gem.c revision 1.110 1 /* $NetBSD: gem.c,v 1.110 2018/06/26 06:48:00 msaitoh Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * Copyright (c) 2001-2003 Thomas Moestl
7 * All rights reserved.
8 *
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 /*
34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35 * See `GEM Gigabit Ethernet ASIC Specification'
36 * http://www.sun.com/processors/manuals/ge.pdf
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.110 2018/06/26 06:48:00 msaitoh Exp $");
41
42 #include "opt_inet.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/mbuf.h>
48 #include <sys/syslog.h>
49 #include <sys/malloc.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/ioctl.h>
53 #include <sys/errno.h>
54 #include <sys/device.h>
55
56 #include <machine/endian.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71
72 #include <net/bpf.h>
73
74 #include <sys/bus.h>
75 #include <sys/intr.h>
76
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 #include <dev/mii/mii_bitbang.h>
80
81 #include <dev/ic/gemreg.h>
82 #include <dev/ic/gemvar.h>
83
84 #define TRIES 10000
85
86 static void gem_inten(struct gem_softc *);
87 static void gem_start(struct ifnet *);
88 static void gem_stop(struct ifnet *, int);
89 int gem_ioctl(struct ifnet *, u_long, void *);
90 void gem_tick(void *);
91 void gem_watchdog(struct ifnet *);
92 void gem_rx_watchdog(void *);
93 void gem_pcs_start(struct gem_softc *sc);
94 void gem_pcs_stop(struct gem_softc *sc, int);
95 int gem_init(struct ifnet *);
96 void gem_init_regs(struct gem_softc *sc);
97 static int gem_ringsize(int sz);
98 static int gem_meminit(struct gem_softc *);
99 void gem_mifinit(struct gem_softc *);
100 static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
101 u_int32_t, u_int32_t);
102 void gem_reset(struct gem_softc *);
103 int gem_reset_rx(struct gem_softc *sc);
104 static void gem_reset_rxdma(struct gem_softc *sc);
105 static void gem_rx_common(struct gem_softc *sc);
106 int gem_reset_tx(struct gem_softc *sc);
107 int gem_disable_rx(struct gem_softc *sc);
108 int gem_disable_tx(struct gem_softc *sc);
109 static void gem_rxdrain(struct gem_softc *sc);
110 int gem_add_rxbuf(struct gem_softc *sc, int idx);
111 void gem_setladrf(struct gem_softc *);
112
113 /* MII methods & callbacks */
114 static int gem_mii_readreg(device_t, int, int);
115 static void gem_mii_writereg(device_t, int, int, int);
116 static void gem_mii_statchg(struct ifnet *);
117
118 static int gem_ifflags_cb(struct ethercom *);
119
120 void gem_statuschange(struct gem_softc *);
121
122 int gem_ser_mediachange(struct ifnet *);
123 void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
124
125 static void gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
126
127 struct mbuf *gem_get(struct gem_softc *, int, int);
128 int gem_put(struct gem_softc *, int, struct mbuf *);
129 void gem_read(struct gem_softc *, int, int);
130 int gem_pint(struct gem_softc *);
131 int gem_eint(struct gem_softc *, u_int);
132 int gem_rint(struct gem_softc *);
133 int gem_tint(struct gem_softc *);
134 void gem_power(int, void *);
135
136 #ifdef GEM_DEBUG
137 static void gem_txsoft_print(const struct gem_softc *, int, int);
138 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
139 printf x
140 #else
141 #define DPRINTF(sc, x) /* nothing */
142 #endif
143
144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
145
146 int
147 gem_detach(struct gem_softc *sc, int flags)
148 {
149 int i;
150 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
151 bus_space_tag_t t = sc->sc_bustag;
152 bus_space_handle_t h = sc->sc_h1;
153
154 /*
155 * Free any resources we've allocated during the attach.
156 * Do this in reverse order and fall through.
157 */
158 switch (sc->sc_att_stage) {
159 case GEM_ATT_BACKEND_2:
160 case GEM_ATT_BACKEND_1:
161 case GEM_ATT_FINISHED:
162 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
163 gem_stop(&sc->sc_ethercom.ec_if, 1);
164
165 #ifdef GEM_COUNTERS
166 for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
167 evcnt_detach(&sc->sc_ev_rxhist[i]);
168 evcnt_detach(&sc->sc_ev_rxnobuf);
169 evcnt_detach(&sc->sc_ev_rxfull);
170 evcnt_detach(&sc->sc_ev_rxint);
171 evcnt_detach(&sc->sc_ev_txint);
172 #endif
173 evcnt_detach(&sc->sc_ev_intr);
174
175 rnd_detach_source(&sc->rnd_source);
176 ether_ifdetach(ifp);
177 if_detach(ifp);
178 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
179
180 callout_destroy(&sc->sc_tick_ch);
181 callout_destroy(&sc->sc_rx_watchdog);
182
183 /*FALLTHROUGH*/
184 case GEM_ATT_MII:
185 sc->sc_att_stage = GEM_ATT_MII;
186 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
187 /*FALLTHROUGH*/
188 case GEM_ATT_7:
189 for (i = 0; i < GEM_NRXDESC; i++) {
190 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
191 bus_dmamap_destroy(sc->sc_dmatag,
192 sc->sc_rxsoft[i].rxs_dmamap);
193 }
194 /*FALLTHROUGH*/
195 case GEM_ATT_6:
196 for (i = 0; i < GEM_TXQUEUELEN; i++) {
197 if (sc->sc_txsoft[i].txs_dmamap != NULL)
198 bus_dmamap_destroy(sc->sc_dmatag,
199 sc->sc_txsoft[i].txs_dmamap);
200 }
201 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
202 /*FALLTHROUGH*/
203 case GEM_ATT_5:
204 bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
205 /*FALLTHROUGH*/
206 case GEM_ATT_4:
207 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
208 /*FALLTHROUGH*/
209 case GEM_ATT_3:
210 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
211 /*FALLTHROUGH*/
212 case GEM_ATT_2:
213 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
214 sizeof(struct gem_control_data));
215 /*FALLTHROUGH*/
216 case GEM_ATT_1:
217 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
218 /*FALLTHROUGH*/
219 case GEM_ATT_0:
220 sc->sc_att_stage = GEM_ATT_0;
221 /*FALLTHROUGH*/
222 case GEM_ATT_BACKEND_0:
223 break;
224 }
225 return 0;
226 }
227
228 static void
229 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
230 {
231 cfattach_t ca = device_cfattach(sc->sc_dev);
232
233 sc->sc_att_stage = stage;
234 (*ca->ca_detach)(sc->sc_dev, 0);
235 }
236
237 /*
238 * gem_attach:
239 *
240 * Attach a Gem interface to the system.
241 */
242 void
243 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
244 {
245 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
246 struct mii_data *mii = &sc->sc_mii;
247 bus_space_tag_t t = sc->sc_bustag;
248 bus_space_handle_t h = sc->sc_h1;
249 struct ifmedia_entry *ifm;
250 int i, error, phyaddr;
251 u_int32_t v;
252 char *nullbuf;
253
254 /* Make sure the chip is stopped. */
255 ifp->if_softc = sc;
256 gem_reset(sc);
257
258 /*
259 * Allocate the control data structures, and create and load the
260 * DMA map for it. gem_control_data is 9216 bytes, we have space for
261 * the padding buffer in the bus_dmamem_alloc()'d memory.
262 */
263 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
264 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
265 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
266 aprint_error_dev(sc->sc_dev,
267 "unable to allocate control data, error = %d\n",
268 error);
269 gem_partial_detach(sc, GEM_ATT_0);
270 return;
271 }
272
273 /* XXX should map this in with correct endianness */
274 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
275 sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
276 BUS_DMA_COHERENT)) != 0) {
277 aprint_error_dev(sc->sc_dev,
278 "unable to map control data, error = %d\n", error);
279 gem_partial_detach(sc, GEM_ATT_1);
280 return;
281 }
282
283 nullbuf =
284 (char *)sc->sc_control_data + sizeof(struct gem_control_data);
285
286 if ((error = bus_dmamap_create(sc->sc_dmatag,
287 sizeof(struct gem_control_data), 1,
288 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
289 aprint_error_dev(sc->sc_dev,
290 "unable to create control data DMA map, error = %d\n",
291 error);
292 gem_partial_detach(sc, GEM_ATT_2);
293 return;
294 }
295
296 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
297 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
298 0)) != 0) {
299 aprint_error_dev(sc->sc_dev,
300 "unable to load control data DMA map, error = %d\n",
301 error);
302 gem_partial_detach(sc, GEM_ATT_3);
303 return;
304 }
305
306 memset(nullbuf, 0, ETHER_MIN_TX);
307 if ((error = bus_dmamap_create(sc->sc_dmatag,
308 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
309 aprint_error_dev(sc->sc_dev,
310 "unable to create padding DMA map, error = %d\n", error);
311 gem_partial_detach(sc, GEM_ATT_4);
312 return;
313 }
314
315 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
316 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
317 aprint_error_dev(sc->sc_dev,
318 "unable to load padding DMA map, error = %d\n", error);
319 gem_partial_detach(sc, GEM_ATT_5);
320 return;
321 }
322
323 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
324 BUS_DMASYNC_PREWRITE);
325
326 /*
327 * Initialize the transmit job descriptors.
328 */
329 SIMPLEQ_INIT(&sc->sc_txfreeq);
330 SIMPLEQ_INIT(&sc->sc_txdirtyq);
331
332 /*
333 * Create the transmit buffer DMA maps.
334 */
335 for (i = 0; i < GEM_TXQUEUELEN; i++) {
336 struct gem_txsoft *txs;
337
338 txs = &sc->sc_txsoft[i];
339 txs->txs_mbuf = NULL;
340 if ((error = bus_dmamap_create(sc->sc_dmatag,
341 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
342 ETHER_MAX_LEN_JUMBO, 0, 0,
343 &txs->txs_dmamap)) != 0) {
344 aprint_error_dev(sc->sc_dev,
345 "unable to create tx DMA map %d, error = %d\n",
346 i, error);
347 gem_partial_detach(sc, GEM_ATT_6);
348 return;
349 }
350 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
351 }
352
353 /*
354 * Create the receive buffer DMA maps.
355 */
356 for (i = 0; i < GEM_NRXDESC; i++) {
357 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
358 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
359 aprint_error_dev(sc->sc_dev,
360 "unable to create rx DMA map %d, error = %d\n",
361 i, error);
362 gem_partial_detach(sc, GEM_ATT_7);
363 return;
364 }
365 sc->sc_rxsoft[i].rxs_mbuf = NULL;
366 }
367
368 /* Initialize ifmedia structures and MII info */
369 mii->mii_ifp = ifp;
370 mii->mii_readreg = gem_mii_readreg;
371 mii->mii_writereg = gem_mii_writereg;
372 mii->mii_statchg = gem_mii_statchg;
373
374 sc->sc_ethercom.ec_mii = mii;
375
376 /*
377 * Initialization based on `GEM Gigabit Ethernet ASIC Specification'
378 * Section 3.2.1 `Initialization Sequence'.
379 * However, we can't assume SERDES or Serialink if neither
380 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
381 * being set, as both are set on Sun X1141A (with SERDES). So,
382 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
383 * Also, for variants that report 2 PHY's, we prefer the external
384 * PHY over the internal PHY, so we look for that first.
385 */
386 gem_mifinit(sc);
387
388 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
389 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
390 ether_mediastatus);
391 /* Look for external PHY */
392 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
393 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
394 bus_space_write_4(t, h, GEM_MIF_CONFIG,
395 sc->sc_mif_config);
396 switch (sc->sc_variant) {
397 case GEM_SUN_ERI:
398 phyaddr = GEM_PHYAD_EXTERNAL;
399 break;
400 default:
401 phyaddr = MII_PHY_ANY;
402 break;
403 }
404 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
405 MII_OFFSET_ANY, MIIF_FORCEANEG);
406 }
407 #ifdef GEM_DEBUG
408 else
409 aprint_debug_dev(sc->sc_dev, "using external PHY\n");
410 #endif
411 /* Look for internal PHY if no external PHY was found */
412 if (LIST_EMPTY(&mii->mii_phys) &&
413 ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) ||
414 (sc->sc_variant == GEM_APPLE_K2_GMAC))) {
415 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
416 bus_space_write_4(t, h, GEM_MIF_CONFIG,
417 sc->sc_mif_config);
418 switch (sc->sc_variant) {
419 case GEM_SUN_ERI:
420 case GEM_APPLE_K2_GMAC:
421 phyaddr = GEM_PHYAD_INTERNAL;
422 break;
423 case GEM_APPLE_GMAC:
424 phyaddr = GEM_PHYAD_EXTERNAL;
425 break;
426 default:
427 phyaddr = MII_PHY_ANY;
428 break;
429 }
430 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
431 MII_OFFSET_ANY, MIIF_FORCEANEG);
432 #ifdef GEM_DEBUG
433 if (!LIST_EMPTY(&mii->mii_phys))
434 aprint_debug_dev(sc->sc_dev,
435 "using internal PHY\n");
436 #endif
437 }
438 if (LIST_EMPTY(&mii->mii_phys)) {
439 /* No PHY attached */
440 aprint_error_dev(sc->sc_dev,
441 "PHY probe failed\n");
442 gem_partial_detach(sc, GEM_ATT_MII);
443 return;
444 } else {
445 struct mii_softc *child;
446
447 /*
448 * Walk along the list of attached MII devices and
449 * establish an `MII instance' to `PHY number'
450 * mapping.
451 */
452 LIST_FOREACH(child, &mii->mii_phys, mii_list) {
453 /*
454 * Note: we support just one PHY: the internal
455 * or external MII is already selected for us
456 * by the GEM_MIF_CONFIG register.
457 */
458 if (child->mii_phy > 1 || child->mii_inst > 0) {
459 aprint_error_dev(sc->sc_dev,
460 "cannot accommodate MII device"
461 " %s at PHY %d, instance %d\n",
462 device_xname(child->mii_dev),
463 child->mii_phy, child->mii_inst);
464 continue;
465 }
466 sc->sc_phys[child->mii_inst] = child->mii_phy;
467 }
468
469 if (sc->sc_variant != GEM_SUN_ERI)
470 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
471 GEM_MII_DATAPATH_MII);
472
473 /*
474 * XXX - we can really do the following ONLY if the
475 * PHY indeed has the auto negotiation capability!!
476 */
477 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
478 }
479 } else {
480 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
481 gem_ser_mediastatus);
482 /* SERDES or Serialink */
483 if (sc->sc_flags & GEM_SERDES) {
484 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
485 GEM_MII_DATAPATH_SERDES);
486 } else {
487 sc->sc_flags |= GEM_SERIAL;
488 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
489 GEM_MII_DATAPATH_SERIAL);
490 }
491
492 aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
493 sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
494
495 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
496 /* Check for FDX and HDX capabilities */
497 sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
498 if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
499 ifmedia_add(&sc->sc_mii.mii_media,
500 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
501 aprint_normal("1000baseSX-FDX, ");
502 }
503 if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
504 ifmedia_add(&sc->sc_mii.mii_media,
505 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
506 aprint_normal("1000baseSX-HDX, ");
507 }
508 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
509 sc->sc_mii_media = IFM_AUTO;
510 aprint_normal("auto\n");
511
512 gem_pcs_stop(sc, 1);
513 }
514
515 /*
516 * From this point forward, the attachment cannot fail. A failure
517 * before this point releases all resources that may have been
518 * allocated.
519 */
520
521 /* Announce ourselves. */
522 aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
523 ether_sprintf(enaddr));
524
525 /* Get RX FIFO size */
526 sc->sc_rxfifosize = 64 *
527 bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
528 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
529
530 /* Get TX FIFO size */
531 v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
532 aprint_normal(", %uKB TX fifo\n", v / 16);
533
534 /* Initialize ifnet structure. */
535 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
536 ifp->if_softc = sc;
537 ifp->if_flags =
538 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
539 sc->sc_if_flags = ifp->if_flags;
540 #if 0
541 /*
542 * The GEM hardware supports basic TCP checksum offloading only.
543 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
544 * have bugs in the receive checksum, so don't enable it for now.
545 */
546 if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
547 (GEM_IS_APPLE(sc) &&
548 (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
549 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
550 #endif
551 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
552 ifp->if_start = gem_start;
553 ifp->if_ioctl = gem_ioctl;
554 ifp->if_watchdog = gem_watchdog;
555 ifp->if_stop = gem_stop;
556 ifp->if_init = gem_init;
557 IFQ_SET_READY(&ifp->if_snd);
558
559 /*
560 * If we support GigE media, we support jumbo frames too.
561 * Unless we are Apple.
562 */
563 TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
564 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
565 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
566 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
567 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
568 if (!GEM_IS_APPLE(sc))
569 sc->sc_ethercom.ec_capabilities
570 |= ETHERCAP_JUMBO_MTU;
571 sc->sc_flags |= GEM_GIGABIT;
572 break;
573 }
574 }
575
576 /* claim 802.1q capability */
577 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
578
579 /* Attach the interface. */
580 if_attach(ifp);
581 if_deferred_start_init(ifp, NULL);
582 ether_ifattach(ifp, enaddr);
583 ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
584
585 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
586 RND_TYPE_NET, RND_FLAG_DEFAULT);
587
588 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
589 NULL, device_xname(sc->sc_dev), "interrupts");
590 #ifdef GEM_COUNTERS
591 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
592 &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
593 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
594 &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
595 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
596 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
597 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
598 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
599 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
600 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
601 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
602 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
603 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
604 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
605 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
606 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
607 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
608 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
609 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
610 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
611 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
612 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
613 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
614 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
615 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
616 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
617 #endif
618
619 callout_init(&sc->sc_tick_ch, 0);
620 callout_init(&sc->sc_rx_watchdog, 0);
621 callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
622
623 sc->sc_att_stage = GEM_ATT_FINISHED;
624
625 return;
626 }
627
628 void
629 gem_tick(void *arg)
630 {
631 struct gem_softc *sc = arg;
632 int s;
633
634 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
635 /*
636 * We have to reset everything if we failed to get a
637 * PCS interrupt. Restarting the callout is handled
638 * in gem_pcs_start().
639 */
640 gem_init(&sc->sc_ethercom.ec_if);
641 } else {
642 s = splnet();
643 mii_tick(&sc->sc_mii);
644 splx(s);
645 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
646 }
647 }
648
649 static int
650 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
651 {
652 int i;
653 u_int32_t reg;
654
655 for (i = TRIES; i--; DELAY(100)) {
656 reg = bus_space_read_4(sc->sc_bustag, h, r);
657 if ((reg & clr) == 0 && (reg & set) == set)
658 return (1);
659 }
660 return (0);
661 }
662
663 void
664 gem_reset(struct gem_softc *sc)
665 {
666 bus_space_tag_t t = sc->sc_bustag;
667 bus_space_handle_t h = sc->sc_h2;
668 int s;
669
670 s = splnet();
671 DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
672 gem_reset_rx(sc);
673 gem_reset_tx(sc);
674
675 /* Do a full reset */
676 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
677 if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
678 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
679 splx(s);
680 }
681
682
683 /*
684 * gem_rxdrain:
685 *
686 * Drain the receive queue.
687 */
688 static void
689 gem_rxdrain(struct gem_softc *sc)
690 {
691 struct gem_rxsoft *rxs;
692 int i;
693
694 for (i = 0; i < GEM_NRXDESC; i++) {
695 rxs = &sc->sc_rxsoft[i];
696 if (rxs->rxs_mbuf != NULL) {
697 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
698 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
699 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
700 m_freem(rxs->rxs_mbuf);
701 rxs->rxs_mbuf = NULL;
702 }
703 }
704 }
705
706 /*
707 * Reset the whole thing.
708 */
709 static void
710 gem_stop(struct ifnet *ifp, int disable)
711 {
712 struct gem_softc *sc = ifp->if_softc;
713 struct gem_txsoft *txs;
714
715 DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
716
717 callout_halt(&sc->sc_tick_ch, NULL);
718 callout_halt(&sc->sc_rx_watchdog, NULL);
719 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
720 gem_pcs_stop(sc, disable);
721 else
722 mii_down(&sc->sc_mii);
723
724 /* XXX - Should we reset these instead? */
725 gem_disable_tx(sc);
726 gem_disable_rx(sc);
727
728 /*
729 * Release any queued transmit buffers.
730 */
731 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
732 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
733 if (txs->txs_mbuf != NULL) {
734 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
735 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
736 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
737 m_freem(txs->txs_mbuf);
738 txs->txs_mbuf = NULL;
739 }
740 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
741 }
742
743 /*
744 * Mark the interface down and cancel the watchdog timer.
745 */
746 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
747 sc->sc_if_flags = ifp->if_flags;
748 ifp->if_timer = 0;
749
750 if (disable)
751 gem_rxdrain(sc);
752 }
753
754
755 /*
756 * Reset the receiver
757 */
758 int
759 gem_reset_rx(struct gem_softc *sc)
760 {
761 bus_space_tag_t t = sc->sc_bustag;
762 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
763
764 /*
765 * Resetting while DMA is in progress can cause a bus hang, so we
766 * disable DMA first.
767 */
768 gem_disable_rx(sc);
769 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
770 bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
771 /* Wait till it finishes */
772 if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
773 aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
774 /* Wait 5ms extra. */
775 delay(5000);
776
777 /* Finally, reset the ERX */
778 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
779 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
780 /* Wait till it finishes */
781 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
782 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
783 return (1);
784 }
785 return (0);
786 }
787
788
789 /*
790 * Reset the receiver DMA engine.
791 *
792 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
793 * etc in order to reset the receiver DMA engine only and not do a full
794 * reset which amongst others also downs the link and clears the FIFOs.
795 */
796 static void
797 gem_reset_rxdma(struct gem_softc *sc)
798 {
799 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
800 bus_space_tag_t t = sc->sc_bustag;
801 bus_space_handle_t h = sc->sc_h1;
802 int i;
803
804 if (gem_reset_rx(sc) != 0) {
805 gem_init(ifp);
806 return;
807 }
808 for (i = 0; i < GEM_NRXDESC; i++)
809 if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
810 GEM_UPDATE_RXDESC(sc, i);
811 sc->sc_rxptr = 0;
812 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
813 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
814
815 /* Reprogram Descriptor Ring Base Addresses */
816 /* NOTE: we use only 32-bit DMA addresses here. */
817 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
818 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
819
820 /* Redo ERX Configuration */
821 gem_rx_common(sc);
822
823 /* Give the reciever a swift kick */
824 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
825 }
826
827 /*
828 * Common RX configuration for gem_init() and gem_reset_rxdma().
829 */
830 static void
831 gem_rx_common(struct gem_softc *sc)
832 {
833 bus_space_tag_t t = sc->sc_bustag;
834 bus_space_handle_t h = sc->sc_h1;
835 u_int32_t v;
836
837 /* Encode Receive Descriptor ring size: four possible values */
838 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
839
840 /* Set receive h/w checksum offset */
841 #ifdef INET
842 v |= (ETHER_HDR_LEN + sizeof(struct ip) +
843 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
844 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
845 #endif
846
847 /* Enable RX DMA */
848 bus_space_write_4(t, h, GEM_RX_CONFIG,
849 v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
850 (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
851
852 /*
853 * The following value is for an OFF Threshold of about 3/4 full
854 * and an ON Threshold of 1/4 full.
855 */
856 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
857 (3 * sc->sc_rxfifosize / 256) |
858 ((sc->sc_rxfifosize / 256) << 12));
859 bus_space_write_4(t, h, GEM_RX_BLANKING,
860 (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
861 }
862
863 /*
864 * Reset the transmitter
865 */
866 int
867 gem_reset_tx(struct gem_softc *sc)
868 {
869 bus_space_tag_t t = sc->sc_bustag;
870 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
871
872 /*
873 * Resetting while DMA is in progress can cause a bus hang, so we
874 * disable DMA first.
875 */
876 gem_disable_tx(sc);
877 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
878 bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
879 /* Wait till it finishes */
880 if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
881 aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
882 /* Wait 5ms extra. */
883 delay(5000);
884
885 /* Finally, reset the ETX */
886 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
887 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
888 /* Wait till it finishes */
889 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
890 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
891 return (1);
892 }
893 return (0);
894 }
895
896 /*
897 * disable receiver.
898 */
899 int
900 gem_disable_rx(struct gem_softc *sc)
901 {
902 bus_space_tag_t t = sc->sc_bustag;
903 bus_space_handle_t h = sc->sc_h1;
904 u_int32_t cfg;
905
906 /* Flip the enable bit */
907 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
908 cfg &= ~GEM_MAC_RX_ENABLE;
909 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
910 bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
911 /* Wait for it to finish */
912 return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
913 }
914
915 /*
916 * disable transmitter.
917 */
918 int
919 gem_disable_tx(struct gem_softc *sc)
920 {
921 bus_space_tag_t t = sc->sc_bustag;
922 bus_space_handle_t h = sc->sc_h1;
923 u_int32_t cfg;
924
925 /* Flip the enable bit */
926 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
927 cfg &= ~GEM_MAC_TX_ENABLE;
928 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
929 bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
930 /* Wait for it to finish */
931 return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
932 }
933
934 /*
935 * Initialize interface.
936 */
937 int
938 gem_meminit(struct gem_softc *sc)
939 {
940 struct gem_rxsoft *rxs;
941 int i, error;
942
943 /*
944 * Initialize the transmit descriptor ring.
945 */
946 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
947 for (i = 0; i < GEM_NTXDESC; i++) {
948 sc->sc_txdescs[i].gd_flags = 0;
949 sc->sc_txdescs[i].gd_addr = 0;
950 }
951 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
952 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
953 sc->sc_txfree = GEM_NTXDESC-1;
954 sc->sc_txnext = 0;
955 sc->sc_txwin = 0;
956
957 /*
958 * Initialize the receive descriptor and receive job
959 * descriptor rings.
960 */
961 for (i = 0; i < GEM_NRXDESC; i++) {
962 rxs = &sc->sc_rxsoft[i];
963 if (rxs->rxs_mbuf == NULL) {
964 if ((error = gem_add_rxbuf(sc, i)) != 0) {
965 aprint_error_dev(sc->sc_dev,
966 "unable to allocate or map rx "
967 "buffer %d, error = %d\n",
968 i, error);
969 /*
970 * XXX Should attempt to run with fewer receive
971 * XXX buffers instead of just failing.
972 */
973 gem_rxdrain(sc);
974 return (1);
975 }
976 } else
977 GEM_INIT_RXDESC(sc, i);
978 }
979 sc->sc_rxptr = 0;
980 sc->sc_meminited = 1;
981 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
982 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
983
984 return (0);
985 }
986
987 static int
988 gem_ringsize(int sz)
989 {
990 switch (sz) {
991 case 32:
992 return GEM_RING_SZ_32;
993 case 64:
994 return GEM_RING_SZ_64;
995 case 128:
996 return GEM_RING_SZ_128;
997 case 256:
998 return GEM_RING_SZ_256;
999 case 512:
1000 return GEM_RING_SZ_512;
1001 case 1024:
1002 return GEM_RING_SZ_1024;
1003 case 2048:
1004 return GEM_RING_SZ_2048;
1005 case 4096:
1006 return GEM_RING_SZ_4096;
1007 case 8192:
1008 return GEM_RING_SZ_8192;
1009 default:
1010 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1011 return GEM_RING_SZ_32;
1012 }
1013 }
1014
1015
1016 /*
1017 * Start PCS
1018 */
1019 void
1020 gem_pcs_start(struct gem_softc *sc)
1021 {
1022 bus_space_tag_t t = sc->sc_bustag;
1023 bus_space_handle_t h = sc->sc_h1;
1024 uint32_t v;
1025
1026 #ifdef GEM_DEBUG
1027 aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1028 #endif
1029
1030 /*
1031 * Set up. We must disable the MII before modifying the
1032 * GEM_MII_ANAR register
1033 */
1034 if (sc->sc_flags & GEM_SERDES) {
1035 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1036 GEM_MII_DATAPATH_SERDES);
1037 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1038 GEM_MII_SLINK_LOOPBACK);
1039 } else {
1040 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1041 GEM_MII_DATAPATH_SERIAL);
1042 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1043 }
1044 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1045 v = bus_space_read_4(t, h, GEM_MII_ANAR);
1046 v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1047 if (sc->sc_mii_media == IFM_AUTO)
1048 v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1049 else if (sc->sc_mii_media == IFM_FDX) {
1050 v |= GEM_MII_ANEG_FUL_DUPLX;
1051 v &= ~GEM_MII_ANEG_HLF_DUPLX;
1052 } else if (sc->sc_mii_media == IFM_HDX) {
1053 v &= ~GEM_MII_ANEG_FUL_DUPLX;
1054 v |= GEM_MII_ANEG_HLF_DUPLX;
1055 }
1056
1057 /* Configure link. */
1058 bus_space_write_4(t, h, GEM_MII_ANAR, v);
1059 bus_space_write_4(t, h, GEM_MII_CONTROL,
1060 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1061 bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1062 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1063
1064 /* Start the 10 second timer */
1065 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
1066 }
1067
1068 /*
1069 * Stop PCS
1070 */
1071 void
1072 gem_pcs_stop(struct gem_softc *sc, int disable)
1073 {
1074 bus_space_tag_t t = sc->sc_bustag;
1075 bus_space_handle_t h = sc->sc_h1;
1076
1077 #ifdef GEM_DEBUG
1078 aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1079 #endif
1080
1081 /* Tell link partner that we're going away */
1082 bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1083
1084 /*
1085 * Disable PCS MII. The documentation suggests that setting
1086 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1087 * negotiation will shut down the link. However, it appears
1088 * that we also need to unset the datapath mode.
1089 */
1090 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1091 bus_space_write_4(t, h, GEM_MII_CONTROL,
1092 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1093 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1094 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1095
1096 if (disable) {
1097 if (sc->sc_flags & GEM_SERDES)
1098 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1099 GEM_MII_SLINK_POWER_OFF);
1100 else
1101 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1102 GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1103 }
1104
1105 sc->sc_flags &= ~GEM_LINK;
1106 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1107 sc->sc_mii.mii_media_status = IFM_AVALID;
1108 }
1109
1110
1111 /*
1112 * Initialization of interface; set up initialization block
1113 * and transmit/receive descriptor rings.
1114 */
1115 int
1116 gem_init(struct ifnet *ifp)
1117 {
1118 struct gem_softc *sc = ifp->if_softc;
1119 bus_space_tag_t t = sc->sc_bustag;
1120 bus_space_handle_t h = sc->sc_h1;
1121 int rc = 0, s;
1122 u_int max_frame_size;
1123 u_int32_t v;
1124
1125 s = splnet();
1126
1127 DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1128 /*
1129 * Initialization sequence. The numbered steps below correspond
1130 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1131 * Channel Engine manual (part of the PCIO manual).
1132 * See also the STP2002-STQ document from Sun Microsystems.
1133 */
1134
1135 /* step 1 & 2. Reset the Ethernet Channel */
1136 gem_stop(ifp, 0);
1137 gem_reset(sc);
1138 DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1139
1140 /* Re-initialize the MIF */
1141 gem_mifinit(sc);
1142
1143 /* Set up correct datapath for non-SERDES/Serialink */
1144 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1145 sc->sc_variant != GEM_SUN_ERI)
1146 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1147 GEM_MII_DATAPATH_MII);
1148
1149 /* Call MI reset function if any */
1150 if (sc->sc_hwreset)
1151 (*sc->sc_hwreset)(sc);
1152
1153 /* step 3. Setup data structures in host memory */
1154 if (gem_meminit(sc) != 0) {
1155 splx(s);
1156 return 1;
1157 }
1158
1159 /* step 4. TX MAC registers & counters */
1160 gem_init_regs(sc);
1161 max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1162 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1163 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1164 max_frame_size += ETHER_VLAN_ENCAP_LEN;
1165 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1166 max_frame_size|/* burst size */(0x2000<<16));
1167
1168 /* step 5. RX MAC registers & counters */
1169 gem_setladrf(sc);
1170
1171 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1172 /* NOTE: we use only 32-bit DMA addresses here. */
1173 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1174 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1175
1176 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1177 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1178
1179 /* step 8. Global Configuration & Interrupt Mask */
1180 gem_inten(sc);
1181 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1182 GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1183 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1184 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1185 GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1186
1187 /* step 9. ETX Configuration: use mostly default values */
1188
1189 /* Enable TX DMA */
1190 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1191 bus_space_write_4(t, h, GEM_TX_CONFIG,
1192 v | GEM_TX_CONFIG_TXDMA_EN |
1193 (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1194 GEM_TX_CONFIG_TXFIFO_TH));
1195 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1196
1197 /* step 10. ERX Configuration */
1198 gem_rx_common(sc);
1199
1200 /* step 11. Configure Media */
1201 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1202 (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1203 goto out;
1204
1205 /* step 12. RX_MAC Configuration Register */
1206 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1207 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1208 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1209
1210 /* step 14. Issue Transmit Pending command */
1211
1212 /* Call MI initialization function if any */
1213 if (sc->sc_hwinit)
1214 (*sc->sc_hwinit)(sc);
1215
1216
1217 /* step 15. Give the reciever a swift kick */
1218 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1219
1220 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1221 /* Configure PCS */
1222 gem_pcs_start(sc);
1223 else
1224 /* Start the one second timer. */
1225 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1226
1227 sc->sc_flags &= ~GEM_LINK;
1228 ifp->if_flags |= IFF_RUNNING;
1229 ifp->if_flags &= ~IFF_OACTIVE;
1230 ifp->if_timer = 0;
1231 sc->sc_if_flags = ifp->if_flags;
1232 out:
1233 splx(s);
1234
1235 return (0);
1236 }
1237
1238 void
1239 gem_init_regs(struct gem_softc *sc)
1240 {
1241 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1242 bus_space_tag_t t = sc->sc_bustag;
1243 bus_space_handle_t h = sc->sc_h1;
1244 const u_char *laddr = CLLADDR(ifp->if_sadl);
1245 u_int32_t v;
1246
1247 /* These regs are not cleared on reset */
1248 if (!sc->sc_inited) {
1249
1250 /* Load recommended values */
1251 bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1252 bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1253 bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1254
1255 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1256 /* Max frame and max burst size */
1257 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1258 ETHER_MAX_LEN | (0x2000<<16));
1259
1260 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1261 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1262 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1263 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1264 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1265 ((laddr[5]<<8)|laddr[4])&0x3ff);
1266
1267 /* Secondary MAC addr set to 0:0:0:0:0:0 */
1268 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1269 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1270 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1271
1272 /* MAC control addr set to 01:80:c2:00:00:01 */
1273 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1274 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1275 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1276
1277 /* MAC filter addr set to 0:0:0:0:0:0 */
1278 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1279 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1280 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1281
1282 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1283 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1284
1285 sc->sc_inited = 1;
1286 }
1287
1288 /* Counters need to be zeroed */
1289 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1290 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1291 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1292 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1293 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1294 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1295 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1296 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1297 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1298 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1299 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1300
1301 /* Set XOFF PAUSE time. */
1302 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1303
1304 /*
1305 * Set the internal arbitration to "infinite" bursts of the
1306 * maximum length of 31 * 64 bytes so DMA transfers aren't
1307 * split up in cache line size chunks. This greatly improves
1308 * especially RX performance.
1309 * Enable silicon bug workarounds for the Apple variants.
1310 */
1311 bus_space_write_4(t, h, GEM_CONFIG,
1312 GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1313 ((sc->sc_flags & GEM_PCI) ?
1314 GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1315 GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1316
1317 /*
1318 * Set the station address.
1319 */
1320 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1321 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1322 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1323
1324 /*
1325 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1326 */
1327 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1328 v = GEM_MAC_XIF_TX_MII_ENA;
1329 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1330 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1331 v |= GEM_MAC_XIF_FDPLX_LED;
1332 if (sc->sc_flags & GEM_GIGABIT)
1333 v |= GEM_MAC_XIF_GMII_MODE;
1334 }
1335 } else {
1336 v |= GEM_MAC_XIF_GMII_MODE;
1337 }
1338 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1339 }
1340
1341 #ifdef GEM_DEBUG
1342 static void
1343 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1344 {
1345 int i;
1346
1347 for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1348 printf("descriptor %d:\t", i);
1349 printf("gd_flags: 0x%016" PRIx64 "\t",
1350 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1351 printf("gd_addr: 0x%016" PRIx64 "\n",
1352 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1353 if (i == lastdesc)
1354 break;
1355 }
1356 }
1357 #endif
1358
1359 static void
1360 gem_start(struct ifnet *ifp)
1361 {
1362 struct gem_softc *sc = ifp->if_softc;
1363 struct mbuf *m0, *m;
1364 struct gem_txsoft *txs;
1365 bus_dmamap_t dmamap;
1366 int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1367 #ifdef GEM_DEBUG
1368 int otxnext;
1369 #endif
1370 uint64_t flags = 0;
1371
1372 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1373 return;
1374
1375 /*
1376 * Remember the previous number of free descriptors and
1377 * the first descriptor we'll use.
1378 */
1379 ofree = sc->sc_txfree;
1380 #ifdef GEM_DEBUG
1381 otxnext = sc->sc_txnext;
1382 #endif
1383
1384 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1385 device_xname(sc->sc_dev), ofree, otxnext));
1386
1387 /*
1388 * Loop through the send queue, setting up transmit descriptors
1389 * until we drain the queue, or use up all available transmit
1390 * descriptors.
1391 */
1392 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1393 sc->sc_txfree != 0) {
1394 /*
1395 * Grab a packet off the queue.
1396 */
1397 IFQ_POLL(&ifp->if_snd, m0);
1398 if (m0 == NULL)
1399 break;
1400 m = NULL;
1401
1402 dmamap = txs->txs_dmamap;
1403
1404 /*
1405 * Load the DMA map. If this fails, the packet either
1406 * didn't fit in the alloted number of segments, or we were
1407 * short on resources. In this case, we'll copy and try
1408 * again.
1409 */
1410 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1411 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1412 (m0->m_pkthdr.len < ETHER_MIN_TX &&
1413 dmamap->dm_nsegs == GEM_NTXSEGS)) {
1414 if (m0->m_pkthdr.len > MCLBYTES) {
1415 aprint_error_dev(sc->sc_dev,
1416 "unable to allocate jumbo Tx cluster\n");
1417 IFQ_DEQUEUE(&ifp->if_snd, m0);
1418 m_freem(m0);
1419 continue;
1420 }
1421 MGETHDR(m, M_DONTWAIT, MT_DATA);
1422 if (m == NULL) {
1423 aprint_error_dev(sc->sc_dev,
1424 "unable to allocate Tx mbuf\n");
1425 break;
1426 }
1427 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1428 if (m0->m_pkthdr.len > MHLEN) {
1429 MCLGET(m, M_DONTWAIT);
1430 if ((m->m_flags & M_EXT) == 0) {
1431 aprint_error_dev(sc->sc_dev,
1432 "unable to allocate Tx cluster\n");
1433 m_freem(m);
1434 break;
1435 }
1436 }
1437 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1438 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1439 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1440 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1441 if (error) {
1442 aprint_error_dev(sc->sc_dev,
1443 "unable to load Tx buffer, error = %d\n",
1444 error);
1445 break;
1446 }
1447 }
1448
1449 /*
1450 * Ensure we have enough descriptors free to describe
1451 * the packet.
1452 */
1453 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1454 (sc->sc_txfree - 1) : sc->sc_txfree)) {
1455 /*
1456 * Not enough free descriptors to transmit this
1457 * packet. We haven't committed to anything yet,
1458 * so just unload the DMA map, put the packet
1459 * back on the queue, and punt. Notify the upper
1460 * layer that there are no more slots left.
1461 *
1462 * XXX We could allocate an mbuf and copy, but
1463 * XXX it is worth it?
1464 */
1465 ifp->if_flags |= IFF_OACTIVE;
1466 sc->sc_if_flags = ifp->if_flags;
1467 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1468 if (m != NULL)
1469 m_freem(m);
1470 break;
1471 }
1472
1473 IFQ_DEQUEUE(&ifp->if_snd, m0);
1474 if (m != NULL) {
1475 m_freem(m0);
1476 m0 = m;
1477 }
1478
1479 /*
1480 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1481 */
1482
1483 /* Sync the DMA map. */
1484 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1485 BUS_DMASYNC_PREWRITE);
1486
1487 /*
1488 * Initialize the transmit descriptors.
1489 */
1490 firsttx = sc->sc_txnext;
1491 for (nexttx = firsttx, seg = 0;
1492 seg < dmamap->dm_nsegs;
1493 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1494
1495 /*
1496 * If this is the first descriptor we're
1497 * enqueueing, set the start of packet flag,
1498 * and the checksum stuff if we want the hardware
1499 * to do it.
1500 */
1501 sc->sc_txdescs[nexttx].gd_addr =
1502 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1503 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1504 if (nexttx == firsttx) {
1505 flags |= GEM_TD_START_OF_PACKET;
1506 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1507 sc->sc_txwin = 0;
1508 flags |= GEM_TD_INTERRUPT_ME;
1509 }
1510
1511 #ifdef INET
1512 /* h/w checksum */
1513 if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1514 m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1515 struct ether_header *eh;
1516 uint16_t offset, start;
1517
1518 eh = mtod(m0, struct ether_header *);
1519 switch (ntohs(eh->ether_type)) {
1520 case ETHERTYPE_IP:
1521 start = ETHER_HDR_LEN;
1522 break;
1523 case ETHERTYPE_VLAN:
1524 start = ETHER_HDR_LEN +
1525 ETHER_VLAN_ENCAP_LEN;
1526 break;
1527 default:
1528 /* unsupported, drop it */
1529 m_free(m0);
1530 continue;
1531 }
1532 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1533 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1534 flags |= (start <<
1535 GEM_TD_CXSUM_STARTSHFT) |
1536 (offset <<
1537 GEM_TD_CXSUM_STUFFSHFT) |
1538 GEM_TD_CXSUM_ENABLE;
1539 }
1540 #endif
1541 }
1542 if (seg == dmamap->dm_nsegs - 1) {
1543 flags |= GEM_TD_END_OF_PACKET;
1544 } else {
1545 /* last flag set outside of loop */
1546 sc->sc_txdescs[nexttx].gd_flags =
1547 GEM_DMA_WRITE(sc, flags);
1548 }
1549 lasttx = nexttx;
1550 }
1551 if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1552 /* add padding buffer at end of chain */
1553 flags &= ~GEM_TD_END_OF_PACKET;
1554 sc->sc_txdescs[lasttx].gd_flags =
1555 GEM_DMA_WRITE(sc, flags);
1556
1557 sc->sc_txdescs[nexttx].gd_addr =
1558 GEM_DMA_WRITE(sc,
1559 sc->sc_nulldmamap->dm_segs[0].ds_addr);
1560 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1561 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1562 lasttx = nexttx;
1563 nexttx = GEM_NEXTTX(nexttx);
1564 seg++;
1565 }
1566 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1567
1568 KASSERT(lasttx != -1);
1569
1570 /*
1571 * Store a pointer to the packet so we can free it later,
1572 * and remember what txdirty will be once the packet is
1573 * done.
1574 */
1575 txs->txs_mbuf = m0;
1576 txs->txs_firstdesc = sc->sc_txnext;
1577 txs->txs_lastdesc = lasttx;
1578 txs->txs_ndescs = seg;
1579
1580 #ifdef GEM_DEBUG
1581 if (ifp->if_flags & IFF_DEBUG) {
1582 printf(" gem_start %p transmit chain:\n", txs);
1583 gem_txsoft_print(sc, txs->txs_firstdesc,
1584 txs->txs_lastdesc);
1585 }
1586 #endif
1587
1588 /* Sync the descriptors we're using. */
1589 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1590 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1591
1592 /* Advance the tx pointer. */
1593 sc->sc_txfree -= txs->txs_ndescs;
1594 sc->sc_txnext = nexttx;
1595
1596 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1597 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1598
1599 /*
1600 * Pass the packet to any BPF listeners.
1601 */
1602 bpf_mtap(ifp, m0, BPF_D_OUT);
1603 }
1604
1605 if (txs == NULL || sc->sc_txfree == 0) {
1606 /* No more slots left; notify upper layer. */
1607 ifp->if_flags |= IFF_OACTIVE;
1608 sc->sc_if_flags = ifp->if_flags;
1609 }
1610
1611 if (sc->sc_txfree != ofree) {
1612 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1613 device_xname(sc->sc_dev), lasttx, otxnext));
1614 /*
1615 * The entire packet chain is set up.
1616 * Kick the transmitter.
1617 */
1618 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1619 device_xname(sc->sc_dev), nexttx));
1620 bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1621 sc->sc_txnext);
1622
1623 /* Set a watchdog timer in case the chip flakes out. */
1624 ifp->if_timer = 5;
1625 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1626 device_xname(sc->sc_dev), ifp->if_timer));
1627 }
1628 }
1629
1630 /*
1631 * Transmit interrupt.
1632 */
1633 int
1634 gem_tint(struct gem_softc *sc)
1635 {
1636 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1637 bus_space_tag_t t = sc->sc_bustag;
1638 bus_space_handle_t mac = sc->sc_h1;
1639 struct gem_txsoft *txs;
1640 int txlast;
1641 int progress = 0;
1642 u_int32_t v;
1643
1644 DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1645
1646 /* Unload collision counters ... */
1647 v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1648 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1649 ifp->if_collisions += v +
1650 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1651 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1652 ifp->if_oerrors += v;
1653
1654 /* ... then clear the hardware counters. */
1655 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1656 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1657 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1658 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1659
1660 /*
1661 * Go through our Tx list and free mbufs for those
1662 * frames that have been transmitted.
1663 */
1664 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1665 /*
1666 * In theory, we could harvest some descriptors before
1667 * the ring is empty, but that's a bit complicated.
1668 *
1669 * GEM_TX_COMPLETION points to the last descriptor
1670 * processed +1.
1671 *
1672 * Let's assume that the NIC writes back to the Tx
1673 * descriptors before it updates the completion
1674 * register. If the NIC has posted writes to the
1675 * Tx descriptors, PCI ordering requires that the
1676 * posted writes flush to RAM before the register-read
1677 * finishes. So let's read the completion register,
1678 * before syncing the descriptors, so that we
1679 * examine Tx descriptors that are at least as
1680 * current as the completion register.
1681 */
1682 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1683 DPRINTF(sc,
1684 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1685 txs->txs_lastdesc, txlast));
1686 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1687 if (txlast >= txs->txs_firstdesc &&
1688 txlast <= txs->txs_lastdesc)
1689 break;
1690 } else if (txlast >= txs->txs_firstdesc ||
1691 txlast <= txs->txs_lastdesc)
1692 break;
1693
1694 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1695 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1696
1697 #ifdef GEM_DEBUG /* XXX DMA synchronization? */
1698 if (ifp->if_flags & IFF_DEBUG) {
1699 printf(" txsoft %p transmit chain:\n", txs);
1700 gem_txsoft_print(sc, txs->txs_firstdesc,
1701 txs->txs_lastdesc);
1702 }
1703 #endif
1704
1705
1706 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1707 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1708
1709 sc->sc_txfree += txs->txs_ndescs;
1710
1711 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1712 0, txs->txs_dmamap->dm_mapsize,
1713 BUS_DMASYNC_POSTWRITE);
1714 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1715 if (txs->txs_mbuf != NULL) {
1716 m_freem(txs->txs_mbuf);
1717 txs->txs_mbuf = NULL;
1718 }
1719
1720 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1721
1722 ifp->if_opackets++;
1723 progress = 1;
1724 }
1725
1726 #if 0
1727 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1728 "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1729 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1730 ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1731 GEM_TX_DATA_PTR_HI) << 32) |
1732 bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1733 GEM_TX_DATA_PTR_LO),
1734 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1735 #endif
1736
1737 if (progress) {
1738 if (sc->sc_txfree == GEM_NTXDESC - 1)
1739 sc->sc_txwin = 0;
1740
1741 /* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1742 ifp->if_flags &= ~IFF_OACTIVE;
1743 sc->sc_if_flags = ifp->if_flags;
1744 ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1745 if_schedule_deferred_start(ifp);
1746 }
1747 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1748 device_xname(sc->sc_dev), ifp->if_timer));
1749
1750 return (1);
1751 }
1752
1753 /*
1754 * Receive interrupt.
1755 */
1756 int
1757 gem_rint(struct gem_softc *sc)
1758 {
1759 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1760 bus_space_tag_t t = sc->sc_bustag;
1761 bus_space_handle_t h = sc->sc_h1;
1762 struct gem_rxsoft *rxs;
1763 struct mbuf *m;
1764 u_int64_t rxstat;
1765 u_int32_t rxcomp;
1766 int i, len, progress = 0;
1767
1768 DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1769
1770 /*
1771 * Ignore spurious interrupt that sometimes occurs before
1772 * we are set up when we network boot.
1773 */
1774 if (!sc->sc_meminited)
1775 return 1;
1776
1777 /*
1778 * Read the completion register once. This limits
1779 * how long the following loop can execute.
1780 */
1781 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1782
1783 /*
1784 * XXX Read the lastrx only once at the top for speed.
1785 */
1786 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1787 sc->sc_rxptr, rxcomp));
1788
1789 /*
1790 * Go into the loop at least once.
1791 */
1792 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1793 i = GEM_NEXTRX(i)) {
1794 rxs = &sc->sc_rxsoft[i];
1795
1796 GEM_CDRXSYNC(sc, i,
1797 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1798
1799 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1800
1801 if (rxstat & GEM_RD_OWN) {
1802 GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1803 /*
1804 * We have processed all of the receive buffers.
1805 */
1806 break;
1807 }
1808
1809 progress++;
1810
1811 if (rxstat & GEM_RD_BAD_CRC) {
1812 ifp->if_ierrors++;
1813 aprint_error_dev(sc->sc_dev,
1814 "receive error: CRC error\n");
1815 GEM_INIT_RXDESC(sc, i);
1816 continue;
1817 }
1818
1819 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1820 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1821 #ifdef GEM_DEBUG
1822 if (ifp->if_flags & IFF_DEBUG) {
1823 printf(" rxsoft %p descriptor %d: ", rxs, i);
1824 printf("gd_flags: 0x%016llx\t", (long long)
1825 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1826 printf("gd_addr: 0x%016llx\n", (long long)
1827 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1828 }
1829 #endif
1830
1831 /* No errors; receive the packet. */
1832 len = GEM_RD_BUFLEN(rxstat);
1833
1834 /*
1835 * Allocate a new mbuf cluster. If that fails, we are
1836 * out of memory, and must drop the packet and recycle
1837 * the buffer that's already attached to this descriptor.
1838 */
1839 m = rxs->rxs_mbuf;
1840 if (gem_add_rxbuf(sc, i) != 0) {
1841 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1842 ifp->if_ierrors++;
1843 aprint_error_dev(sc->sc_dev,
1844 "receive error: RX no buffer space\n");
1845 GEM_INIT_RXDESC(sc, i);
1846 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1847 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1848 continue;
1849 }
1850 m->m_data += 2; /* We're already off by two */
1851
1852 m_set_rcvif(m, ifp);
1853 m->m_pkthdr.len = m->m_len = len;
1854
1855 #ifdef INET
1856 /* hardware checksum */
1857 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1858 struct ether_header *eh;
1859 struct ip *ip;
1860 int32_t hlen, pktlen;
1861
1862 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1863 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1864 ETHER_VLAN_ENCAP_LEN;
1865 eh = (struct ether_header *) (mtod(m, char *) +
1866 ETHER_VLAN_ENCAP_LEN);
1867 } else {
1868 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1869 eh = mtod(m, struct ether_header *);
1870 }
1871 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1872 goto swcsum;
1873 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1874
1875 /* IPv4 only */
1876 if (ip->ip_v != IPVERSION)
1877 goto swcsum;
1878
1879 hlen = ip->ip_hl << 2;
1880 if (hlen < sizeof(struct ip))
1881 goto swcsum;
1882
1883 /*
1884 * bail if too short, has random trailing garbage,
1885 * truncated, fragment, or has ethernet pad.
1886 */
1887 if ((ntohs(ip->ip_len) < hlen) ||
1888 (ntohs(ip->ip_len) != pktlen) ||
1889 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1890 goto swcsum;
1891
1892 switch (ip->ip_p) {
1893 case IPPROTO_TCP:
1894 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1895 goto swcsum;
1896 if (pktlen < (hlen + sizeof(struct tcphdr)))
1897 goto swcsum;
1898 m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1899 break;
1900 case IPPROTO_UDP:
1901 /* FALLTHROUGH */
1902 default:
1903 goto swcsum;
1904 }
1905
1906 /* the uncomplemented sum is expected */
1907 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1908
1909 /* if the pkt had ip options, we have to deduct them */
1910 if (hlen > sizeof(struct ip)) {
1911 uint16_t *opts;
1912 uint32_t optsum, temp;
1913
1914 optsum = 0;
1915 temp = hlen - sizeof(struct ip);
1916 opts = (uint16_t *) ((char *) ip +
1917 sizeof(struct ip));
1918
1919 while (temp > 1) {
1920 optsum += ntohs(*opts++);
1921 temp -= 2;
1922 }
1923 while (optsum >> 16)
1924 optsum = (optsum >> 16) +
1925 (optsum & 0xffff);
1926
1927 /* Deduct ip opts sum from hwsum. */
1928 m->m_pkthdr.csum_data += (uint16_t)~optsum;
1929
1930 while (m->m_pkthdr.csum_data >> 16)
1931 m->m_pkthdr.csum_data =
1932 (m->m_pkthdr.csum_data >> 16) +
1933 (m->m_pkthdr.csum_data &
1934 0xffff);
1935 }
1936
1937 m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1938 M_CSUM_NO_PSEUDOHDR;
1939 } else
1940 swcsum:
1941 m->m_pkthdr.csum_flags = 0;
1942 #endif
1943 /* Pass it on. */
1944 if_percpuq_enqueue(ifp->if_percpuq, m);
1945 }
1946
1947 if (progress) {
1948 /* Update the receive pointer. */
1949 if (i == sc->sc_rxptr) {
1950 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1951 #ifdef GEM_DEBUG
1952 if (ifp->if_flags & IFF_DEBUG)
1953 printf("%s: rint: ring wrap\n",
1954 device_xname(sc->sc_dev));
1955 #endif
1956 }
1957 sc->sc_rxptr = i;
1958 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1959 }
1960 #ifdef GEM_COUNTERS
1961 if (progress <= 4) {
1962 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1963 } else if (progress < 32) {
1964 if (progress < 16)
1965 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1966 else
1967 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1968
1969 } else {
1970 if (progress < 64)
1971 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1972 else
1973 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1974 }
1975 #endif
1976
1977 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1978 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1979
1980 /* Read error counters ... */
1981 ifp->if_ierrors +=
1982 bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1983 bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1984 bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1985 bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1986
1987 /* ... then clear the hardware counters. */
1988 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1989 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1990 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1991 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1992
1993 return (1);
1994 }
1995
1996
1997 /*
1998 * gem_add_rxbuf:
1999 *
2000 * Add a receive buffer to the indicated descriptor.
2001 */
2002 int
2003 gem_add_rxbuf(struct gem_softc *sc, int idx)
2004 {
2005 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
2006 struct mbuf *m;
2007 int error;
2008
2009 MGETHDR(m, M_DONTWAIT, MT_DATA);
2010 if (m == NULL)
2011 return (ENOBUFS);
2012
2013 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2014 MCLGET(m, M_DONTWAIT);
2015 if ((m->m_flags & M_EXT) == 0) {
2016 m_freem(m);
2017 return (ENOBUFS);
2018 }
2019
2020 #ifdef GEM_DEBUG
2021 /* bzero the packet to check DMA */
2022 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2023 #endif
2024
2025 if (rxs->rxs_mbuf != NULL)
2026 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2027
2028 rxs->rxs_mbuf = m;
2029
2030 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2031 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2032 BUS_DMA_READ|BUS_DMA_NOWAIT);
2033 if (error) {
2034 aprint_error_dev(sc->sc_dev,
2035 "can't load rx DMA map %d, error = %d\n", idx, error);
2036 panic("gem_add_rxbuf"); /* XXX */
2037 }
2038
2039 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2040 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2041
2042 GEM_INIT_RXDESC(sc, idx);
2043
2044 return (0);
2045 }
2046
2047
2048 int
2049 gem_eint(struct gem_softc *sc, u_int status)
2050 {
2051 char bits[128];
2052 u_int32_t r, v;
2053
2054 if ((status & GEM_INTR_MIF) != 0) {
2055 printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2056 return (1);
2057 }
2058
2059 if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2060 gem_reset_rxdma(sc);
2061 return (1);
2062 }
2063
2064 if (status & GEM_INTR_BERR) {
2065 if (sc->sc_flags & GEM_PCI)
2066 r = GEM_ERROR_STATUS;
2067 else
2068 r = GEM_SBUS_ERROR_STATUS;
2069 bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2070 v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2071 aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2072 v);
2073 return (1);
2074 }
2075 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2076 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2077
2078 return (1);
2079 }
2080
2081
2082 /*
2083 * PCS interrupts.
2084 * We should receive these when the link status changes, but sometimes
2085 * we don't receive them for link up. We compensate for this in the
2086 * gem_tick() callout.
2087 */
2088 int
2089 gem_pint(struct gem_softc *sc)
2090 {
2091 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2092 bus_space_tag_t t = sc->sc_bustag;
2093 bus_space_handle_t h = sc->sc_h1;
2094 u_int32_t v, v2;
2095
2096 /*
2097 * Clear the PCS interrupt from GEM_STATUS. The PCS register is
2098 * latched, so we have to read it twice. There is only one bit in
2099 * use, so the value is meaningless.
2100 */
2101 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2102 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2103
2104 if ((ifp->if_flags & IFF_UP) == 0)
2105 return 1;
2106
2107 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2108 return 1;
2109
2110 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2111 /* If we see remote fault, our link partner is probably going away */
2112 if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2113 gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2114 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2115 /* Otherwise, we may need to wait after auto-negotiation completes */
2116 } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2117 GEM_MII_STATUS_ANEG_CPT) {
2118 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2119 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2120 }
2121 if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2122 if (sc->sc_flags & GEM_LINK) {
2123 return 1;
2124 }
2125 callout_stop(&sc->sc_tick_ch);
2126 v = bus_space_read_4(t, h, GEM_MII_ANAR);
2127 v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2128 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2129 sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2130 v &= v2;
2131 if (v & GEM_MII_ANEG_FUL_DUPLX) {
2132 sc->sc_mii.mii_media_active |= IFM_FDX;
2133 #ifdef GEM_DEBUG
2134 aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2135 #endif
2136 } else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2137 sc->sc_mii.mii_media_active |= IFM_HDX;
2138 #ifdef GEM_DEBUG
2139 aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2140 #endif
2141 } else {
2142 #ifdef GEM_DEBUG
2143 aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2144 #endif
2145 }
2146 gem_statuschange(sc);
2147 } else {
2148 if ((sc->sc_flags & GEM_LINK) == 0) {
2149 return 1;
2150 }
2151 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2152 sc->sc_mii.mii_media_status = IFM_AVALID;
2153 #ifdef GEM_DEBUG
2154 aprint_debug_dev(sc->sc_dev, "link down\n");
2155 #endif
2156 gem_statuschange(sc);
2157
2158 /* Start the 10 second timer */
2159 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2160 }
2161 return 1;
2162 }
2163
2164
2165
2166 int
2167 gem_intr(void *v)
2168 {
2169 struct gem_softc *sc = v;
2170 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2171 bus_space_tag_t t = sc->sc_bustag;
2172 bus_space_handle_t h = sc->sc_h1;
2173 u_int32_t status;
2174 int r = 0;
2175 #ifdef GEM_DEBUG
2176 char bits[128];
2177 #endif
2178
2179 /* XXX We should probably mask out interrupts until we're done */
2180
2181 sc->sc_ev_intr.ev_count++;
2182
2183 status = bus_space_read_4(t, h, GEM_STATUS);
2184 #ifdef GEM_DEBUG
2185 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2186 #endif
2187 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2188 device_xname(sc->sc_dev), (status >> 19), bits));
2189
2190
2191 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2192 r |= gem_eint(sc, status);
2193
2194 /* We don't bother with GEM_INTR_TX_DONE */
2195 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2196 GEM_COUNTER_INCR(sc, sc_ev_txint);
2197 r |= gem_tint(sc);
2198 }
2199
2200 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2201 GEM_COUNTER_INCR(sc, sc_ev_rxint);
2202 r |= gem_rint(sc);
2203 }
2204
2205 /* We should eventually do more than just print out error stats. */
2206 if (status & GEM_INTR_TX_MAC) {
2207 int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2208 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2209 printf("%s: MAC tx fault, status %x\n",
2210 device_xname(sc->sc_dev), txstat);
2211 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2212 gem_init(ifp);
2213 }
2214 if (status & GEM_INTR_RX_MAC) {
2215 int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2216 /*
2217 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2218 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2219 * silicon bug so handle them silently. So if we detect
2220 * an RX FIFO overflow, we fire off a timer, and check
2221 * whether we're still making progress by looking at the
2222 * RX FIFO write and read pointers.
2223 */
2224 if (rxstat & GEM_MAC_RX_OVERFLOW) {
2225 ifp->if_ierrors++;
2226 aprint_error_dev(sc->sc_dev,
2227 "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
2228 sc->sc_rx_fifo_wr_ptr =
2229 bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2230 sc->sc_rx_fifo_rd_ptr =
2231 bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2232 callout_schedule(&sc->sc_rx_watchdog, 400);
2233 } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2234 printf("%s: MAC rx fault, status 0x%02x\n",
2235 device_xname(sc->sc_dev), rxstat);
2236 }
2237 if (status & GEM_INTR_PCS) {
2238 r |= gem_pint(sc);
2239 }
2240
2241 /* Do we need to do anything with these?
2242 if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2243 status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2244 if ((status2 & GEM_MAC_PAUSED) != 0)
2245 aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2246 GEM_MAC_PAUSE_TIME(status2));
2247 if ((status2 & GEM_MAC_PAUSE) != 0)
2248 aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2249 if ((status2 & GEM_MAC_RESUME) != 0)
2250 aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2251 }
2252 if ((status & GEM_INTR_MIF) != 0)
2253 aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2254 */
2255 rnd_add_uint32(&sc->rnd_source, status);
2256 return (r);
2257 }
2258
2259 void
2260 gem_rx_watchdog(void *arg)
2261 {
2262 struct gem_softc *sc = arg;
2263 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2264 bus_space_tag_t t = sc->sc_bustag;
2265 bus_space_handle_t h = sc->sc_h1;
2266 u_int32_t rx_fifo_wr_ptr;
2267 u_int32_t rx_fifo_rd_ptr;
2268 u_int32_t state;
2269
2270 if ((ifp->if_flags & IFF_RUNNING) == 0) {
2271 aprint_error_dev(sc->sc_dev, "receiver not running\n");
2272 return;
2273 }
2274
2275 rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2276 rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2277 state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
2278 if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
2279 ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
2280 ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
2281 (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
2282 {
2283 /*
2284 * The RX state machine is still in overflow state and
2285 * the RX FIFO write and read pointers seem to be
2286 * stuck. Whack the chip over the head to get things
2287 * going again.
2288 */
2289 aprint_error_dev(sc->sc_dev,
2290 "receiver stuck in overflow, resetting\n");
2291 gem_init(ifp);
2292 } else {
2293 if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
2294 aprint_error_dev(sc->sc_dev,
2295 "rx_watchdog: not in overflow state: 0x%x\n",
2296 state);
2297 }
2298 if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
2299 aprint_error_dev(sc->sc_dev,
2300 "rx_watchdog: wr & rd ptr different\n");
2301 }
2302 if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
2303 aprint_error_dev(sc->sc_dev,
2304 "rx_watchdog: wr pointer != saved\n");
2305 }
2306 if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
2307 aprint_error_dev(sc->sc_dev,
2308 "rx_watchdog: rd pointer != saved\n");
2309 }
2310 aprint_error_dev(sc->sc_dev, "resetting anyway\n");
2311 gem_init(ifp);
2312 }
2313 }
2314
2315 void
2316 gem_watchdog(struct ifnet *ifp)
2317 {
2318 struct gem_softc *sc = ifp->if_softc;
2319
2320 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2321 "GEM_MAC_RX_CONFIG %x\n",
2322 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2323 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2324 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2325
2326 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2327 ++ifp->if_oerrors;
2328
2329 /* Try to get more packets going. */
2330 gem_init(ifp);
2331 gem_start(ifp);
2332 }
2333
2334 /*
2335 * Initialize the MII Management Interface
2336 */
2337 void
2338 gem_mifinit(struct gem_softc *sc)
2339 {
2340 bus_space_tag_t t = sc->sc_bustag;
2341 bus_space_handle_t mif = sc->sc_h1;
2342
2343 /* Configure the MIF in frame mode */
2344 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2345 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2346 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2347 }
2348
2349 /*
2350 * MII interface
2351 *
2352 * The GEM MII interface supports at least three different operating modes:
2353 *
2354 * Bitbang mode is implemented using data, clock and output enable registers.
2355 *
2356 * Frame mode is implemented by loading a complete frame into the frame
2357 * register and polling the valid bit for completion.
2358 *
2359 * Polling mode uses the frame register but completion is indicated by
2360 * an interrupt.
2361 *
2362 */
2363 static int
2364 gem_mii_readreg(device_t self, int phy, int reg)
2365 {
2366 struct gem_softc *sc = device_private(self);
2367 bus_space_tag_t t = sc->sc_bustag;
2368 bus_space_handle_t mif = sc->sc_h1;
2369 int n;
2370 u_int32_t v;
2371
2372 #ifdef GEM_DEBUG1
2373 if (sc->sc_debug)
2374 printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2375 #endif
2376
2377 /* Construct the frame command */
2378 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
2379 GEM_MIF_FRAME_READ;
2380
2381 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2382 for (n = 0; n < 100; n++) {
2383 DELAY(1);
2384 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2385 if (v & GEM_MIF_FRAME_TA0)
2386 return (v & GEM_MIF_FRAME_DATA);
2387 }
2388
2389 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2390 return (0);
2391 }
2392
2393 static void
2394 gem_mii_writereg(device_t self, int phy, int reg, int val)
2395 {
2396 struct gem_softc *sc = device_private(self);
2397 bus_space_tag_t t = sc->sc_bustag;
2398 bus_space_handle_t mif = sc->sc_h1;
2399 int n;
2400 u_int32_t v;
2401
2402 #ifdef GEM_DEBUG1
2403 if (sc->sc_debug)
2404 printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2405 phy, reg, val);
2406 #endif
2407
2408 /* Construct the frame command */
2409 v = GEM_MIF_FRAME_WRITE |
2410 (phy << GEM_MIF_PHY_SHIFT) |
2411 (reg << GEM_MIF_REG_SHIFT) |
2412 (val & GEM_MIF_FRAME_DATA);
2413
2414 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2415 for (n = 0; n < 100; n++) {
2416 DELAY(1);
2417 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2418 if (v & GEM_MIF_FRAME_TA0)
2419 return;
2420 }
2421
2422 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2423 }
2424
2425 static void
2426 gem_mii_statchg(struct ifnet *ifp)
2427 {
2428 struct gem_softc *sc = ifp->if_softc;
2429 #ifdef GEM_DEBUG
2430 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2431 #endif
2432
2433 #ifdef GEM_DEBUG
2434 if (sc->sc_debug)
2435 printf("gem_mii_statchg: status change: phy = %d\n",
2436 sc->sc_phys[instance]);
2437 #endif
2438 gem_statuschange(sc);
2439 }
2440
2441 /*
2442 * Common status change for gem_mii_statchg() and gem_pint()
2443 */
2444 void
2445 gem_statuschange(struct gem_softc* sc)
2446 {
2447 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2448 bus_space_tag_t t = sc->sc_bustag;
2449 bus_space_handle_t mac = sc->sc_h1;
2450 int gigabit;
2451 u_int32_t rxcfg, txcfg, v;
2452
2453 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2454 IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2455 sc->sc_flags |= GEM_LINK;
2456 else
2457 sc->sc_flags &= ~GEM_LINK;
2458
2459 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2460 gigabit = 1;
2461 else
2462 gigabit = 0;
2463
2464 /*
2465 * The configuration done here corresponds to the steps F) and
2466 * G) and as far as enabling of RX and TX MAC goes also step H)
2467 * of the initialization sequence outlined in section 3.2.1 of
2468 * the GEM Gigabit Ethernet ASIC Specification.
2469 */
2470
2471 rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2472 rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2473 txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2474 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2475 txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2476 else if (gigabit) {
2477 rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2478 txcfg |= GEM_MAC_RX_CARR_EXTEND;
2479 }
2480 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2481 bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2482 BUS_SPACE_BARRIER_WRITE);
2483 if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2484 aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2485 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2486 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2487 bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2488 BUS_SPACE_BARRIER_WRITE);
2489 if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2490 aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2491 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2492
2493 v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2494 ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2495 bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2496
2497 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2498 gigabit != 0)
2499 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2500 GEM_MAC_SLOT_TIME_CARR_EXTEND);
2501 else
2502 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2503 GEM_MAC_SLOT_TIME_NORMAL);
2504
2505 /* XIF Configuration */
2506 if (sc->sc_flags & GEM_LINK)
2507 v = GEM_MAC_XIF_LINK_LED;
2508 else
2509 v = 0;
2510 v |= GEM_MAC_XIF_TX_MII_ENA;
2511
2512 /* If an external transceiver is connected, enable its MII drivers */
2513 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2514 if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2515 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2516 if (gigabit)
2517 v |= GEM_MAC_XIF_GMII_MODE;
2518 else
2519 v &= ~GEM_MAC_XIF_GMII_MODE;
2520 } else
2521 /* Internal MII needs buf enable */
2522 v |= GEM_MAC_XIF_MII_BUF_ENA;
2523 /* MII needs echo disable if half duplex. */
2524 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2525 /* turn on full duplex LED */
2526 v |= GEM_MAC_XIF_FDPLX_LED;
2527 else
2528 /* half duplex -- disable echo */
2529 v |= GEM_MAC_XIF_ECHO_DISABL;
2530 } else {
2531 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2532 v |= GEM_MAC_XIF_FDPLX_LED;
2533 v |= GEM_MAC_XIF_GMII_MODE;
2534 }
2535 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2536
2537 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2538 (sc->sc_flags & GEM_LINK) != 0) {
2539 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2540 txcfg | GEM_MAC_TX_ENABLE);
2541 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2542 rxcfg | GEM_MAC_RX_ENABLE);
2543 }
2544 }
2545
2546 int
2547 gem_ser_mediachange(struct ifnet *ifp)
2548 {
2549 struct gem_softc *sc = ifp->if_softc;
2550 u_int s, t;
2551
2552 if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2553 return EINVAL;
2554
2555 s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2556 if (s == IFM_AUTO) {
2557 if (sc->sc_mii_media != s) {
2558 #ifdef GEM_DEBUG
2559 aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2560 #endif
2561 sc->sc_mii_media = s;
2562 if (ifp->if_flags & IFF_UP) {
2563 gem_pcs_stop(sc, 0);
2564 gem_pcs_start(sc);
2565 }
2566 }
2567 return 0;
2568 }
2569 if (s == IFM_1000_SX) {
2570 t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2571 if (t == IFM_FDX || t == IFM_HDX) {
2572 if (sc->sc_mii_media != t) {
2573 sc->sc_mii_media = t;
2574 #ifdef GEM_DEBUG
2575 aprint_debug_dev(sc->sc_dev,
2576 "setting media to 1000baseSX-%s\n",
2577 t == IFM_FDX ? "FDX" : "HDX");
2578 #endif
2579 if (ifp->if_flags & IFF_UP) {
2580 gem_pcs_stop(sc, 0);
2581 gem_pcs_start(sc);
2582 }
2583 }
2584 return 0;
2585 }
2586 }
2587 return EINVAL;
2588 }
2589
2590 void
2591 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2592 {
2593 struct gem_softc *sc = ifp->if_softc;
2594
2595 if ((ifp->if_flags & IFF_UP) == 0)
2596 return;
2597 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2598 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2599 }
2600
2601 static int
2602 gem_ifflags_cb(struct ethercom *ec)
2603 {
2604 struct ifnet *ifp = &ec->ec_if;
2605 struct gem_softc *sc = ifp->if_softc;
2606 int change = ifp->if_flags ^ sc->sc_if_flags;
2607
2608 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2609 return ENETRESET;
2610 else if ((change & IFF_PROMISC) != 0)
2611 gem_setladrf(sc);
2612 return 0;
2613 }
2614
2615 /*
2616 * Process an ioctl request.
2617 */
2618 int
2619 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2620 {
2621 struct gem_softc *sc = ifp->if_softc;
2622 int s, error = 0;
2623
2624 s = splnet();
2625
2626 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2627 error = 0;
2628 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2629 ;
2630 else if (ifp->if_flags & IFF_RUNNING) {
2631 /*
2632 * Multicast list has changed; set the hardware filter
2633 * accordingly.
2634 */
2635 gem_setladrf(sc);
2636 }
2637 }
2638
2639 /* Try to get things going again */
2640 if (ifp->if_flags & IFF_UP)
2641 gem_start(ifp);
2642 splx(s);
2643 return (error);
2644 }
2645
2646 static void
2647 gem_inten(struct gem_softc *sc)
2648 {
2649 bus_space_tag_t t = sc->sc_bustag;
2650 bus_space_handle_t h = sc->sc_h1;
2651 uint32_t v;
2652
2653 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2654 v = GEM_INTR_PCS;
2655 else
2656 v = GEM_INTR_MIF;
2657 bus_space_write_4(t, h, GEM_INTMASK,
2658 ~(GEM_INTR_TX_INTME |
2659 GEM_INTR_TX_EMPTY |
2660 GEM_INTR_TX_MAC |
2661 GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
2662 GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
2663 GEM_INTR_BERR | v));
2664 }
2665
2666 bool
2667 gem_resume(device_t self, const pmf_qual_t *qual)
2668 {
2669 struct gem_softc *sc = device_private(self);
2670
2671 gem_inten(sc);
2672
2673 return true;
2674 }
2675
2676 bool
2677 gem_suspend(device_t self, const pmf_qual_t *qual)
2678 {
2679 struct gem_softc *sc = device_private(self);
2680 bus_space_tag_t t = sc->sc_bustag;
2681 bus_space_handle_t h = sc->sc_h1;
2682
2683 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2684
2685 return true;
2686 }
2687
2688 bool
2689 gem_shutdown(device_t self, int howto)
2690 {
2691 struct gem_softc *sc = device_private(self);
2692 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2693
2694 gem_stop(ifp, 1);
2695
2696 return true;
2697 }
2698
2699 /*
2700 * Set up the logical address filter.
2701 */
2702 void
2703 gem_setladrf(struct gem_softc *sc)
2704 {
2705 struct ethercom *ec = &sc->sc_ethercom;
2706 struct ifnet *ifp = &ec->ec_if;
2707 struct ether_multi *enm;
2708 struct ether_multistep step;
2709 bus_space_tag_t t = sc->sc_bustag;
2710 bus_space_handle_t h = sc->sc_h1;
2711 u_int32_t crc;
2712 u_int32_t hash[16];
2713 u_int32_t v;
2714 int i;
2715
2716 /* Get current RX configuration */
2717 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2718
2719 /*
2720 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2721 * and hash filter. Depending on the case, the right bit will be
2722 * enabled.
2723 */
2724 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2725 GEM_MAC_RX_PROMISC_GRP);
2726
2727 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2728 /* Turn on promiscuous mode */
2729 v |= GEM_MAC_RX_PROMISCUOUS;
2730 ifp->if_flags |= IFF_ALLMULTI;
2731 goto chipit;
2732 }
2733
2734 /*
2735 * Set up multicast address filter by passing all multicast addresses
2736 * through a crc generator, and then using the high order 8 bits as an
2737 * index into the 256 bit logical address filter. The high order 4
2738 * bits selects the word, while the other 4 bits select the bit within
2739 * the word (where bit 0 is the MSB).
2740 */
2741
2742 /* Clear hash table */
2743 memset(hash, 0, sizeof(hash));
2744
2745 ETHER_FIRST_MULTI(step, ec, enm);
2746 while (enm != NULL) {
2747 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2748 /*
2749 * We must listen to a range of multicast addresses.
2750 * For now, just accept all multicasts, rather than
2751 * trying to set only those filter bits needed to match
2752 * the range. (At this time, the only use of address
2753 * ranges is for IP multicast routing, for which the
2754 * range is big enough to require all bits set.)
2755 * XXX should use the address filters for this
2756 */
2757 ifp->if_flags |= IFF_ALLMULTI;
2758 v |= GEM_MAC_RX_PROMISC_GRP;
2759 goto chipit;
2760 }
2761
2762 /* Get the LE CRC32 of the address */
2763 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2764
2765 /* Just want the 8 most significant bits. */
2766 crc >>= 24;
2767
2768 /* Set the corresponding bit in the filter. */
2769 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2770
2771 ETHER_NEXT_MULTI(step, enm);
2772 }
2773
2774 v |= GEM_MAC_RX_HASH_FILTER;
2775 ifp->if_flags &= ~IFF_ALLMULTI;
2776
2777 /* Now load the hash table into the chip (if we are using it) */
2778 for (i = 0; i < 16; i++) {
2779 bus_space_write_4(t, h,
2780 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2781 hash[i]);
2782 }
2783
2784 chipit:
2785 sc->sc_if_flags = ifp->if_flags;
2786 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2787 }
2788