gem.c revision 1.103 1 /* $NetBSD: gem.c,v 1.103 2015/08/30 04:17:48 dholland Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * Copyright (c) 2001-2003 Thomas Moestl
7 * All rights reserved.
8 *
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 /*
34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35 * See `GEM Gigabit Ethernet ASIC Specification'
36 * http://www.sun.com/processors/manuals/ge.pdf
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.103 2015/08/30 04:17:48 dholland Exp $");
41
42 #include "opt_inet.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/mbuf.h>
48 #include <sys/syslog.h>
49 #include <sys/malloc.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/ioctl.h>
53 #include <sys/errno.h>
54 #include <sys/device.h>
55
56 #include <machine/endian.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71
72 #include <net/bpf.h>
73
74 #include <sys/bus.h>
75 #include <sys/intr.h>
76
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 #include <dev/mii/mii_bitbang.h>
80
81 #include <dev/ic/gemreg.h>
82 #include <dev/ic/gemvar.h>
83
84 #define TRIES 10000
85
86 static void gem_inten(struct gem_softc *);
87 static void gem_start(struct ifnet *);
88 static void gem_stop(struct ifnet *, int);
89 int gem_ioctl(struct ifnet *, u_long, void *);
90 void gem_tick(void *);
91 void gem_watchdog(struct ifnet *);
92 void gem_rx_watchdog(void *);
93 void gem_pcs_start(struct gem_softc *sc);
94 void gem_pcs_stop(struct gem_softc *sc, int);
95 int gem_init(struct ifnet *);
96 void gem_init_regs(struct gem_softc *sc);
97 static int gem_ringsize(int sz);
98 static int gem_meminit(struct gem_softc *);
99 void gem_mifinit(struct gem_softc *);
100 static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
101 u_int32_t, u_int32_t);
102 void gem_reset(struct gem_softc *);
103 int gem_reset_rx(struct gem_softc *sc);
104 static void gem_reset_rxdma(struct gem_softc *sc);
105 static void gem_rx_common(struct gem_softc *sc);
106 int gem_reset_tx(struct gem_softc *sc);
107 int gem_disable_rx(struct gem_softc *sc);
108 int gem_disable_tx(struct gem_softc *sc);
109 static void gem_rxdrain(struct gem_softc *sc);
110 int gem_add_rxbuf(struct gem_softc *sc, int idx);
111 void gem_setladrf(struct gem_softc *);
112
113 /* MII methods & callbacks */
114 static int gem_mii_readreg(device_t, int, int);
115 static void gem_mii_writereg(device_t, int, int, int);
116 static void gem_mii_statchg(struct ifnet *);
117
118 static int gem_ifflags_cb(struct ethercom *);
119
120 void gem_statuschange(struct gem_softc *);
121
122 int gem_ser_mediachange(struct ifnet *);
123 void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
124
125 static void gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
126
127 struct mbuf *gem_get(struct gem_softc *, int, int);
128 int gem_put(struct gem_softc *, int, struct mbuf *);
129 void gem_read(struct gem_softc *, int, int);
130 int gem_pint(struct gem_softc *);
131 int gem_eint(struct gem_softc *, u_int);
132 int gem_rint(struct gem_softc *);
133 int gem_tint(struct gem_softc *);
134 void gem_power(int, void *);
135
136 #ifdef GEM_DEBUG
137 static void gem_txsoft_print(const struct gem_softc *, int, int);
138 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
139 printf x
140 #else
141 #define DPRINTF(sc, x) /* nothing */
142 #endif
143
144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
145
146 int
147 gem_detach(struct gem_softc *sc, int flags)
148 {
149 int i;
150 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
151 bus_space_tag_t t = sc->sc_bustag;
152 bus_space_handle_t h = sc->sc_h1;
153
154 /*
155 * Free any resources we've allocated during the attach.
156 * Do this in reverse order and fall through.
157 */
158 switch (sc->sc_att_stage) {
159 case GEM_ATT_BACKEND_2:
160 case GEM_ATT_BACKEND_1:
161 case GEM_ATT_FINISHED:
162 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
163 gem_stop(&sc->sc_ethercom.ec_if, 1);
164
165 #ifdef GEM_COUNTERS
166 for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
167 evcnt_detach(&sc->sc_ev_rxhist[i]);
168 evcnt_detach(&sc->sc_ev_rxnobuf);
169 evcnt_detach(&sc->sc_ev_rxfull);
170 evcnt_detach(&sc->sc_ev_rxint);
171 evcnt_detach(&sc->sc_ev_txint);
172 #endif
173 evcnt_detach(&sc->sc_ev_intr);
174
175 rnd_detach_source(&sc->rnd_source);
176 ether_ifdetach(ifp);
177 if_detach(ifp);
178 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
179
180 callout_destroy(&sc->sc_tick_ch);
181 callout_destroy(&sc->sc_rx_watchdog);
182
183 /*FALLTHROUGH*/
184 case GEM_ATT_MII:
185 sc->sc_att_stage = GEM_ATT_MII;
186 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
187 /*FALLTHROUGH*/
188 case GEM_ATT_7:
189 for (i = 0; i < GEM_NRXDESC; i++) {
190 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
191 bus_dmamap_destroy(sc->sc_dmatag,
192 sc->sc_rxsoft[i].rxs_dmamap);
193 }
194 /*FALLTHROUGH*/
195 case GEM_ATT_6:
196 for (i = 0; i < GEM_TXQUEUELEN; i++) {
197 if (sc->sc_txsoft[i].txs_dmamap != NULL)
198 bus_dmamap_destroy(sc->sc_dmatag,
199 sc->sc_txsoft[i].txs_dmamap);
200 }
201 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
202 /*FALLTHROUGH*/
203 case GEM_ATT_5:
204 bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
205 /*FALLTHROUGH*/
206 case GEM_ATT_4:
207 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
208 /*FALLTHROUGH*/
209 case GEM_ATT_3:
210 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
211 /*FALLTHROUGH*/
212 case GEM_ATT_2:
213 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
214 sizeof(struct gem_control_data));
215 /*FALLTHROUGH*/
216 case GEM_ATT_1:
217 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
218 /*FALLTHROUGH*/
219 case GEM_ATT_0:
220 sc->sc_att_stage = GEM_ATT_0;
221 /*FALLTHROUGH*/
222 case GEM_ATT_BACKEND_0:
223 break;
224 }
225 return 0;
226 }
227
228 static void
229 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
230 {
231 cfattach_t ca = device_cfattach(sc->sc_dev);
232
233 sc->sc_att_stage = stage;
234 (*ca->ca_detach)(sc->sc_dev, 0);
235 }
236
237 /*
238 * gem_attach:
239 *
240 * Attach a Gem interface to the system.
241 */
242 void
243 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
244 {
245 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
246 struct mii_data *mii = &sc->sc_mii;
247 bus_space_tag_t t = sc->sc_bustag;
248 bus_space_handle_t h = sc->sc_h1;
249 struct ifmedia_entry *ifm;
250 int i, error, phyaddr;
251 u_int32_t v;
252 char *nullbuf;
253
254 /* Make sure the chip is stopped. */
255 ifp->if_softc = sc;
256 gem_reset(sc);
257
258 /*
259 * Allocate the control data structures, and create and load the
260 * DMA map for it. gem_control_data is 9216 bytes, we have space for
261 * the padding buffer in the bus_dmamem_alloc()'d memory.
262 */
263 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
264 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
265 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
266 aprint_error_dev(sc->sc_dev,
267 "unable to allocate control data, error = %d\n",
268 error);
269 gem_partial_detach(sc, GEM_ATT_0);
270 return;
271 }
272
273 /* XXX should map this in with correct endianness */
274 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
275 sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
276 BUS_DMA_COHERENT)) != 0) {
277 aprint_error_dev(sc->sc_dev,
278 "unable to map control data, error = %d\n", error);
279 gem_partial_detach(sc, GEM_ATT_1);
280 return;
281 }
282
283 nullbuf =
284 (char *)sc->sc_control_data + sizeof(struct gem_control_data);
285
286 if ((error = bus_dmamap_create(sc->sc_dmatag,
287 sizeof(struct gem_control_data), 1,
288 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
289 aprint_error_dev(sc->sc_dev,
290 "unable to create control data DMA map, error = %d\n",
291 error);
292 gem_partial_detach(sc, GEM_ATT_2);
293 return;
294 }
295
296 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
297 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
298 0)) != 0) {
299 aprint_error_dev(sc->sc_dev,
300 "unable to load control data DMA map, error = %d\n",
301 error);
302 gem_partial_detach(sc, GEM_ATT_3);
303 return;
304 }
305
306 memset(nullbuf, 0, ETHER_MIN_TX);
307 if ((error = bus_dmamap_create(sc->sc_dmatag,
308 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
309 aprint_error_dev(sc->sc_dev,
310 "unable to create padding DMA map, error = %d\n", error);
311 gem_partial_detach(sc, GEM_ATT_4);
312 return;
313 }
314
315 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
316 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
317 aprint_error_dev(sc->sc_dev,
318 "unable to load padding DMA map, error = %d\n", error);
319 gem_partial_detach(sc, GEM_ATT_5);
320 return;
321 }
322
323 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
324 BUS_DMASYNC_PREWRITE);
325
326 /*
327 * Initialize the transmit job descriptors.
328 */
329 SIMPLEQ_INIT(&sc->sc_txfreeq);
330 SIMPLEQ_INIT(&sc->sc_txdirtyq);
331
332 /*
333 * Create the transmit buffer DMA maps.
334 */
335 for (i = 0; i < GEM_TXQUEUELEN; i++) {
336 struct gem_txsoft *txs;
337
338 txs = &sc->sc_txsoft[i];
339 txs->txs_mbuf = NULL;
340 if ((error = bus_dmamap_create(sc->sc_dmatag,
341 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
342 ETHER_MAX_LEN_JUMBO, 0, 0,
343 &txs->txs_dmamap)) != 0) {
344 aprint_error_dev(sc->sc_dev,
345 "unable to create tx DMA map %d, error = %d\n",
346 i, error);
347 gem_partial_detach(sc, GEM_ATT_6);
348 return;
349 }
350 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
351 }
352
353 /*
354 * Create the receive buffer DMA maps.
355 */
356 for (i = 0; i < GEM_NRXDESC; i++) {
357 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
358 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
359 aprint_error_dev(sc->sc_dev,
360 "unable to create rx DMA map %d, error = %d\n",
361 i, error);
362 gem_partial_detach(sc, GEM_ATT_7);
363 return;
364 }
365 sc->sc_rxsoft[i].rxs_mbuf = NULL;
366 }
367
368 /* Initialize ifmedia structures and MII info */
369 mii->mii_ifp = ifp;
370 mii->mii_readreg = gem_mii_readreg;
371 mii->mii_writereg = gem_mii_writereg;
372 mii->mii_statchg = gem_mii_statchg;
373
374 sc->sc_ethercom.ec_mii = mii;
375
376 /*
377 * Initialization based on `GEM Gigabit Ethernet ASIC Specification'
378 * Section 3.2.1 `Initialization Sequence'.
379 * However, we can't assume SERDES or Serialink if neither
380 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
381 * being set, as both are set on Sun X1141A (with SERDES). So,
382 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
383 * Also, for variants that report 2 PHY's, we prefer the external
384 * PHY over the internal PHY, so we look for that first.
385 */
386 gem_mifinit(sc);
387
388 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
389 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
390 ether_mediastatus);
391 /* Look for external PHY */
392 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
393 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
394 bus_space_write_4(t, h, GEM_MIF_CONFIG,
395 sc->sc_mif_config);
396 switch (sc->sc_variant) {
397 case GEM_SUN_ERI:
398 phyaddr = GEM_PHYAD_EXTERNAL;
399 break;
400 default:
401 phyaddr = MII_PHY_ANY;
402 break;
403 }
404 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
405 MII_OFFSET_ANY, MIIF_FORCEANEG);
406 }
407 #ifdef GEM_DEBUG
408 else
409 aprint_debug_dev(sc->sc_dev, "using external PHY\n");
410 #endif
411 /* Look for internal PHY if no external PHY was found */
412 if (LIST_EMPTY(&mii->mii_phys) &&
413 sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) {
414 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
415 bus_space_write_4(t, h, GEM_MIF_CONFIG,
416 sc->sc_mif_config);
417 switch (sc->sc_variant) {
418 case GEM_SUN_ERI:
419 case GEM_APPLE_K2_GMAC:
420 phyaddr = GEM_PHYAD_INTERNAL;
421 break;
422 case GEM_APPLE_GMAC:
423 phyaddr = GEM_PHYAD_EXTERNAL;
424 break;
425 default:
426 phyaddr = MII_PHY_ANY;
427 break;
428 }
429 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
430 MII_OFFSET_ANY, MIIF_FORCEANEG);
431 #ifdef GEM_DEBUG
432 if (!LIST_EMPTY(&mii->mii_phys))
433 aprint_debug_dev(sc->sc_dev,
434 "using internal PHY\n");
435 #endif
436 }
437 if (LIST_EMPTY(&mii->mii_phys)) {
438 /* No PHY attached */
439 aprint_error_dev(sc->sc_dev,
440 "PHY probe failed\n");
441 gem_partial_detach(sc, GEM_ATT_MII);
442 return;
443 } else {
444 struct mii_softc *child;
445
446 /*
447 * Walk along the list of attached MII devices and
448 * establish an `MII instance' to `PHY number'
449 * mapping.
450 */
451 LIST_FOREACH(child, &mii->mii_phys, mii_list) {
452 /*
453 * Note: we support just one PHY: the internal
454 * or external MII is already selected for us
455 * by the GEM_MIF_CONFIG register.
456 */
457 if (child->mii_phy > 1 || child->mii_inst > 0) {
458 aprint_error_dev(sc->sc_dev,
459 "cannot accommodate MII device"
460 " %s at PHY %d, instance %d\n",
461 device_xname(child->mii_dev),
462 child->mii_phy, child->mii_inst);
463 continue;
464 }
465 sc->sc_phys[child->mii_inst] = child->mii_phy;
466 }
467
468 if (sc->sc_variant != GEM_SUN_ERI)
469 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
470 GEM_MII_DATAPATH_MII);
471
472 /*
473 * XXX - we can really do the following ONLY if the
474 * PHY indeed has the auto negotiation capability!!
475 */
476 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
477 }
478 } else {
479 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
480 gem_ser_mediastatus);
481 /* SERDES or Serialink */
482 if (sc->sc_flags & GEM_SERDES) {
483 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
484 GEM_MII_DATAPATH_SERDES);
485 } else {
486 sc->sc_flags |= GEM_SERIAL;
487 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
488 GEM_MII_DATAPATH_SERIAL);
489 }
490
491 aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
492 sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
493
494 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
495 /* Check for FDX and HDX capabilities */
496 sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
497 if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
498 ifmedia_add(&sc->sc_mii.mii_media,
499 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
500 aprint_normal("1000baseSX-FDX, ");
501 }
502 if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
503 ifmedia_add(&sc->sc_mii.mii_media,
504 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
505 aprint_normal("1000baseSX-HDX, ");
506 }
507 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
508 sc->sc_mii_media = IFM_AUTO;
509 aprint_normal("auto\n");
510
511 gem_pcs_stop(sc, 1);
512 }
513
514 /*
515 * From this point forward, the attachment cannot fail. A failure
516 * before this point releases all resources that may have been
517 * allocated.
518 */
519
520 /* Announce ourselves. */
521 aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
522 ether_sprintf(enaddr));
523
524 /* Get RX FIFO size */
525 sc->sc_rxfifosize = 64 *
526 bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
527 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
528
529 /* Get TX FIFO size */
530 v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
531 aprint_normal(", %uKB TX fifo\n", v / 16);
532
533 /* Initialize ifnet structure. */
534 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
535 ifp->if_softc = sc;
536 ifp->if_flags =
537 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
538 sc->sc_if_flags = ifp->if_flags;
539 #if 0
540 /*
541 * The GEM hardware supports basic TCP checksum offloading only.
542 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
543 * have bugs in the receive checksum, so don't enable it for now.
544 */
545 if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
546 (GEM_IS_APPLE(sc) &&
547 (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
548 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
549 #endif
550 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
551 ifp->if_start = gem_start;
552 ifp->if_ioctl = gem_ioctl;
553 ifp->if_watchdog = gem_watchdog;
554 ifp->if_stop = gem_stop;
555 ifp->if_init = gem_init;
556 IFQ_SET_READY(&ifp->if_snd);
557
558 /*
559 * If we support GigE media, we support jumbo frames too.
560 * Unless we are Apple.
561 */
562 TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
563 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
564 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
565 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
566 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
567 if (!GEM_IS_APPLE(sc))
568 sc->sc_ethercom.ec_capabilities
569 |= ETHERCAP_JUMBO_MTU;
570 sc->sc_flags |= GEM_GIGABIT;
571 break;
572 }
573 }
574
575 /* claim 802.1q capability */
576 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
577
578 /* Attach the interface. */
579 if_attach(ifp);
580 ether_ifattach(ifp, enaddr);
581 ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
582
583 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
584 RND_TYPE_NET, RND_FLAG_DEFAULT);
585
586 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
587 NULL, device_xname(sc->sc_dev), "interrupts");
588 #ifdef GEM_COUNTERS
589 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
590 &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
591 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
592 &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
593 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
594 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
595 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
596 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
597 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
598 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
599 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
600 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
601 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
602 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
603 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
604 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
605 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
606 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
607 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
608 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
609 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
610 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
611 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
612 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
613 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
614 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
615 #endif
616
617 callout_init(&sc->sc_tick_ch, 0);
618 callout_init(&sc->sc_rx_watchdog, 0);
619 callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
620
621 sc->sc_att_stage = GEM_ATT_FINISHED;
622
623 return;
624 }
625
626 void
627 gem_tick(void *arg)
628 {
629 struct gem_softc *sc = arg;
630 int s;
631
632 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
633 /*
634 * We have to reset everything if we failed to get a
635 * PCS interrupt. Restarting the callout is handled
636 * in gem_pcs_start().
637 */
638 gem_init(&sc->sc_ethercom.ec_if);
639 } else {
640 s = splnet();
641 mii_tick(&sc->sc_mii);
642 splx(s);
643 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
644 }
645 }
646
647 static int
648 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
649 {
650 int i;
651 u_int32_t reg;
652
653 for (i = TRIES; i--; DELAY(100)) {
654 reg = bus_space_read_4(sc->sc_bustag, h, r);
655 if ((reg & clr) == 0 && (reg & set) == set)
656 return (1);
657 }
658 return (0);
659 }
660
661 void
662 gem_reset(struct gem_softc *sc)
663 {
664 bus_space_tag_t t = sc->sc_bustag;
665 bus_space_handle_t h = sc->sc_h2;
666 int s;
667
668 s = splnet();
669 DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
670 gem_reset_rx(sc);
671 gem_reset_tx(sc);
672
673 /* Do a full reset */
674 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
675 if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
676 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
677 splx(s);
678 }
679
680
681 /*
682 * gem_rxdrain:
683 *
684 * Drain the receive queue.
685 */
686 static void
687 gem_rxdrain(struct gem_softc *sc)
688 {
689 struct gem_rxsoft *rxs;
690 int i;
691
692 for (i = 0; i < GEM_NRXDESC; i++) {
693 rxs = &sc->sc_rxsoft[i];
694 if (rxs->rxs_mbuf != NULL) {
695 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
696 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
697 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
698 m_freem(rxs->rxs_mbuf);
699 rxs->rxs_mbuf = NULL;
700 }
701 }
702 }
703
704 /*
705 * Reset the whole thing.
706 */
707 static void
708 gem_stop(struct ifnet *ifp, int disable)
709 {
710 struct gem_softc *sc = ifp->if_softc;
711 struct gem_txsoft *txs;
712
713 DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
714
715 callout_halt(&sc->sc_tick_ch, NULL);
716 callout_halt(&sc->sc_rx_watchdog, NULL);
717 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
718 gem_pcs_stop(sc, disable);
719 else
720 mii_down(&sc->sc_mii);
721
722 /* XXX - Should we reset these instead? */
723 gem_disable_tx(sc);
724 gem_disable_rx(sc);
725
726 /*
727 * Release any queued transmit buffers.
728 */
729 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
730 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
731 if (txs->txs_mbuf != NULL) {
732 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
733 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
734 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
735 m_freem(txs->txs_mbuf);
736 txs->txs_mbuf = NULL;
737 }
738 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
739 }
740
741 /*
742 * Mark the interface down and cancel the watchdog timer.
743 */
744 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
745 sc->sc_if_flags = ifp->if_flags;
746 ifp->if_timer = 0;
747
748 if (disable)
749 gem_rxdrain(sc);
750 }
751
752
753 /*
754 * Reset the receiver
755 */
756 int
757 gem_reset_rx(struct gem_softc *sc)
758 {
759 bus_space_tag_t t = sc->sc_bustag;
760 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
761
762 /*
763 * Resetting while DMA is in progress can cause a bus hang, so we
764 * disable DMA first.
765 */
766 gem_disable_rx(sc);
767 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
768 bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
769 /* Wait till it finishes */
770 if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
771 aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
772 /* Wait 5ms extra. */
773 delay(5000);
774
775 /* Finally, reset the ERX */
776 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
777 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
778 /* Wait till it finishes */
779 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
780 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
781 return (1);
782 }
783 return (0);
784 }
785
786
787 /*
788 * Reset the receiver DMA engine.
789 *
790 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
791 * etc in order to reset the receiver DMA engine only and not do a full
792 * reset which amongst others also downs the link and clears the FIFOs.
793 */
794 static void
795 gem_reset_rxdma(struct gem_softc *sc)
796 {
797 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
798 bus_space_tag_t t = sc->sc_bustag;
799 bus_space_handle_t h = sc->sc_h1;
800 int i;
801
802 if (gem_reset_rx(sc) != 0) {
803 gem_init(ifp);
804 return;
805 }
806 for (i = 0; i < GEM_NRXDESC; i++)
807 if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
808 GEM_UPDATE_RXDESC(sc, i);
809 sc->sc_rxptr = 0;
810 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
811 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
812
813 /* Reprogram Descriptor Ring Base Addresses */
814 /* NOTE: we use only 32-bit DMA addresses here. */
815 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
816 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
817
818 /* Redo ERX Configuration */
819 gem_rx_common(sc);
820
821 /* Give the reciever a swift kick */
822 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
823 }
824
825 /*
826 * Common RX configuration for gem_init() and gem_reset_rxdma().
827 */
828 static void
829 gem_rx_common(struct gem_softc *sc)
830 {
831 bus_space_tag_t t = sc->sc_bustag;
832 bus_space_handle_t h = sc->sc_h1;
833 u_int32_t v;
834
835 /* Encode Receive Descriptor ring size: four possible values */
836 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
837
838 /* Set receive h/w checksum offset */
839 #ifdef INET
840 v |= (ETHER_HDR_LEN + sizeof(struct ip) +
841 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
842 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
843 #endif
844
845 /* Enable RX DMA */
846 bus_space_write_4(t, h, GEM_RX_CONFIG,
847 v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
848 (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
849
850 /*
851 * The following value is for an OFF Threshold of about 3/4 full
852 * and an ON Threshold of 1/4 full.
853 */
854 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
855 (3 * sc->sc_rxfifosize / 256) |
856 ((sc->sc_rxfifosize / 256) << 12));
857 bus_space_write_4(t, h, GEM_RX_BLANKING,
858 (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
859 }
860
861 /*
862 * Reset the transmitter
863 */
864 int
865 gem_reset_tx(struct gem_softc *sc)
866 {
867 bus_space_tag_t t = sc->sc_bustag;
868 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
869
870 /*
871 * Resetting while DMA is in progress can cause a bus hang, so we
872 * disable DMA first.
873 */
874 gem_disable_tx(sc);
875 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
876 bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
877 /* Wait till it finishes */
878 if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
879 aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
880 /* Wait 5ms extra. */
881 delay(5000);
882
883 /* Finally, reset the ETX */
884 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
885 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
886 /* Wait till it finishes */
887 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
888 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
889 return (1);
890 }
891 return (0);
892 }
893
894 /*
895 * disable receiver.
896 */
897 int
898 gem_disable_rx(struct gem_softc *sc)
899 {
900 bus_space_tag_t t = sc->sc_bustag;
901 bus_space_handle_t h = sc->sc_h1;
902 u_int32_t cfg;
903
904 /* Flip the enable bit */
905 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
906 cfg &= ~GEM_MAC_RX_ENABLE;
907 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
908 bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
909 /* Wait for it to finish */
910 return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
911 }
912
913 /*
914 * disable transmitter.
915 */
916 int
917 gem_disable_tx(struct gem_softc *sc)
918 {
919 bus_space_tag_t t = sc->sc_bustag;
920 bus_space_handle_t h = sc->sc_h1;
921 u_int32_t cfg;
922
923 /* Flip the enable bit */
924 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
925 cfg &= ~GEM_MAC_TX_ENABLE;
926 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
927 bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
928 /* Wait for it to finish */
929 return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
930 }
931
932 /*
933 * Initialize interface.
934 */
935 int
936 gem_meminit(struct gem_softc *sc)
937 {
938 struct gem_rxsoft *rxs;
939 int i, error;
940
941 /*
942 * Initialize the transmit descriptor ring.
943 */
944 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
945 for (i = 0; i < GEM_NTXDESC; i++) {
946 sc->sc_txdescs[i].gd_flags = 0;
947 sc->sc_txdescs[i].gd_addr = 0;
948 }
949 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
950 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
951 sc->sc_txfree = GEM_NTXDESC-1;
952 sc->sc_txnext = 0;
953 sc->sc_txwin = 0;
954
955 /*
956 * Initialize the receive descriptor and receive job
957 * descriptor rings.
958 */
959 for (i = 0; i < GEM_NRXDESC; i++) {
960 rxs = &sc->sc_rxsoft[i];
961 if (rxs->rxs_mbuf == NULL) {
962 if ((error = gem_add_rxbuf(sc, i)) != 0) {
963 aprint_error_dev(sc->sc_dev,
964 "unable to allocate or map rx "
965 "buffer %d, error = %d\n",
966 i, error);
967 /*
968 * XXX Should attempt to run with fewer receive
969 * XXX buffers instead of just failing.
970 */
971 gem_rxdrain(sc);
972 return (1);
973 }
974 } else
975 GEM_INIT_RXDESC(sc, i);
976 }
977 sc->sc_rxptr = 0;
978 sc->sc_meminited = 1;
979 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
980 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
981
982 return (0);
983 }
984
985 static int
986 gem_ringsize(int sz)
987 {
988 switch (sz) {
989 case 32:
990 return GEM_RING_SZ_32;
991 case 64:
992 return GEM_RING_SZ_64;
993 case 128:
994 return GEM_RING_SZ_128;
995 case 256:
996 return GEM_RING_SZ_256;
997 case 512:
998 return GEM_RING_SZ_512;
999 case 1024:
1000 return GEM_RING_SZ_1024;
1001 case 2048:
1002 return GEM_RING_SZ_2048;
1003 case 4096:
1004 return GEM_RING_SZ_4096;
1005 case 8192:
1006 return GEM_RING_SZ_8192;
1007 default:
1008 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1009 return GEM_RING_SZ_32;
1010 }
1011 }
1012
1013
1014 /*
1015 * Start PCS
1016 */
1017 void
1018 gem_pcs_start(struct gem_softc *sc)
1019 {
1020 bus_space_tag_t t = sc->sc_bustag;
1021 bus_space_handle_t h = sc->sc_h1;
1022 uint32_t v;
1023
1024 #ifdef GEM_DEBUG
1025 aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1026 #endif
1027
1028 /*
1029 * Set up. We must disable the MII before modifying the
1030 * GEM_MII_ANAR register
1031 */
1032 if (sc->sc_flags & GEM_SERDES) {
1033 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1034 GEM_MII_DATAPATH_SERDES);
1035 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1036 GEM_MII_SLINK_LOOPBACK);
1037 } else {
1038 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1039 GEM_MII_DATAPATH_SERIAL);
1040 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1041 }
1042 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1043 v = bus_space_read_4(t, h, GEM_MII_ANAR);
1044 v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1045 if (sc->sc_mii_media == IFM_AUTO)
1046 v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1047 else if (sc->sc_mii_media == IFM_FDX) {
1048 v |= GEM_MII_ANEG_FUL_DUPLX;
1049 v &= ~GEM_MII_ANEG_HLF_DUPLX;
1050 } else if (sc->sc_mii_media == IFM_HDX) {
1051 v &= ~GEM_MII_ANEG_FUL_DUPLX;
1052 v |= GEM_MII_ANEG_HLF_DUPLX;
1053 }
1054
1055 /* Configure link. */
1056 bus_space_write_4(t, h, GEM_MII_ANAR, v);
1057 bus_space_write_4(t, h, GEM_MII_CONTROL,
1058 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1059 bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1060 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1061
1062 /* Start the 10 second timer */
1063 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
1064 }
1065
1066 /*
1067 * Stop PCS
1068 */
1069 void
1070 gem_pcs_stop(struct gem_softc *sc, int disable)
1071 {
1072 bus_space_tag_t t = sc->sc_bustag;
1073 bus_space_handle_t h = sc->sc_h1;
1074
1075 #ifdef GEM_DEBUG
1076 aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1077 #endif
1078
1079 /* Tell link partner that we're going away */
1080 bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1081
1082 /*
1083 * Disable PCS MII. The documentation suggests that setting
1084 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1085 * negotiation will shut down the link. However, it appears
1086 * that we also need to unset the datapath mode.
1087 */
1088 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1089 bus_space_write_4(t, h, GEM_MII_CONTROL,
1090 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1091 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1092 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1093
1094 if (disable) {
1095 if (sc->sc_flags & GEM_SERDES)
1096 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1097 GEM_MII_SLINK_POWER_OFF);
1098 else
1099 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1100 GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1101 }
1102
1103 sc->sc_flags &= ~GEM_LINK;
1104 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1105 sc->sc_mii.mii_media_status = IFM_AVALID;
1106 }
1107
1108
1109 /*
1110 * Initialization of interface; set up initialization block
1111 * and transmit/receive descriptor rings.
1112 */
1113 int
1114 gem_init(struct ifnet *ifp)
1115 {
1116 struct gem_softc *sc = ifp->if_softc;
1117 bus_space_tag_t t = sc->sc_bustag;
1118 bus_space_handle_t h = sc->sc_h1;
1119 int rc = 0, s;
1120 u_int max_frame_size;
1121 u_int32_t v;
1122
1123 s = splnet();
1124
1125 DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1126 /*
1127 * Initialization sequence. The numbered steps below correspond
1128 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1129 * Channel Engine manual (part of the PCIO manual).
1130 * See also the STP2002-STQ document from Sun Microsystems.
1131 */
1132
1133 /* step 1 & 2. Reset the Ethernet Channel */
1134 gem_stop(ifp, 0);
1135 gem_reset(sc);
1136 DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1137
1138 /* Re-initialize the MIF */
1139 gem_mifinit(sc);
1140
1141 /* Set up correct datapath for non-SERDES/Serialink */
1142 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1143 sc->sc_variant != GEM_SUN_ERI)
1144 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1145 GEM_MII_DATAPATH_MII);
1146
1147 /* Call MI reset function if any */
1148 if (sc->sc_hwreset)
1149 (*sc->sc_hwreset)(sc);
1150
1151 /* step 3. Setup data structures in host memory */
1152 if (gem_meminit(sc) != 0) {
1153 splx(s);
1154 return 1;
1155 }
1156
1157 /* step 4. TX MAC registers & counters */
1158 gem_init_regs(sc);
1159 max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1160 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1161 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1162 max_frame_size += ETHER_VLAN_ENCAP_LEN;
1163 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1164 max_frame_size|/* burst size */(0x2000<<16));
1165
1166 /* step 5. RX MAC registers & counters */
1167 gem_setladrf(sc);
1168
1169 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1170 /* NOTE: we use only 32-bit DMA addresses here. */
1171 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1172 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1173
1174 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1175 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1176
1177 /* step 8. Global Configuration & Interrupt Mask */
1178 gem_inten(sc);
1179 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1180 GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1181 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1182 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1183 GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1184
1185 /* step 9. ETX Configuration: use mostly default values */
1186
1187 /* Enable TX DMA */
1188 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1189 bus_space_write_4(t, h, GEM_TX_CONFIG,
1190 v | GEM_TX_CONFIG_TXDMA_EN |
1191 (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1192 GEM_TX_CONFIG_TXFIFO_TH));
1193 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1194
1195 /* step 10. ERX Configuration */
1196 gem_rx_common(sc);
1197
1198 /* step 11. Configure Media */
1199 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1200 (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1201 goto out;
1202
1203 /* step 12. RX_MAC Configuration Register */
1204 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1205 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1206 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1207
1208 /* step 14. Issue Transmit Pending command */
1209
1210 /* Call MI initialization function if any */
1211 if (sc->sc_hwinit)
1212 (*sc->sc_hwinit)(sc);
1213
1214
1215 /* step 15. Give the reciever a swift kick */
1216 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1217
1218 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1219 /* Configure PCS */
1220 gem_pcs_start(sc);
1221 else
1222 /* Start the one second timer. */
1223 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1224
1225 sc->sc_flags &= ~GEM_LINK;
1226 ifp->if_flags |= IFF_RUNNING;
1227 ifp->if_flags &= ~IFF_OACTIVE;
1228 ifp->if_timer = 0;
1229 sc->sc_if_flags = ifp->if_flags;
1230 out:
1231 splx(s);
1232
1233 return (0);
1234 }
1235
1236 void
1237 gem_init_regs(struct gem_softc *sc)
1238 {
1239 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1240 bus_space_tag_t t = sc->sc_bustag;
1241 bus_space_handle_t h = sc->sc_h1;
1242 const u_char *laddr = CLLADDR(ifp->if_sadl);
1243 u_int32_t v;
1244
1245 /* These regs are not cleared on reset */
1246 if (!sc->sc_inited) {
1247
1248 /* Load recommended values */
1249 bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1250 bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1251 bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1252
1253 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1254 /* Max frame and max burst size */
1255 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1256 ETHER_MAX_LEN | (0x2000<<16));
1257
1258 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1259 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1260 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1261 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1262 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1263 ((laddr[5]<<8)|laddr[4])&0x3ff);
1264
1265 /* Secondary MAC addr set to 0:0:0:0:0:0 */
1266 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1267 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1268 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1269
1270 /* MAC control addr set to 01:80:c2:00:00:01 */
1271 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1272 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1273 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1274
1275 /* MAC filter addr set to 0:0:0:0:0:0 */
1276 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1277 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1278 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1279
1280 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1281 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1282
1283 sc->sc_inited = 1;
1284 }
1285
1286 /* Counters need to be zeroed */
1287 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1288 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1289 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1290 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1291 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1292 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1293 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1294 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1295 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1296 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1297 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1298
1299 /* Set XOFF PAUSE time. */
1300 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1301
1302 /*
1303 * Set the internal arbitration to "infinite" bursts of the
1304 * maximum length of 31 * 64 bytes so DMA transfers aren't
1305 * split up in cache line size chunks. This greatly improves
1306 * especially RX performance.
1307 * Enable silicon bug workarounds for the Apple variants.
1308 */
1309 bus_space_write_4(t, h, GEM_CONFIG,
1310 GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1311 ((sc->sc_flags & GEM_PCI) ?
1312 GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1313 GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1314
1315 /*
1316 * Set the station address.
1317 */
1318 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1319 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1320 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1321
1322 /*
1323 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1324 */
1325 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1326 v = GEM_MAC_XIF_TX_MII_ENA;
1327 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1328 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1329 v |= GEM_MAC_XIF_FDPLX_LED;
1330 if (sc->sc_flags & GEM_GIGABIT)
1331 v |= GEM_MAC_XIF_GMII_MODE;
1332 }
1333 } else {
1334 v |= GEM_MAC_XIF_GMII_MODE;
1335 }
1336 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1337 }
1338
1339 #ifdef GEM_DEBUG
1340 static void
1341 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1342 {
1343 int i;
1344
1345 for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1346 printf("descriptor %d:\t", i);
1347 printf("gd_flags: 0x%016" PRIx64 "\t",
1348 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1349 printf("gd_addr: 0x%016" PRIx64 "\n",
1350 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1351 if (i == lastdesc)
1352 break;
1353 }
1354 }
1355 #endif
1356
1357 static void
1358 gem_start(struct ifnet *ifp)
1359 {
1360 struct gem_softc *sc = ifp->if_softc;
1361 struct mbuf *m0, *m;
1362 struct gem_txsoft *txs;
1363 bus_dmamap_t dmamap;
1364 int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1365 uint64_t flags = 0;
1366
1367 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1368 return;
1369
1370 /*
1371 * Remember the previous number of free descriptors and
1372 * the first descriptor we'll use.
1373 */
1374 ofree = sc->sc_txfree;
1375 firsttx = sc->sc_txnext;
1376
1377 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1378 device_xname(sc->sc_dev), ofree, firsttx));
1379
1380 /*
1381 * Loop through the send queue, setting up transmit descriptors
1382 * until we drain the queue, or use up all available transmit
1383 * descriptors.
1384 */
1385 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1386 sc->sc_txfree != 0) {
1387 /*
1388 * Grab a packet off the queue.
1389 */
1390 IFQ_POLL(&ifp->if_snd, m0);
1391 if (m0 == NULL)
1392 break;
1393 m = NULL;
1394
1395 dmamap = txs->txs_dmamap;
1396
1397 /*
1398 * Load the DMA map. If this fails, the packet either
1399 * didn't fit in the alloted number of segments, or we were
1400 * short on resources. In this case, we'll copy and try
1401 * again.
1402 */
1403 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1404 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1405 (m0->m_pkthdr.len < ETHER_MIN_TX &&
1406 dmamap->dm_nsegs == GEM_NTXSEGS)) {
1407 if (m0->m_pkthdr.len > MCLBYTES) {
1408 aprint_error_dev(sc->sc_dev,
1409 "unable to allocate jumbo Tx cluster\n");
1410 IFQ_DEQUEUE(&ifp->if_snd, m0);
1411 m_freem(m0);
1412 continue;
1413 }
1414 MGETHDR(m, M_DONTWAIT, MT_DATA);
1415 if (m == NULL) {
1416 aprint_error_dev(sc->sc_dev,
1417 "unable to allocate Tx mbuf\n");
1418 break;
1419 }
1420 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1421 if (m0->m_pkthdr.len > MHLEN) {
1422 MCLGET(m, M_DONTWAIT);
1423 if ((m->m_flags & M_EXT) == 0) {
1424 aprint_error_dev(sc->sc_dev,
1425 "unable to allocate Tx cluster\n");
1426 m_freem(m);
1427 break;
1428 }
1429 }
1430 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1431 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1432 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1433 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1434 if (error) {
1435 aprint_error_dev(sc->sc_dev,
1436 "unable to load Tx buffer, error = %d\n",
1437 error);
1438 break;
1439 }
1440 }
1441
1442 /*
1443 * Ensure we have enough descriptors free to describe
1444 * the packet.
1445 */
1446 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1447 (sc->sc_txfree - 1) : sc->sc_txfree)) {
1448 /*
1449 * Not enough free descriptors to transmit this
1450 * packet. We haven't committed to anything yet,
1451 * so just unload the DMA map, put the packet
1452 * back on the queue, and punt. Notify the upper
1453 * layer that there are no more slots left.
1454 *
1455 * XXX We could allocate an mbuf and copy, but
1456 * XXX it is worth it?
1457 */
1458 ifp->if_flags |= IFF_OACTIVE;
1459 sc->sc_if_flags = ifp->if_flags;
1460 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1461 if (m != NULL)
1462 m_freem(m);
1463 break;
1464 }
1465
1466 IFQ_DEQUEUE(&ifp->if_snd, m0);
1467 if (m != NULL) {
1468 m_freem(m0);
1469 m0 = m;
1470 }
1471
1472 /*
1473 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1474 */
1475
1476 /* Sync the DMA map. */
1477 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1478 BUS_DMASYNC_PREWRITE);
1479
1480 /*
1481 * Initialize the transmit descriptors.
1482 */
1483 for (nexttx = sc->sc_txnext, seg = 0;
1484 seg < dmamap->dm_nsegs;
1485 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1486
1487 /*
1488 * If this is the first descriptor we're
1489 * enqueueing, set the start of packet flag,
1490 * and the checksum stuff if we want the hardware
1491 * to do it.
1492 */
1493 sc->sc_txdescs[nexttx].gd_addr =
1494 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1495 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1496 if (nexttx == firsttx) {
1497 flags |= GEM_TD_START_OF_PACKET;
1498 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1499 sc->sc_txwin = 0;
1500 flags |= GEM_TD_INTERRUPT_ME;
1501 }
1502
1503 #ifdef INET
1504 /* h/w checksum */
1505 if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1506 m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1507 struct ether_header *eh;
1508 uint16_t offset, start;
1509
1510 eh = mtod(m0, struct ether_header *);
1511 switch (ntohs(eh->ether_type)) {
1512 case ETHERTYPE_IP:
1513 start = ETHER_HDR_LEN;
1514 break;
1515 case ETHERTYPE_VLAN:
1516 start = ETHER_HDR_LEN +
1517 ETHER_VLAN_ENCAP_LEN;
1518 break;
1519 default:
1520 /* unsupported, drop it */
1521 m_free(m0);
1522 continue;
1523 }
1524 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1525 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1526 flags |= (start <<
1527 GEM_TD_CXSUM_STARTSHFT) |
1528 (offset <<
1529 GEM_TD_CXSUM_STUFFSHFT) |
1530 GEM_TD_CXSUM_ENABLE;
1531 }
1532 #endif
1533 }
1534 if (seg == dmamap->dm_nsegs - 1) {
1535 flags |= GEM_TD_END_OF_PACKET;
1536 } else {
1537 /* last flag set outside of loop */
1538 sc->sc_txdescs[nexttx].gd_flags =
1539 GEM_DMA_WRITE(sc, flags);
1540 }
1541 lasttx = nexttx;
1542 }
1543 if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1544 /* add padding buffer at end of chain */
1545 flags &= ~GEM_TD_END_OF_PACKET;
1546 sc->sc_txdescs[lasttx].gd_flags =
1547 GEM_DMA_WRITE(sc, flags);
1548
1549 sc->sc_txdescs[nexttx].gd_addr =
1550 GEM_DMA_WRITE(sc,
1551 sc->sc_nulldmamap->dm_segs[0].ds_addr);
1552 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1553 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1554 lasttx = nexttx;
1555 nexttx = GEM_NEXTTX(nexttx);
1556 seg++;
1557 }
1558 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1559
1560 KASSERT(lasttx != -1);
1561
1562 /*
1563 * Store a pointer to the packet so we can free it later,
1564 * and remember what txdirty will be once the packet is
1565 * done.
1566 */
1567 txs->txs_mbuf = m0;
1568 txs->txs_firstdesc = sc->sc_txnext;
1569 txs->txs_lastdesc = lasttx;
1570 txs->txs_ndescs = seg;
1571
1572 #ifdef GEM_DEBUG
1573 if (ifp->if_flags & IFF_DEBUG) {
1574 printf(" gem_start %p transmit chain:\n", txs);
1575 gem_txsoft_print(sc, txs->txs_firstdesc,
1576 txs->txs_lastdesc);
1577 }
1578 #endif
1579
1580 /* Sync the descriptors we're using. */
1581 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1582 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1583
1584 /* Advance the tx pointer. */
1585 sc->sc_txfree -= txs->txs_ndescs;
1586 sc->sc_txnext = nexttx;
1587
1588 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1589 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1590
1591 /*
1592 * Pass the packet to any BPF listeners.
1593 */
1594 bpf_mtap(ifp, m0);
1595 }
1596
1597 if (txs == NULL || sc->sc_txfree == 0) {
1598 /* No more slots left; notify upper layer. */
1599 ifp->if_flags |= IFF_OACTIVE;
1600 sc->sc_if_flags = ifp->if_flags;
1601 }
1602
1603 if (sc->sc_txfree != ofree) {
1604 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1605 device_xname(sc->sc_dev), lasttx, firsttx));
1606 /*
1607 * The entire packet chain is set up.
1608 * Kick the transmitter.
1609 */
1610 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1611 device_xname(sc->sc_dev), nexttx));
1612 bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1613 sc->sc_txnext);
1614
1615 /* Set a watchdog timer in case the chip flakes out. */
1616 ifp->if_timer = 5;
1617 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1618 device_xname(sc->sc_dev), ifp->if_timer));
1619 }
1620 }
1621
1622 /*
1623 * Transmit interrupt.
1624 */
1625 int
1626 gem_tint(struct gem_softc *sc)
1627 {
1628 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1629 bus_space_tag_t t = sc->sc_bustag;
1630 bus_space_handle_t mac = sc->sc_h1;
1631 struct gem_txsoft *txs;
1632 int txlast;
1633 int progress = 0;
1634 u_int32_t v;
1635
1636 DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1637
1638 /* Unload collision counters ... */
1639 v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1640 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1641 ifp->if_collisions += v +
1642 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1643 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1644 ifp->if_oerrors += v;
1645
1646 /* ... then clear the hardware counters. */
1647 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1648 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1649 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1650 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1651
1652 /*
1653 * Go through our Tx list and free mbufs for those
1654 * frames that have been transmitted.
1655 */
1656 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1657 /*
1658 * In theory, we could harvest some descriptors before
1659 * the ring is empty, but that's a bit complicated.
1660 *
1661 * GEM_TX_COMPLETION points to the last descriptor
1662 * processed +1.
1663 *
1664 * Let's assume that the NIC writes back to the Tx
1665 * descriptors before it updates the completion
1666 * register. If the NIC has posted writes to the
1667 * Tx descriptors, PCI ordering requires that the
1668 * posted writes flush to RAM before the register-read
1669 * finishes. So let's read the completion register,
1670 * before syncing the descriptors, so that we
1671 * examine Tx descriptors that are at least as
1672 * current as the completion register.
1673 */
1674 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1675 DPRINTF(sc,
1676 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1677 txs->txs_lastdesc, txlast));
1678 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1679 if (txlast >= txs->txs_firstdesc &&
1680 txlast <= txs->txs_lastdesc)
1681 break;
1682 } else if (txlast >= txs->txs_firstdesc ||
1683 txlast <= txs->txs_lastdesc)
1684 break;
1685
1686 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1687 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1688
1689 #ifdef GEM_DEBUG /* XXX DMA synchronization? */
1690 if (ifp->if_flags & IFF_DEBUG) {
1691 printf(" txsoft %p transmit chain:\n", txs);
1692 gem_txsoft_print(sc, txs->txs_firstdesc,
1693 txs->txs_lastdesc);
1694 }
1695 #endif
1696
1697
1698 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1699 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1700
1701 sc->sc_txfree += txs->txs_ndescs;
1702
1703 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1704 0, txs->txs_dmamap->dm_mapsize,
1705 BUS_DMASYNC_POSTWRITE);
1706 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1707 if (txs->txs_mbuf != NULL) {
1708 m_freem(txs->txs_mbuf);
1709 txs->txs_mbuf = NULL;
1710 }
1711
1712 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1713
1714 ifp->if_opackets++;
1715 progress = 1;
1716 }
1717
1718 #if 0
1719 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1720 "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1721 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1722 ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1723 GEM_TX_DATA_PTR_HI) << 32) |
1724 bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1725 GEM_TX_DATA_PTR_LO),
1726 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1727 #endif
1728
1729 if (progress) {
1730 if (sc->sc_txfree == GEM_NTXDESC - 1)
1731 sc->sc_txwin = 0;
1732
1733 /* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1734 ifp->if_flags &= ~IFF_OACTIVE;
1735 sc->sc_if_flags = ifp->if_flags;
1736 ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1737 gem_start(ifp);
1738 }
1739 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1740 device_xname(sc->sc_dev), ifp->if_timer));
1741
1742 return (1);
1743 }
1744
1745 /*
1746 * Receive interrupt.
1747 */
1748 int
1749 gem_rint(struct gem_softc *sc)
1750 {
1751 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1752 bus_space_tag_t t = sc->sc_bustag;
1753 bus_space_handle_t h = sc->sc_h1;
1754 struct gem_rxsoft *rxs;
1755 struct mbuf *m;
1756 u_int64_t rxstat;
1757 u_int32_t rxcomp;
1758 int i, len, progress = 0;
1759
1760 DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1761
1762 /*
1763 * Ignore spurious interrupt that sometimes occurs before
1764 * we are set up when we network boot.
1765 */
1766 if (!sc->sc_meminited)
1767 return 1;
1768
1769 /*
1770 * Read the completion register once. This limits
1771 * how long the following loop can execute.
1772 */
1773 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1774
1775 /*
1776 * XXX Read the lastrx only once at the top for speed.
1777 */
1778 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1779 sc->sc_rxptr, rxcomp));
1780
1781 /*
1782 * Go into the loop at least once.
1783 */
1784 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1785 i = GEM_NEXTRX(i)) {
1786 rxs = &sc->sc_rxsoft[i];
1787
1788 GEM_CDRXSYNC(sc, i,
1789 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1790
1791 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1792
1793 if (rxstat & GEM_RD_OWN) {
1794 GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1795 /*
1796 * We have processed all of the receive buffers.
1797 */
1798 break;
1799 }
1800
1801 progress++;
1802 ifp->if_ipackets++;
1803
1804 if (rxstat & GEM_RD_BAD_CRC) {
1805 ifp->if_ierrors++;
1806 aprint_error_dev(sc->sc_dev,
1807 "receive error: CRC error\n");
1808 GEM_INIT_RXDESC(sc, i);
1809 continue;
1810 }
1811
1812 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1813 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1814 #ifdef GEM_DEBUG
1815 if (ifp->if_flags & IFF_DEBUG) {
1816 printf(" rxsoft %p descriptor %d: ", rxs, i);
1817 printf("gd_flags: 0x%016llx\t", (long long)
1818 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1819 printf("gd_addr: 0x%016llx\n", (long long)
1820 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1821 }
1822 #endif
1823
1824 /* No errors; receive the packet. */
1825 len = GEM_RD_BUFLEN(rxstat);
1826
1827 /*
1828 * Allocate a new mbuf cluster. If that fails, we are
1829 * out of memory, and must drop the packet and recycle
1830 * the buffer that's already attached to this descriptor.
1831 */
1832 m = rxs->rxs_mbuf;
1833 if (gem_add_rxbuf(sc, i) != 0) {
1834 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1835 ifp->if_ierrors++;
1836 aprint_error_dev(sc->sc_dev,
1837 "receive error: RX no buffer space\n");
1838 GEM_INIT_RXDESC(sc, i);
1839 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1840 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1841 continue;
1842 }
1843 m->m_data += 2; /* We're already off by two */
1844
1845 m->m_pkthdr.rcvif = ifp;
1846 m->m_pkthdr.len = m->m_len = len;
1847
1848 /*
1849 * Pass this up to any BPF listeners, but only
1850 * pass it up the stack if it's for us.
1851 */
1852 bpf_mtap(ifp, m);
1853
1854 #ifdef INET
1855 /* hardware checksum */
1856 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1857 struct ether_header *eh;
1858 struct ip *ip;
1859 int32_t hlen, pktlen;
1860
1861 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1862 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1863 ETHER_VLAN_ENCAP_LEN;
1864 eh = (struct ether_header *) (mtod(m, char *) +
1865 ETHER_VLAN_ENCAP_LEN);
1866 } else {
1867 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1868 eh = mtod(m, struct ether_header *);
1869 }
1870 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1871 goto swcsum;
1872 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1873
1874 /* IPv4 only */
1875 if (ip->ip_v != IPVERSION)
1876 goto swcsum;
1877
1878 hlen = ip->ip_hl << 2;
1879 if (hlen < sizeof(struct ip))
1880 goto swcsum;
1881
1882 /*
1883 * bail if too short, has random trailing garbage,
1884 * truncated, fragment, or has ethernet pad.
1885 */
1886 if ((ntohs(ip->ip_len) < hlen) ||
1887 (ntohs(ip->ip_len) != pktlen) ||
1888 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1889 goto swcsum;
1890
1891 switch (ip->ip_p) {
1892 case IPPROTO_TCP:
1893 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1894 goto swcsum;
1895 if (pktlen < (hlen + sizeof(struct tcphdr)))
1896 goto swcsum;
1897 m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1898 break;
1899 case IPPROTO_UDP:
1900 /* FALLTHROUGH */
1901 default:
1902 goto swcsum;
1903 }
1904
1905 /* the uncomplemented sum is expected */
1906 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1907
1908 /* if the pkt had ip options, we have to deduct them */
1909 if (hlen > sizeof(struct ip)) {
1910 uint16_t *opts;
1911 uint32_t optsum, temp;
1912
1913 optsum = 0;
1914 temp = hlen - sizeof(struct ip);
1915 opts = (uint16_t *) ((char *) ip +
1916 sizeof(struct ip));
1917
1918 while (temp > 1) {
1919 optsum += ntohs(*opts++);
1920 temp -= 2;
1921 }
1922 while (optsum >> 16)
1923 optsum = (optsum >> 16) +
1924 (optsum & 0xffff);
1925
1926 /* Deduct ip opts sum from hwsum. */
1927 m->m_pkthdr.csum_data += (uint16_t)~optsum;
1928
1929 while (m->m_pkthdr.csum_data >> 16)
1930 m->m_pkthdr.csum_data =
1931 (m->m_pkthdr.csum_data >> 16) +
1932 (m->m_pkthdr.csum_data &
1933 0xffff);
1934 }
1935
1936 m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1937 M_CSUM_NO_PSEUDOHDR;
1938 } else
1939 swcsum:
1940 m->m_pkthdr.csum_flags = 0;
1941 #endif
1942 /* Pass it on. */
1943 (*ifp->if_input)(ifp, m);
1944 }
1945
1946 if (progress) {
1947 /* Update the receive pointer. */
1948 if (i == sc->sc_rxptr) {
1949 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1950 #ifdef GEM_DEBUG
1951 if (ifp->if_flags & IFF_DEBUG)
1952 printf("%s: rint: ring wrap\n",
1953 device_xname(sc->sc_dev));
1954 #endif
1955 }
1956 sc->sc_rxptr = i;
1957 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1958 }
1959 #ifdef GEM_COUNTERS
1960 if (progress <= 4) {
1961 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1962 } else if (progress < 32) {
1963 if (progress < 16)
1964 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1965 else
1966 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1967
1968 } else {
1969 if (progress < 64)
1970 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1971 else
1972 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1973 }
1974 #endif
1975
1976 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1977 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1978
1979 /* Read error counters ... */
1980 ifp->if_ierrors +=
1981 bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1982 bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1983 bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1984 bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1985
1986 /* ... then clear the hardware counters. */
1987 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1988 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1989 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1990 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1991
1992 return (1);
1993 }
1994
1995
1996 /*
1997 * gem_add_rxbuf:
1998 *
1999 * Add a receive buffer to the indicated descriptor.
2000 */
2001 int
2002 gem_add_rxbuf(struct gem_softc *sc, int idx)
2003 {
2004 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
2005 struct mbuf *m;
2006 int error;
2007
2008 MGETHDR(m, M_DONTWAIT, MT_DATA);
2009 if (m == NULL)
2010 return (ENOBUFS);
2011
2012 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2013 MCLGET(m, M_DONTWAIT);
2014 if ((m->m_flags & M_EXT) == 0) {
2015 m_freem(m);
2016 return (ENOBUFS);
2017 }
2018
2019 #ifdef GEM_DEBUG
2020 /* bzero the packet to check DMA */
2021 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2022 #endif
2023
2024 if (rxs->rxs_mbuf != NULL)
2025 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2026
2027 rxs->rxs_mbuf = m;
2028
2029 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2030 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2031 BUS_DMA_READ|BUS_DMA_NOWAIT);
2032 if (error) {
2033 aprint_error_dev(sc->sc_dev,
2034 "can't load rx DMA map %d, error = %d\n", idx, error);
2035 panic("gem_add_rxbuf"); /* XXX */
2036 }
2037
2038 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2039 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2040
2041 GEM_INIT_RXDESC(sc, idx);
2042
2043 return (0);
2044 }
2045
2046
2047 int
2048 gem_eint(struct gem_softc *sc, u_int status)
2049 {
2050 char bits[128];
2051 u_int32_t r, v;
2052
2053 if ((status & GEM_INTR_MIF) != 0) {
2054 printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2055 return (1);
2056 }
2057
2058 if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2059 gem_reset_rxdma(sc);
2060 return (1);
2061 }
2062
2063 if (status & GEM_INTR_BERR) {
2064 if (sc->sc_flags & GEM_PCI)
2065 r = GEM_ERROR_STATUS;
2066 else
2067 r = GEM_SBUS_ERROR_STATUS;
2068 bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2069 v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2070 aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2071 v);
2072 return (1);
2073 }
2074 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2075 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2076
2077 return (1);
2078 }
2079
2080
2081 /*
2082 * PCS interrupts.
2083 * We should receive these when the link status changes, but sometimes
2084 * we don't receive them for link up. We compensate for this in the
2085 * gem_tick() callout.
2086 */
2087 int
2088 gem_pint(struct gem_softc *sc)
2089 {
2090 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2091 bus_space_tag_t t = sc->sc_bustag;
2092 bus_space_handle_t h = sc->sc_h1;
2093 u_int32_t v, v2;
2094
2095 /*
2096 * Clear the PCS interrupt from GEM_STATUS. The PCS register is
2097 * latched, so we have to read it twice. There is only one bit in
2098 * use, so the value is meaningless.
2099 */
2100 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2101 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2102
2103 if ((ifp->if_flags & IFF_UP) == 0)
2104 return 1;
2105
2106 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2107 return 1;
2108
2109 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2110 /* If we see remote fault, our link partner is probably going away */
2111 if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2112 gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2113 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2114 /* Otherwise, we may need to wait after auto-negotiation completes */
2115 } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2116 GEM_MII_STATUS_ANEG_CPT) {
2117 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2118 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2119 }
2120 if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2121 if (sc->sc_flags & GEM_LINK) {
2122 return 1;
2123 }
2124 callout_stop(&sc->sc_tick_ch);
2125 v = bus_space_read_4(t, h, GEM_MII_ANAR);
2126 v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2127 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2128 sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2129 v &= v2;
2130 if (v & GEM_MII_ANEG_FUL_DUPLX) {
2131 sc->sc_mii.mii_media_active |= IFM_FDX;
2132 #ifdef GEM_DEBUG
2133 aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2134 #endif
2135 } else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2136 sc->sc_mii.mii_media_active |= IFM_HDX;
2137 #ifdef GEM_DEBUG
2138 aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2139 #endif
2140 } else {
2141 #ifdef GEM_DEBUG
2142 aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2143 #endif
2144 }
2145 gem_statuschange(sc);
2146 } else {
2147 if ((sc->sc_flags & GEM_LINK) == 0) {
2148 return 1;
2149 }
2150 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2151 sc->sc_mii.mii_media_status = IFM_AVALID;
2152 #ifdef GEM_DEBUG
2153 aprint_debug_dev(sc->sc_dev, "link down\n");
2154 #endif
2155 gem_statuschange(sc);
2156
2157 /* Start the 10 second timer */
2158 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2159 }
2160 return 1;
2161 }
2162
2163
2164
2165 int
2166 gem_intr(void *v)
2167 {
2168 struct gem_softc *sc = v;
2169 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2170 bus_space_tag_t t = sc->sc_bustag;
2171 bus_space_handle_t h = sc->sc_h1;
2172 u_int32_t status;
2173 int r = 0;
2174 #ifdef GEM_DEBUG
2175 char bits[128];
2176 #endif
2177
2178 /* XXX We should probably mask out interrupts until we're done */
2179
2180 sc->sc_ev_intr.ev_count++;
2181
2182 status = bus_space_read_4(t, h, GEM_STATUS);
2183 #ifdef GEM_DEBUG
2184 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2185 #endif
2186 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2187 device_xname(sc->sc_dev), (status >> 19), bits));
2188
2189
2190 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2191 r |= gem_eint(sc, status);
2192
2193 /* We don't bother with GEM_INTR_TX_DONE */
2194 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2195 GEM_COUNTER_INCR(sc, sc_ev_txint);
2196 r |= gem_tint(sc);
2197 }
2198
2199 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2200 GEM_COUNTER_INCR(sc, sc_ev_rxint);
2201 r |= gem_rint(sc);
2202 }
2203
2204 /* We should eventually do more than just print out error stats. */
2205 if (status & GEM_INTR_TX_MAC) {
2206 int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2207 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2208 printf("%s: MAC tx fault, status %x\n",
2209 device_xname(sc->sc_dev), txstat);
2210 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2211 gem_init(ifp);
2212 }
2213 if (status & GEM_INTR_RX_MAC) {
2214 int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2215 /*
2216 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2217 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2218 * silicon bug so handle them silently. So if we detect
2219 * an RX FIFO overflow, we fire off a timer, and check
2220 * whether we're still making progress by looking at the
2221 * RX FIFO write and read pointers.
2222 */
2223 if (rxstat & GEM_MAC_RX_OVERFLOW) {
2224 ifp->if_ierrors++;
2225 aprint_error_dev(sc->sc_dev,
2226 "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
2227 sc->sc_rx_fifo_wr_ptr =
2228 bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2229 sc->sc_rx_fifo_rd_ptr =
2230 bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2231 callout_schedule(&sc->sc_rx_watchdog, 400);
2232 } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2233 printf("%s: MAC rx fault, status 0x%02x\n",
2234 device_xname(sc->sc_dev), rxstat);
2235 }
2236 if (status & GEM_INTR_PCS) {
2237 r |= gem_pint(sc);
2238 }
2239
2240 /* Do we need to do anything with these?
2241 if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2242 status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2243 if ((status2 & GEM_MAC_PAUSED) != 0)
2244 aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2245 GEM_MAC_PAUSE_TIME(status2));
2246 if ((status2 & GEM_MAC_PAUSE) != 0)
2247 aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2248 if ((status2 & GEM_MAC_RESUME) != 0)
2249 aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2250 }
2251 if ((status & GEM_INTR_MIF) != 0)
2252 aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2253 */
2254 rnd_add_uint32(&sc->rnd_source, status);
2255 return (r);
2256 }
2257
2258 void
2259 gem_rx_watchdog(void *arg)
2260 {
2261 struct gem_softc *sc = arg;
2262 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2263 bus_space_tag_t t = sc->sc_bustag;
2264 bus_space_handle_t h = sc->sc_h1;
2265 u_int32_t rx_fifo_wr_ptr;
2266 u_int32_t rx_fifo_rd_ptr;
2267 u_int32_t state;
2268
2269 if ((ifp->if_flags & IFF_RUNNING) == 0) {
2270 aprint_error_dev(sc->sc_dev, "receiver not running\n");
2271 return;
2272 }
2273
2274 rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2275 rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2276 state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
2277 if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
2278 ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
2279 ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
2280 (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
2281 {
2282 /*
2283 * The RX state machine is still in overflow state and
2284 * the RX FIFO write and read pointers seem to be
2285 * stuck. Whack the chip over the head to get things
2286 * going again.
2287 */
2288 aprint_error_dev(sc->sc_dev,
2289 "receiver stuck in overflow, resetting\n");
2290 gem_init(ifp);
2291 } else {
2292 if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
2293 aprint_error_dev(sc->sc_dev,
2294 "rx_watchdog: not in overflow state: 0x%x\n",
2295 state);
2296 }
2297 if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
2298 aprint_error_dev(sc->sc_dev,
2299 "rx_watchdog: wr & rd ptr different\n");
2300 }
2301 if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
2302 aprint_error_dev(sc->sc_dev,
2303 "rx_watchdog: wr pointer != saved\n");
2304 }
2305 if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
2306 aprint_error_dev(sc->sc_dev,
2307 "rx_watchdog: rd pointer != saved\n");
2308 }
2309 aprint_error_dev(sc->sc_dev, "resetting anyway\n");
2310 gem_init(ifp);
2311 }
2312 }
2313
2314 void
2315 gem_watchdog(struct ifnet *ifp)
2316 {
2317 struct gem_softc *sc = ifp->if_softc;
2318
2319 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2320 "GEM_MAC_RX_CONFIG %x\n",
2321 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2322 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2323 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2324
2325 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2326 ++ifp->if_oerrors;
2327
2328 /* Try to get more packets going. */
2329 gem_init(ifp);
2330 gem_start(ifp);
2331 }
2332
2333 /*
2334 * Initialize the MII Management Interface
2335 */
2336 void
2337 gem_mifinit(struct gem_softc *sc)
2338 {
2339 bus_space_tag_t t = sc->sc_bustag;
2340 bus_space_handle_t mif = sc->sc_h1;
2341
2342 /* Configure the MIF in frame mode */
2343 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2344 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2345 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2346 }
2347
2348 /*
2349 * MII interface
2350 *
2351 * The GEM MII interface supports at least three different operating modes:
2352 *
2353 * Bitbang mode is implemented using data, clock and output enable registers.
2354 *
2355 * Frame mode is implemented by loading a complete frame into the frame
2356 * register and polling the valid bit for completion.
2357 *
2358 * Polling mode uses the frame register but completion is indicated by
2359 * an interrupt.
2360 *
2361 */
2362 static int
2363 gem_mii_readreg(device_t self, int phy, int reg)
2364 {
2365 struct gem_softc *sc = device_private(self);
2366 bus_space_tag_t t = sc->sc_bustag;
2367 bus_space_handle_t mif = sc->sc_h1;
2368 int n;
2369 u_int32_t v;
2370
2371 #ifdef GEM_DEBUG1
2372 if (sc->sc_debug)
2373 printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2374 #endif
2375
2376 /* Construct the frame command */
2377 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
2378 GEM_MIF_FRAME_READ;
2379
2380 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2381 for (n = 0; n < 100; n++) {
2382 DELAY(1);
2383 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2384 if (v & GEM_MIF_FRAME_TA0)
2385 return (v & GEM_MIF_FRAME_DATA);
2386 }
2387
2388 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2389 return (0);
2390 }
2391
2392 static void
2393 gem_mii_writereg(device_t self, int phy, int reg, int val)
2394 {
2395 struct gem_softc *sc = device_private(self);
2396 bus_space_tag_t t = sc->sc_bustag;
2397 bus_space_handle_t mif = sc->sc_h1;
2398 int n;
2399 u_int32_t v;
2400
2401 #ifdef GEM_DEBUG1
2402 if (sc->sc_debug)
2403 printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2404 phy, reg, val);
2405 #endif
2406
2407 /* Construct the frame command */
2408 v = GEM_MIF_FRAME_WRITE |
2409 (phy << GEM_MIF_PHY_SHIFT) |
2410 (reg << GEM_MIF_REG_SHIFT) |
2411 (val & GEM_MIF_FRAME_DATA);
2412
2413 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2414 for (n = 0; n < 100; n++) {
2415 DELAY(1);
2416 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2417 if (v & GEM_MIF_FRAME_TA0)
2418 return;
2419 }
2420
2421 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2422 }
2423
2424 static void
2425 gem_mii_statchg(struct ifnet *ifp)
2426 {
2427 struct gem_softc *sc = ifp->if_softc;
2428 #ifdef GEM_DEBUG
2429 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2430 #endif
2431
2432 #ifdef GEM_DEBUG
2433 if (sc->sc_debug)
2434 printf("gem_mii_statchg: status change: phy = %d\n",
2435 sc->sc_phys[instance]);
2436 #endif
2437 gem_statuschange(sc);
2438 }
2439
2440 /*
2441 * Common status change for gem_mii_statchg() and gem_pint()
2442 */
2443 void
2444 gem_statuschange(struct gem_softc* sc)
2445 {
2446 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2447 bus_space_tag_t t = sc->sc_bustag;
2448 bus_space_handle_t mac = sc->sc_h1;
2449 int gigabit;
2450 u_int32_t rxcfg, txcfg, v;
2451
2452 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2453 IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2454 sc->sc_flags |= GEM_LINK;
2455 else
2456 sc->sc_flags &= ~GEM_LINK;
2457
2458 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2459 gigabit = 1;
2460 else
2461 gigabit = 0;
2462
2463 /*
2464 * The configuration done here corresponds to the steps F) and
2465 * G) and as far as enabling of RX and TX MAC goes also step H)
2466 * of the initialization sequence outlined in section 3.2.1 of
2467 * the GEM Gigabit Ethernet ASIC Specification.
2468 */
2469
2470 rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2471 rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2472 txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2473 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2474 txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2475 else if (gigabit) {
2476 rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2477 txcfg |= GEM_MAC_RX_CARR_EXTEND;
2478 }
2479 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2480 bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2481 BUS_SPACE_BARRIER_WRITE);
2482 if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2483 aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2484 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2485 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2486 bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2487 BUS_SPACE_BARRIER_WRITE);
2488 if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2489 aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2490 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2491
2492 v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2493 ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2494 bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2495
2496 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2497 gigabit != 0)
2498 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2499 GEM_MAC_SLOT_TIME_CARR_EXTEND);
2500 else
2501 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2502 GEM_MAC_SLOT_TIME_NORMAL);
2503
2504 /* XIF Configuration */
2505 if (sc->sc_flags & GEM_LINK)
2506 v = GEM_MAC_XIF_LINK_LED;
2507 else
2508 v = 0;
2509 v |= GEM_MAC_XIF_TX_MII_ENA;
2510
2511 /* If an external transceiver is connected, enable its MII drivers */
2512 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2513 if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2514 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2515 if (gigabit)
2516 v |= GEM_MAC_XIF_GMII_MODE;
2517 else
2518 v &= ~GEM_MAC_XIF_GMII_MODE;
2519 } else
2520 /* Internal MII needs buf enable */
2521 v |= GEM_MAC_XIF_MII_BUF_ENA;
2522 /* MII needs echo disable if half duplex. */
2523 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2524 /* turn on full duplex LED */
2525 v |= GEM_MAC_XIF_FDPLX_LED;
2526 else
2527 /* half duplex -- disable echo */
2528 v |= GEM_MAC_XIF_ECHO_DISABL;
2529 } else {
2530 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2531 v |= GEM_MAC_XIF_FDPLX_LED;
2532 v |= GEM_MAC_XIF_GMII_MODE;
2533 }
2534 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2535
2536 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2537 (sc->sc_flags & GEM_LINK) != 0) {
2538 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2539 txcfg | GEM_MAC_TX_ENABLE);
2540 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2541 rxcfg | GEM_MAC_RX_ENABLE);
2542 }
2543 }
2544
2545 int
2546 gem_ser_mediachange(struct ifnet *ifp)
2547 {
2548 struct gem_softc *sc = ifp->if_softc;
2549 u_int s, t;
2550
2551 if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2552 return EINVAL;
2553
2554 s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2555 if (s == IFM_AUTO) {
2556 if (sc->sc_mii_media != s) {
2557 #ifdef GEM_DEBUG
2558 aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2559 #endif
2560 sc->sc_mii_media = s;
2561 if (ifp->if_flags & IFF_UP) {
2562 gem_pcs_stop(sc, 0);
2563 gem_pcs_start(sc);
2564 }
2565 }
2566 return 0;
2567 }
2568 if (s == IFM_1000_SX) {
2569 t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2570 if (t == IFM_FDX || t == IFM_HDX) {
2571 if (sc->sc_mii_media != t) {
2572 sc->sc_mii_media = t;
2573 #ifdef GEM_DEBUG
2574 aprint_debug_dev(sc->sc_dev,
2575 "setting media to 1000baseSX-%s\n",
2576 t == IFM_FDX ? "FDX" : "HDX");
2577 #endif
2578 if (ifp->if_flags & IFF_UP) {
2579 gem_pcs_stop(sc, 0);
2580 gem_pcs_start(sc);
2581 }
2582 }
2583 return 0;
2584 }
2585 }
2586 return EINVAL;
2587 }
2588
2589 void
2590 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2591 {
2592 struct gem_softc *sc = ifp->if_softc;
2593
2594 if ((ifp->if_flags & IFF_UP) == 0)
2595 return;
2596 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2597 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2598 }
2599
2600 static int
2601 gem_ifflags_cb(struct ethercom *ec)
2602 {
2603 struct ifnet *ifp = &ec->ec_if;
2604 struct gem_softc *sc = ifp->if_softc;
2605 int change = ifp->if_flags ^ sc->sc_if_flags;
2606
2607 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2608 return ENETRESET;
2609 else if ((change & IFF_PROMISC) != 0)
2610 gem_setladrf(sc);
2611 return 0;
2612 }
2613
2614 /*
2615 * Process an ioctl request.
2616 */
2617 int
2618 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2619 {
2620 struct gem_softc *sc = ifp->if_softc;
2621 int s, error = 0;
2622
2623 s = splnet();
2624
2625 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2626 error = 0;
2627 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2628 ;
2629 else if (ifp->if_flags & IFF_RUNNING) {
2630 /*
2631 * Multicast list has changed; set the hardware filter
2632 * accordingly.
2633 */
2634 gem_setladrf(sc);
2635 }
2636 }
2637
2638 /* Try to get things going again */
2639 if (ifp->if_flags & IFF_UP)
2640 gem_start(ifp);
2641 splx(s);
2642 return (error);
2643 }
2644
2645 static void
2646 gem_inten(struct gem_softc *sc)
2647 {
2648 bus_space_tag_t t = sc->sc_bustag;
2649 bus_space_handle_t h = sc->sc_h1;
2650 uint32_t v;
2651
2652 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2653 v = GEM_INTR_PCS;
2654 else
2655 v = GEM_INTR_MIF;
2656 bus_space_write_4(t, h, GEM_INTMASK,
2657 ~(GEM_INTR_TX_INTME |
2658 GEM_INTR_TX_EMPTY |
2659 GEM_INTR_TX_MAC |
2660 GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
2661 GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
2662 GEM_INTR_BERR | v));
2663 }
2664
2665 bool
2666 gem_resume(device_t self, const pmf_qual_t *qual)
2667 {
2668 struct gem_softc *sc = device_private(self);
2669
2670 gem_inten(sc);
2671
2672 return true;
2673 }
2674
2675 bool
2676 gem_suspend(device_t self, const pmf_qual_t *qual)
2677 {
2678 struct gem_softc *sc = device_private(self);
2679 bus_space_tag_t t = sc->sc_bustag;
2680 bus_space_handle_t h = sc->sc_h1;
2681
2682 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2683
2684 return true;
2685 }
2686
2687 bool
2688 gem_shutdown(device_t self, int howto)
2689 {
2690 struct gem_softc *sc = device_private(self);
2691 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2692
2693 gem_stop(ifp, 1);
2694
2695 return true;
2696 }
2697
2698 /*
2699 * Set up the logical address filter.
2700 */
2701 void
2702 gem_setladrf(struct gem_softc *sc)
2703 {
2704 struct ethercom *ec = &sc->sc_ethercom;
2705 struct ifnet *ifp = &ec->ec_if;
2706 struct ether_multi *enm;
2707 struct ether_multistep step;
2708 bus_space_tag_t t = sc->sc_bustag;
2709 bus_space_handle_t h = sc->sc_h1;
2710 u_int32_t crc;
2711 u_int32_t hash[16];
2712 u_int32_t v;
2713 int i;
2714
2715 /* Get current RX configuration */
2716 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2717
2718 /*
2719 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2720 * and hash filter. Depending on the case, the right bit will be
2721 * enabled.
2722 */
2723 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2724 GEM_MAC_RX_PROMISC_GRP);
2725
2726 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2727 /* Turn on promiscuous mode */
2728 v |= GEM_MAC_RX_PROMISCUOUS;
2729 ifp->if_flags |= IFF_ALLMULTI;
2730 goto chipit;
2731 }
2732
2733 /*
2734 * Set up multicast address filter by passing all multicast addresses
2735 * through a crc generator, and then using the high order 8 bits as an
2736 * index into the 256 bit logical address filter. The high order 4
2737 * bits selects the word, while the other 4 bits select the bit within
2738 * the word (where bit 0 is the MSB).
2739 */
2740
2741 /* Clear hash table */
2742 memset(hash, 0, sizeof(hash));
2743
2744 ETHER_FIRST_MULTI(step, ec, enm);
2745 while (enm != NULL) {
2746 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2747 /*
2748 * We must listen to a range of multicast addresses.
2749 * For now, just accept all multicasts, rather than
2750 * trying to set only those filter bits needed to match
2751 * the range. (At this time, the only use of address
2752 * ranges is for IP multicast routing, for which the
2753 * range is big enough to require all bits set.)
2754 * XXX should use the address filters for this
2755 */
2756 ifp->if_flags |= IFF_ALLMULTI;
2757 v |= GEM_MAC_RX_PROMISC_GRP;
2758 goto chipit;
2759 }
2760
2761 /* Get the LE CRC32 of the address */
2762 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2763
2764 /* Just want the 8 most significant bits. */
2765 crc >>= 24;
2766
2767 /* Set the corresponding bit in the filter. */
2768 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2769
2770 ETHER_NEXT_MULTI(step, enm);
2771 }
2772
2773 v |= GEM_MAC_RX_HASH_FILTER;
2774 ifp->if_flags &= ~IFF_ALLMULTI;
2775
2776 /* Now load the hash table into the chip (if we are using it) */
2777 for (i = 0; i < 16; i++) {
2778 bus_space_write_4(t, h,
2779 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2780 hash[i]);
2781 }
2782
2783 chipit:
2784 sc->sc_if_flags = ifp->if_flags;
2785 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2786 }
2787