gem.c revision 1.11 1 /* $NetBSD: gem.c,v 1.11 2001/11/17 00:56:04 thorpej Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * All rights reserved.
7 *
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32 /*
33 * Driver for Sun GEM ethernet controllers.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.11 2001/11/17 00:56:04 thorpej Exp $");
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/syslog.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52
53 #include <machine/endian.h>
54
55 #include <uvm/uvm_extern.h>
56
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <machine/bus.h>
67 #include <machine/intr.h>
68
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71 #include <dev/mii/mii_bitbang.h>
72
73 #include <dev/ic/gemreg.h>
74 #include <dev/ic/gemvar.h>
75
76 #define TRIES 10000
77
78 void gem_start __P((struct ifnet *));
79 void gem_stop __P((struct ifnet *, int));
80 int gem_ioctl __P((struct ifnet *, u_long, caddr_t));
81 void gem_tick __P((void *));
82 void gem_watchdog __P((struct ifnet *));
83 void gem_shutdown __P((void *));
84 int gem_init __P((struct ifnet *));
85 void gem_init_regs(struct gem_softc *sc);
86 static int gem_ringsize(int sz);
87 int gem_meminit __P((struct gem_softc *));
88 void gem_mifinit __P((struct gem_softc *));
89 void gem_reset __P((struct gem_softc *));
90 int gem_reset_rx(struct gem_softc *sc);
91 int gem_reset_tx(struct gem_softc *sc);
92 int gem_disable_rx(struct gem_softc *sc);
93 int gem_disable_tx(struct gem_softc *sc);
94 void gem_rxdrain(struct gem_softc *sc);
95 int gem_add_rxbuf(struct gem_softc *sc, int idx);
96 void gem_setladrf __P((struct gem_softc *));
97
98 /* MII methods & callbacks */
99 static int gem_mii_readreg __P((struct device *, int, int));
100 static void gem_mii_writereg __P((struct device *, int, int, int));
101 static void gem_mii_statchg __P((struct device *));
102
103 int gem_mediachange __P((struct ifnet *));
104 void gem_mediastatus __P((struct ifnet *, struct ifmediareq *));
105
106 struct mbuf *gem_get __P((struct gem_softc *, int, int));
107 int gem_put __P((struct gem_softc *, int, struct mbuf *));
108 void gem_read __P((struct gem_softc *, int, int));
109 int gem_eint __P((struct gem_softc *, u_int));
110 int gem_rint __P((struct gem_softc *));
111 int gem_tint __P((struct gem_softc *));
112 void gem_power __P((int, void *));
113
114 #ifdef GEM_DEBUG
115 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
116 printf x
117 #else
118 #define DPRINTF(sc, x) /* nothing */
119 #endif
120
121
122 /*
123 * gem_attach:
124 *
125 * Attach a Gem interface to the system.
126 */
127 void
128 gem_attach(sc, enaddr)
129 struct gem_softc *sc;
130 const uint8_t *enaddr;
131 {
132 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
133 struct mii_data *mii = &sc->sc_mii;
134 struct mii_softc *child;
135 int i, error;
136
137 /* Make sure the chip is stopped. */
138 ifp->if_softc = sc;
139 gem_reset(sc);
140
141 /*
142 * Allocate the control data structures, and create and load the
143 * DMA map for it.
144 */
145 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
146 sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
147 1, &sc->sc_cdnseg, 0)) != 0) {
148 printf("%s: unable to allocate control data, error = %d\n",
149 sc->sc_dev.dv_xname, error);
150 goto fail_0;
151 }
152
153 /* XXX should map this in with correct endianness */
154 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
155 sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
156 BUS_DMA_COHERENT)) != 0) {
157 printf("%s: unable to map control data, error = %d\n",
158 sc->sc_dev.dv_xname, error);
159 goto fail_1;
160 }
161
162 if ((error = bus_dmamap_create(sc->sc_dmatag,
163 sizeof(struct gem_control_data), 1,
164 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
165 printf("%s: unable to create control data DMA map, "
166 "error = %d\n", sc->sc_dev.dv_xname, error);
167 goto fail_2;
168 }
169
170 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
171 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
172 0)) != 0) {
173 printf("%s: unable to load control data DMA map, error = %d\n",
174 sc->sc_dev.dv_xname, error);
175 goto fail_3;
176 }
177
178 /*
179 * Initialize the transmit job descriptors.
180 */
181 SIMPLEQ_INIT(&sc->sc_txfreeq);
182 SIMPLEQ_INIT(&sc->sc_txdirtyq);
183
184 /*
185 * Create the transmit buffer DMA maps.
186 */
187 for (i = 0; i < GEM_TXQUEUELEN; i++) {
188 struct gem_txsoft *txs;
189
190 txs = &sc->sc_txsoft[i];
191 txs->txs_mbuf = NULL;
192 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
193 GEM_NTXSEGS, MCLBYTES, 0, 0,
194 &txs->txs_dmamap)) != 0) {
195 printf("%s: unable to create tx DMA map %d, "
196 "error = %d\n", sc->sc_dev.dv_xname, i, error);
197 goto fail_4;
198 }
199 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
200 }
201
202 /*
203 * Create the receive buffer DMA maps.
204 */
205 for (i = 0; i < GEM_NRXDESC; i++) {
206 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
207 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
208 printf("%s: unable to create rx DMA map %d, "
209 "error = %d\n", sc->sc_dev.dv_xname, i, error);
210 goto fail_5;
211 }
212 sc->sc_rxsoft[i].rxs_mbuf = NULL;
213 }
214
215 /*
216 * From this point forward, the attachment cannot fail. A failure
217 * before this point releases all resources that may have been
218 * allocated.
219 */
220
221 /* Announce ourselves. */
222 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
223 ether_sprintf(enaddr));
224
225 /* Initialize ifnet structure. */
226 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
227 ifp->if_softc = sc;
228 ifp->if_flags =
229 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
230 ifp->if_start = gem_start;
231 ifp->if_ioctl = gem_ioctl;
232 ifp->if_watchdog = gem_watchdog;
233 ifp->if_stop = gem_stop;
234 ifp->if_init = gem_init;
235 IFQ_SET_READY(&ifp->if_snd);
236
237 /* Initialize ifmedia structures and MII info */
238 mii->mii_ifp = ifp;
239 mii->mii_readreg = gem_mii_readreg;
240 mii->mii_writereg = gem_mii_writereg;
241 mii->mii_statchg = gem_mii_statchg;
242
243 ifmedia_init(&mii->mii_media, 0, gem_mediachange, gem_mediastatus);
244
245 gem_mifinit(sc);
246
247 mii_attach(&sc->sc_dev, mii, 0xffffffff,
248 MII_PHY_ANY, MII_OFFSET_ANY, 0);
249
250 child = LIST_FIRST(&mii->mii_phys);
251 if (child == NULL) {
252 /* No PHY attached */
253 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
254 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
255 } else {
256 /*
257 * Walk along the list of attached MII devices and
258 * establish an `MII instance' to `phy number'
259 * mapping. We'll use this mapping in media change
260 * requests to determine which phy to use to program
261 * the MIF configuration register.
262 */
263 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
264 /*
265 * Note: we support just two PHYs: the built-in
266 * internal device and an external on the MII
267 * connector.
268 */
269 if (child->mii_phy > 1 || child->mii_inst > 1) {
270 printf("%s: cannot accomodate MII device %s"
271 " at phy %d, instance %d\n",
272 sc->sc_dev.dv_xname,
273 child->mii_dev.dv_xname,
274 child->mii_phy, child->mii_inst);
275 continue;
276 }
277
278 sc->sc_phys[child->mii_inst] = child->mii_phy;
279 }
280
281 /*
282 * Now select and activate the PHY we will use.
283 *
284 * The order of preference is External (MDI1),
285 * Internal (MDI0), Serial Link (no MII).
286 */
287 if (sc->sc_phys[1]) {
288 #ifdef DEBUG
289 printf("using external phy\n");
290 #endif
291 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
292 } else {
293 #ifdef DEBUG
294 printf("using internal phy\n");
295 #endif
296 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
297 }
298 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
299 sc->sc_mif_config);
300
301 /*
302 * XXX - we can really do the following ONLY if the
303 * phy indeed has the auto negotiation capability!!
304 */
305 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
306 }
307
308 /* claim 802.1q capability */
309 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
310
311 /* Attach the interface. */
312 if_attach(ifp);
313 ether_ifattach(ifp, enaddr);
314
315 sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
316 if (sc->sc_sh == NULL)
317 panic("gem_config: can't establish shutdownhook");
318
319 #if NRND > 0
320 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
321 RND_TYPE_NET, 0);
322 #endif
323
324
325 #if notyet
326 /*
327 * Add a suspend hook to make sure we come back up after a
328 * resume.
329 */
330 sc->sc_powerhook = powerhook_establish(gem_power, sc);
331 if (sc->sc_powerhook == NULL)
332 printf("%s: WARNING: unable to establish power hook\n",
333 sc->sc_dev.dv_xname);
334 #endif
335
336 callout_init(&sc->sc_tick_ch);
337 return;
338
339 /*
340 * Free any resources we've allocated during the failed attach
341 * attempt. Do this in reverse order and fall through.
342 */
343 fail_5:
344 for (i = 0; i < GEM_NRXDESC; i++) {
345 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
346 bus_dmamap_destroy(sc->sc_dmatag,
347 sc->sc_rxsoft[i].rxs_dmamap);
348 }
349 fail_4:
350 for (i = 0; i < GEM_TXQUEUELEN; i++) {
351 if (sc->sc_txsoft[i].txs_dmamap != NULL)
352 bus_dmamap_destroy(sc->sc_dmatag,
353 sc->sc_txsoft[i].txs_dmamap);
354 }
355 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
356 fail_3:
357 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
358 fail_2:
359 bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
360 sizeof(struct gem_control_data));
361 fail_1:
362 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
363 fail_0:
364 return;
365 }
366
367
368 void
369 gem_tick(arg)
370 void *arg;
371 {
372 struct gem_softc *sc = arg;
373 int s;
374
375 s = splnet();
376 mii_tick(&sc->sc_mii);
377 splx(s);
378
379 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
380
381 }
382
383 void
384 gem_reset(sc)
385 struct gem_softc *sc;
386 {
387 bus_space_tag_t t = sc->sc_bustag;
388 bus_space_handle_t h = sc->sc_h;
389 int i;
390 int s;
391
392 s = splnet();
393 DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
394 gem_reset_rx(sc);
395 gem_reset_tx(sc);
396
397 /* Do a full reset */
398 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
399 for (i=TRIES; i--; delay(100))
400 if ((bus_space_read_4(t, h, GEM_RESET) &
401 (GEM_RESET_RX|GEM_RESET_TX)) == 0)
402 break;
403 if ((bus_space_read_4(t, h, GEM_RESET) &
404 (GEM_RESET_RX|GEM_RESET_TX)) != 0) {
405 printf("%s: cannot reset device\n",
406 sc->sc_dev.dv_xname);
407 }
408 splx(s);
409 }
410
411
412 /*
413 * gem_rxdrain:
414 *
415 * Drain the receive queue.
416 */
417 void
418 gem_rxdrain(struct gem_softc *sc)
419 {
420 struct gem_rxsoft *rxs;
421 int i;
422
423 for (i = 0; i < GEM_NRXDESC; i++) {
424 rxs = &sc->sc_rxsoft[i];
425 if (rxs->rxs_mbuf != NULL) {
426 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
427 m_freem(rxs->rxs_mbuf);
428 rxs->rxs_mbuf = NULL;
429 }
430 }
431 }
432
433 /*
434 * Reset the whole thing.
435 */
436 void
437 gem_stop(struct ifnet *ifp, int disable)
438 {
439 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
440 struct gem_txsoft *txs;
441
442 DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
443
444 callout_stop(&sc->sc_tick_ch);
445 mii_down(&sc->sc_mii);
446
447 /* XXX - Should we reset these instead? */
448 gem_disable_rx(sc);
449 gem_disable_rx(sc);
450
451 /*
452 * Release any queued transmit buffers.
453 */
454 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
455 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
456 if (txs->txs_mbuf != NULL) {
457 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
458 m_freem(txs->txs_mbuf);
459 txs->txs_mbuf = NULL;
460 }
461 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
462 }
463
464 if (disable) {
465 gem_rxdrain(sc);
466 }
467
468 /*
469 * Mark the interface down and cancel the watchdog timer.
470 */
471 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
472 ifp->if_timer = 0;
473 }
474
475
476 /*
477 * Reset the receiver
478 */
479 int
480 gem_reset_rx(struct gem_softc *sc)
481 {
482 bus_space_tag_t t = sc->sc_bustag;
483 bus_space_handle_t h = sc->sc_h;
484 int i;
485
486
487 /*
488 * Resetting while DMA is in progress can cause a bus hang, so we
489 * disable DMA first.
490 */
491 gem_disable_rx(sc);
492 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
493 /* Wait till it finishes */
494 for (i=TRIES; i--; delay(100))
495 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
496 break;
497 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
498 printf("%s: cannot disable read dma\n",
499 sc->sc_dev.dv_xname);
500
501 /* Wait 5ms extra. */
502 delay(5000);
503
504 /* Finally, reset the ERX */
505 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
506 /* Wait till it finishes */
507 for (i=TRIES; i--; delay(100))
508 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
509 break;
510 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
511 printf("%s: cannot reset receiver\n",
512 sc->sc_dev.dv_xname);
513 return (1);
514 }
515 return (0);
516 }
517
518
519 /*
520 * Reset the transmitter
521 */
522 int
523 gem_reset_tx(struct gem_softc *sc)
524 {
525 bus_space_tag_t t = sc->sc_bustag;
526 bus_space_handle_t h = sc->sc_h;
527 int i;
528
529 /*
530 * Resetting while DMA is in progress can cause a bus hang, so we
531 * disable DMA first.
532 */
533 gem_disable_tx(sc);
534 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
535 /* Wait till it finishes */
536 for (i=TRIES; i--; delay(100))
537 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
538 break;
539 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
540 printf("%s: cannot disable read dma\n",
541 sc->sc_dev.dv_xname);
542
543 /* Wait 5ms extra. */
544 delay(5000);
545
546 /* Finally, reset the ETX */
547 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
548 /* Wait till it finishes */
549 for (i=TRIES; i--; delay(100))
550 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
551 break;
552 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
553 printf("%s: cannot reset receiver\n",
554 sc->sc_dev.dv_xname);
555 return (1);
556 }
557 return (0);
558 }
559
560 /*
561 * disable receiver.
562 */
563 int
564 gem_disable_rx(struct gem_softc *sc)
565 {
566 bus_space_tag_t t = sc->sc_bustag;
567 bus_space_handle_t h = sc->sc_h;
568 int i;
569 u_int32_t cfg;
570
571 /* Flip the enable bit */
572 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
573 cfg &= ~GEM_MAC_RX_ENABLE;
574 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
575
576 /* Wait for it to finish */
577 for (i=TRIES; i--; delay(100))
578 if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
579 GEM_MAC_RX_ENABLE) == 0)
580 return (0);
581 return (1);
582 }
583
584 /*
585 * disable transmitter.
586 */
587 int
588 gem_disable_tx(struct gem_softc *sc)
589 {
590 bus_space_tag_t t = sc->sc_bustag;
591 bus_space_handle_t h = sc->sc_h;
592 int i;
593 u_int32_t cfg;
594
595 /* Flip the enable bit */
596 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
597 cfg &= ~GEM_MAC_TX_ENABLE;
598 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
599
600 /* Wait for it to finish */
601 for (i=TRIES; i--; delay(100))
602 if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
603 GEM_MAC_TX_ENABLE) == 0)
604 return (0);
605 return (1);
606 }
607
608 /*
609 * Initialize interface.
610 */
611 int
612 gem_meminit(struct gem_softc *sc)
613 {
614 struct gem_rxsoft *rxs;
615 int i, error;
616
617 /*
618 * Initialize the transmit descriptor ring.
619 */
620 memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
621 for (i = 0; i < GEM_NTXDESC; i++) {
622 sc->sc_txdescs[i].gd_flags = 0;
623 sc->sc_txdescs[i].gd_addr = 0;
624 }
625 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
626 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
627 sc->sc_txfree = GEM_NTXDESC;
628 sc->sc_txnext = 0;
629
630 /*
631 * Initialize the receive descriptor and receive job
632 * descriptor rings.
633 */
634 for (i = 0; i < GEM_NRXDESC; i++) {
635 rxs = &sc->sc_rxsoft[i];
636 if (rxs->rxs_mbuf == NULL) {
637 if ((error = gem_add_rxbuf(sc, i)) != 0) {
638 printf("%s: unable to allocate or map rx "
639 "buffer %d, error = %d\n",
640 sc->sc_dev.dv_xname, i, error);
641 /*
642 * XXX Should attempt to run with fewer receive
643 * XXX buffers instead of just failing.
644 */
645 gem_rxdrain(sc);
646 return (1);
647 }
648 } else
649 GEM_INIT_RXDESC(sc, i);
650 }
651 sc->sc_rxptr = 0;
652
653 return (0);
654 }
655
656 static int
657 gem_ringsize(int sz)
658 {
659 int v;
660
661 switch (sz) {
662 case 32:
663 v = GEM_RING_SZ_32;
664 break;
665 case 64:
666 v = GEM_RING_SZ_64;
667 break;
668 case 128:
669 v = GEM_RING_SZ_128;
670 break;
671 case 256:
672 v = GEM_RING_SZ_256;
673 break;
674 case 512:
675 v = GEM_RING_SZ_512;
676 break;
677 case 1024:
678 v = GEM_RING_SZ_1024;
679 break;
680 case 2048:
681 v = GEM_RING_SZ_2048;
682 break;
683 case 4096:
684 v = GEM_RING_SZ_4096;
685 break;
686 case 8192:
687 v = GEM_RING_SZ_8192;
688 break;
689 default:
690 printf("gem: invalid Receive Descriptor ring size\n");
691 break;
692 }
693 return (v);
694 }
695
696 /*
697 * Initialization of interface; set up initialization block
698 * and transmit/receive descriptor rings.
699 */
700 int
701 gem_init(struct ifnet *ifp)
702 {
703 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
704 bus_space_tag_t t = sc->sc_bustag;
705 bus_space_handle_t h = sc->sc_h;
706 int s;
707 u_int32_t v;
708
709 s = splnet();
710
711 DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
712 /*
713 * Initialization sequence. The numbered steps below correspond
714 * to the sequence outlined in section 6.3.5.1 in the Ethernet
715 * Channel Engine manual (part of the PCIO manual).
716 * See also the STP2002-STQ document from Sun Microsystems.
717 */
718
719 /* step 1 & 2. Reset the Ethernet Channel */
720 gem_stop(ifp, 0);
721 gem_reset(sc);
722 DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
723
724 /* Re-initialize the MIF */
725 gem_mifinit(sc);
726
727 /* Call MI reset function if any */
728 if (sc->sc_hwreset)
729 (*sc->sc_hwreset)(sc);
730
731 /* step 3. Setup data structures in host memory */
732 gem_meminit(sc);
733
734 /* step 4. TX MAC registers & counters */
735 gem_init_regs(sc);
736 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
737 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
738 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN + sizeof(struct ether_header):
739 ETHER_MAX_LEN + sizeof(struct ether_header)) | (0x2000<<16));
740
741 /* step 5. RX MAC registers & counters */
742 gem_setladrf(sc);
743
744 /* step 6 & 7. Program Descriptor Ring Base Addresses */
745 /* NOTE: we use only 32-bit DMA addresses here. */
746 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
747 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
748
749 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
750 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
751
752 /* step 8. Global Configuration & Interrupt Mask */
753 bus_space_write_4(t, h, GEM_INTMASK,
754 ~(GEM_INTR_TX_INTME|
755 GEM_INTR_TX_EMPTY|
756 GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
757 GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
758 GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
759 GEM_INTR_BERR));
760 bus_space_write_4(t, h, GEM_MAC_RX_MASK, 0); /* XXXX */
761 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
762 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
763
764 /* step 9. ETX Configuration: use mostly default values */
765
766 /* Enable DMA */
767 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
768 bus_space_write_4(t, h, GEM_TX_CONFIG,
769 v|GEM_TX_CONFIG_TXDMA_EN|
770 ((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
771 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
772
773 /* step 10. ERX Configuration */
774
775 /* Encode Receive Descriptor ring size: four possible values */
776 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
777
778 /* Enable DMA */
779 bus_space_write_4(t, h, GEM_RX_CONFIG,
780 v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
781 (2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
782 (0<<GEM_RX_CONFIG_CXM_START_SHFT));
783 /*
784 * The following value is for an OFF Threshold of about 15.5 Kbytes
785 * and an ON Threshold of 4K bytes.
786 */
787 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH, 0xf8 | (0x40 << 12));
788 bus_space_write_4(t, h, GEM_RX_BLANKING, (2<<12)|6);
789
790 /* step 11. Configure Media */
791 gem_mii_statchg(&sc->sc_dev);
792
793 /* XXXX Serial link needs a whole different setup. */
794
795
796 /* step 12. RX_MAC Configuration Register */
797 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
798 v |= GEM_MAC_RX_ENABLE;
799 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
800
801 /* step 14. Issue Transmit Pending command */
802
803 /* Call MI initialization function if any */
804 if (sc->sc_hwinit)
805 (*sc->sc_hwinit)(sc);
806
807
808 /* step 15. Give the reciever a swift kick */
809 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
810
811 /* Start the one second timer. */
812 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
813
814 ifp->if_flags |= IFF_RUNNING;
815 ifp->if_flags &= ~IFF_OACTIVE;
816 ifp->if_timer = 0;
817 splx(s);
818
819 return (0);
820 }
821
822 void
823 gem_init_regs(struct gem_softc *sc)
824 {
825 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
826 bus_space_tag_t t = sc->sc_bustag;
827 bus_space_handle_t h = sc->sc_h;
828
829 /* These regs are not cleared on reset */
830 sc->sc_inited = 0;
831 if (!sc->sc_inited) {
832
833 /* Wooo. Magic values. */
834 bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
835 bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
836 bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
837
838 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
839 /* Max frame and max burst size */
840 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
841 (ifp->if_mtu+18) | (0x2000<<16)/* Burst size */);
842 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
843 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
844 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
845 /* Dunno.... */
846 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
847 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
848 ((LLADDR(ifp->if_sadl)[5]<<8)|
849 LLADDR(ifp->if_sadl)[4])&0x3ff);
850 /* Secondary MAC addr set to 0:0:0:0:0:0 */
851 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
852 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
853 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
854 /* MAC control addr set to 0:1:c2:0:1:80 */
855 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
856 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
857 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
858
859 /* MAC filter addr set to 0:0:0:0:0:0 */
860 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
861 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
862 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
863
864 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
865 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
866
867 sc->sc_inited = 1;
868 }
869
870 /* Counters need to be zeroed */
871 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
872 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
873 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
874 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
875 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
876 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
877 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
878 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
879 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
880 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
881 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
882
883 /* Un-pause stuff */
884 #if 0
885 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
886 #else
887 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
888 #endif
889
890 /*
891 * Set the station address.
892 */
893 bus_space_write_4(t, h, GEM_MAC_ADDR0,
894 (LLADDR(ifp->if_sadl)[4]<<8) | LLADDR(ifp->if_sadl)[5]);
895 bus_space_write_4(t, h, GEM_MAC_ADDR1,
896 (LLADDR(ifp->if_sadl)[2]<<8) | LLADDR(ifp->if_sadl)[3]);
897 bus_space_write_4(t, h, GEM_MAC_ADDR2,
898 (LLADDR(ifp->if_sadl)[0]<<8) | LLADDR(ifp->if_sadl)[1]);
899
900 }
901
902
903
904 void
905 gem_start(ifp)
906 struct ifnet *ifp;
907 {
908 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
909 struct mbuf *m0, *m;
910 struct gem_txsoft *txs, *last_txs;
911 bus_dmamap_t dmamap;
912 int error, firsttx, nexttx, lasttx, ofree, seg;
913
914 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
915 return;
916
917 /*
918 * Remember the previous number of free descriptors and
919 * the first descriptor we'll use.
920 */
921 ofree = sc->sc_txfree;
922 firsttx = sc->sc_txnext;
923
924 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
925 sc->sc_dev.dv_xname, ofree, firsttx));
926
927 /*
928 * Loop through the send queue, setting up transmit descriptors
929 * until we drain the queue, or use up all available transmit
930 * descriptors.
931 */
932 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
933 sc->sc_txfree != 0) {
934 /*
935 * Grab a packet off the queue.
936 */
937 IFQ_POLL(&ifp->if_snd, m0);
938 if (m0 == NULL)
939 break;
940 m = NULL;
941
942 dmamap = txs->txs_dmamap;
943
944 /*
945 * Load the DMA map. If this fails, the packet either
946 * didn't fit in the alloted number of segments, or we were
947 * short on resources. In this case, we'll copy and try
948 * again.
949 */
950 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
951 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
952 MGETHDR(m, M_DONTWAIT, MT_DATA);
953 if (m == NULL) {
954 printf("%s: unable to allocate Tx mbuf\n",
955 sc->sc_dev.dv_xname);
956 break;
957 }
958 if (m0->m_pkthdr.len > MHLEN) {
959 MCLGET(m, M_DONTWAIT);
960 if ((m->m_flags & M_EXT) == 0) {
961 printf("%s: unable to allocate Tx "
962 "cluster\n", sc->sc_dev.dv_xname);
963 m_freem(m);
964 break;
965 }
966 }
967 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
968 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
969 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
970 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
971 if (error) {
972 printf("%s: unable to load Tx buffer, "
973 "error = %d\n", sc->sc_dev.dv_xname, error);
974 break;
975 }
976 }
977
978 /*
979 * Ensure we have enough descriptors free to describe
980 * the packet.
981 */
982 if (dmamap->dm_nsegs > sc->sc_txfree) {
983 /*
984 * Not enough free descriptors to transmit this
985 * packet. We haven't committed to anything yet,
986 * so just unload the DMA map, put the packet
987 * back on the queue, and punt. Notify the upper
988 * layer that there are no more slots left.
989 *
990 * XXX We could allocate an mbuf and copy, but
991 * XXX it is worth it?
992 */
993 ifp->if_flags |= IFF_OACTIVE;
994 bus_dmamap_unload(sc->sc_dmatag, dmamap);
995 if (m != NULL)
996 m_freem(m);
997 break;
998 }
999
1000 IFQ_DEQUEUE(&ifp->if_snd, m0);
1001 if (m != NULL) {
1002 m_freem(m0);
1003 m0 = m;
1004 }
1005
1006 /*
1007 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1008 */
1009
1010 /* Sync the DMA map. */
1011 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1012 BUS_DMASYNC_PREWRITE);
1013
1014 /*
1015 * Initialize the transmit descriptors.
1016 */
1017 for (nexttx = sc->sc_txnext, seg = 0;
1018 seg < dmamap->dm_nsegs;
1019 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1020 uint64_t flags;
1021
1022 /*
1023 * If this is the first descriptor we're
1024 * enqueueing, set the start of packet flag,
1025 * and the checksum stuff if we want the hardware
1026 * to do it.
1027 */
1028 sc->sc_txdescs[nexttx].gd_addr =
1029 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1030 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1031 if (nexttx == firsttx) {
1032 flags |= GEM_TD_START_OF_PACKET;
1033 }
1034 if (seg == dmamap->dm_nsegs - 1) {
1035 flags |= GEM_TD_END_OF_PACKET;
1036 }
1037 sc->sc_txdescs[nexttx].gd_flags =
1038 GEM_DMA_WRITE(sc, flags);
1039 lasttx = nexttx;
1040 }
1041
1042 #ifdef GEM_DEBUG
1043 if (ifp->if_flags & IFF_DEBUG) {
1044 printf(" gem_start %p transmit chain:\n", txs);
1045 for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1046 printf("descriptor %d:\t", seg);
1047 printf("gd_flags: 0x%016llx\t", (long long)
1048 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1049 printf("gd_addr: 0x%016llx\n", (long long)
1050 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1051 if (seg == lasttx)
1052 break;
1053 }
1054 }
1055 #endif
1056
1057 /* Sync the descriptors we're using. */
1058 GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1059 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1060
1061 /*
1062 * Store a pointer to the packet so we can free it later,
1063 * and remember what txdirty will be once the packet is
1064 * done.
1065 */
1066 txs->txs_mbuf = m0;
1067 txs->txs_firstdesc = sc->sc_txnext;
1068 txs->txs_lastdesc = lasttx;
1069 txs->txs_ndescs = dmamap->dm_nsegs;
1070
1071 /* Advance the tx pointer. */
1072 sc->sc_txfree -= dmamap->dm_nsegs;
1073 sc->sc_txnext = nexttx;
1074
1075 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1076 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1077
1078 last_txs = txs;
1079
1080 #if NBPFILTER > 0
1081 /*
1082 * Pass the packet to any BPF listeners.
1083 */
1084 if (ifp->if_bpf)
1085 bpf_mtap(ifp->if_bpf, m0);
1086 #endif /* NBPFILTER > 0 */
1087 }
1088
1089 if (txs == NULL || sc->sc_txfree == 0) {
1090 /* No more slots left; notify upper layer. */
1091 ifp->if_flags |= IFF_OACTIVE;
1092 }
1093
1094 if (sc->sc_txfree != ofree) {
1095 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1096 sc->sc_dev.dv_xname, lasttx, firsttx));
1097 /*
1098 * The entire packet chain is set up.
1099 * Kick the transmitter.
1100 */
1101 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1102 sc->sc_dev.dv_xname, nexttx));
1103 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1104 sc->sc_txnext);
1105
1106 /* Set a watchdog timer in case the chip flakes out. */
1107 ifp->if_timer = 5;
1108 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1109 sc->sc_dev.dv_xname, ifp->if_timer));
1110 }
1111 }
1112
1113 /*
1114 * Transmit interrupt.
1115 */
1116 int
1117 gem_tint(sc)
1118 struct gem_softc *sc;
1119 {
1120 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1121 bus_space_tag_t t = sc->sc_bustag;
1122 bus_space_handle_t mac = sc->sc_h;
1123 struct gem_txsoft *txs;
1124 int txlast;
1125
1126
1127 DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1128
1129 /*
1130 * Unload collision counters
1131 */
1132 ifp->if_collisions +=
1133 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1134 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1135 bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1136 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1137
1138 /*
1139 * then clear the hardware counters.
1140 */
1141 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1142 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1143 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1144 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1145
1146 /*
1147 * Go through our Tx list and free mbufs for those
1148 * frames that have been transmitted.
1149 */
1150 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1151 GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1152 txs->txs_ndescs,
1153 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1154
1155 #ifdef GEM_DEBUG
1156 if (ifp->if_flags & IFF_DEBUG) {
1157 int i;
1158 printf(" txsoft %p transmit chain:\n", txs);
1159 for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1160 printf("descriptor %d: ", i);
1161 printf("gd_flags: 0x%016llx\t", (long long)
1162 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1163 printf("gd_addr: 0x%016llx\n", (long long)
1164 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1165 if (i == txs->txs_lastdesc)
1166 break;
1167 }
1168 }
1169 #endif
1170
1171 /*
1172 * In theory, we could harveast some descriptors before
1173 * the ring is empty, but that's a bit complicated.
1174 *
1175 * GEM_TX_COMPLETION points to the last descriptor
1176 * processed +1.
1177 */
1178 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1179 DPRINTF(sc,
1180 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1181 txs->txs_lastdesc, txlast));
1182 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1183 if ((txlast >= txs->txs_firstdesc) &&
1184 (txlast <= txs->txs_lastdesc))
1185 break;
1186 } else {
1187 /* Ick -- this command wraps */
1188 if ((txlast >= txs->txs_firstdesc) ||
1189 (txlast <= txs->txs_lastdesc))
1190 break;
1191 }
1192
1193 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1194 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1195
1196 sc->sc_txfree += txs->txs_ndescs;
1197
1198 if (txs->txs_mbuf == NULL) {
1199 #ifdef DIAGNOSTIC
1200 panic("gem_txintr: null mbuf");
1201 #endif
1202 }
1203
1204 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1205 0, txs->txs_dmamap->dm_mapsize,
1206 BUS_DMASYNC_POSTWRITE);
1207 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1208 m_freem(txs->txs_mbuf);
1209 txs->txs_mbuf = NULL;
1210
1211 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1212
1213 ifp->if_opackets++;
1214 }
1215
1216 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1217 "GEM_TX_DATA_PTR %llx "
1218 "GEM_TX_COMPLETION %x\n",
1219 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1220 ((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1221 GEM_TX_DATA_PTR_HI) << 32) |
1222 bus_space_read_4(sc->sc_bustag, sc->sc_h,
1223 GEM_TX_DATA_PTR_LO),
1224 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1225
1226 gem_start(ifp);
1227
1228 if (SIMPLEQ_FIRST(&sc->sc_txdirtyq) == NULL)
1229 ifp->if_timer = 0;
1230 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1231 sc->sc_dev.dv_xname, ifp->if_timer));
1232
1233 return (1);
1234 }
1235
1236 /*
1237 * Receive interrupt.
1238 */
1239 int
1240 gem_rint(sc)
1241 struct gem_softc *sc;
1242 {
1243 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1244 bus_space_tag_t t = sc->sc_bustag;
1245 bus_space_handle_t h = sc->sc_h;
1246 struct ether_header *eh;
1247 struct gem_rxsoft *rxs;
1248 struct mbuf *m;
1249 u_int64_t rxstat;
1250 int i, len;
1251
1252 DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1253 /*
1254 * XXXX Read the lastrx only once at the top for speed.
1255 */
1256 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1257 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1258 for (i = sc->sc_rxptr; i != bus_space_read_4(t, h, GEM_RX_COMPLETION);
1259 i = GEM_NEXTRX(i)) {
1260 rxs = &sc->sc_rxsoft[i];
1261
1262 GEM_CDRXSYNC(sc, i,
1263 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1264
1265 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1266
1267 if (rxstat & GEM_RD_OWN) {
1268 printf("gem_rint: completed descriptor "
1269 "still owned %d\n", i);
1270 /*
1271 * We have processed all of the receive buffers.
1272 */
1273 break;
1274 }
1275
1276 if (rxstat & GEM_RD_BAD_CRC) {
1277 printf("%s: receive error: CRC error\n",
1278 sc->sc_dev.dv_xname);
1279 GEM_INIT_RXDESC(sc, i);
1280 continue;
1281 }
1282
1283 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1284 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1285 #ifdef GEM_DEBUG
1286 if (ifp->if_flags & IFF_DEBUG) {
1287 printf(" rxsoft %p descriptor %d: ", rxs, i);
1288 printf("gd_flags: 0x%016llx\t", (long long)
1289 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1290 printf("gd_addr: 0x%016llx\n", (long long)
1291 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1292 }
1293 #endif
1294
1295 /*
1296 * No errors; receive the packet. Note the Gem
1297 * includes the CRC with every packet.
1298 */
1299 len = GEM_RD_BUFLEN(rxstat);
1300
1301 /*
1302 * Allocate a new mbuf cluster. If that fails, we are
1303 * out of memory, and must drop the packet and recycle
1304 * the buffer that's already attached to this descriptor.
1305 */
1306 m = rxs->rxs_mbuf;
1307 if (gem_add_rxbuf(sc, i) != 0) {
1308 ifp->if_ierrors++;
1309 GEM_INIT_RXDESC(sc, i);
1310 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1311 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1312 continue;
1313 }
1314 m->m_data += 2; /* We're already off by two */
1315
1316 ifp->if_ipackets++;
1317 eh = mtod(m, struct ether_header *);
1318 m->m_flags |= M_HASFCS;
1319 m->m_pkthdr.rcvif = ifp;
1320 m->m_pkthdr.len = m->m_len = len;
1321
1322 #if NBPFILTER > 0
1323 /*
1324 * Pass this up to any BPF listeners, but only
1325 * pass it up the stack if its for us.
1326 */
1327 if (ifp->if_bpf)
1328 bpf_mtap(ifp->if_bpf, m);
1329 #endif /* NPBFILTER > 0 */
1330
1331 /* Pass it on. */
1332 (*ifp->if_input)(ifp, m);
1333 }
1334
1335 /* Update the receive pointer. */
1336 sc->sc_rxptr = i;
1337 bus_space_write_4(t, h, GEM_RX_KICK, i);
1338
1339 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1340 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1341
1342 return (1);
1343 }
1344
1345
1346 /*
1347 * gem_add_rxbuf:
1348 *
1349 * Add a receive buffer to the indicated descriptor.
1350 */
1351 int
1352 gem_add_rxbuf(struct gem_softc *sc, int idx)
1353 {
1354 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1355 struct mbuf *m;
1356 int error;
1357
1358 MGETHDR(m, M_DONTWAIT, MT_DATA);
1359 if (m == NULL)
1360 return (ENOBUFS);
1361
1362 MCLGET(m, M_DONTWAIT);
1363 if ((m->m_flags & M_EXT) == 0) {
1364 m_freem(m);
1365 return (ENOBUFS);
1366 }
1367
1368 #ifdef GEM_DEBUG
1369 /* bzero the packet to check dma */
1370 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1371 #endif
1372
1373 if (rxs->rxs_mbuf != NULL)
1374 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1375
1376 rxs->rxs_mbuf = m;
1377
1378 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1379 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1380 BUS_DMA_READ|BUS_DMA_NOWAIT);
1381 if (error) {
1382 printf("%s: can't load rx DMA map %d, error = %d\n",
1383 sc->sc_dev.dv_xname, idx, error);
1384 panic("gem_add_rxbuf"); /* XXX */
1385 }
1386
1387 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1388 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1389
1390 GEM_INIT_RXDESC(sc, idx);
1391
1392 return (0);
1393 }
1394
1395
1396 int
1397 gem_eint(sc, status)
1398 struct gem_softc *sc;
1399 u_int status;
1400 {
1401 char bits[128];
1402
1403 if ((status & GEM_INTR_MIF) != 0) {
1404 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1405 return (1);
1406 }
1407
1408 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1409 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1410 return (1);
1411 }
1412
1413
1414 int
1415 gem_intr(v)
1416 void *v;
1417 {
1418 struct gem_softc *sc = (struct gem_softc *)v;
1419 bus_space_tag_t t = sc->sc_bustag;
1420 bus_space_handle_t seb = sc->sc_h;
1421 u_int32_t status;
1422 int r = 0;
1423 #ifdef GEM_DEBUG
1424 char bits[128];
1425 #endif
1426
1427 status = bus_space_read_4(t, seb, GEM_STATUS);
1428 DPRINTF(sc, ("%s: gem_intr: cplt %xstatus %s\n",
1429 sc->sc_dev.dv_xname, (status>>19),
1430 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1431
1432 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1433 r |= gem_eint(sc, status);
1434
1435 if ((status &
1436 (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME))
1437 != 0)
1438 r |= gem_tint(sc);
1439
1440 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
1441 r |= gem_rint(sc);
1442
1443 /* We should eventually do more than just print out error stats. */
1444 if (status & GEM_INTR_TX_MAC) {
1445 int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1446 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1447 printf("MAC tx fault, status %x\n", txstat);
1448 }
1449 if (status & GEM_INTR_RX_MAC) {
1450 int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1451 if (rxstat & ~GEM_MAC_RX_DONE)
1452 printf("MAC rx fault, status %x\n", rxstat);
1453 }
1454 return (r);
1455 }
1456
1457
1458 void
1459 gem_watchdog(ifp)
1460 struct ifnet *ifp;
1461 {
1462 struct gem_softc *sc = ifp->if_softc;
1463
1464 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1465 "GEM_MAC_RX_CONFIG %x\n",
1466 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1467 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1468 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1469
1470 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1471 ++ifp->if_oerrors;
1472
1473 /* Try to get more packets going. */
1474 gem_start(ifp);
1475 }
1476
1477 /*
1478 * Initialize the MII Management Interface
1479 */
1480 void
1481 gem_mifinit(sc)
1482 struct gem_softc *sc;
1483 {
1484 bus_space_tag_t t = sc->sc_bustag;
1485 bus_space_handle_t mif = sc->sc_h;
1486
1487 /* Configure the MIF in frame mode */
1488 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1489 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1490 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1491 }
1492
1493 /*
1494 * MII interface
1495 *
1496 * The GEM MII interface supports at least three different operating modes:
1497 *
1498 * Bitbang mode is implemented using data, clock and output enable registers.
1499 *
1500 * Frame mode is implemented by loading a complete frame into the frame
1501 * register and polling the valid bit for completion.
1502 *
1503 * Polling mode uses the frame register but completion is indicated by
1504 * an interrupt.
1505 *
1506 */
1507 static int
1508 gem_mii_readreg(self, phy, reg)
1509 struct device *self;
1510 int phy, reg;
1511 {
1512 struct gem_softc *sc = (void *)self;
1513 bus_space_tag_t t = sc->sc_bustag;
1514 bus_space_handle_t mif = sc->sc_h;
1515 int n;
1516 u_int32_t v;
1517
1518 #ifdef GEM_DEBUG1
1519 if (sc->sc_debug)
1520 printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1521 #endif
1522
1523 #if 0
1524 /* Select the desired PHY in the MIF configuration register */
1525 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1526 /* Clear PHY select bit */
1527 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1528 if (phy == GEM_PHYAD_EXTERNAL)
1529 /* Set PHY select bit to get at external device */
1530 v |= GEM_MIF_CONFIG_PHY_SEL;
1531 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1532 #endif
1533
1534 /* Construct the frame command */
1535 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
1536 GEM_MIF_FRAME_READ;
1537
1538 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1539 for (n = 0; n < 100; n++) {
1540 DELAY(1);
1541 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1542 if (v & GEM_MIF_FRAME_TA0)
1543 return (v & GEM_MIF_FRAME_DATA);
1544 }
1545
1546 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1547 return (0);
1548 }
1549
1550 static void
1551 gem_mii_writereg(self, phy, reg, val)
1552 struct device *self;
1553 int phy, reg, val;
1554 {
1555 struct gem_softc *sc = (void *)self;
1556 bus_space_tag_t t = sc->sc_bustag;
1557 bus_space_handle_t mif = sc->sc_h;
1558 int n;
1559 u_int32_t v;
1560
1561 #ifdef GEM_DEBUG1
1562 if (sc->sc_debug)
1563 printf("gem_mii_writereg: phy %d reg %d val %x\n",
1564 phy, reg, val);
1565 #endif
1566
1567 #if 0
1568 /* Select the desired PHY in the MIF configuration register */
1569 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1570 /* Clear PHY select bit */
1571 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1572 if (phy == GEM_PHYAD_EXTERNAL)
1573 /* Set PHY select bit to get at external device */
1574 v |= GEM_MIF_CONFIG_PHY_SEL;
1575 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1576 #endif
1577 /* Construct the frame command */
1578 v = GEM_MIF_FRAME_WRITE |
1579 (phy << GEM_MIF_PHY_SHIFT) |
1580 (reg << GEM_MIF_REG_SHIFT) |
1581 (val & GEM_MIF_FRAME_DATA);
1582
1583 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1584 for (n = 0; n < 100; n++) {
1585 DELAY(1);
1586 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1587 if (v & GEM_MIF_FRAME_TA0)
1588 return;
1589 }
1590
1591 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1592 }
1593
1594 static void
1595 gem_mii_statchg(dev)
1596 struct device *dev;
1597 {
1598 struct gem_softc *sc = (void *)dev;
1599 #ifdef GEM_DEBUG
1600 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1601 #endif
1602 bus_space_tag_t t = sc->sc_bustag;
1603 bus_space_handle_t mac = sc->sc_h;
1604 u_int32_t v;
1605
1606 #ifdef GEM_DEBUG
1607 if (sc->sc_debug)
1608 printf("gem_mii_statchg: status change: phy = %d\n",
1609 sc->sc_phys[instance];);
1610 #endif
1611
1612
1613 /* Set tx full duplex options */
1614 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1615 delay(10000); /* reg must be cleared and delay before changing. */
1616 v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1617 GEM_MAC_TX_ENABLE;
1618 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1619 v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1620 }
1621 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1622
1623 /* XIF Configuration */
1624 /* We should really calculate all this rather than rely on defaults */
1625 v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1626 v = GEM_MAC_XIF_LINK_LED;
1627 v |= GEM_MAC_XIF_TX_MII_ENA;
1628 /* If an external transceiver is connected, enable its MII drivers */
1629 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1630 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1631 /* External MII needs echo disable if half duplex. */
1632 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1633 /* turn on full duplex LED */
1634 v |= GEM_MAC_XIF_FDPLX_LED;
1635 else
1636 /* half duplex -- disable echo */
1637 v |= GEM_MAC_XIF_ECHO_DISABL;
1638 } else
1639 /* Internal MII needs buf enable */
1640 v |= GEM_MAC_XIF_MII_BUF_ENA;
1641 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1642 }
1643
1644 int
1645 gem_mediachange(ifp)
1646 struct ifnet *ifp;
1647 {
1648 struct gem_softc *sc = ifp->if_softc;
1649
1650 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1651 return (EINVAL);
1652
1653 return (mii_mediachg(&sc->sc_mii));
1654 }
1655
1656 void
1657 gem_mediastatus(ifp, ifmr)
1658 struct ifnet *ifp;
1659 struct ifmediareq *ifmr;
1660 {
1661 struct gem_softc *sc = ifp->if_softc;
1662
1663 if ((ifp->if_flags & IFF_UP) == 0)
1664 return;
1665
1666 mii_pollstat(&sc->sc_mii);
1667 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1668 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1669 }
1670
1671 int gem_ioctldebug = 0;
1672 /*
1673 * Process an ioctl request.
1674 */
1675 int
1676 gem_ioctl(ifp, cmd, data)
1677 struct ifnet *ifp;
1678 u_long cmd;
1679 caddr_t data;
1680 {
1681 struct gem_softc *sc = ifp->if_softc;
1682 struct ifreq *ifr = (struct ifreq *)data;
1683 int s, error = 0;
1684
1685
1686 switch (cmd) {
1687 case SIOCGIFMEDIA:
1688 case SIOCSIFMEDIA:
1689 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1690 break;
1691
1692 default:
1693 error = ether_ioctl(ifp, cmd, data);
1694 if (error == ENETRESET) {
1695 /*
1696 * Multicast list has changed; set the hardware filter
1697 * accordingly.
1698 */
1699 if (gem_ioctldebug) printf("reset1\n");
1700 gem_init(ifp);
1701 delay(50000);
1702 error = 0;
1703 }
1704 break;
1705 }
1706
1707 /* Try to get things going again */
1708 if (ifp->if_flags & IFF_UP) {
1709 if (gem_ioctldebug) printf("start\n");
1710 gem_start(ifp);
1711 }
1712 splx(s);
1713 return (error);
1714 }
1715
1716
1717 void
1718 gem_shutdown(arg)
1719 void *arg;
1720 {
1721 struct gem_softc *sc = (struct gem_softc *)arg;
1722 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1723
1724 gem_stop(ifp, 1);
1725 }
1726
1727 /*
1728 * Set up the logical address filter.
1729 */
1730 void
1731 gem_setladrf(sc)
1732 struct gem_softc *sc;
1733 {
1734 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1735 struct ether_multi *enm;
1736 struct ether_multistep step;
1737 struct ethercom *ec = &sc->sc_ethercom;
1738 bus_space_tag_t t = sc->sc_bustag;
1739 bus_space_handle_t h = sc->sc_h;
1740 u_char *cp;
1741 u_int32_t crc;
1742 u_int32_t hash[16];
1743 u_int32_t v;
1744 int len;
1745
1746 /* Clear hash table */
1747 memset(hash, 0, sizeof(hash));
1748
1749 /* Get current RX configuration */
1750 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1751
1752 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1753 /* Turn on promiscuous mode; turn off the hash filter */
1754 v |= GEM_MAC_RX_PROMISCUOUS;
1755 v &= ~GEM_MAC_RX_HASH_FILTER;
1756 ifp->if_flags |= IFF_ALLMULTI;
1757 goto chipit;
1758 }
1759
1760 /* Turn off promiscuous mode; turn on the hash filter */
1761 v &= ~GEM_MAC_RX_PROMISCUOUS;
1762 v |= GEM_MAC_RX_HASH_FILTER;
1763
1764 /*
1765 * Set up multicast address filter by passing all multicast addresses
1766 * through a crc generator, and then using the high order 6 bits as an
1767 * index into the 256 bit logical address filter. The high order bit
1768 * selects the word, while the rest of the bits select the bit within
1769 * the word.
1770 */
1771
1772 ETHER_FIRST_MULTI(step, ec, enm);
1773 while (enm != NULL) {
1774 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1775 /*
1776 * We must listen to a range of multicast addresses.
1777 * For now, just accept all multicasts, rather than
1778 * trying to set only those filter bits needed to match
1779 * the range. (At this time, the only use of address
1780 * ranges is for IP multicast routing, for which the
1781 * range is big enough to require all bits set.)
1782 */
1783 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1784 ifp->if_flags |= IFF_ALLMULTI;
1785 goto chipit;
1786 }
1787
1788 cp = enm->enm_addrlo;
1789 crc = 0xffffffff;
1790 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1791 int octet = *cp++;
1792 int i;
1793
1794 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1795 for (i = 0; i < 8; i++) {
1796 if ((crc & 1) ^ (octet & 1)) {
1797 crc >>= 1;
1798 crc ^= MC_POLY_LE;
1799 } else {
1800 crc >>= 1;
1801 }
1802 octet >>= 1;
1803 }
1804 }
1805 /* Just want the 8 most significant bits. */
1806 crc >>= 24;
1807
1808 /* Set the corresponding bit in the filter. */
1809 hash[crc >> 4] |= 1 << (crc & 0xf);
1810
1811 ETHER_NEXT_MULTI(step, enm);
1812 }
1813
1814 ifp->if_flags &= ~IFF_ALLMULTI;
1815
1816 chipit:
1817 /* Now load the hash table into the chip */
1818 bus_space_write_4(t, h, GEM_MAC_HASH0, hash[0]);
1819 bus_space_write_4(t, h, GEM_MAC_HASH1, hash[1]);
1820 bus_space_write_4(t, h, GEM_MAC_HASH2, hash[2]);
1821 bus_space_write_4(t, h, GEM_MAC_HASH3, hash[3]);
1822 bus_space_write_4(t, h, GEM_MAC_HASH4, hash[4]);
1823 bus_space_write_4(t, h, GEM_MAC_HASH5, hash[5]);
1824 bus_space_write_4(t, h, GEM_MAC_HASH6, hash[6]);
1825 bus_space_write_4(t, h, GEM_MAC_HASH7, hash[7]);
1826 bus_space_write_4(t, h, GEM_MAC_HASH8, hash[8]);
1827 bus_space_write_4(t, h, GEM_MAC_HASH9, hash[9]);
1828 bus_space_write_4(t, h, GEM_MAC_HASH10, hash[10]);
1829 bus_space_write_4(t, h, GEM_MAC_HASH11, hash[11]);
1830 bus_space_write_4(t, h, GEM_MAC_HASH12, hash[12]);
1831 bus_space_write_4(t, h, GEM_MAC_HASH13, hash[13]);
1832 bus_space_write_4(t, h, GEM_MAC_HASH14, hash[14]);
1833 bus_space_write_4(t, h, GEM_MAC_HASH15, hash[15]);
1834
1835 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1836 }
1837
1838 #if notyet
1839
1840 /*
1841 * gem_power:
1842 *
1843 * Power management (suspend/resume) hook.
1844 */
1845 void
1846 gem_power(why, arg)
1847 int why;
1848 void *arg;
1849 {
1850 struct gem_softc *sc = arg;
1851 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1852 int s;
1853
1854 s = splnet();
1855 switch (why) {
1856 case PWR_SUSPEND:
1857 case PWR_STANDBY:
1858 gem_stop(ifp, 1);
1859 if (sc->sc_power != NULL)
1860 (*sc->sc_power)(sc, why);
1861 break;
1862 case PWR_RESUME:
1863 if (ifp->if_flags & IFF_UP) {
1864 if (sc->sc_power != NULL)
1865 (*sc->sc_power)(sc, why);
1866 gem_init(ifp);
1867 }
1868 break;
1869 case PWR_SOFTSUSPEND:
1870 case PWR_SOFTSTANDBY:
1871 case PWR_SOFTRESUME:
1872 break;
1873 }
1874 splx(s);
1875 }
1876 #endif
1877