ether_type)) {
1510 case ETHERTYPE_IP:
1511 start = ETHER_HDR_LEN;
1512 break;
1513 case ETHERTYPE_VLAN:
1514 start = ETHER_HDR_LEN +
1515 ETHER_VLAN_ENCAP_LEN;
1516 break;
1517 default:
1518 /* unsupported, drop it */
1519 m_free(m0);
1520 continue;
1521 }
1522 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1523 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1524 flags |= (start <<
1525 GEM_TD_CXSUM_STARTSHFT) |
1526 (offset <<
1527 GEM_TD_CXSUM_STUFFSHFT) |
1528 GEM_TD_CXSUM_ENABLE;
1529 }
1530 #endif
1531 }
1532 if (seg == dmamap->dm_nsegs - 1) {
1533 flags |= GEM_TD_END_OF_PACKET;
1534 } else {
1535 /* last flag set outside of loop */
1536 sc->sc_txdescs[nexttx].gd_flags =
1537 GEM_DMA_WRITE(sc, flags);
1538 }
1539 lasttx = nexttx;
1540 }
1541 if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1542 /* add padding buffer at end of chain */
1543 flags &= ~GEM_TD_END_OF_PACKET;
1544 sc->sc_txdescs[lasttx].gd_flags =
1545 GEM_DMA_WRITE(sc, flags);
1546
1547 sc->sc_txdescs[nexttx].gd_addr =
1548 GEM_DMA_WRITE(sc,
1549 sc->sc_nulldmamap->dm_segs[0].ds_addr);
1550 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1551 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1552 lasttx = nexttx;
1553 nexttx = GEM_NEXTTX(nexttx);
1554 seg++;
1555 }
1556 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1557
1558 KASSERT(lasttx != -1);
1559
1560 /*
1561 * Store a pointer to the packet so we can free it later,
1562 * and remember what txdirty will be once the packet is
1563 * done.
1564 */
1565 txs->txs_mbuf = m0;
1566 txs->txs_firstdesc = sc->sc_txnext;
1567 txs->txs_lastdesc = lasttx;
1568 txs->txs_ndescs = seg;
1569
1570 #ifdef GEM_DEBUG
1571 if (ifp->if_flags & IFF_DEBUG) {
1572 printf(" gem_start %p transmit chain:\n", txs);
1573 gem_txsoft_print(sc, txs->txs_firstdesc,
1574 txs->txs_lastdesc);
1575 }
1576 #endif
1577
1578 /* Sync the descriptors we're using. */
1579 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1580 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1581
1582 /* Advance the tx pointer. */
1583 sc->sc_txfree -= txs->txs_ndescs;
1584 sc->sc_txnext = nexttx;
1585
1586 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1587 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1588
1589 /*
1590 * Pass the packet to any BPF listeners.
1591 */
1592 bpf_mtap(ifp, m0);
1593 }
1594
1595 if (txs == NULL || sc->sc_txfree == 0) {
1596 /* No more slots left; notify upper layer. */
1597 ifp->if_flags |= IFF_OACTIVE;
1598 sc->sc_if_flags = ifp->if_flags;
1599 }
1600
1601 if (sc->sc_txfree != ofree) {
1602 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1603 device_xname(sc->sc_dev), lasttx, firsttx));
1604 /*
1605 * The entire packet chain is set up.
1606 * Kick the transmitter.
1607 */
1608 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1609 device_xname(sc->sc_dev), nexttx));
1610 bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1611 sc->sc_txnext);
1612
1613 /* Set a watchdog timer in case the chip flakes out. */
1614 ifp->if_timer = 5;
1615 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1616 device_xname(sc->sc_dev), ifp->if_timer));
1617 }
1618 }
1619
1620 /*
1621 * Transmit interrupt.
1622 */
1623 int
1624 gem_tint(struct gem_softc *sc)
1625 {
1626 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1627 bus_space_tag_t t = sc->sc_bustag;
1628 bus_space_handle_t mac = sc->sc_h1;
1629 struct gem_txsoft *txs;
1630 int txlast;
1631 int progress = 0;
1632 u_int32_t v;
1633
1634 DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1635
1636 /* Unload collision counters ... */
1637 v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1638 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1639 ifp->if_collisions += v +
1640 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1641 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1642 ifp->if_oerrors += v;
1643
1644 /* ... then clear the hardware counters. */
1645 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1646 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1647 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1648 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1649
1650 /*
1651 * Go through our Tx list and free mbufs for those
1652 * frames that have been transmitted.
1653 */
1654 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1655 /*
1656 * In theory, we could harvest some descriptors before
1657 * the ring is empty, but that's a bit complicated.
1658 *
1659 * GEM_TX_COMPLETION points to the last descriptor
1660 * processed +1.
1661 *
1662 * Let's assume that the NIC writes back to the Tx
1663 * descriptors before it updates the completion
1664 * register. If the NIC has posted writes to the
1665 * Tx descriptors, PCI ordering requires that the
1666 * posted writes flush to RAM before the register-read
1667 * finishes. So let's read the completion register,
1668 * before syncing the descriptors, so that we
1669 * examine Tx descriptors that are at least as
1670 * current as the completion register.
1671 */
1672 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1673 DPRINTF(sc,
1674 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1675 txs->txs_lastdesc, txlast));
1676 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1677 if (txlast >= txs->txs_firstdesc &&
1678 txlast <= txs->txs_lastdesc)
1679 break;
1680 } else if (txlast >= txs->txs_firstdesc ||
1681 txlast <= txs->txs_lastdesc)
1682 break;
1683
1684 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1685 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1686
1687 #ifdef GEM_DEBUG /* XXX DMA synchronization? */
1688 if (ifp->if_flags & IFF_DEBUG) {
1689 printf(" txsoft %p transmit chain:\n", txs);
1690 gem_txsoft_print(sc, txs->txs_firstdesc,
1691 txs->txs_lastdesc);
1692 }
1693 #endif
1694
1695
1696 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1697 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1698
1699 sc->sc_txfree += txs->txs_ndescs;
1700
1701 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1702 0, txs->txs_dmamap->dm_mapsize,
1703 BUS_DMASYNC_POSTWRITE);
1704 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1705 if (txs->txs_mbuf != NULL) {
1706 m_freem(txs->txs_mbuf);
1707 txs->txs_mbuf = NULL;
1708 }
1709
1710 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1711
1712 ifp->if_opackets++;
1713 progress = 1;
1714 }
1715
1716 #if 0
1717 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1718 "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1719 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1720 ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1721 GEM_TX_DATA_PTR_HI) << 32) |
1722 bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1723 GEM_TX_DATA_PTR_LO),
1724 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1725 #endif
1726
1727 if (progress) {
1728 if (sc->sc_txfree == GEM_NTXDESC - 1)
1729 sc->sc_txwin = 0;
1730
1731 /* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1732 ifp->if_flags &= ~IFF_OACTIVE;
1733 sc->sc_if_flags = ifp->if_flags;
1734 ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1735 gem_start(ifp);
1736 }
1737 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1738 device_xname(sc->sc_dev), ifp->if_timer));
1739
1740 return (1);
1741 }
1742
1743 /*
1744 * Receive interrupt.
1745 */
1746 int
1747 gem_rint(struct gem_softc *sc)
1748 {
1749 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1750 bus_space_tag_t t = sc->sc_bustag;
1751 bus_space_handle_t h = sc->sc_h1;
1752 struct gem_rxsoft *rxs;
1753 struct mbuf *m;
1754 u_int64_t rxstat;
1755 u_int32_t rxcomp;
1756 int i, len, progress = 0;
1757
1758 DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1759
1760 /*
1761 * Ignore spurious interrupt that sometimes occurs before
1762 * we are set up when we network boot.
1763 */
1764 if (!sc->sc_meminited)
1765 return 1;
1766
1767 /*
1768 * Read the completion register once. This limits
1769 * how long the following loop can execute.
1770 */
1771 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1772
1773 /*
1774 * XXX Read the lastrx only once at the top for speed.
1775 */
1776 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1777 sc->sc_rxptr, rxcomp));
1778
1779 /*
1780 * Go into the loop at least once.
1781 */
1782 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1783 i = GEM_NEXTRX(i)) {
1784 rxs = &sc->sc_rxsoft[i];
1785
1786 GEM_CDRXSYNC(sc, i,
1787 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1788
1789 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1790
1791 if (rxstat & GEM_RD_OWN) {
1792 GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1793 /*
1794 * We have processed all of the receive buffers.
1795 */
1796 break;
1797 }
1798
1799 progress++;
1800 ifp->if_ipackets++;
1801
1802 if (rxstat & GEM_RD_BAD_CRC) {
1803 ifp->if_ierrors++;
1804 aprint_error_dev(sc->sc_dev,
1805 "receive error: CRC error\n");
1806 GEM_INIT_RXDESC(sc, i);
1807 continue;
1808 }
1809
1810 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1811 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1812 #ifdef GEM_DEBUG
1813 if (ifp->if_flags & IFF_DEBUG) {
1814 printf(" rxsoft %p descriptor %d: ", rxs, i);
1815 printf("gd_flags: 0x%016llx\t", (long long)
1816 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1817 printf("gd_addr: 0x%016llx\n", (long long)
1818 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1819 }
1820 #endif
1821
1822 /* No errors; receive the packet. */
1823 len = GEM_RD_BUFLEN(rxstat);
1824
1825 /*
1826 * Allocate a new mbuf cluster. If that fails, we are
1827 * out of memory, and must drop the packet and recycle
1828 * the buffer that's already attached to this descriptor.
1829 */
1830 m = rxs->rxs_mbuf;
1831 if (gem_add_rxbuf(sc, i) != 0) {
1832 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1833 ifp->if_ierrors++;
1834 aprint_error_dev(sc->sc_dev,
1835 "receive error: RX no buffer space\n");
1836 GEM_INIT_RXDESC(sc, i);
1837 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1838 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1839 continue;
1840 }
1841 m->m_data += 2; /* We're already off by two */
1842
1843 m->m_pkthdr.rcvif = ifp;
1844 m->m_pkthdr.len = m->m_len = len;
1845
1846 /*
1847 * Pass this up to any BPF listeners, but only
1848 * pass it up the stack if it's for us.
1849 */
1850 bpf_mtap(ifp, m);
1851
1852 #ifdef INET
1853 /* hardware checksum */
1854 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1855 struct ether_header *eh;
1856 struct ip *ip;
1857 int32_t hlen, pktlen;
1858
1859 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1860 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1861 ETHER_VLAN_ENCAP_LEN;
1862 eh = (struct ether_header *) (mtod(m, char *) +
1863 ETHER_VLAN_ENCAP_LEN);
1864 } else {
1865 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1866 eh = mtod(m, struct ether_header *);
1867 }
1868 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1869 goto swcsum;
1870 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1871
1872 /* IPv4 only */
1873 if (ip->ip_v != IPVERSION)
1874 goto swcsum;
1875
1876 hlen = ip->ip_hl << 2;
1877 if (hlen < sizeof(struct ip))
1878 goto swcsum;
1879
1880 /*
1881 * bail if too short, has random trailing garbage,
1882 * truncated, fragment, or has ethernet pad.
1883 */
1884 if ((ntohs(ip->ip_len) < hlen) ||
1885 (ntohs(ip->ip_len) != pktlen) ||
1886 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1887 goto swcsum;
1888
1889 switch (ip->ip_p) {
1890 case IPPROTO_TCP:
1891 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1892 goto swcsum;
1893 if (pktlen < (hlen + sizeof(struct tcphdr)))
1894 goto swcsum;
1895 m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1896 break;
1897 case IPPROTO_UDP:
1898 /* FALLTHROUGH */
1899 default:
1900 goto swcsum;
1901 }
1902
1903 /* the uncomplemented sum is expected */
1904 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1905
1906 /* if the pkt had ip options, we have to deduct them */
1907 if (hlen > sizeof(struct ip)) {
1908 uint16_t *opts;
1909 uint32_t optsum, temp;
1910
1911 optsum = 0;
1912 temp = hlen - sizeof(struct ip);
1913 opts = (uint16_t *) ((char *) ip +
1914 sizeof(struct ip));
1915
1916 while (temp > 1) {
1917 optsum += ntohs(*opts++);
1918 temp -= 2;
1919 }
1920 while (optsum >> 16)
1921 optsum = (optsum >> 16) +
1922 (optsum & 0xffff);
1923
1924 /* Deduct ip opts sum from hwsum. */
1925 m->m_pkthdr.csum_data += (uint16_t)~optsum;
1926
1927 while (m->m_pkthdr.csum_data >> 16)
1928 m->m_pkthdr.csum_data =
1929 (m->m_pkthdr.csum_data >> 16) +
1930 (m->m_pkthdr.csum_data &
1931 0xffff);
1932 }
1933
1934 m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1935 M_CSUM_NO_PSEUDOHDR;
1936 } else
1937 swcsum:
1938 m->m_pkthdr.csum_flags = 0;
1939 #endif
1940 /* Pass it on. */
1941 (*ifp->if_input)(ifp, m);
1942 }
1943
1944 if (progress) {
1945 /* Update the receive pointer. */
1946 if (i == sc->sc_rxptr) {
1947 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1948 #ifdef GEM_DEBUG
1949 if (ifp->if_flags & IFF_DEBUG)
1950 printf("%s: rint: ring wrap\n",
1951 device_xname(sc->sc_dev));
1952 #endif
1953 }
1954 sc->sc_rxptr = i;
1955 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1956 }
1957 #ifdef GEM_COUNTERS
1958 if (progress <= 4) {
1959 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1960 } else if (progress < 32) {
1961 if (progress < 16)
1962 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1963 else
1964 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1965
1966 } else {
1967 if (progress < 64)
1968 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1969 else
1970 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1971 }
1972 #endif
1973
1974 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1975 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1976
1977 /* Read error counters ... */
1978 ifp->if_ierrors +=
1979 bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1980 bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1981 bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1982 bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1983
1984 /* ... then clear the hardware counters. */
1985 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1986 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1987 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1988 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1989
1990 return (1);
1991 }
1992
1993
1994 /*
1995 * gem_add_rxbuf:
1996 *
1997 * Add a receive buffer to the indicated descriptor.
1998 */
1999 int
2000 gem_add_rxbuf(struct gem_softc *sc, int idx)
2001 {
2002 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
2003 struct mbuf *m;
2004 int error;
2005
2006 MGETHDR(m, M_DONTWAIT, MT_DATA);
2007 if (m == NULL)
2008 return (ENOBUFS);
2009
2010 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2011 MCLGET(m, M_DONTWAIT);
2012 if ((m->m_flags & M_EXT) == 0) {
2013 m_freem(m);
2014 return (ENOBUFS);
2015 }
2016
2017 #ifdef GEM_DEBUG
2018 /* bzero the packet to check DMA */
2019 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2020 #endif
2021
2022 if (rxs->rxs_mbuf != NULL)
2023 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2024
2025 rxs->rxs_mbuf = m;
2026
2027 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2028 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2029 BUS_DMA_READ|BUS_DMA_NOWAIT);
2030 if (error) {
2031 aprint_error_dev(sc->sc_dev,
2032 "can't load rx DMA map %d, error = %d\n", idx, error);
2033 panic("gem_add_rxbuf"); /* XXX */
2034 }
2035
2036 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2037 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2038
2039 GEM_INIT_RXDESC(sc, idx);
2040
2041 return (0);
2042 }
2043
2044
2045 int
2046 gem_eint(struct gem_softc *sc, u_int status)
2047 {
2048 char bits[128];
2049 u_int32_t r, v;
2050
2051 if ((status & GEM_INTR_MIF) != 0) {
2052 printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2053 return (1);
2054 }
2055
2056 if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2057 gem_reset_rxdma(sc);
2058 return (1);
2059 }
2060
2061 if (status & GEM_INTR_BERR) {
2062 if (sc->sc_flags & GEM_PCI)
2063 r = GEM_ERROR_STATUS;
2064 else
2065 r = GEM_SBUS_ERROR_STATUS;
2066 bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2067 v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2068 aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2069 v);
2070 return (1);
2071 }
2072 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2073 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2074
2075 return (1);
2076 }
2077
2078
2079 /*
2080 * PCS interrupts.
2081 * We should receive these when the link status changes, but sometimes
2082 * we don't receive them for link up. We compensate for this in the
2083 * gem_tick() callout.
2084 */
2085 int
2086 gem_pint(struct gem_softc *sc)
2087 {
2088 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2089 bus_space_tag_t t = sc->sc_bustag;
2090 bus_space_handle_t h = sc->sc_h1;
2091 u_int32_t v, v2;
2092
2093 /*
2094 * Clear the PCS interrupt from GEM_STATUS. The PCS register is
2095 * latched, so we have to read it twice. There is only one bit in
2096 * use, so the value is meaningless.
2097 */
2098 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2099 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2100
2101 if ((ifp->if_flags & IFF_UP) == 0)
2102 return 1;
2103
2104 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2105 return 1;
2106
2107 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2108 /* If we see remote fault, our link partner is probably going away */
2109 if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2110 gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2111 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2112 /* Otherwise, we may need to wait after auto-negotiation completes */
2113 } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2114 GEM_MII_STATUS_ANEG_CPT) {
2115 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2116 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2117 }
2118 if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2119 if (sc->sc_flags & GEM_LINK) {
2120 return 1;
2121 }
2122 callout_stop(&sc->sc_tick_ch);
2123 v = bus_space_read_4(t, h, GEM_MII_ANAR);
2124 v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2125 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2126 sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2127 v &= v2;
2128 if (v & GEM_MII_ANEG_FUL_DUPLX) {
2129 sc->sc_mii.mii_media_active |= IFM_FDX;
2130 #ifdef GEM_DEBUG
2131 aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2132 #endif
2133 } else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2134 sc->sc_mii.mii_media_active |= IFM_HDX;
2135 #ifdef GEM_DEBUG
2136 aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2137 #endif
2138 } else {
2139 #ifdef GEM_DEBUG
2140 aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2141 #endif
2142 }
2143 gem_statuschange(sc);
2144 } else {
2145 if ((sc->sc_flags & GEM_LINK) == 0) {
2146 return 1;
2147 }
2148 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2149 sc->sc_mii.mii_media_status = IFM_AVALID;
2150 #ifdef GEM_DEBUG
2151 aprint_debug_dev(sc->sc_dev, "link down\n");
2152 #endif
2153 gem_statuschange(sc);
2154
2155 /* Start the 10 second timer */
2156 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2157 }
2158 return 1;
2159 }
2160
2161
2162
2163 int
2164 gem_intr(void *v)
2165 {
2166 struct gem_softc *sc = v;
2167 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2168 bus_space_tag_t t = sc->sc_bustag;
2169 bus_space_handle_t h = sc->sc_h1;
2170 u_int32_t status;
2171 int r = 0;
2172 #ifdef GEM_DEBUG
2173 char bits[128];
2174 #endif
2175
2176 /* XXX We should probably mask out interrupts until we're done */
2177
2178 sc->sc_ev_intr.ev_count++;
2179
2180 status = bus_space_read_4(t, h, GEM_STATUS);
2181 #ifdef GEM_DEBUG
2182 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2183 #endif
2184 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2185 device_xname(sc->sc_dev), (status >> 19), bits));
2186
2187
2188 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2189 r |= gem_eint(sc, status);
2190
2191 /* We don't bother with GEM_INTR_TX_DONE */
2192 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2193 GEM_COUNTER_INCR(sc, sc_ev_txint);
2194 r |= gem_tint(sc);
2195 }
2196
2197 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2198 GEM_COUNTER_INCR(sc, sc_ev_rxint);
2199 r |= gem_rint(sc);
2200 }
2201
2202 /* We should eventually do more than just print out error stats. */
2203 if (status & GEM_INTR_TX_MAC) {
2204 int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2205 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2206 printf("%s: MAC tx fault, status %x\n",
2207 device_xname(sc->sc_dev), txstat);
2208 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2209 gem_init(ifp);
2210 }
2211 if (status & GEM_INTR_RX_MAC) {
2212 int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2213 /*
2214 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2215 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2216 * silicon bug so handle them silently. So if we detect
2217 * an RX FIFO overflow, we fire off a timer, and check
2218 * whether we're still making progress by looking at the
2219 * RX FIFO write and read pointers.
2220 */
2221 if (rxstat & GEM_MAC_RX_OVERFLOW) {
2222 ifp->if_ierrors++;
2223 aprint_error_dev(sc->sc_dev,
2224 "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
2225 sc->sc_rx_fifo_wr_ptr =
2226 bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2227 sc->sc_rx_fifo_rd_ptr =
2228 bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2229 callout_schedule(&sc->sc_rx_watchdog, 400);
2230 } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2231 printf("%s: MAC rx fault, status 0x%02x\n",
2232 device_xname(sc->sc_dev), rxstat);
2233 }
2234 if (status & GEM_INTR_PCS) {
2235 r |= gem_pint(sc);
2236 }
2237
2238 /* Do we need to do anything with these?
2239 if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2240 status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2241 if ((status2 & GEM_MAC_PAUSED) != 0)
2242 aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2243 GEM_MAC_PAUSE_TIME(status2));
2244 if ((status2 & GEM_MAC_PAUSE) != 0)
2245 aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2246 if ((status2 & GEM_MAC_RESUME) != 0)
2247 aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2248 }
2249 if ((status & GEM_INTR_MIF) != 0)
2250 aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2251 */
2252 rnd_add_uint32(&sc->rnd_source, status);
2253 return (r);
2254 }
2255
2256 void
2257 gem_rx_watchdog(void *arg)
2258 {
2259 struct gem_softc *sc = arg;
2260 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2261 bus_space_tag_t t = sc->sc_bustag;
2262 bus_space_handle_t h = sc->sc_h1;
2263 u_int32_t rx_fifo_wr_ptr;
2264 u_int32_t rx_fifo_rd_ptr;
2265 u_int32_t state;
2266
2267 if ((ifp->if_flags & IFF_RUNNING) == 0) {
2268 aprint_error_dev(sc->sc_dev, "receiver not running\n");
2269 return;
2270 }
2271
2272 rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2273 rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2274 state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
2275 if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
2276 ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
2277 ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
2278 (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
2279 {
2280 /*
2281 * The RX state machine is still in overflow state and
2282 * the RX FIFO write and read pointers seem to be
2283 * stuck. Whack the chip over the head to get things
2284 * going again.
2285 */
2286 aprint_error_dev(sc->sc_dev,
2287 "receiver stuck in overflow, resetting\n");
2288 gem_init(ifp);
2289 } else {
2290 if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
2291 aprint_error_dev(sc->sc_dev,
2292 "rx_watchdog: not in overflow state: 0x%x\n",
2293 state);
2294 }
2295 if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
2296 aprint_error_dev(sc->sc_dev,
2297 "rx_watchdog: wr & rd ptr different\n");
2298 }
2299 if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
2300 aprint_error_dev(sc->sc_dev,
2301 "rx_watchdog: wr pointer != saved\n");
2302 }
2303 if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
2304 aprint_error_dev(sc->sc_dev,
2305 "rx_watchdog: rd pointer != saved\n");
2306 }
2307 aprint_error_dev(sc->sc_dev, "resetting anyway\n");
2308 gem_init(ifp);
2309 }
2310 }
2311
2312 void
2313 gem_watchdog(struct ifnet *ifp)
2314 {
2315 struct gem_softc *sc = ifp->if_softc;
2316
2317 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2318 "GEM_MAC_RX_CONFIG %x\n",
2319 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2320 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2321 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2322
2323 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2324 ++ifp->if_oerrors;
2325
2326 /* Try to get more packets going. */
2327 gem_init(ifp);
2328 gem_start(ifp);
2329 }
2330
2331 /*
2332 * Initialize the MII Management Interface
2333 */
2334 void
2335 gem_mifinit(struct gem_softc *sc)
2336 {
2337 bus_space_tag_t t = sc->sc_bustag;
2338 bus_space_handle_t mif = sc->sc_h1;
2339
2340 /* Configure the MIF in frame mode */
2341 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2342 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2343 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2344 }
2345
2346 /*
2347 * MII interface
2348 *
2349 * The GEM MII interface supports at least three different operating modes:
2350 *
2351 * Bitbang mode is implemented using data, clock and output enable registers.
2352 *
2353 * Frame mode is implemented by loading a complete frame into the frame
2354 * register and polling the valid bit for completion.
2355 *
2356 * Polling mode uses the frame register but completion is indicated by
2357 * an interrupt.
2358 *
2359 */
2360 static int
2361 gem_mii_readreg(device_t self, int phy, int reg)
2362 {
2363 struct gem_softc *sc = device_private(self);
2364 bus_space_tag_t t = sc->sc_bustag;
2365 bus_space_handle_t mif = sc->sc_h1;
2366 int n;
2367 u_int32_t v;
2368
2369 #ifdef GEM_DEBUG1
2370 if (sc->sc_debug)
2371 printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2372 #endif
2373
2374 /* Construct the frame command */
2375 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
2376 GEM_MIF_FRAME_READ;
2377
2378 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2379 for (n = 0; n < 100; n++) {
2380 DELAY(1);
2381 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2382 if (v & GEM_MIF_FRAME_TA0)
2383 return (v & GEM_MIF_FRAME_DATA);
2384 }
2385
2386 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2387 return (0);
2388 }
2389
2390 static void
2391 gem_mii_writereg(device_t self, int phy, int reg, int val)
2392 {
2393 struct gem_softc *sc = device_private(self);
2394 bus_space_tag_t t = sc->sc_bustag;
2395 bus_space_handle_t mif = sc->sc_h1;
2396 int n;
2397 u_int32_t v;
2398
2399 #ifdef GEM_DEBUG1
2400 if (sc->sc_debug)
2401 printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2402 phy, reg, val);
2403 #endif
2404
2405 /* Construct the frame command */
2406 v = GEM_MIF_FRAME_WRITE |
2407 (phy << GEM_MIF_PHY_SHIFT) |
2408 (reg << GEM_MIF_REG_SHIFT) |
2409 (val & GEM_MIF_FRAME_DATA);
2410
2411 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2412 for (n = 0; n < 100; n++) {
2413 DELAY(1);
2414 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2415 if (v & GEM_MIF_FRAME_TA0)
2416 return;
2417 }
2418
2419 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2420 }
2421
2422 static void
2423 gem_mii_statchg(struct ifnet *ifp)
2424 {
2425 struct gem_softc *sc = ifp->if_softc;
2426 #ifdef GEM_DEBUG
2427 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2428 #endif
2429
2430 #ifdef GEM_DEBUG
2431 if (sc->sc_debug)
2432 printf("gem_mii_statchg: status change: phy = %d\n",
2433 sc->sc_phys[instance]);
2434 #endif
2435 gem_statuschange(sc);
2436 }
2437
2438 /*
2439 * Common status change for gem_mii_statchg() and gem_pint()
2440 */
2441 void
2442 gem_statuschange(struct gem_softc* sc)
2443 {
2444 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2445 bus_space_tag_t t = sc->sc_bustag;
2446 bus_space_handle_t mac = sc->sc_h1;
2447 int gigabit;
2448 u_int32_t rxcfg, txcfg, v;
2449
2450 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2451 IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2452 sc->sc_flags |= GEM_LINK;
2453 else
2454 sc->sc_flags &= ~GEM_LINK;
2455
2456 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2457 gigabit = 1;
2458 else
2459 gigabit = 0;
2460
2461 /*
2462 * The configuration done here corresponds to the steps F) and
2463 * G) and as far as enabling of RX and TX MAC goes also step H)
2464 * of the initialization sequence outlined in section 3.2.1 of
2465 * the GEM Gigabit Ethernet ASIC Specification.
2466 */
2467
2468 rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2469 rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2470 txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2471 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2472 txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2473 else if (gigabit) {
2474 rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2475 txcfg |= GEM_MAC_RX_CARR_EXTEND;
2476 }
2477 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2478 bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2479 BUS_SPACE_BARRIER_WRITE);
2480 if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2481 aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2482 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2483 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2484 bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2485 BUS_SPACE_BARRIER_WRITE);
2486 if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2487 aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2488 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2489
2490 v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2491 ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2492 bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2493
2494 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2495 gigabit != 0)
2496 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2497 GEM_MAC_SLOT_TIME_CARR_EXTEND);
2498 else
2499 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2500 GEM_MAC_SLOT_TIME_NORMAL);
2501
2502 /* XIF Configuration */
2503 if (sc->sc_flags & GEM_LINK)
2504 v = GEM_MAC_XIF_LINK_LED;
2505 else
2506 v = 0;
2507 v |= GEM_MAC_XIF_TX_MII_ENA;
2508
2509 /* If an external transceiver is connected, enable its MII drivers */
2510 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2511 if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2512 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2513 if (gigabit)
2514 v |= GEM_MAC_XIF_GMII_MODE;
2515 else
2516 v &= ~GEM_MAC_XIF_GMII_MODE;
2517 } else
2518 /* Internal MII needs buf enable */
2519 v |= GEM_MAC_XIF_MII_BUF_ENA;
2520 /* MII needs echo disable if half duplex. */
2521 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2522 /* turn on full duplex LED */
2523 v |= GEM_MAC_XIF_FDPLX_LED;
2524 else
2525 /* half duplex -- disable echo */
2526 v |= GEM_MAC_XIF_ECHO_DISABL;
2527 } else {
2528 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2529 v |= GEM_MAC_XIF_FDPLX_LED;
2530 v |= GEM_MAC_XIF_GMII_MODE;
2531 }
2532 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2533
2534 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2535 (sc->sc_flags & GEM_LINK) != 0) {
2536 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2537 txcfg | GEM_MAC_TX_ENABLE);
2538 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2539 rxcfg | GEM_MAC_RX_ENABLE);
2540 }
2541 }
2542
2543 int
2544 gem_ser_mediachange(struct ifnet *ifp)
2545 {
2546 struct gem_softc *sc = ifp->if_softc;
2547 u_int s, t;
2548
2549 if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2550 return EINVAL;
2551
2552 s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2553 if (s == IFM_AUTO) {
2554 if (sc->sc_mii_media != s) {
2555 #ifdef GEM_DEBUG
2556 aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2557 #endif
2558 sc->sc_mii_media = s;
2559 if (ifp->if_flags & IFF_UP) {
2560 gem_pcs_stop(sc, 0);
2561 gem_pcs_start(sc);
2562 }
2563 }
2564 return 0;
2565 }
2566 if (s == IFM_1000_SX) {
2567 t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2568 if (t == IFM_FDX || t == IFM_HDX) {
2569 if (sc->sc_mii_media != t) {
2570 sc->sc_mii_media = t;
2571 #ifdef GEM_DEBUG
2572 aprint_debug_dev(sc->sc_dev,
2573 "setting media to 1000baseSX-%s\n",
2574 t == IFM_FDX ? "FDX" : "HDX");
2575 #endif
2576 if (ifp->if_flags & IFF_UP) {
2577 gem_pcs_stop(sc, 0);
2578 gem_pcs_start(sc);
2579 }
2580 }
2581 return 0;
2582 }
2583 }
2584 return EINVAL;
2585 }
2586
2587 void
2588 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2589 {
2590 struct gem_softc *sc = ifp->if_softc;
2591
2592 if ((ifp->if_flags & IFF_UP) == 0)
2593 return;
2594 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2595 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2596 }
2597
2598 static int
2599 gem_ifflags_cb(struct ethercom *ec)
2600 {
2601 struct ifnet *ifp = &ec->ec_if;
2602 struct gem_softc *sc = ifp->if_softc;
2603 int change = ifp->if_flags ^ sc->sc_if_flags;
2604
2605 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2606 return ENETRESET;
2607 else if ((change & IFF_PROMISC) != 0)
2608 gem_setladrf(sc);
2609 return 0;
2610 }
2611
2612 /*
2613 * Process an ioctl request.
2614 */
2615 int
2616 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2617 {
2618 struct gem_softc *sc = ifp->if_softc;
2619 int s, error = 0;
2620
2621 s = splnet();
2622
2623 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2624 error = 0;
2625 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2626 ;
2627 else if (ifp->if_flags & IFF_RUNNING) {
2628 /*
2629 * Multicast list has changed; set the hardware filter
2630 * accordingly.
2631 */
2632 gem_setladrf(sc);
2633 }
2634 }
2635
2636 /* Try to get things going again */
2637 if (ifp->if_flags & IFF_UP)
2638 gem_start(ifp);
2639 splx(s);
2640 return (error);
2641 }
2642
2643 static void
2644 gem_inten(struct gem_softc *sc)
2645 {
2646 bus_space_tag_t t = sc->sc_bustag;
2647 bus_space_handle_t h = sc->sc_h1;
2648 uint32_t v;
2649
2650 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2651 v = GEM_INTR_PCS;
2652 else
2653 v = GEM_INTR_MIF;
2654 bus_space_write_4(t, h, GEM_INTMASK,
2655 ~(GEM_INTR_TX_INTME |
2656 GEM_INTR_TX_EMPTY |
2657 GEM_INTR_TX_MAC |
2658 GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
2659 GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
2660 GEM_INTR_BERR | v));
2661 }
2662
2663 bool
2664 gem_resume(device_t self, const pmf_qual_t *qual)
2665 {
2666 struct gem_softc *sc = device_private(self);
2667
2668 gem_inten(sc);
2669
2670 return true;
2671 }
2672
2673 bool
2674 gem_suspend(device_t self, const pmf_qual_t *qual)
2675 {
2676 struct gem_softc *sc = device_private(self);
2677 bus_space_tag_t t = sc->sc_bustag;
2678 bus_space_handle_t h = sc->sc_h1;
2679
2680 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2681
2682 return true;
2683 }
2684
2685 bool
2686 gem_shutdown(device_t self, int howto)
2687 {
2688 struct gem_softc *sc = device_private(self);
2689 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2690
2691 gem_stop(ifp, 1);
2692
2693 return true;
2694 }
2695
2696 /*
2697 * Set up the logical address filter.
2698 */
2699 void
2700 gem_setladrf(struct gem_softc *sc)
2701 {
2702 struct ethercom *ec = &sc->sc_ethercom;
2703 struct ifnet *ifp = &ec->ec_if;
2704 struct ether_multi *enm;
2705 struct ether_multistep step;
2706 bus_space_tag_t t = sc->sc_bustag;
2707 bus_space_handle_t h = sc->sc_h1;
2708 u_int32_t crc;
2709 u_int32_t hash[16];
2710 u_int32_t v;
2711 int i;
2712
2713 /* Get current RX configuration */
2714 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2715
2716 /*
2717 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2718 * and hash filter. Depending on the case, the right bit will be
2719 * enabled.
2720 */
2721 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2722 GEM_MAC_RX_PROMISC_GRP);
2723
2724 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2725 /* Turn on promiscuous mode */
2726 v |= GEM_MAC_RX_PROMISCUOUS;
2727 ifp->if_flags |= IFF_ALLMULTI;
2728 goto chipit;
2729 }
2730
2731 /*
2732 * Set up multicast address filter by passing all multicast addresses
2733 * through a crc generator, and then using the high order 8 bits as an
2734 * index into the 256 bit logical address filter. The high order 4
2735 * bits selects the word, while the other 4 bits select the bit within
2736 * the word (where bit 0 is the MSB).
2737 */
2738
2739 /* Clear hash table */
2740 memset(hash, 0, sizeof(hash));
2741
2742 ETHER_FIRST_MULTI(step, ec, enm);
2743 while (enm != NULL) {
2744 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2745 /*
2746 * We must listen to a range of multicast addresses.
2747 * For now, just accept all multicasts, rather than
2748 * trying to set only those filter bits needed to match
2749 * the range. (At this time, the only use of address
2750 * ranges is for IP multicast routing, for which the
2751 * range is big enough to require all bits set.)
2752 * XXX should use the address filters for this
2753 */
2754 ifp->if_flags |= IFF_ALLMULTI;
2755 v |= GEM_MAC_RX_PROMISC_GRP;
2756 goto chipit;
2757 }
2758
2759 /* Get the LE CRC32 of the address */
2760 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2761
2762 /* Just want the 8 most significant bits. */
2763 crc >>= 24;
2764
2765 /* Set the corresponding bit in the filter. */
2766 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2767
2768 ETHER_NEXT_MULTI(step, enm);
2769 }
2770
2771 v |= GEM_MAC_RX_HASH_FILTER;
2772 ifp->if_flags &= ~IFF_ALLMULTI;
2773
2774 /* Now load the hash table into the chip (if we are using it) */
2775 for (i = 0; i < 16; i++) {
2776 bus_space_write_4(t, h,
2777 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2778 hash[i]);
2779 }
2780
2781 chipit:
2782 sc->sc_if_flags = ifp->if_flags;
2783 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2784 }
2785