gem.c revision 1.105 1 /* $NetBSD: gem.c,v 1.105 2016/05/17 14:44:53 jdc Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * Copyright (c) 2001-2003 Thomas Moestl
7 * All rights reserved.
8 *
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 /*
34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35 * See `GEM Gigabit Ethernet ASIC Specification'
36 * http://www.sun.com/processors/manuals/ge.pdf
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.105 2016/05/17 14:44:53 jdc Exp $");
41
42 #include "opt_inet.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/mbuf.h>
48 #include <sys/syslog.h>
49 #include <sys/malloc.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/ioctl.h>
53 #include <sys/errno.h>
54 #include <sys/device.h>
55
56 #include <machine/endian.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71
72 #include <net/bpf.h>
73
74 #include <sys/bus.h>
75 #include <sys/intr.h>
76
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 #include <dev/mii/mii_bitbang.h>
80
81 #include <dev/ic/gemreg.h>
82 #include <dev/ic/gemvar.h>
83
84 #define TRIES 10000
85
86 static void gem_inten(struct gem_softc *);
87 static void gem_start(struct ifnet *);
88 static void gem_stop(struct ifnet *, int);
89 int gem_ioctl(struct ifnet *, u_long, void *);
90 void gem_tick(void *);
91 void gem_watchdog(struct ifnet *);
92 void gem_rx_watchdog(void *);
93 void gem_pcs_start(struct gem_softc *sc);
94 void gem_pcs_stop(struct gem_softc *sc, int);
95 int gem_init(struct ifnet *);
96 void gem_init_regs(struct gem_softc *sc);
97 static int gem_ringsize(int sz);
98 static int gem_meminit(struct gem_softc *);
99 void gem_mifinit(struct gem_softc *);
100 static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
101 u_int32_t, u_int32_t);
102 void gem_reset(struct gem_softc *);
103 int gem_reset_rx(struct gem_softc *sc);
104 static void gem_reset_rxdma(struct gem_softc *sc);
105 static void gem_rx_common(struct gem_softc *sc);
106 int gem_reset_tx(struct gem_softc *sc);
107 int gem_disable_rx(struct gem_softc *sc);
108 int gem_disable_tx(struct gem_softc *sc);
109 static void gem_rxdrain(struct gem_softc *sc);
110 int gem_add_rxbuf(struct gem_softc *sc, int idx);
111 void gem_setladrf(struct gem_softc *);
112
113 /* MII methods & callbacks */
114 static int gem_mii_readreg(device_t, int, int);
115 static void gem_mii_writereg(device_t, int, int, int);
116 static void gem_mii_statchg(struct ifnet *);
117
118 static int gem_ifflags_cb(struct ethercom *);
119
120 void gem_statuschange(struct gem_softc *);
121
122 int gem_ser_mediachange(struct ifnet *);
123 void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
124
125 static void gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
126
127 struct mbuf *gem_get(struct gem_softc *, int, int);
128 int gem_put(struct gem_softc *, int, struct mbuf *);
129 void gem_read(struct gem_softc *, int, int);
130 int gem_pint(struct gem_softc *);
131 int gem_eint(struct gem_softc *, u_int);
132 int gem_rint(struct gem_softc *);
133 int gem_tint(struct gem_softc *);
134 void gem_power(int, void *);
135
136 #ifdef GEM_DEBUG
137 static void gem_txsoft_print(const struct gem_softc *, int, int);
138 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
139 printf x
140 #else
141 #define DPRINTF(sc, x) /* nothing */
142 #endif
143
144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
145
146 int
147 gem_detach(struct gem_softc *sc, int flags)
148 {
149 int i;
150 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
151 bus_space_tag_t t = sc->sc_bustag;
152 bus_space_handle_t h = sc->sc_h1;
153
154 /*
155 * Free any resources we've allocated during the attach.
156 * Do this in reverse order and fall through.
157 */
158 switch (sc->sc_att_stage) {
159 case GEM_ATT_BACKEND_2:
160 case GEM_ATT_BACKEND_1:
161 case GEM_ATT_FINISHED:
162 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
163 gem_stop(&sc->sc_ethercom.ec_if, 1);
164
165 #ifdef GEM_COUNTERS
166 for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
167 evcnt_detach(&sc->sc_ev_rxhist[i]);
168 evcnt_detach(&sc->sc_ev_rxnobuf);
169 evcnt_detach(&sc->sc_ev_rxfull);
170 evcnt_detach(&sc->sc_ev_rxint);
171 evcnt_detach(&sc->sc_ev_txint);
172 #endif
173 evcnt_detach(&sc->sc_ev_intr);
174
175 rnd_detach_source(&sc->rnd_source);
176 ether_ifdetach(ifp);
177 if_detach(ifp);
178 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
179
180 callout_destroy(&sc->sc_tick_ch);
181 callout_destroy(&sc->sc_rx_watchdog);
182
183 /*FALLTHROUGH*/
184 case GEM_ATT_MII:
185 sc->sc_att_stage = GEM_ATT_MII;
186 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
187 /*FALLTHROUGH*/
188 case GEM_ATT_7:
189 for (i = 0; i < GEM_NRXDESC; i++) {
190 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
191 bus_dmamap_destroy(sc->sc_dmatag,
192 sc->sc_rxsoft[i].rxs_dmamap);
193 }
194 /*FALLTHROUGH*/
195 case GEM_ATT_6:
196 for (i = 0; i < GEM_TXQUEUELEN; i++) {
197 if (sc->sc_txsoft[i].txs_dmamap != NULL)
198 bus_dmamap_destroy(sc->sc_dmatag,
199 sc->sc_txsoft[i].txs_dmamap);
200 }
201 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
202 /*FALLTHROUGH*/
203 case GEM_ATT_5:
204 bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
205 /*FALLTHROUGH*/
206 case GEM_ATT_4:
207 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
208 /*FALLTHROUGH*/
209 case GEM_ATT_3:
210 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
211 /*FALLTHROUGH*/
212 case GEM_ATT_2:
213 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
214 sizeof(struct gem_control_data));
215 /*FALLTHROUGH*/
216 case GEM_ATT_1:
217 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
218 /*FALLTHROUGH*/
219 case GEM_ATT_0:
220 sc->sc_att_stage = GEM_ATT_0;
221 /*FALLTHROUGH*/
222 case GEM_ATT_BACKEND_0:
223 break;
224 }
225 return 0;
226 }
227
228 static void
229 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
230 {
231 cfattach_t ca = device_cfattach(sc->sc_dev);
232
233 sc->sc_att_stage = stage;
234 (*ca->ca_detach)(sc->sc_dev, 0);
235 }
236
237 /*
238 * gem_attach:
239 *
240 * Attach a Gem interface to the system.
241 */
242 void
243 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
244 {
245 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
246 struct mii_data *mii = &sc->sc_mii;
247 bus_space_tag_t t = sc->sc_bustag;
248 bus_space_handle_t h = sc->sc_h1;
249 struct ifmedia_entry *ifm;
250 int i, error, phyaddr;
251 u_int32_t v;
252 char *nullbuf;
253
254 /* Make sure the chip is stopped. */
255 ifp->if_softc = sc;
256 gem_reset(sc);
257
258 /*
259 * Allocate the control data structures, and create and load the
260 * DMA map for it. gem_control_data is 9216 bytes, we have space for
261 * the padding buffer in the bus_dmamem_alloc()'d memory.
262 */
263 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
264 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
265 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
266 aprint_error_dev(sc->sc_dev,
267 "unable to allocate control data, error = %d\n",
268 error);
269 gem_partial_detach(sc, GEM_ATT_0);
270 return;
271 }
272
273 /* XXX should map this in with correct endianness */
274 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
275 sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
276 BUS_DMA_COHERENT)) != 0) {
277 aprint_error_dev(sc->sc_dev,
278 "unable to map control data, error = %d\n", error);
279 gem_partial_detach(sc, GEM_ATT_1);
280 return;
281 }
282
283 nullbuf =
284 (char *)sc->sc_control_data + sizeof(struct gem_control_data);
285
286 if ((error = bus_dmamap_create(sc->sc_dmatag,
287 sizeof(struct gem_control_data), 1,
288 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
289 aprint_error_dev(sc->sc_dev,
290 "unable to create control data DMA map, error = %d\n",
291 error);
292 gem_partial_detach(sc, GEM_ATT_2);
293 return;
294 }
295
296 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
297 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
298 0)) != 0) {
299 aprint_error_dev(sc->sc_dev,
300 "unable to load control data DMA map, error = %d\n",
301 error);
302 gem_partial_detach(sc, GEM_ATT_3);
303 return;
304 }
305
306 memset(nullbuf, 0, ETHER_MIN_TX);
307 if ((error = bus_dmamap_create(sc->sc_dmatag,
308 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
309 aprint_error_dev(sc->sc_dev,
310 "unable to create padding DMA map, error = %d\n", error);
311 gem_partial_detach(sc, GEM_ATT_4);
312 return;
313 }
314
315 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
316 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
317 aprint_error_dev(sc->sc_dev,
318 "unable to load padding DMA map, error = %d\n", error);
319 gem_partial_detach(sc, GEM_ATT_5);
320 return;
321 }
322
323 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
324 BUS_DMASYNC_PREWRITE);
325
326 /*
327 * Initialize the transmit job descriptors.
328 */
329 SIMPLEQ_INIT(&sc->sc_txfreeq);
330 SIMPLEQ_INIT(&sc->sc_txdirtyq);
331
332 /*
333 * Create the transmit buffer DMA maps.
334 */
335 for (i = 0; i < GEM_TXQUEUELEN; i++) {
336 struct gem_txsoft *txs;
337
338 txs = &sc->sc_txsoft[i];
339 txs->txs_mbuf = NULL;
340 if ((error = bus_dmamap_create(sc->sc_dmatag,
341 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
342 ETHER_MAX_LEN_JUMBO, 0, 0,
343 &txs->txs_dmamap)) != 0) {
344 aprint_error_dev(sc->sc_dev,
345 "unable to create tx DMA map %d, error = %d\n",
346 i, error);
347 gem_partial_detach(sc, GEM_ATT_6);
348 return;
349 }
350 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
351 }
352
353 /*
354 * Create the receive buffer DMA maps.
355 */
356 for (i = 0; i < GEM_NRXDESC; i++) {
357 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
358 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
359 aprint_error_dev(sc->sc_dev,
360 "unable to create rx DMA map %d, error = %d\n",
361 i, error);
362 gem_partial_detach(sc, GEM_ATT_7);
363 return;
364 }
365 sc->sc_rxsoft[i].rxs_mbuf = NULL;
366 }
367
368 /* Initialize ifmedia structures and MII info */
369 mii->mii_ifp = ifp;
370 mii->mii_readreg = gem_mii_readreg;
371 mii->mii_writereg = gem_mii_writereg;
372 mii->mii_statchg = gem_mii_statchg;
373
374 sc->sc_ethercom.ec_mii = mii;
375
376 /*
377 * Initialization based on `GEM Gigabit Ethernet ASIC Specification'
378 * Section 3.2.1 `Initialization Sequence'.
379 * However, we can't assume SERDES or Serialink if neither
380 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
381 * being set, as both are set on Sun X1141A (with SERDES). So,
382 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
383 * Also, for variants that report 2 PHY's, we prefer the external
384 * PHY over the internal PHY, so we look for that first.
385 */
386 gem_mifinit(sc);
387
388 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
389 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
390 ether_mediastatus);
391 /* Look for external PHY */
392 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
393 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
394 bus_space_write_4(t, h, GEM_MIF_CONFIG,
395 sc->sc_mif_config);
396 switch (sc->sc_variant) {
397 case GEM_SUN_ERI:
398 phyaddr = GEM_PHYAD_EXTERNAL;
399 break;
400 default:
401 phyaddr = MII_PHY_ANY;
402 break;
403 }
404 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
405 MII_OFFSET_ANY, MIIF_FORCEANEG);
406 }
407 #ifdef GEM_DEBUG
408 else
409 aprint_debug_dev(sc->sc_dev, "using external PHY\n");
410 #endif
411 /* Look for internal PHY if no external PHY was found */
412 if (LIST_EMPTY(&mii->mii_phys) &&
413 sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) {
414 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
415 bus_space_write_4(t, h, GEM_MIF_CONFIG,
416 sc->sc_mif_config);
417 switch (sc->sc_variant) {
418 case GEM_SUN_ERI:
419 case GEM_APPLE_K2_GMAC:
420 phyaddr = GEM_PHYAD_INTERNAL;
421 break;
422 case GEM_APPLE_GMAC:
423 phyaddr = GEM_PHYAD_EXTERNAL;
424 break;
425 default:
426 phyaddr = MII_PHY_ANY;
427 break;
428 }
429 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
430 MII_OFFSET_ANY, MIIF_FORCEANEG);
431 #ifdef GEM_DEBUG
432 if (!LIST_EMPTY(&mii->mii_phys))
433 aprint_debug_dev(sc->sc_dev,
434 "using internal PHY\n");
435 #endif
436 }
437 if (LIST_EMPTY(&mii->mii_phys)) {
438 /* No PHY attached */
439 aprint_error_dev(sc->sc_dev,
440 "PHY probe failed\n");
441 gem_partial_detach(sc, GEM_ATT_MII);
442 return;
443 } else {
444 struct mii_softc *child;
445
446 /*
447 * Walk along the list of attached MII devices and
448 * establish an `MII instance' to `PHY number'
449 * mapping.
450 */
451 LIST_FOREACH(child, &mii->mii_phys, mii_list) {
452 /*
453 * Note: we support just one PHY: the internal
454 * or external MII is already selected for us
455 * by the GEM_MIF_CONFIG register.
456 */
457 if (child->mii_phy > 1 || child->mii_inst > 0) {
458 aprint_error_dev(sc->sc_dev,
459 "cannot accommodate MII device"
460 " %s at PHY %d, instance %d\n",
461 device_xname(child->mii_dev),
462 child->mii_phy, child->mii_inst);
463 continue;
464 }
465 sc->sc_phys[child->mii_inst] = child->mii_phy;
466 }
467
468 if (sc->sc_variant != GEM_SUN_ERI)
469 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
470 GEM_MII_DATAPATH_MII);
471
472 /*
473 * XXX - we can really do the following ONLY if the
474 * PHY indeed has the auto negotiation capability!!
475 */
476 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
477 }
478 } else {
479 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
480 gem_ser_mediastatus);
481 /* SERDES or Serialink */
482 if (sc->sc_flags & GEM_SERDES) {
483 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
484 GEM_MII_DATAPATH_SERDES);
485 } else {
486 sc->sc_flags |= GEM_SERIAL;
487 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
488 GEM_MII_DATAPATH_SERIAL);
489 }
490
491 aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
492 sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
493
494 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
495 /* Check for FDX and HDX capabilities */
496 sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
497 if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
498 ifmedia_add(&sc->sc_mii.mii_media,
499 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
500 aprint_normal("1000baseSX-FDX, ");
501 }
502 if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
503 ifmedia_add(&sc->sc_mii.mii_media,
504 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
505 aprint_normal("1000baseSX-HDX, ");
506 }
507 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
508 sc->sc_mii_media = IFM_AUTO;
509 aprint_normal("auto\n");
510
511 gem_pcs_stop(sc, 1);
512 }
513
514 /*
515 * From this point forward, the attachment cannot fail. A failure
516 * before this point releases all resources that may have been
517 * allocated.
518 */
519
520 /* Announce ourselves. */
521 aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
522 ether_sprintf(enaddr));
523
524 /* Get RX FIFO size */
525 sc->sc_rxfifosize = 64 *
526 bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
527 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
528
529 /* Get TX FIFO size */
530 v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
531 aprint_normal(", %uKB TX fifo\n", v / 16);
532
533 /* Initialize ifnet structure. */
534 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
535 ifp->if_softc = sc;
536 ifp->if_flags =
537 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
538 sc->sc_if_flags = ifp->if_flags;
539 #if 0
540 /*
541 * The GEM hardware supports basic TCP checksum offloading only.
542 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
543 * have bugs in the receive checksum, so don't enable it for now.
544 */
545 if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
546 (GEM_IS_APPLE(sc) &&
547 (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
548 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
549 #endif
550 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
551 ifp->if_start = gem_start;
552 ifp->if_ioctl = gem_ioctl;
553 ifp->if_watchdog = gem_watchdog;
554 ifp->if_stop = gem_stop;
555 ifp->if_init = gem_init;
556 IFQ_SET_READY(&ifp->if_snd);
557
558 /*
559 * If we support GigE media, we support jumbo frames too.
560 * Unless we are Apple.
561 */
562 TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
563 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
564 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
565 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
566 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
567 if (!GEM_IS_APPLE(sc))
568 sc->sc_ethercom.ec_capabilities
569 |= ETHERCAP_JUMBO_MTU;
570 sc->sc_flags |= GEM_GIGABIT;
571 break;
572 }
573 }
574
575 /* claim 802.1q capability */
576 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
577
578 /* Attach the interface. */
579 if_attach(ifp);
580 ether_ifattach(ifp, enaddr);
581 ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
582
583 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
584 RND_TYPE_NET, RND_FLAG_DEFAULT);
585
586 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
587 NULL, device_xname(sc->sc_dev), "interrupts");
588 #ifdef GEM_COUNTERS
589 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
590 &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
591 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
592 &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
593 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
594 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
595 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
596 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
597 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
598 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
599 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
600 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
601 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
602 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
603 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
604 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
605 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
606 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
607 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
608 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
609 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
610 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
611 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
612 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
613 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
614 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
615 #endif
616
617 callout_init(&sc->sc_tick_ch, 0);
618 callout_init(&sc->sc_rx_watchdog, 0);
619 callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
620
621 sc->sc_att_stage = GEM_ATT_FINISHED;
622
623 return;
624 }
625
626 void
627 gem_tick(void *arg)
628 {
629 struct gem_softc *sc = arg;
630 int s;
631
632 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
633 /*
634 * We have to reset everything if we failed to get a
635 * PCS interrupt. Restarting the callout is handled
636 * in gem_pcs_start().
637 */
638 gem_init(&sc->sc_ethercom.ec_if);
639 } else {
640 s = splnet();
641 mii_tick(&sc->sc_mii);
642 splx(s);
643 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
644 }
645 }
646
647 static int
648 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
649 {
650 int i;
651 u_int32_t reg;
652
653 for (i = TRIES; i--; DELAY(100)) {
654 reg = bus_space_read_4(sc->sc_bustag, h, r);
655 if ((reg & clr) == 0 && (reg & set) == set)
656 return (1);
657 }
658 return (0);
659 }
660
661 void
662 gem_reset(struct gem_softc *sc)
663 {
664 bus_space_tag_t t = sc->sc_bustag;
665 bus_space_handle_t h = sc->sc_h2;
666 int s;
667
668 s = splnet();
669 DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
670 gem_reset_rx(sc);
671 gem_reset_tx(sc);
672
673 /* Do a full reset */
674 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
675 if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
676 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
677 splx(s);
678 }
679
680
681 /*
682 * gem_rxdrain:
683 *
684 * Drain the receive queue.
685 */
686 static void
687 gem_rxdrain(struct gem_softc *sc)
688 {
689 struct gem_rxsoft *rxs;
690 int i;
691
692 for (i = 0; i < GEM_NRXDESC; i++) {
693 rxs = &sc->sc_rxsoft[i];
694 if (rxs->rxs_mbuf != NULL) {
695 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
696 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
697 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
698 m_freem(rxs->rxs_mbuf);
699 rxs->rxs_mbuf = NULL;
700 }
701 }
702 }
703
704 /*
705 * Reset the whole thing.
706 */
707 static void
708 gem_stop(struct ifnet *ifp, int disable)
709 {
710 struct gem_softc *sc = ifp->if_softc;
711 struct gem_txsoft *txs;
712
713 DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
714
715 callout_halt(&sc->sc_tick_ch, NULL);
716 callout_halt(&sc->sc_rx_watchdog, NULL);
717 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
718 gem_pcs_stop(sc, disable);
719 else
720 mii_down(&sc->sc_mii);
721
722 /* XXX - Should we reset these instead? */
723 gem_disable_tx(sc);
724 gem_disable_rx(sc);
725
726 /*
727 * Release any queued transmit buffers.
728 */
729 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
730 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
731 if (txs->txs_mbuf != NULL) {
732 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
733 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
734 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
735 m_freem(txs->txs_mbuf);
736 txs->txs_mbuf = NULL;
737 }
738 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
739 }
740
741 /*
742 * Mark the interface down and cancel the watchdog timer.
743 */
744 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
745 sc->sc_if_flags = ifp->if_flags;
746 ifp->if_timer = 0;
747
748 if (disable)
749 gem_rxdrain(sc);
750 }
751
752
753 /*
754 * Reset the receiver
755 */
756 int
757 gem_reset_rx(struct gem_softc *sc)
758 {
759 bus_space_tag_t t = sc->sc_bustag;
760 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
761
762 /*
763 * Resetting while DMA is in progress can cause a bus hang, so we
764 * disable DMA first.
765 */
766 gem_disable_rx(sc);
767 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
768 bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
769 /* Wait till it finishes */
770 if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
771 aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
772 /* Wait 5ms extra. */
773 delay(5000);
774
775 /* Finally, reset the ERX */
776 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
777 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
778 /* Wait till it finishes */
779 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
780 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
781 return (1);
782 }
783 return (0);
784 }
785
786
787 /*
788 * Reset the receiver DMA engine.
789 *
790 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
791 * etc in order to reset the receiver DMA engine only and not do a full
792 * reset which amongst others also downs the link and clears the FIFOs.
793 */
794 static void
795 gem_reset_rxdma(struct gem_softc *sc)
796 {
797 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
798 bus_space_tag_t t = sc->sc_bustag;
799 bus_space_handle_t h = sc->sc_h1;
800 int i;
801
802 if (gem_reset_rx(sc) != 0) {
803 gem_init(ifp);
804 return;
805 }
806 for (i = 0; i < GEM_NRXDESC; i++)
807 if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
808 GEM_UPDATE_RXDESC(sc, i);
809 sc->sc_rxptr = 0;
810 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
811 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
812
813 /* Reprogram Descriptor Ring Base Addresses */
814 /* NOTE: we use only 32-bit DMA addresses here. */
815 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
816 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
817
818 /* Redo ERX Configuration */
819 gem_rx_common(sc);
820
821 /* Give the reciever a swift kick */
822 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
823 }
824
825 /*
826 * Common RX configuration for gem_init() and gem_reset_rxdma().
827 */
828 static void
829 gem_rx_common(struct gem_softc *sc)
830 {
831 bus_space_tag_t t = sc->sc_bustag;
832 bus_space_handle_t h = sc->sc_h1;
833 u_int32_t v;
834
835 /* Encode Receive Descriptor ring size: four possible values */
836 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
837
838 /* Set receive h/w checksum offset */
839 #ifdef INET
840 v |= (ETHER_HDR_LEN + sizeof(struct ip) +
841 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
842 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
843 #endif
844
845 /* Enable RX DMA */
846 bus_space_write_4(t, h, GEM_RX_CONFIG,
847 v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
848 (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
849
850 /*
851 * The following value is for an OFF Threshold of about 3/4 full
852 * and an ON Threshold of 1/4 full.
853 */
854 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
855 (3 * sc->sc_rxfifosize / 256) |
856 ((sc->sc_rxfifosize / 256) << 12));
857 bus_space_write_4(t, h, GEM_RX_BLANKING,
858 (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
859 }
860
861 /*
862 * Reset the transmitter
863 */
864 int
865 gem_reset_tx(struct gem_softc *sc)
866 {
867 bus_space_tag_t t = sc->sc_bustag;
868 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
869
870 /*
871 * Resetting while DMA is in progress can cause a bus hang, so we
872 * disable DMA first.
873 */
874 gem_disable_tx(sc);
875 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
876 bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
877 /* Wait till it finishes */
878 if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
879 aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
880 /* Wait 5ms extra. */
881 delay(5000);
882
883 /* Finally, reset the ETX */
884 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
885 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
886 /* Wait till it finishes */
887 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
888 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
889 return (1);
890 }
891 return (0);
892 }
893
894 /*
895 * disable receiver.
896 */
897 int
898 gem_disable_rx(struct gem_softc *sc)
899 {
900 bus_space_tag_t t = sc->sc_bustag;
901 bus_space_handle_t h = sc->sc_h1;
902 u_int32_t cfg;
903
904 /* Flip the enable bit */
905 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
906 cfg &= ~GEM_MAC_RX_ENABLE;
907 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
908 bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
909 /* Wait for it to finish */
910 return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
911 }
912
913 /*
914 * disable transmitter.
915 */
916 int
917 gem_disable_tx(struct gem_softc *sc)
918 {
919 bus_space_tag_t t = sc->sc_bustag;
920 bus_space_handle_t h = sc->sc_h1;
921 u_int32_t cfg;
922
923 /* Flip the enable bit */
924 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
925 cfg &= ~GEM_MAC_TX_ENABLE;
926 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
927 bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
928 /* Wait for it to finish */
929 return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
930 }
931
932 /*
933 * Initialize interface.
934 */
935 int
936 gem_meminit(struct gem_softc *sc)
937 {
938 struct gem_rxsoft *rxs;
939 int i, error;
940
941 /*
942 * Initialize the transmit descriptor ring.
943 */
944 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
945 for (i = 0; i < GEM_NTXDESC; i++) {
946 sc->sc_txdescs[i].gd_flags = 0;
947 sc->sc_txdescs[i].gd_addr = 0;
948 }
949 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
950 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
951 sc->sc_txfree = GEM_NTXDESC-1;
952 sc->sc_txnext = 0;
953 sc->sc_txwin = 0;
954
955 /*
956 * Initialize the receive descriptor and receive job
957 * descriptor rings.
958 */
959 for (i = 0; i < GEM_NRXDESC; i++) {
960 rxs = &sc->sc_rxsoft[i];
961 if (rxs->rxs_mbuf == NULL) {
962 if ((error = gem_add_rxbuf(sc, i)) != 0) {
963 aprint_error_dev(sc->sc_dev,
964 "unable to allocate or map rx "
965 "buffer %d, error = %d\n",
966 i, error);
967 /*
968 * XXX Should attempt to run with fewer receive
969 * XXX buffers instead of just failing.
970 */
971 gem_rxdrain(sc);
972 return (1);
973 }
974 } else
975 GEM_INIT_RXDESC(sc, i);
976 }
977 sc->sc_rxptr = 0;
978 sc->sc_meminited = 1;
979 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
980 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
981
982 return (0);
983 }
984
985 static int
986 gem_ringsize(int sz)
987 {
988 switch (sz) {
989 case 32:
990 return GEM_RING_SZ_32;
991 case 64:
992 return GEM_RING_SZ_64;
993 case 128:
994 return GEM_RING_SZ_128;
995 case 256:
996 return GEM_RING_SZ_256;
997 case 512:
998 return GEM_RING_SZ_512;
999 case 1024:
1000 return GEM_RING_SZ_1024;
1001 case 2048:
1002 return GEM_RING_SZ_2048;
1003 case 4096:
1004 return GEM_RING_SZ_4096;
1005 case 8192:
1006 return GEM_RING_SZ_8192;
1007 default:
1008 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1009 return GEM_RING_SZ_32;
1010 }
1011 }
1012
1013
1014 /*
1015 * Start PCS
1016 */
1017 void
1018 gem_pcs_start(struct gem_softc *sc)
1019 {
1020 bus_space_tag_t t = sc->sc_bustag;
1021 bus_space_handle_t h = sc->sc_h1;
1022 uint32_t v;
1023
1024 #ifdef GEM_DEBUG
1025 aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1026 #endif
1027
1028 /*
1029 * Set up. We must disable the MII before modifying the
1030 * GEM_MII_ANAR register
1031 */
1032 if (sc->sc_flags & GEM_SERDES) {
1033 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1034 GEM_MII_DATAPATH_SERDES);
1035 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1036 GEM_MII_SLINK_LOOPBACK);
1037 } else {
1038 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1039 GEM_MII_DATAPATH_SERIAL);
1040 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1041 }
1042 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1043 v = bus_space_read_4(t, h, GEM_MII_ANAR);
1044 v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1045 if (sc->sc_mii_media == IFM_AUTO)
1046 v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1047 else if (sc->sc_mii_media == IFM_FDX) {
1048 v |= GEM_MII_ANEG_FUL_DUPLX;
1049 v &= ~GEM_MII_ANEG_HLF_DUPLX;
1050 } else if (sc->sc_mii_media == IFM_HDX) {
1051 v &= ~GEM_MII_ANEG_FUL_DUPLX;
1052 v |= GEM_MII_ANEG_HLF_DUPLX;
1053 }
1054
1055 /* Configure link. */
1056 bus_space_write_4(t, h, GEM_MII_ANAR, v);
1057 bus_space_write_4(t, h, GEM_MII_CONTROL,
1058 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1059 bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1060 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1061
1062 /* Start the 10 second timer */
1063 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
1064 }
1065
1066 /*
1067 * Stop PCS
1068 */
1069 void
1070 gem_pcs_stop(struct gem_softc *sc, int disable)
1071 {
1072 bus_space_tag_t t = sc->sc_bustag;
1073 bus_space_handle_t h = sc->sc_h1;
1074
1075 #ifdef GEM_DEBUG
1076 aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1077 #endif
1078
1079 /* Tell link partner that we're going away */
1080 bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1081
1082 /*
1083 * Disable PCS MII. The documentation suggests that setting
1084 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1085 * negotiation will shut down the link. However, it appears
1086 * that we also need to unset the datapath mode.
1087 */
1088 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1089 bus_space_write_4(t, h, GEM_MII_CONTROL,
1090 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1091 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1092 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1093
1094 if (disable) {
1095 if (sc->sc_flags & GEM_SERDES)
1096 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1097 GEM_MII_SLINK_POWER_OFF);
1098 else
1099 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1100 GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1101 }
1102
1103 sc->sc_flags &= ~GEM_LINK;
1104 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1105 sc->sc_mii.mii_media_status = IFM_AVALID;
1106 }
1107
1108
1109 /*
1110 * Initialization of interface; set up initialization block
1111 * and transmit/receive descriptor rings.
1112 */
1113 int
1114 gem_init(struct ifnet *ifp)
1115 {
1116 struct gem_softc *sc = ifp->if_softc;
1117 bus_space_tag_t t = sc->sc_bustag;
1118 bus_space_handle_t h = sc->sc_h1;
1119 int rc = 0, s;
1120 u_int max_frame_size;
1121 u_int32_t v;
1122
1123 s = splnet();
1124
1125 DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1126 /*
1127 * Initialization sequence. The numbered steps below correspond
1128 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1129 * Channel Engine manual (part of the PCIO manual).
1130 * See also the STP2002-STQ document from Sun Microsystems.
1131 */
1132
1133 /* step 1 & 2. Reset the Ethernet Channel */
1134 gem_stop(ifp, 0);
1135 gem_reset(sc);
1136 DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1137
1138 /* Re-initialize the MIF */
1139 gem_mifinit(sc);
1140
1141 /* Set up correct datapath for non-SERDES/Serialink */
1142 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1143 sc->sc_variant != GEM_SUN_ERI)
1144 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1145 GEM_MII_DATAPATH_MII);
1146
1147 /* Call MI reset function if any */
1148 if (sc->sc_hwreset)
1149 (*sc->sc_hwreset)(sc);
1150
1151 /* step 3. Setup data structures in host memory */
1152 if (gem_meminit(sc) != 0) {
1153 splx(s);
1154 return 1;
1155 }
1156
1157 /* step 4. TX MAC registers & counters */
1158 gem_init_regs(sc);
1159 max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1160 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1161 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1162 max_frame_size += ETHER_VLAN_ENCAP_LEN;
1163 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1164 max_frame_size|/* burst size */(0x2000<<16));
1165
1166 /* step 5. RX MAC registers & counters */
1167 gem_setladrf(sc);
1168
1169 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1170 /* NOTE: we use only 32-bit DMA addresses here. */
1171 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1172 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1173
1174 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1175 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1176
1177 /* step 8. Global Configuration & Interrupt Mask */
1178 gem_inten(sc);
1179 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1180 GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1181 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1182 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1183 GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1184
1185 /* step 9. ETX Configuration: use mostly default values */
1186
1187 /* Enable TX DMA */
1188 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1189 bus_space_write_4(t, h, GEM_TX_CONFIG,
1190 v | GEM_TX_CONFIG_TXDMA_EN |
1191 (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1192 GEM_TX_CONFIG_TXFIFO_TH));
1193 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1194
1195 /* step 10. ERX Configuration */
1196 gem_rx_common(sc);
1197
1198 /* step 11. Configure Media */
1199 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1200 (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1201 goto out;
1202
1203 /* step 12. RX_MAC Configuration Register */
1204 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1205 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1206 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1207
1208 /* step 14. Issue Transmit Pending command */
1209
1210 /* Call MI initialization function if any */
1211 if (sc->sc_hwinit)
1212 (*sc->sc_hwinit)(sc);
1213
1214
1215 /* step 15. Give the reciever a swift kick */
1216 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1217
1218 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1219 /* Configure PCS */
1220 gem_pcs_start(sc);
1221 else
1222 /* Start the one second timer. */
1223 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1224
1225 sc->sc_flags &= ~GEM_LINK;
1226 ifp->if_flags |= IFF_RUNNING;
1227 ifp->if_flags &= ~IFF_OACTIVE;
1228 ifp->if_timer = 0;
1229 sc->sc_if_flags = ifp->if_flags;
1230 out:
1231 splx(s);
1232
1233 return (0);
1234 }
1235
1236 void
1237 gem_init_regs(struct gem_softc *sc)
1238 {
1239 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1240 bus_space_tag_t t = sc->sc_bustag;
1241 bus_space_handle_t h = sc->sc_h1;
1242 const u_char *laddr = CLLADDR(ifp->if_sadl);
1243 u_int32_t v;
1244
1245 /* These regs are not cleared on reset */
1246 if (!sc->sc_inited) {
1247
1248 /* Load recommended values */
1249 bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1250 bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1251 bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1252
1253 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1254 /* Max frame and max burst size */
1255 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1256 ETHER_MAX_LEN | (0x2000<<16));
1257
1258 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1259 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1260 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1261 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1262 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1263 ((laddr[5]<<8)|laddr[4])&0x3ff);
1264
1265 /* Secondary MAC addr set to 0:0:0:0:0:0 */
1266 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1267 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1268 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1269
1270 /* MAC control addr set to 01:80:c2:00:00:01 */
1271 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1272 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1273 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1274
1275 /* MAC filter addr set to 0:0:0:0:0:0 */
1276 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1277 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1278 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1279
1280 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1281 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1282
1283 sc->sc_inited = 1;
1284 }
1285
1286 /* Counters need to be zeroed */
1287 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1288 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1289 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1290 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1291 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1292 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1293 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1294 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1295 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1296 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1297 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1298
1299 /* Set XOFF PAUSE time. */
1300 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1301
1302 /*
1303 * Set the internal arbitration to "infinite" bursts of the
1304 * maximum length of 31 * 64 bytes so DMA transfers aren't
1305 * split up in cache line size chunks. This greatly improves
1306 * especially RX performance.
1307 * Enable silicon bug workarounds for the Apple variants.
1308 */
1309 bus_space_write_4(t, h, GEM_CONFIG,
1310 GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1311 ((sc->sc_flags & GEM_PCI) ?
1312 GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1313 GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1314
1315 /*
1316 * Set the station address.
1317 */
1318 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1319 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1320 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1321
1322 /*
1323 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1324 */
1325 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1326 v = GEM_MAC_XIF_TX_MII_ENA;
1327 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1328 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1329 v |= GEM_MAC_XIF_FDPLX_LED;
1330 if (sc->sc_flags & GEM_GIGABIT)
1331 v |= GEM_MAC_XIF_GMII_MODE;
1332 }
1333 } else {
1334 v |= GEM_MAC_XIF_GMII_MODE;
1335 }
1336 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1337 }
1338
1339 #ifdef GEM_DEBUG
1340 static void
1341 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1342 {
1343 int i;
1344
1345 for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1346 printf("descriptor %d:\t", i);
1347 printf("gd_flags: 0x%016" PRIx64 "\t",
1348 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1349 printf("gd_addr: 0x%016" PRIx64 "\n",
1350 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1351 if (i == lastdesc)
1352 break;
1353 }
1354 }
1355 #endif
1356
1357 static void
1358 gem_start(struct ifnet *ifp)
1359 {
1360 struct gem_softc *sc = ifp->if_softc;
1361 struct mbuf *m0, *m;
1362 struct gem_txsoft *txs;
1363 bus_dmamap_t dmamap;
1364 int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1365 #ifdef GEM_DEBUG
1366 int otxnext;
1367 #endif
1368 uint64_t flags = 0;
1369
1370 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1371 return;
1372
1373 /*
1374 * Remember the previous number of free descriptors and
1375 * the first descriptor we'll use.
1376 */
1377 ofree = sc->sc_txfree;
1378 #ifdef GEM_DEBUG
1379 otxnext = sc->sc_txnext;
1380 #endif
1381
1382 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1383 device_xname(sc->sc_dev), ofree, otxnext));
1384
1385 /*
1386 * Loop through the send queue, setting up transmit descriptors
1387 * until we drain the queue, or use up all available transmit
1388 * descriptors.
1389 */
1390 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1391 sc->sc_txfree != 0) {
1392 /*
1393 * Grab a packet off the queue.
1394 */
1395 IFQ_POLL(&ifp->if_snd, m0);
1396 if (m0 == NULL)
1397 break;
1398 m = NULL;
1399
1400 dmamap = txs->txs_dmamap;
1401
1402 /*
1403 * Load the DMA map. If this fails, the packet either
1404 * didn't fit in the alloted number of segments, or we were
1405 * short on resources. In this case, we'll copy and try
1406 * again.
1407 */
1408 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1409 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1410 (m0->m_pkthdr.len < ETHER_MIN_TX &&
1411 dmamap->dm_nsegs == GEM_NTXSEGS)) {
1412 if (m0->m_pkthdr.len > MCLBYTES) {
1413 aprint_error_dev(sc->sc_dev,
1414 "unable to allocate jumbo Tx cluster\n");
1415 IFQ_DEQUEUE(&ifp->if_snd, m0);
1416 m_freem(m0);
1417 continue;
1418 }
1419 MGETHDR(m, M_DONTWAIT, MT_DATA);
1420 if (m == NULL) {
1421 aprint_error_dev(sc->sc_dev,
1422 "unable to allocate Tx mbuf\n");
1423 break;
1424 }
1425 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1426 if (m0->m_pkthdr.len > MHLEN) {
1427 MCLGET(m, M_DONTWAIT);
1428 if ((m->m_flags & M_EXT) == 0) {
1429 aprint_error_dev(sc->sc_dev,
1430 "unable to allocate Tx cluster\n");
1431 m_freem(m);
1432 break;
1433 }
1434 }
1435 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1436 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1437 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1438 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1439 if (error) {
1440 aprint_error_dev(sc->sc_dev,
1441 "unable to load Tx buffer, error = %d\n",
1442 error);
1443 break;
1444 }
1445 }
1446
1447 /*
1448 * Ensure we have enough descriptors free to describe
1449 * the packet.
1450 */
1451 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1452 (sc->sc_txfree - 1) : sc->sc_txfree)) {
1453 /*
1454 * Not enough free descriptors to transmit this
1455 * packet. We haven't committed to anything yet,
1456 * so just unload the DMA map, put the packet
1457 * back on the queue, and punt. Notify the upper
1458 * layer that there are no more slots left.
1459 *
1460 * XXX We could allocate an mbuf and copy, but
1461 * XXX it is worth it?
1462 */
1463 ifp->if_flags |= IFF_OACTIVE;
1464 sc->sc_if_flags = ifp->if_flags;
1465 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1466 if (m != NULL)
1467 m_freem(m);
1468 break;
1469 }
1470
1471 IFQ_DEQUEUE(&ifp->if_snd, m0);
1472 if (m != NULL) {
1473 m_freem(m0);
1474 m0 = m;
1475 }
1476
1477 /*
1478 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1479 */
1480
1481 /* Sync the DMA map. */
1482 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1483 BUS_DMASYNC_PREWRITE);
1484
1485 /*
1486 * Initialize the transmit descriptors.
1487 */
1488 firsttx = sc->sc_txnext;
1489 for (nexttx = firsttx, seg = 0;
1490 seg < dmamap->dm_nsegs;
1491 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1492
1493 /*
1494 * If this is the first descriptor we're
1495 * enqueueing, set the start of packet flag,
1496 * and the checksum stuff if we want the hardware
1497 * to do it.
1498 */
1499 sc->sc_txdescs[nexttx].gd_addr =
1500 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1501 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1502 if (nexttx == firsttx) {
1503 flags |= GEM_TD_START_OF_PACKET;
1504 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1505 sc->sc_txwin = 0;
1506 flags |= GEM_TD_INTERRUPT_ME;
1507 }
1508
1509 #ifdef INET
1510 /* h/w checksum */
1511 if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1512 m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1513 struct ether_header *eh;
1514 uint16_t offset, start;
1515
1516 eh = mtod(m0, struct ether_header *);
1517 switch (ntohs(eh->ether_type)) {
1518 case ETHERTYPE_IP:
1519 start = ETHER_HDR_LEN;
1520 break;
1521 case ETHERTYPE_VLAN:
1522 start = ETHER_HDR_LEN +
1523 ETHER_VLAN_ENCAP_LEN;
1524 break;
1525 default:
1526 /* unsupported, drop it */
1527 m_free(m0);
1528 continue;
1529 }
1530 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1531 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1532 flags |= (start <<
1533 GEM_TD_CXSUM_STARTSHFT) |
1534 (offset <<
1535 GEM_TD_CXSUM_STUFFSHFT) |
1536 GEM_TD_CXSUM_ENABLE;
1537 }
1538 #endif
1539 }
1540 if (seg == dmamap->dm_nsegs - 1) {
1541 flags |= GEM_TD_END_OF_PACKET;
1542 } else {
1543 /* last flag set outside of loop */
1544 sc->sc_txdescs[nexttx].gd_flags =
1545 GEM_DMA_WRITE(sc, flags);
1546 }
1547 lasttx = nexttx;
1548 }
1549 if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1550 /* add padding buffer at end of chain */
1551 flags &= ~GEM_TD_END_OF_PACKET;
1552 sc->sc_txdescs[lasttx].gd_flags =
1553 GEM_DMA_WRITE(sc, flags);
1554
1555 sc->sc_txdescs[nexttx].gd_addr =
1556 GEM_DMA_WRITE(sc,
1557 sc->sc_nulldmamap->dm_segs[0].ds_addr);
1558 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1559 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1560 lasttx = nexttx;
1561 nexttx = GEM_NEXTTX(nexttx);
1562 seg++;
1563 }
1564 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1565
1566 KASSERT(lasttx != -1);
1567
1568 /*
1569 * Store a pointer to the packet so we can free it later,
1570 * and remember what txdirty will be once the packet is
1571 * done.
1572 */
1573 txs->txs_mbuf = m0;
1574 txs->txs_firstdesc = sc->sc_txnext;
1575 txs->txs_lastdesc = lasttx;
1576 txs->txs_ndescs = seg;
1577
1578 #ifdef GEM_DEBUG
1579 if (ifp->if_flags & IFF_DEBUG) {
1580 printf(" gem_start %p transmit chain:\n", txs);
1581 gem_txsoft_print(sc, txs->txs_firstdesc,
1582 txs->txs_lastdesc);
1583 }
1584 #endif
1585
1586 /* Sync the descriptors we're using. */
1587 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1588 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1589
1590 /* Advance the tx pointer. */
1591 sc->sc_txfree -= txs->txs_ndescs;
1592 sc->sc_txnext = nexttx;
1593
1594 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1595 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1596
1597 /*
1598 * Pass the packet to any BPF listeners.
1599 */
1600 bpf_mtap(ifp, m0);
1601 }
1602
1603 if (txs == NULL || sc->sc_txfree == 0) {
1604 /* No more slots left; notify upper layer. */
1605 ifp->if_flags |= IFF_OACTIVE;
1606 sc->sc_if_flags = ifp->if_flags;
1607 }
1608
1609 if (sc->sc_txfree != ofree) {
1610 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1611 device_xname(sc->sc_dev), lasttx, otxnext));
1612 /*
1613 * The entire packet chain is set up.
1614 * Kick the transmitter.
1615 */
1616 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1617 device_xname(sc->sc_dev), nexttx));
1618 bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1619 sc->sc_txnext);
1620
1621 /* Set a watchdog timer in case the chip flakes out. */
1622 ifp->if_timer = 5;
1623 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1624 device_xname(sc->sc_dev), ifp->if_timer));
1625 }
1626 }
1627
1628 /*
1629 * Transmit interrupt.
1630 */
1631 int
1632 gem_tint(struct gem_softc *sc)
1633 {
1634 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1635 bus_space_tag_t t = sc->sc_bustag;
1636 bus_space_handle_t mac = sc->sc_h1;
1637 struct gem_txsoft *txs;
1638 int txlast;
1639 int progress = 0;
1640 u_int32_t v;
1641
1642 DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1643
1644 /* Unload collision counters ... */
1645 v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1646 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1647 ifp->if_collisions += v +
1648 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1649 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1650 ifp->if_oerrors += v;
1651
1652 /* ... then clear the hardware counters. */
1653 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1654 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1655 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1656 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1657
1658 /*
1659 * Go through our Tx list and free mbufs for those
1660 * frames that have been transmitted.
1661 */
1662 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1663 /*
1664 * In theory, we could harvest some descriptors before
1665 * the ring is empty, but that's a bit complicated.
1666 *
1667 * GEM_TX_COMPLETION points to the last descriptor
1668 * processed +1.
1669 *
1670 * Let's assume that the NIC writes back to the Tx
1671 * descriptors before it updates the completion
1672 * register. If the NIC has posted writes to the
1673 * Tx descriptors, PCI ordering requires that the
1674 * posted writes flush to RAM before the register-read
1675 * finishes. So let's read the completion register,
1676 * before syncing the descriptors, so that we
1677 * examine Tx descriptors that are at least as
1678 * current as the completion register.
1679 */
1680 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1681 DPRINTF(sc,
1682 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1683 txs->txs_lastdesc, txlast));
1684 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1685 if (txlast >= txs->txs_firstdesc &&
1686 txlast <= txs->txs_lastdesc)
1687 break;
1688 } else if (txlast >= txs->txs_firstdesc ||
1689 txlast <= txs->txs_lastdesc)
1690 break;
1691
1692 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1693 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1694
1695 #ifdef GEM_DEBUG /* XXX DMA synchronization? */
1696 if (ifp->if_flags & IFF_DEBUG) {
1697 printf(" txsoft %p transmit chain:\n", txs);
1698 gem_txsoft_print(sc, txs->txs_firstdesc,
1699 txs->txs_lastdesc);
1700 }
1701 #endif
1702
1703
1704 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1705 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1706
1707 sc->sc_txfree += txs->txs_ndescs;
1708
1709 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1710 0, txs->txs_dmamap->dm_mapsize,
1711 BUS_DMASYNC_POSTWRITE);
1712 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1713 if (txs->txs_mbuf != NULL) {
1714 m_freem(txs->txs_mbuf);
1715 txs->txs_mbuf = NULL;
1716 }
1717
1718 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1719
1720 ifp->if_opackets++;
1721 progress = 1;
1722 }
1723
1724 #if 0
1725 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1726 "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1727 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1728 ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1729 GEM_TX_DATA_PTR_HI) << 32) |
1730 bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1731 GEM_TX_DATA_PTR_LO),
1732 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1733 #endif
1734
1735 if (progress) {
1736 if (sc->sc_txfree == GEM_NTXDESC - 1)
1737 sc->sc_txwin = 0;
1738
1739 /* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1740 ifp->if_flags &= ~IFF_OACTIVE;
1741 sc->sc_if_flags = ifp->if_flags;
1742 ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1743 gem_start(ifp);
1744 }
1745 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1746 device_xname(sc->sc_dev), ifp->if_timer));
1747
1748 return (1);
1749 }
1750
1751 /*
1752 * Receive interrupt.
1753 */
1754 int
1755 gem_rint(struct gem_softc *sc)
1756 {
1757 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1758 bus_space_tag_t t = sc->sc_bustag;
1759 bus_space_handle_t h = sc->sc_h1;
1760 struct gem_rxsoft *rxs;
1761 struct mbuf *m;
1762 u_int64_t rxstat;
1763 u_int32_t rxcomp;
1764 int i, len, progress = 0;
1765
1766 DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1767
1768 /*
1769 * Ignore spurious interrupt that sometimes occurs before
1770 * we are set up when we network boot.
1771 */
1772 if (!sc->sc_meminited)
1773 return 1;
1774
1775 /*
1776 * Read the completion register once. This limits
1777 * how long the following loop can execute.
1778 */
1779 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1780
1781 /*
1782 * XXX Read the lastrx only once at the top for speed.
1783 */
1784 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1785 sc->sc_rxptr, rxcomp));
1786
1787 /*
1788 * Go into the loop at least once.
1789 */
1790 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1791 i = GEM_NEXTRX(i)) {
1792 rxs = &sc->sc_rxsoft[i];
1793
1794 GEM_CDRXSYNC(sc, i,
1795 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1796
1797 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1798
1799 if (rxstat & GEM_RD_OWN) {
1800 GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1801 /*
1802 * We have processed all of the receive buffers.
1803 */
1804 break;
1805 }
1806
1807 progress++;
1808 ifp->if_ipackets++;
1809
1810 if (rxstat & GEM_RD_BAD_CRC) {
1811 ifp->if_ierrors++;
1812 aprint_error_dev(sc->sc_dev,
1813 "receive error: CRC error\n");
1814 GEM_INIT_RXDESC(sc, i);
1815 continue;
1816 }
1817
1818 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1819 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1820 #ifdef GEM_DEBUG
1821 if (ifp->if_flags & IFF_DEBUG) {
1822 printf(" rxsoft %p descriptor %d: ", rxs, i);
1823 printf("gd_flags: 0x%016llx\t", (long long)
1824 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1825 printf("gd_addr: 0x%016llx\n", (long long)
1826 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1827 }
1828 #endif
1829
1830 /* No errors; receive the packet. */
1831 len = GEM_RD_BUFLEN(rxstat);
1832
1833 /*
1834 * Allocate a new mbuf cluster. If that fails, we are
1835 * out of memory, and must drop the packet and recycle
1836 * the buffer that's already attached to this descriptor.
1837 */
1838 m = rxs->rxs_mbuf;
1839 if (gem_add_rxbuf(sc, i) != 0) {
1840 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1841 ifp->if_ierrors++;
1842 aprint_error_dev(sc->sc_dev,
1843 "receive error: RX no buffer space\n");
1844 GEM_INIT_RXDESC(sc, i);
1845 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1846 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1847 continue;
1848 }
1849 m->m_data += 2; /* We're already off by two */
1850
1851 m->m_pkthdr.rcvif = ifp;
1852 m->m_pkthdr.len = m->m_len = len;
1853
1854 /*
1855 * Pass this up to any BPF listeners, but only
1856 * pass it up the stack if it's for us.
1857 */
1858 bpf_mtap(ifp, m);
1859
1860 #ifdef INET
1861 /* hardware checksum */
1862 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1863 struct ether_header *eh;
1864 struct ip *ip;
1865 int32_t hlen, pktlen;
1866
1867 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1868 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1869 ETHER_VLAN_ENCAP_LEN;
1870 eh = (struct ether_header *) (mtod(m, char *) +
1871 ETHER_VLAN_ENCAP_LEN);
1872 } else {
1873 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1874 eh = mtod(m, struct ether_header *);
1875 }
1876 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1877 goto swcsum;
1878 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1879
1880 /* IPv4 only */
1881 if (ip->ip_v != IPVERSION)
1882 goto swcsum;
1883
1884 hlen = ip->ip_hl << 2;
1885 if (hlen < sizeof(struct ip))
1886 goto swcsum;
1887
1888 /*
1889 * bail if too short, has random trailing garbage,
1890 * truncated, fragment, or has ethernet pad.
1891 */
1892 if ((ntohs(ip->ip_len) < hlen) ||
1893 (ntohs(ip->ip_len) != pktlen) ||
1894 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1895 goto swcsum;
1896
1897 switch (ip->ip_p) {
1898 case IPPROTO_TCP:
1899 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1900 goto swcsum;
1901 if (pktlen < (hlen + sizeof(struct tcphdr)))
1902 goto swcsum;
1903 m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1904 break;
1905 case IPPROTO_UDP:
1906 /* FALLTHROUGH */
1907 default:
1908 goto swcsum;
1909 }
1910
1911 /* the uncomplemented sum is expected */
1912 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1913
1914 /* if the pkt had ip options, we have to deduct them */
1915 if (hlen > sizeof(struct ip)) {
1916 uint16_t *opts;
1917 uint32_t optsum, temp;
1918
1919 optsum = 0;
1920 temp = hlen - sizeof(struct ip);
1921 opts = (uint16_t *) ((char *) ip +
1922 sizeof(struct ip));
1923
1924 while (temp > 1) {
1925 optsum += ntohs(*opts++);
1926 temp -= 2;
1927 }
1928 while (optsum >> 16)
1929 optsum = (optsum >> 16) +
1930 (optsum & 0xffff);
1931
1932 /* Deduct ip opts sum from hwsum. */
1933 m->m_pkthdr.csum_data += (uint16_t)~optsum;
1934
1935 while (m->m_pkthdr.csum_data >> 16)
1936 m->m_pkthdr.csum_data =
1937 (m->m_pkthdr.csum_data >> 16) +
1938 (m->m_pkthdr.csum_data &
1939 0xffff);
1940 }
1941
1942 m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1943 M_CSUM_NO_PSEUDOHDR;
1944 } else
1945 swcsum:
1946 m->m_pkthdr.csum_flags = 0;
1947 #endif
1948 /* Pass it on. */
1949 if_percpuq_enqueue(ifp->if_percpuq, m);
1950 }
1951
1952 if (progress) {
1953 /* Update the receive pointer. */
1954 if (i == sc->sc_rxptr) {
1955 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1956 #ifdef GEM_DEBUG
1957 if (ifp->if_flags & IFF_DEBUG)
1958 printf("%s: rint: ring wrap\n",
1959 device_xname(sc->sc_dev));
1960 #endif
1961 }
1962 sc->sc_rxptr = i;
1963 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1964 }
1965 #ifdef GEM_COUNTERS
1966 if (progress <= 4) {
1967 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1968 } else if (progress < 32) {
1969 if (progress < 16)
1970 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1971 else
1972 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1973
1974 } else {
1975 if (progress < 64)
1976 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1977 else
1978 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1979 }
1980 #endif
1981
1982 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1983 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1984
1985 /* Read error counters ... */
1986 ifp->if_ierrors +=
1987 bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1988 bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1989 bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1990 bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1991
1992 /* ... then clear the hardware counters. */
1993 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1994 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1995 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1996 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1997
1998 return (1);
1999 }
2000
2001
2002 /*
2003 * gem_add_rxbuf:
2004 *
2005 * Add a receive buffer to the indicated descriptor.
2006 */
2007 int
2008 gem_add_rxbuf(struct gem_softc *sc, int idx)
2009 {
2010 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
2011 struct mbuf *m;
2012 int error;
2013
2014 MGETHDR(m, M_DONTWAIT, MT_DATA);
2015 if (m == NULL)
2016 return (ENOBUFS);
2017
2018 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2019 MCLGET(m, M_DONTWAIT);
2020 if ((m->m_flags & M_EXT) == 0) {
2021 m_freem(m);
2022 return (ENOBUFS);
2023 }
2024
2025 #ifdef GEM_DEBUG
2026 /* bzero the packet to check DMA */
2027 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2028 #endif
2029
2030 if (rxs->rxs_mbuf != NULL)
2031 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2032
2033 rxs->rxs_mbuf = m;
2034
2035 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2036 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2037 BUS_DMA_READ|BUS_DMA_NOWAIT);
2038 if (error) {
2039 aprint_error_dev(sc->sc_dev,
2040 "can't load rx DMA map %d, error = %d\n", idx, error);
2041 panic("gem_add_rxbuf"); /* XXX */
2042 }
2043
2044 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2045 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2046
2047 GEM_INIT_RXDESC(sc, idx);
2048
2049 return (0);
2050 }
2051
2052
2053 int
2054 gem_eint(struct gem_softc *sc, u_int status)
2055 {
2056 char bits[128];
2057 u_int32_t r, v;
2058
2059 if ((status & GEM_INTR_MIF) != 0) {
2060 printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2061 return (1);
2062 }
2063
2064 if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2065 gem_reset_rxdma(sc);
2066 return (1);
2067 }
2068
2069 if (status & GEM_INTR_BERR) {
2070 if (sc->sc_flags & GEM_PCI)
2071 r = GEM_ERROR_STATUS;
2072 else
2073 r = GEM_SBUS_ERROR_STATUS;
2074 bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2075 v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2076 aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2077 v);
2078 return (1);
2079 }
2080 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2081 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2082
2083 return (1);
2084 }
2085
2086
2087 /*
2088 * PCS interrupts.
2089 * We should receive these when the link status changes, but sometimes
2090 * we don't receive them for link up. We compensate for this in the
2091 * gem_tick() callout.
2092 */
2093 int
2094 gem_pint(struct gem_softc *sc)
2095 {
2096 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2097 bus_space_tag_t t = sc->sc_bustag;
2098 bus_space_handle_t h = sc->sc_h1;
2099 u_int32_t v, v2;
2100
2101 /*
2102 * Clear the PCS interrupt from GEM_STATUS. The PCS register is
2103 * latched, so we have to read it twice. There is only one bit in
2104 * use, so the value is meaningless.
2105 */
2106 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2107 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2108
2109 if ((ifp->if_flags & IFF_UP) == 0)
2110 return 1;
2111
2112 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2113 return 1;
2114
2115 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2116 /* If we see remote fault, our link partner is probably going away */
2117 if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2118 gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2119 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2120 /* Otherwise, we may need to wait after auto-negotiation completes */
2121 } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2122 GEM_MII_STATUS_ANEG_CPT) {
2123 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2124 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2125 }
2126 if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2127 if (sc->sc_flags & GEM_LINK) {
2128 return 1;
2129 }
2130 callout_stop(&sc->sc_tick_ch);
2131 v = bus_space_read_4(t, h, GEM_MII_ANAR);
2132 v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2133 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2134 sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2135 v &= v2;
2136 if (v & GEM_MII_ANEG_FUL_DUPLX) {
2137 sc->sc_mii.mii_media_active |= IFM_FDX;
2138 #ifdef GEM_DEBUG
2139 aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2140 #endif
2141 } else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2142 sc->sc_mii.mii_media_active |= IFM_HDX;
2143 #ifdef GEM_DEBUG
2144 aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2145 #endif
2146 } else {
2147 #ifdef GEM_DEBUG
2148 aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2149 #endif
2150 }
2151 gem_statuschange(sc);
2152 } else {
2153 if ((sc->sc_flags & GEM_LINK) == 0) {
2154 return 1;
2155 }
2156 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2157 sc->sc_mii.mii_media_status = IFM_AVALID;
2158 #ifdef GEM_DEBUG
2159 aprint_debug_dev(sc->sc_dev, "link down\n");
2160 #endif
2161 gem_statuschange(sc);
2162
2163 /* Start the 10 second timer */
2164 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2165 }
2166 return 1;
2167 }
2168
2169
2170
2171 int
2172 gem_intr(void *v)
2173 {
2174 struct gem_softc *sc = v;
2175 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2176 bus_space_tag_t t = sc->sc_bustag;
2177 bus_space_handle_t h = sc->sc_h1;
2178 u_int32_t status;
2179 int r = 0;
2180 #ifdef GEM_DEBUG
2181 char bits[128];
2182 #endif
2183
2184 /* XXX We should probably mask out interrupts until we're done */
2185
2186 sc->sc_ev_intr.ev_count++;
2187
2188 status = bus_space_read_4(t, h, GEM_STATUS);
2189 #ifdef GEM_DEBUG
2190 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2191 #endif
2192 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2193 device_xname(sc->sc_dev), (status >> 19), bits));
2194
2195
2196 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2197 r |= gem_eint(sc, status);
2198
2199 /* We don't bother with GEM_INTR_TX_DONE */
2200 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2201 GEM_COUNTER_INCR(sc, sc_ev_txint);
2202 r |= gem_tint(sc);
2203 }
2204
2205 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2206 GEM_COUNTER_INCR(sc, sc_ev_rxint);
2207 r |= gem_rint(sc);
2208 }
2209
2210 /* We should eventually do more than just print out error stats. */
2211 if (status & GEM_INTR_TX_MAC) {
2212 int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2213 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2214 printf("%s: MAC tx fault, status %x\n",
2215 device_xname(sc->sc_dev), txstat);
2216 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2217 gem_init(ifp);
2218 }
2219 if (status & GEM_INTR_RX_MAC) {
2220 int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2221 /*
2222 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2223 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2224 * silicon bug so handle them silently. So if we detect
2225 * an RX FIFO overflow, we fire off a timer, and check
2226 * whether we're still making progress by looking at the
2227 * RX FIFO write and read pointers.
2228 */
2229 if (rxstat & GEM_MAC_RX_OVERFLOW) {
2230 ifp->if_ierrors++;
2231 aprint_error_dev(sc->sc_dev,
2232 "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
2233 sc->sc_rx_fifo_wr_ptr =
2234 bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2235 sc->sc_rx_fifo_rd_ptr =
2236 bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2237 callout_schedule(&sc->sc_rx_watchdog, 400);
2238 } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2239 printf("%s: MAC rx fault, status 0x%02x\n",
2240 device_xname(sc->sc_dev), rxstat);
2241 }
2242 if (status & GEM_INTR_PCS) {
2243 r |= gem_pint(sc);
2244 }
2245
2246 /* Do we need to do anything with these?
2247 if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2248 status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2249 if ((status2 & GEM_MAC_PAUSED) != 0)
2250 aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2251 GEM_MAC_PAUSE_TIME(status2));
2252 if ((status2 & GEM_MAC_PAUSE) != 0)
2253 aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2254 if ((status2 & GEM_MAC_RESUME) != 0)
2255 aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2256 }
2257 if ((status & GEM_INTR_MIF) != 0)
2258 aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2259 */
2260 rnd_add_uint32(&sc->rnd_source, status);
2261 return (r);
2262 }
2263
2264 void
2265 gem_rx_watchdog(void *arg)
2266 {
2267 struct gem_softc *sc = arg;
2268 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2269 bus_space_tag_t t = sc->sc_bustag;
2270 bus_space_handle_t h = sc->sc_h1;
2271 u_int32_t rx_fifo_wr_ptr;
2272 u_int32_t rx_fifo_rd_ptr;
2273 u_int32_t state;
2274
2275 if ((ifp->if_flags & IFF_RUNNING) == 0) {
2276 aprint_error_dev(sc->sc_dev, "receiver not running\n");
2277 return;
2278 }
2279
2280 rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2281 rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2282 state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
2283 if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
2284 ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
2285 ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
2286 (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
2287 {
2288 /*
2289 * The RX state machine is still in overflow state and
2290 * the RX FIFO write and read pointers seem to be
2291 * stuck. Whack the chip over the head to get things
2292 * going again.
2293 */
2294 aprint_error_dev(sc->sc_dev,
2295 "receiver stuck in overflow, resetting\n");
2296 gem_init(ifp);
2297 } else {
2298 if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
2299 aprint_error_dev(sc->sc_dev,
2300 "rx_watchdog: not in overflow state: 0x%x\n",
2301 state);
2302 }
2303 if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
2304 aprint_error_dev(sc->sc_dev,
2305 "rx_watchdog: wr & rd ptr different\n");
2306 }
2307 if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
2308 aprint_error_dev(sc->sc_dev,
2309 "rx_watchdog: wr pointer != saved\n");
2310 }
2311 if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
2312 aprint_error_dev(sc->sc_dev,
2313 "rx_watchdog: rd pointer != saved\n");
2314 }
2315 aprint_error_dev(sc->sc_dev, "resetting anyway\n");
2316 gem_init(ifp);
2317 }
2318 }
2319
2320 void
2321 gem_watchdog(struct ifnet *ifp)
2322 {
2323 struct gem_softc *sc = ifp->if_softc;
2324
2325 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2326 "GEM_MAC_RX_CONFIG %x\n",
2327 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2328 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2329 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2330
2331 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2332 ++ifp->if_oerrors;
2333
2334 /* Try to get more packets going. */
2335 gem_init(ifp);
2336 gem_start(ifp);
2337 }
2338
2339 /*
2340 * Initialize the MII Management Interface
2341 */
2342 void
2343 gem_mifinit(struct gem_softc *sc)
2344 {
2345 bus_space_tag_t t = sc->sc_bustag;
2346 bus_space_handle_t mif = sc->sc_h1;
2347
2348 /* Configure the MIF in frame mode */
2349 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2350 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2351 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2352 }
2353
2354 /*
2355 * MII interface
2356 *
2357 * The GEM MII interface supports at least three different operating modes:
2358 *
2359 * Bitbang mode is implemented using data, clock and output enable registers.
2360 *
2361 * Frame mode is implemented by loading a complete frame into the frame
2362 * register and polling the valid bit for completion.
2363 *
2364 * Polling mode uses the frame register but completion is indicated by
2365 * an interrupt.
2366 *
2367 */
2368 static int
2369 gem_mii_readreg(device_t self, int phy, int reg)
2370 {
2371 struct gem_softc *sc = device_private(self);
2372 bus_space_tag_t t = sc->sc_bustag;
2373 bus_space_handle_t mif = sc->sc_h1;
2374 int n;
2375 u_int32_t v;
2376
2377 #ifdef GEM_DEBUG1
2378 if (sc->sc_debug)
2379 printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2380 #endif
2381
2382 /* Construct the frame command */
2383 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
2384 GEM_MIF_FRAME_READ;
2385
2386 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2387 for (n = 0; n < 100; n++) {
2388 DELAY(1);
2389 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2390 if (v & GEM_MIF_FRAME_TA0)
2391 return (v & GEM_MIF_FRAME_DATA);
2392 }
2393
2394 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2395 return (0);
2396 }
2397
2398 static void
2399 gem_mii_writereg(device_t self, int phy, int reg, int val)
2400 {
2401 struct gem_softc *sc = device_private(self);
2402 bus_space_tag_t t = sc->sc_bustag;
2403 bus_space_handle_t mif = sc->sc_h1;
2404 int n;
2405 u_int32_t v;
2406
2407 #ifdef GEM_DEBUG1
2408 if (sc->sc_debug)
2409 printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2410 phy, reg, val);
2411 #endif
2412
2413 /* Construct the frame command */
2414 v = GEM_MIF_FRAME_WRITE |
2415 (phy << GEM_MIF_PHY_SHIFT) |
2416 (reg << GEM_MIF_REG_SHIFT) |
2417 (val & GEM_MIF_FRAME_DATA);
2418
2419 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2420 for (n = 0; n < 100; n++) {
2421 DELAY(1);
2422 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2423 if (v & GEM_MIF_FRAME_TA0)
2424 return;
2425 }
2426
2427 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2428 }
2429
2430 static void
2431 gem_mii_statchg(struct ifnet *ifp)
2432 {
2433 struct gem_softc *sc = ifp->if_softc;
2434 #ifdef GEM_DEBUG
2435 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2436 #endif
2437
2438 #ifdef GEM_DEBUG
2439 if (sc->sc_debug)
2440 printf("gem_mii_statchg: status change: phy = %d\n",
2441 sc->sc_phys[instance]);
2442 #endif
2443 gem_statuschange(sc);
2444 }
2445
2446 /*
2447 * Common status change for gem_mii_statchg() and gem_pint()
2448 */
2449 void
2450 gem_statuschange(struct gem_softc* sc)
2451 {
2452 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2453 bus_space_tag_t t = sc->sc_bustag;
2454 bus_space_handle_t mac = sc->sc_h1;
2455 int gigabit;
2456 u_int32_t rxcfg, txcfg, v;
2457
2458 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2459 IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2460 sc->sc_flags |= GEM_LINK;
2461 else
2462 sc->sc_flags &= ~GEM_LINK;
2463
2464 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2465 gigabit = 1;
2466 else
2467 gigabit = 0;
2468
2469 /*
2470 * The configuration done here corresponds to the steps F) and
2471 * G) and as far as enabling of RX and TX MAC goes also step H)
2472 * of the initialization sequence outlined in section 3.2.1 of
2473 * the GEM Gigabit Ethernet ASIC Specification.
2474 */
2475
2476 rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2477 rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2478 txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2479 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2480 txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2481 else if (gigabit) {
2482 rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2483 txcfg |= GEM_MAC_RX_CARR_EXTEND;
2484 }
2485 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2486 bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2487 BUS_SPACE_BARRIER_WRITE);
2488 if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2489 aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2490 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2491 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2492 bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2493 BUS_SPACE_BARRIER_WRITE);
2494 if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2495 aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2496 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2497
2498 v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2499 ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2500 bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2501
2502 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2503 gigabit != 0)
2504 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2505 GEM_MAC_SLOT_TIME_CARR_EXTEND);
2506 else
2507 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2508 GEM_MAC_SLOT_TIME_NORMAL);
2509
2510 /* XIF Configuration */
2511 if (sc->sc_flags & GEM_LINK)
2512 v = GEM_MAC_XIF_LINK_LED;
2513 else
2514 v = 0;
2515 v |= GEM_MAC_XIF_TX_MII_ENA;
2516
2517 /* If an external transceiver is connected, enable its MII drivers */
2518 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2519 if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2520 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2521 if (gigabit)
2522 v |= GEM_MAC_XIF_GMII_MODE;
2523 else
2524 v &= ~GEM_MAC_XIF_GMII_MODE;
2525 } else
2526 /* Internal MII needs buf enable */
2527 v |= GEM_MAC_XIF_MII_BUF_ENA;
2528 /* MII needs echo disable if half duplex. */
2529 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2530 /* turn on full duplex LED */
2531 v |= GEM_MAC_XIF_FDPLX_LED;
2532 else
2533 /* half duplex -- disable echo */
2534 v |= GEM_MAC_XIF_ECHO_DISABL;
2535 } else {
2536 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2537 v |= GEM_MAC_XIF_FDPLX_LED;
2538 v |= GEM_MAC_XIF_GMII_MODE;
2539 }
2540 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2541
2542 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2543 (sc->sc_flags & GEM_LINK) != 0) {
2544 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2545 txcfg | GEM_MAC_TX_ENABLE);
2546 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2547 rxcfg | GEM_MAC_RX_ENABLE);
2548 }
2549 }
2550
2551 int
2552 gem_ser_mediachange(struct ifnet *ifp)
2553 {
2554 struct gem_softc *sc = ifp->if_softc;
2555 u_int s, t;
2556
2557 if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2558 return EINVAL;
2559
2560 s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2561 if (s == IFM_AUTO) {
2562 if (sc->sc_mii_media != s) {
2563 #ifdef GEM_DEBUG
2564 aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2565 #endif
2566 sc->sc_mii_media = s;
2567 if (ifp->if_flags & IFF_UP) {
2568 gem_pcs_stop(sc, 0);
2569 gem_pcs_start(sc);
2570 }
2571 }
2572 return 0;
2573 }
2574 if (s == IFM_1000_SX) {
2575 t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2576 if (t == IFM_FDX || t == IFM_HDX) {
2577 if (sc->sc_mii_media != t) {
2578 sc->sc_mii_media = t;
2579 #ifdef GEM_DEBUG
2580 aprint_debug_dev(sc->sc_dev,
2581 "setting media to 1000baseSX-%s\n",
2582 t == IFM_FDX ? "FDX" : "HDX");
2583 #endif
2584 if (ifp->if_flags & IFF_UP) {
2585 gem_pcs_stop(sc, 0);
2586 gem_pcs_start(sc);
2587 }
2588 }
2589 return 0;
2590 }
2591 }
2592 return EINVAL;
2593 }
2594
2595 void
2596 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2597 {
2598 struct gem_softc *sc = ifp->if_softc;
2599
2600 if ((ifp->if_flags & IFF_UP) == 0)
2601 return;
2602 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2603 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2604 }
2605
2606 static int
2607 gem_ifflags_cb(struct ethercom *ec)
2608 {
2609 struct ifnet *ifp = &ec->ec_if;
2610 struct gem_softc *sc = ifp->if_softc;
2611 int change = ifp->if_flags ^ sc->sc_if_flags;
2612
2613 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2614 return ENETRESET;
2615 else if ((change & IFF_PROMISC) != 0)
2616 gem_setladrf(sc);
2617 return 0;
2618 }
2619
2620 /*
2621 * Process an ioctl request.
2622 */
2623 int
2624 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2625 {
2626 struct gem_softc *sc = ifp->if_softc;
2627 int s, error = 0;
2628
2629 s = splnet();
2630
2631 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2632 error = 0;
2633 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2634 ;
2635 else if (ifp->if_flags & IFF_RUNNING) {
2636 /*
2637 * Multicast list has changed; set the hardware filter
2638 * accordingly.
2639 */
2640 gem_setladrf(sc);
2641 }
2642 }
2643
2644 /* Try to get things going again */
2645 if (ifp->if_flags & IFF_UP)
2646 gem_start(ifp);
2647 splx(s);
2648 return (error);
2649 }
2650
2651 static void
2652 gem_inten(struct gem_softc *sc)
2653 {
2654 bus_space_tag_t t = sc->sc_bustag;
2655 bus_space_handle_t h = sc->sc_h1;
2656 uint32_t v;
2657
2658 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2659 v = GEM_INTR_PCS;
2660 else
2661 v = GEM_INTR_MIF;
2662 bus_space_write_4(t, h, GEM_INTMASK,
2663 ~(GEM_INTR_TX_INTME |
2664 GEM_INTR_TX_EMPTY |
2665 GEM_INTR_TX_MAC |
2666 GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
2667 GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
2668 GEM_INTR_BERR | v));
2669 }
2670
2671 bool
2672 gem_resume(device_t self, const pmf_qual_t *qual)
2673 {
2674 struct gem_softc *sc = device_private(self);
2675
2676 gem_inten(sc);
2677
2678 return true;
2679 }
2680
2681 bool
2682 gem_suspend(device_t self, const pmf_qual_t *qual)
2683 {
2684 struct gem_softc *sc = device_private(self);
2685 bus_space_tag_t t = sc->sc_bustag;
2686 bus_space_handle_t h = sc->sc_h1;
2687
2688 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2689
2690 return true;
2691 }
2692
2693 bool
2694 gem_shutdown(device_t self, int howto)
2695 {
2696 struct gem_softc *sc = device_private(self);
2697 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2698
2699 gem_stop(ifp, 1);
2700
2701 return true;
2702 }
2703
2704 /*
2705 * Set up the logical address filter.
2706 */
2707 void
2708 gem_setladrf(struct gem_softc *sc)
2709 {
2710 struct ethercom *ec = &sc->sc_ethercom;
2711 struct ifnet *ifp = &ec->ec_if;
2712 struct ether_multi *enm;
2713 struct ether_multistep step;
2714 bus_space_tag_t t = sc->sc_bustag;
2715 bus_space_handle_t h = sc->sc_h1;
2716 u_int32_t crc;
2717 u_int32_t hash[16];
2718 u_int32_t v;
2719 int i;
2720
2721 /* Get current RX configuration */
2722 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2723
2724 /*
2725 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2726 * and hash filter. Depending on the case, the right bit will be
2727 * enabled.
2728 */
2729 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2730 GEM_MAC_RX_PROMISC_GRP);
2731
2732 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2733 /* Turn on promiscuous mode */
2734 v |= GEM_MAC_RX_PROMISCUOUS;
2735 ifp->if_flags |= IFF_ALLMULTI;
2736 goto chipit;
2737 }
2738
2739 /*
2740 * Set up multicast address filter by passing all multicast addresses
2741 * through a crc generator, and then using the high order 8 bits as an
2742 * index into the 256 bit logical address filter. The high order 4
2743 * bits selects the word, while the other 4 bits select the bit within
2744 * the word (where bit 0 is the MSB).
2745 */
2746
2747 /* Clear hash table */
2748 memset(hash, 0, sizeof(hash));
2749
2750 ETHER_FIRST_MULTI(step, ec, enm);
2751 while (enm != NULL) {
2752 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2753 /*
2754 * We must listen to a range of multicast addresses.
2755 * For now, just accept all multicasts, rather than
2756 * trying to set only those filter bits needed to match
2757 * the range. (At this time, the only use of address
2758 * ranges is for IP multicast routing, for which the
2759 * range is big enough to require all bits set.)
2760 * XXX should use the address filters for this
2761 */
2762 ifp->if_flags |= IFF_ALLMULTI;
2763 v |= GEM_MAC_RX_PROMISC_GRP;
2764 goto chipit;
2765 }
2766
2767 /* Get the LE CRC32 of the address */
2768 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2769
2770 /* Just want the 8 most significant bits. */
2771 crc >>= 24;
2772
2773 /* Set the corresponding bit in the filter. */
2774 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2775
2776 ETHER_NEXT_MULTI(step, enm);
2777 }
2778
2779 v |= GEM_MAC_RX_HASH_FILTER;
2780 ifp->if_flags &= ~IFF_ALLMULTI;
2781
2782 /* Now load the hash table into the chip (if we are using it) */
2783 for (i = 0; i < 16; i++) {
2784 bus_space_write_4(t, h,
2785 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2786 hash[i]);
2787 }
2788
2789 chipit:
2790 sc->sc_if_flags = ifp->if_flags;
2791 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2792 }
2793