Home | History | Annotate | Line # | Download | only in ic
gem.c revision 1.113
      1 /*	$NetBSD: gem.c,v 1.113 2019/01/22 03:42:26 msaitoh Exp $ */
      2 
      3 /*
      4  *
      5  * Copyright (C) 2001 Eduardo Horvath.
      6  * Copyright (c) 2001-2003 Thomas Moestl
      7  * All rights reserved.
      8  *
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 /*
     34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
     35  * See `GEM Gigabit Ethernet ASIC Specification'
     36  *   http://www.sun.com/processors/manuals/ge.pdf
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.113 2019/01/22 03:42:26 msaitoh Exp $");
     41 
     42 #include "opt_inet.h"
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/callout.h>
     47 #include <sys/mbuf.h>
     48 #include <sys/syslog.h>
     49 #include <sys/malloc.h>
     50 #include <sys/kernel.h>
     51 #include <sys/socket.h>
     52 #include <sys/ioctl.h>
     53 #include <sys/errno.h>
     54 #include <sys/device.h>
     55 
     56 #include <machine/endian.h>
     57 
     58 #include <net/if.h>
     59 #include <net/if_dl.h>
     60 #include <net/if_media.h>
     61 #include <net/if_ether.h>
     62 
     63 #ifdef INET
     64 #include <netinet/in.h>
     65 #include <netinet/in_systm.h>
     66 #include <netinet/in_var.h>
     67 #include <netinet/ip.h>
     68 #include <netinet/tcp.h>
     69 #include <netinet/udp.h>
     70 #endif
     71 
     72 #include <net/bpf.h>
     73 
     74 #include <sys/bus.h>
     75 #include <sys/intr.h>
     76 
     77 #include <dev/mii/mii.h>
     78 #include <dev/mii/miivar.h>
     79 #include <dev/mii/mii_bitbang.h>
     80 
     81 #include <dev/ic/gemreg.h>
     82 #include <dev/ic/gemvar.h>
     83 
     84 #define TRIES	10000
     85 
     86 static void	gem_inten(struct gem_softc *);
     87 static void	gem_start(struct ifnet *);
     88 static void	gem_stop(struct ifnet *, int);
     89 int		gem_ioctl(struct ifnet *, u_long, void *);
     90 void		gem_tick(void *);
     91 void		gem_watchdog(struct ifnet *);
     92 void		gem_rx_watchdog(void *);
     93 void		gem_pcs_start(struct gem_softc *sc);
     94 void		gem_pcs_stop(struct gem_softc *sc, int);
     95 int		gem_init(struct ifnet *);
     96 void		gem_init_regs(struct gem_softc *sc);
     97 static int	gem_ringsize(int sz);
     98 static int	gem_meminit(struct gem_softc *);
     99 void		gem_mifinit(struct gem_softc *);
    100 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
    101 		    uint32_t, uint32_t);
    102 void		gem_reset(struct gem_softc *);
    103 int		gem_reset_rx(struct gem_softc *sc);
    104 static void	gem_reset_rxdma(struct gem_softc *sc);
    105 static void	gem_rx_common(struct gem_softc *sc);
    106 int		gem_reset_tx(struct gem_softc *sc);
    107 int		gem_disable_rx(struct gem_softc *sc);
    108 int		gem_disable_tx(struct gem_softc *sc);
    109 static void	gem_rxdrain(struct gem_softc *sc);
    110 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
    111 void		gem_setladrf(struct gem_softc *);
    112 
    113 /* MII methods & callbacks */
    114 static int	gem_mii_readreg(device_t, int, int, uint16_t *);
    115 static int	gem_mii_writereg(device_t, int, int, uint16_t);
    116 static void	gem_mii_statchg(struct ifnet *);
    117 
    118 static int	gem_ifflags_cb(struct ethercom *);
    119 
    120 void		gem_statuschange(struct gem_softc *);
    121 
    122 int		gem_ser_mediachange(struct ifnet *);
    123 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
    124 
    125 static void	gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
    126 
    127 struct mbuf	*gem_get(struct gem_softc *, int, int);
    128 int		gem_put(struct gem_softc *, int, struct mbuf *);
    129 void		gem_read(struct gem_softc *, int, int);
    130 int		gem_pint(struct gem_softc *);
    131 int		gem_eint(struct gem_softc *, u_int);
    132 int		gem_rint(struct gem_softc *);
    133 int		gem_tint(struct gem_softc *);
    134 void		gem_power(int, void *);
    135 
    136 #ifdef GEM_DEBUG
    137 static void gem_txsoft_print(const struct gem_softc *, int, int);
    138 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
    139 				printf x
    140 #else
    141 #define	DPRINTF(sc, x)	/* nothing */
    142 #endif
    143 
    144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
    145 
    146 int
    147 gem_detach(struct gem_softc *sc, int flags)
    148 {
    149 	int i;
    150 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    151 	bus_space_tag_t t = sc->sc_bustag;
    152 	bus_space_handle_t h = sc->sc_h1;
    153 
    154 	/*
    155 	 * Free any resources we've allocated during the attach.
    156 	 * Do this in reverse order and fall through.
    157 	 */
    158 	switch (sc->sc_att_stage) {
    159 	case GEM_ATT_BACKEND_2:
    160 	case GEM_ATT_BACKEND_1:
    161 	case GEM_ATT_FINISHED:
    162 		bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
    163 		gem_stop(&sc->sc_ethercom.ec_if, 1);
    164 
    165 #ifdef GEM_COUNTERS
    166 		for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
    167 			evcnt_detach(&sc->sc_ev_rxhist[i]);
    168 		evcnt_detach(&sc->sc_ev_rxnobuf);
    169 		evcnt_detach(&sc->sc_ev_rxfull);
    170 		evcnt_detach(&sc->sc_ev_rxint);
    171 		evcnt_detach(&sc->sc_ev_txint);
    172 #endif
    173 		evcnt_detach(&sc->sc_ev_intr);
    174 
    175 		rnd_detach_source(&sc->rnd_source);
    176 		ether_ifdetach(ifp);
    177 		if_detach(ifp);
    178 		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
    179 
    180 		callout_destroy(&sc->sc_tick_ch);
    181 		callout_destroy(&sc->sc_rx_watchdog);
    182 
    183 		/*FALLTHROUGH*/
    184 	case GEM_ATT_MII:
    185 		sc->sc_att_stage = GEM_ATT_MII;
    186 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    187 		/*FALLTHROUGH*/
    188 	case GEM_ATT_7:
    189 		for (i = 0; i < GEM_NRXDESC; i++) {
    190 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    191 				bus_dmamap_destroy(sc->sc_dmatag,
    192 				    sc->sc_rxsoft[i].rxs_dmamap);
    193 		}
    194 		/*FALLTHROUGH*/
    195 	case GEM_ATT_6:
    196 		for (i = 0; i < GEM_TXQUEUELEN; i++) {
    197 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
    198 				bus_dmamap_destroy(sc->sc_dmatag,
    199 				    sc->sc_txsoft[i].txs_dmamap);
    200 		}
    201 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
    202 		/*FALLTHROUGH*/
    203 	case GEM_ATT_5:
    204 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
    205 		/*FALLTHROUGH*/
    206 	case GEM_ATT_4:
    207 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
    208 		/*FALLTHROUGH*/
    209 	case GEM_ATT_3:
    210 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
    211 		/*FALLTHROUGH*/
    212 	case GEM_ATT_2:
    213 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
    214 		    sizeof(struct gem_control_data));
    215 		/*FALLTHROUGH*/
    216 	case GEM_ATT_1:
    217 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
    218 		/*FALLTHROUGH*/
    219 	case GEM_ATT_0:
    220 		sc->sc_att_stage = GEM_ATT_0;
    221 		/*FALLTHROUGH*/
    222 	case GEM_ATT_BACKEND_0:
    223 		break;
    224 	}
    225 	return 0;
    226 }
    227 
    228 static void
    229 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
    230 {
    231 	cfattach_t ca = device_cfattach(sc->sc_dev);
    232 
    233 	sc->sc_att_stage = stage;
    234 	(*ca->ca_detach)(sc->sc_dev, 0);
    235 }
    236 
    237 /*
    238  * gem_attach:
    239  *
    240  *	Attach a Gem interface to the system.
    241  */
    242 void
    243 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
    244 {
    245 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    246 	struct mii_data *mii = &sc->sc_mii;
    247 	bus_space_tag_t t = sc->sc_bustag;
    248 	bus_space_handle_t h = sc->sc_h1;
    249 	struct ifmedia_entry *ifm;
    250 	int i, error, phyaddr;
    251 	uint32_t v;
    252 	char *nullbuf;
    253 
    254 	/* Make sure the chip is stopped. */
    255 	ifp->if_softc = sc;
    256 	gem_reset(sc);
    257 
    258 	/*
    259 	 * Allocate the control data structures, and create and load the
    260 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
    261 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
    262 	 */
    263 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
    264 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
    265 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
    266 		aprint_error_dev(sc->sc_dev,
    267 		   "unable to allocate control data, error = %d\n",
    268 		    error);
    269 		gem_partial_detach(sc, GEM_ATT_0);
    270 		return;
    271 	}
    272 
    273 	/* XXX should map this in with correct endianness */
    274 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
    275 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
    276 	    BUS_DMA_COHERENT)) != 0) {
    277 		aprint_error_dev(sc->sc_dev,
    278 		    "unable to map control data, error = %d\n", error);
    279 		gem_partial_detach(sc, GEM_ATT_1);
    280 		return;
    281 	}
    282 
    283 	nullbuf =
    284 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
    285 
    286 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    287 	    sizeof(struct gem_control_data), 1,
    288 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    289 		aprint_error_dev(sc->sc_dev,
    290 		    "unable to create control data DMA map, error = %d\n",
    291 		    error);
    292 		gem_partial_detach(sc, GEM_ATT_2);
    293 		return;
    294 	}
    295 
    296 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
    297 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
    298 	    0)) != 0) {
    299 		aprint_error_dev(sc->sc_dev,
    300 		    "unable to load control data DMA map, error = %d\n",
    301 		    error);
    302 		gem_partial_detach(sc, GEM_ATT_3);
    303 		return;
    304 	}
    305 
    306 	memset(nullbuf, 0, ETHER_MIN_TX);
    307 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    308 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
    309 		aprint_error_dev(sc->sc_dev,
    310 		    "unable to create padding DMA map, error = %d\n", error);
    311 		gem_partial_detach(sc, GEM_ATT_4);
    312 		return;
    313 	}
    314 
    315 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
    316 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
    317 		aprint_error_dev(sc->sc_dev,
    318 		    "unable to load padding DMA map, error = %d\n", error);
    319 		gem_partial_detach(sc, GEM_ATT_5);
    320 		return;
    321 	}
    322 
    323 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
    324 	    BUS_DMASYNC_PREWRITE);
    325 
    326 	/*
    327 	 * Initialize the transmit job descriptors.
    328 	 */
    329 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    330 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    331 
    332 	/*
    333 	 * Create the transmit buffer DMA maps.
    334 	 */
    335 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    336 		struct gem_txsoft *txs;
    337 
    338 		txs = &sc->sc_txsoft[i];
    339 		txs->txs_mbuf = NULL;
    340 		if ((error = bus_dmamap_create(sc->sc_dmatag,
    341 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
    342 		    ETHER_MAX_LEN_JUMBO, 0, 0,
    343 		    &txs->txs_dmamap)) != 0) {
    344 			aprint_error_dev(sc->sc_dev,
    345 			    "unable to create tx DMA map %d, error = %d\n",
    346 			    i, error);
    347 			gem_partial_detach(sc, GEM_ATT_6);
    348 			return;
    349 		}
    350 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    351 	}
    352 
    353 	/*
    354 	 * Create the receive buffer DMA maps.
    355 	 */
    356 	for (i = 0; i < GEM_NRXDESC; i++) {
    357 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
    358 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    359 			aprint_error_dev(sc->sc_dev,
    360 			    "unable to create rx DMA map %d, error = %d\n",
    361 			    i, error);
    362 			gem_partial_detach(sc, GEM_ATT_7);
    363 			return;
    364 		}
    365 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    366 	}
    367 
    368 	/* Initialize ifmedia structures and MII info */
    369 	mii->mii_ifp = ifp;
    370 	mii->mii_readreg = gem_mii_readreg;
    371 	mii->mii_writereg = gem_mii_writereg;
    372 	mii->mii_statchg = gem_mii_statchg;
    373 
    374 	sc->sc_ethercom.ec_mii = mii;
    375 
    376 	/*
    377 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
    378 	 * Section 3.2.1 `Initialization Sequence'.
    379 	 * However, we can't assume SERDES or Serialink if neither
    380 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
    381 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
    382 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
    383 	 * Also, for variants that report 2 PHY's, we prefer the external
    384 	 * PHY over the internal PHY, so we look for that first.
    385 	 */
    386 	gem_mifinit(sc);
    387 
    388 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
    389 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    390 		    ether_mediastatus);
    391 		/* Look for external PHY */
    392 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
    393 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
    394 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
    395 			    sc->sc_mif_config);
    396 			switch (sc->sc_variant) {
    397 			case GEM_SUN_ERI:
    398 				phyaddr = GEM_PHYAD_EXTERNAL;
    399 				break;
    400 			default:
    401 				phyaddr = MII_PHY_ANY;
    402 				break;
    403 			}
    404 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
    405 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
    406 		}
    407 #ifdef GEM_DEBUG
    408 		  else
    409 			aprint_debug_dev(sc->sc_dev, "using external PHY\n");
    410 #endif
    411 		/* Look for internal PHY if no external PHY was found */
    412 		if (LIST_EMPTY(&mii->mii_phys) &&
    413 		    ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) ||
    414 		     (sc->sc_variant == GEM_APPLE_K2_GMAC))) {
    415 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
    416 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
    417 			    sc->sc_mif_config);
    418 			switch (sc->sc_variant) {
    419 			case GEM_SUN_ERI:
    420 			case GEM_APPLE_K2_GMAC:
    421 				phyaddr = GEM_PHYAD_INTERNAL;
    422 				break;
    423 			case GEM_APPLE_GMAC:
    424 				phyaddr = GEM_PHYAD_EXTERNAL;
    425 				break;
    426 			default:
    427 				phyaddr = MII_PHY_ANY;
    428 				break;
    429 			}
    430 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
    431 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
    432 #ifdef GEM_DEBUG
    433 			if (!LIST_EMPTY(&mii->mii_phys))
    434 				aprint_debug_dev(sc->sc_dev,
    435 				    "using internal PHY\n");
    436 #endif
    437 		}
    438 		if (LIST_EMPTY(&mii->mii_phys)) {
    439 				/* No PHY attached */
    440 				aprint_error_dev(sc->sc_dev,
    441 				    "PHY probe failed\n");
    442 				gem_partial_detach(sc, GEM_ATT_MII);
    443 				return;
    444 		} else {
    445 			struct mii_softc *child;
    446 
    447 			/*
    448 			 * Walk along the list of attached MII devices and
    449 			 * establish an `MII instance' to `PHY number'
    450 			 * mapping.
    451 			 */
    452 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
    453 				/*
    454 				 * Note: we support just one PHY: the internal
    455 				 * or external MII is already selected for us
    456 				 * by the GEM_MIF_CONFIG  register.
    457 				 */
    458 				if (child->mii_phy > 1 || child->mii_inst > 0) {
    459 					aprint_error_dev(sc->sc_dev,
    460 					    "cannot accommodate MII device"
    461 					    " %s at PHY %d, instance %d\n",
    462 					       device_xname(child->mii_dev),
    463 					       child->mii_phy, child->mii_inst);
    464 					continue;
    465 				}
    466 				sc->sc_phys[child->mii_inst] = child->mii_phy;
    467 			}
    468 
    469 			if (sc->sc_variant != GEM_SUN_ERI)
    470 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    471 				    GEM_MII_DATAPATH_MII);
    472 
    473 			/*
    474 			 * XXX - we can really do the following ONLY if the
    475 			 * PHY indeed has the auto negotiation capability!!
    476 			 */
    477 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    478 		}
    479 	} else {
    480 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
    481 		    gem_ser_mediastatus);
    482 		/* SERDES or Serialink */
    483 		if (sc->sc_flags & GEM_SERDES) {
    484 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    485 			    GEM_MII_DATAPATH_SERDES);
    486 		} else {
    487 			sc->sc_flags |= GEM_SERIAL;
    488 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
    489 			    GEM_MII_DATAPATH_SERIAL);
    490 		}
    491 
    492 		aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
    493 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
    494 
    495 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
    496 		/* Check for FDX and HDX capabilities */
    497 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
    498 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
    499 			ifmedia_add(&sc->sc_mii.mii_media,
    500 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
    501 			aprint_normal("1000baseSX-FDX, ");
    502 		}
    503 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
    504 			ifmedia_add(&sc->sc_mii.mii_media,
    505 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
    506 			aprint_normal("1000baseSX-HDX, ");
    507 		}
    508 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    509 		sc->sc_mii_media = IFM_AUTO;
    510 		aprint_normal("auto\n");
    511 
    512 		gem_pcs_stop(sc, 1);
    513 	}
    514 
    515 	/*
    516 	 * From this point forward, the attachment cannot fail.  A failure
    517 	 * before this point releases all resources that may have been
    518 	 * allocated.
    519 	 */
    520 
    521 	/* Announce ourselves. */
    522 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
    523 	    ether_sprintf(enaddr));
    524 
    525 	/* Get RX FIFO size */
    526 	sc->sc_rxfifosize = 64 *
    527 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
    528 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
    529 
    530 	/* Get TX FIFO size */
    531 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
    532 	aprint_normal(", %uKB TX fifo\n", v / 16);
    533 
    534 	/* Initialize ifnet structure. */
    535 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    536 	ifp->if_softc = sc;
    537 	ifp->if_flags =
    538 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    539 	sc->sc_if_flags = ifp->if_flags;
    540 #if 0
    541 	/*
    542 	 * The GEM hardware supports basic TCP checksum offloading only.
    543 	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
    544 	 * have bugs in the receive checksum, so don't enable it for now.
    545 	 */
    546 	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
    547 	    (GEM_IS_APPLE(sc) &&
    548 	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
    549 		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
    550 #endif
    551 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
    552 	ifp->if_start = gem_start;
    553 	ifp->if_ioctl = gem_ioctl;
    554 	ifp->if_watchdog = gem_watchdog;
    555 	ifp->if_stop = gem_stop;
    556 	ifp->if_init = gem_init;
    557 	IFQ_SET_READY(&ifp->if_snd);
    558 
    559 	/*
    560 	 * If we support GigE media, we support jumbo frames too.
    561 	 * Unless we are Apple.
    562 	 */
    563 	TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
    564 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
    565 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
    566 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
    567 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
    568 			if (!GEM_IS_APPLE(sc))
    569 				sc->sc_ethercom.ec_capabilities
    570 				    |= ETHERCAP_JUMBO_MTU;
    571 			sc->sc_flags |= GEM_GIGABIT;
    572 			break;
    573 		}
    574 	}
    575 
    576 	/* claim 802.1q capability */
    577 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    578 
    579 	/* Attach the interface. */
    580 	if_attach(ifp);
    581 	if_deferred_start_init(ifp, NULL);
    582 	ether_ifattach(ifp, enaddr);
    583 	ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
    584 
    585 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    586 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
    587 
    588 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    589 	    NULL, device_xname(sc->sc_dev), "interrupts");
    590 #ifdef GEM_COUNTERS
    591 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
    592 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
    593 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
    594 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
    595 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
    596 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
    597 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
    598 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
    599 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
    600 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
    601 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
    602 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
    603 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
    604 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
    605 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
    606 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
    607 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
    608 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
    609 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
    610 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
    611 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
    612 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
    613 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
    614 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
    615 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
    616 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
    617 #endif
    618 
    619 	callout_init(&sc->sc_tick_ch, 0);
    620 	callout_init(&sc->sc_rx_watchdog, 0);
    621 	callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
    622 
    623 	sc->sc_att_stage = GEM_ATT_FINISHED;
    624 
    625 	return;
    626 }
    627 
    628 void
    629 gem_tick(void *arg)
    630 {
    631 	struct gem_softc *sc = arg;
    632 	int s;
    633 
    634 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
    635 		/*
    636 		 * We have to reset everything if we failed to get a
    637 		 * PCS interrupt.  Restarting the callout is handled
    638 		 * in gem_pcs_start().
    639 		 */
    640 		gem_init(&sc->sc_ethercom.ec_if);
    641 	} else {
    642 		s = splnet();
    643 		mii_tick(&sc->sc_mii);
    644 		splx(s);
    645 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    646 	}
    647 }
    648 
    649 static int
    650 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, uint32_t clr,
    651     uint32_t set)
    652 {
    653 	int i;
    654 	uint32_t reg;
    655 
    656 	for (i = TRIES; i--; DELAY(100)) {
    657 		reg = bus_space_read_4(sc->sc_bustag, h, r);
    658 		if ((reg & clr) == 0 && (reg & set) == set)
    659 			return (1);
    660 	}
    661 	return (0);
    662 }
    663 
    664 void
    665 gem_reset(struct gem_softc *sc)
    666 {
    667 	bus_space_tag_t t = sc->sc_bustag;
    668 	bus_space_handle_t h = sc->sc_h2;
    669 	int s;
    670 
    671 	s = splnet();
    672 	DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
    673 	gem_reset_rx(sc);
    674 	gem_reset_tx(sc);
    675 
    676 	/* Do a full reset */
    677 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
    678 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
    679 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
    680 	splx(s);
    681 }
    682 
    683 
    684 /*
    685  * gem_rxdrain:
    686  *
    687  *	Drain the receive queue.
    688  */
    689 static void
    690 gem_rxdrain(struct gem_softc *sc)
    691 {
    692 	struct gem_rxsoft *rxs;
    693 	int i;
    694 
    695 	for (i = 0; i < GEM_NRXDESC; i++) {
    696 		rxs = &sc->sc_rxsoft[i];
    697 		if (rxs->rxs_mbuf != NULL) {
    698 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
    699 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    700 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
    701 			m_freem(rxs->rxs_mbuf);
    702 			rxs->rxs_mbuf = NULL;
    703 		}
    704 	}
    705 }
    706 
    707 /*
    708  * Reset the whole thing.
    709  */
    710 static void
    711 gem_stop(struct ifnet *ifp, int disable)
    712 {
    713 	struct gem_softc *sc = ifp->if_softc;
    714 	struct gem_txsoft *txs;
    715 
    716 	DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
    717 
    718 	callout_halt(&sc->sc_tick_ch, NULL);
    719 	callout_halt(&sc->sc_rx_watchdog, NULL);
    720 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
    721 		gem_pcs_stop(sc, disable);
    722 	else
    723 		mii_down(&sc->sc_mii);
    724 
    725 	/* XXX - Should we reset these instead? */
    726 	gem_disable_tx(sc);
    727 	gem_disable_rx(sc);
    728 
    729 	/*
    730 	 * Release any queued transmit buffers.
    731 	 */
    732 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
    733 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
    734 		if (txs->txs_mbuf != NULL) {
    735 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
    736 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    737 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
    738 			m_freem(txs->txs_mbuf);
    739 			txs->txs_mbuf = NULL;
    740 		}
    741 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    742 	}
    743 
    744 	/*
    745 	 * Mark the interface down and cancel the watchdog timer.
    746 	 */
    747 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    748 	sc->sc_if_flags = ifp->if_flags;
    749 	ifp->if_timer = 0;
    750 
    751 	if (disable)
    752 		gem_rxdrain(sc);
    753 }
    754 
    755 
    756 /*
    757  * Reset the receiver
    758  */
    759 int
    760 gem_reset_rx(struct gem_softc *sc)
    761 {
    762 	bus_space_tag_t t = sc->sc_bustag;
    763 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
    764 
    765 	/*
    766 	 * Resetting while DMA is in progress can cause a bus hang, so we
    767 	 * disable DMA first.
    768 	 */
    769 	gem_disable_rx(sc);
    770 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
    771 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    772 	/* Wait till it finishes */
    773 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
    774 		aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
    775 	/* Wait 5ms extra. */
    776 	delay(5000);
    777 
    778 	/* Finally, reset the ERX */
    779 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
    780 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
    781 	/* Wait till it finishes */
    782 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
    783 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
    784 		return (1);
    785 	}
    786 	return (0);
    787 }
    788 
    789 
    790 /*
    791  * Reset the receiver DMA engine.
    792  *
    793  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
    794  * etc in order to reset the receiver DMA engine only and not do a full
    795  * reset which amongst others also downs the link and clears the FIFOs.
    796  */
    797 static void
    798 gem_reset_rxdma(struct gem_softc *sc)
    799 {
    800 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    801 	bus_space_tag_t t = sc->sc_bustag;
    802 	bus_space_handle_t h = sc->sc_h1;
    803 	int i;
    804 
    805 	if (gem_reset_rx(sc) != 0) {
    806 		gem_init(ifp);
    807 		return;
    808 	}
    809 	for (i = 0; i < GEM_NRXDESC; i++)
    810 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
    811 			GEM_UPDATE_RXDESC(sc, i);
    812 	sc->sc_rxptr = 0;
    813 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
    814 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
    815 
    816 	/* Reprogram Descriptor Ring Base Addresses */
    817 	/* NOTE: we use only 32-bit DMA addresses here. */
    818 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
    819 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
    820 
    821 	/* Redo ERX Configuration */
    822 	gem_rx_common(sc);
    823 
    824 	/* Give the reciever a swift kick */
    825 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
    826 }
    827 
    828 /*
    829  * Common RX configuration for gem_init() and gem_reset_rxdma().
    830  */
    831 static void
    832 gem_rx_common(struct gem_softc *sc)
    833 {
    834 	bus_space_tag_t t = sc->sc_bustag;
    835 	bus_space_handle_t h = sc->sc_h1;
    836 	uint32_t v;
    837 
    838 	/* Encode Receive Descriptor ring size: four possible values */
    839 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
    840 
    841 	/* Set receive h/w checksum offset */
    842 #ifdef INET
    843 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
    844 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
    845 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
    846 #endif
    847 
    848 	/* Enable RX DMA */
    849 	bus_space_write_4(t, h, GEM_RX_CONFIG,
    850 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
    851 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
    852 
    853 	/*
    854 	 * The following value is for an OFF Threshold of about 3/4 full
    855 	 * and an ON Threshold of 1/4 full.
    856 	 */
    857 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
    858 	    (3 * sc->sc_rxfifosize / 256) |
    859 	    ((sc->sc_rxfifosize / 256) << 12));
    860 	bus_space_write_4(t, h, GEM_RX_BLANKING,
    861 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
    862 }
    863 
    864 /*
    865  * Reset the transmitter
    866  */
    867 int
    868 gem_reset_tx(struct gem_softc *sc)
    869 {
    870 	bus_space_tag_t t = sc->sc_bustag;
    871 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
    872 
    873 	/*
    874 	 * Resetting while DMA is in progress can cause a bus hang, so we
    875 	 * disable DMA first.
    876 	 */
    877 	gem_disable_tx(sc);
    878 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
    879 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    880 	/* Wait till it finishes */
    881 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
    882 		aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
    883 	/* Wait 5ms extra. */
    884 	delay(5000);
    885 
    886 	/* Finally, reset the ETX */
    887 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
    888 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
    889 	/* Wait till it finishes */
    890 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
    891 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
    892 		return (1);
    893 	}
    894 	return (0);
    895 }
    896 
    897 /*
    898  * disable receiver.
    899  */
    900 int
    901 gem_disable_rx(struct gem_softc *sc)
    902 {
    903 	bus_space_tag_t t = sc->sc_bustag;
    904 	bus_space_handle_t h = sc->sc_h1;
    905 	uint32_t cfg;
    906 
    907 	/* Flip the enable bit */
    908 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    909 	cfg &= ~GEM_MAC_RX_ENABLE;
    910 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
    911 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    912 	/* Wait for it to finish */
    913 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
    914 }
    915 
    916 /*
    917  * disable transmitter.
    918  */
    919 int
    920 gem_disable_tx(struct gem_softc *sc)
    921 {
    922 	bus_space_tag_t t = sc->sc_bustag;
    923 	bus_space_handle_t h = sc->sc_h1;
    924 	uint32_t cfg;
    925 
    926 	/* Flip the enable bit */
    927 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
    928 	cfg &= ~GEM_MAC_TX_ENABLE;
    929 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
    930 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
    931 	/* Wait for it to finish */
    932 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
    933 }
    934 
    935 /*
    936  * Initialize interface.
    937  */
    938 int
    939 gem_meminit(struct gem_softc *sc)
    940 {
    941 	struct gem_rxsoft *rxs;
    942 	int i, error;
    943 
    944 	/*
    945 	 * Initialize the transmit descriptor ring.
    946 	 */
    947 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    948 	for (i = 0; i < GEM_NTXDESC; i++) {
    949 		sc->sc_txdescs[i].gd_flags = 0;
    950 		sc->sc_txdescs[i].gd_addr = 0;
    951 	}
    952 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
    953 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    954 	sc->sc_txfree = GEM_NTXDESC-1;
    955 	sc->sc_txnext = 0;
    956 	sc->sc_txwin = 0;
    957 
    958 	/*
    959 	 * Initialize the receive descriptor and receive job
    960 	 * descriptor rings.
    961 	 */
    962 	for (i = 0; i < GEM_NRXDESC; i++) {
    963 		rxs = &sc->sc_rxsoft[i];
    964 		if (rxs->rxs_mbuf == NULL) {
    965 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
    966 				aprint_error_dev(sc->sc_dev,
    967 				    "unable to allocate or map rx "
    968 				    "buffer %d, error = %d\n",
    969 				    i, error);
    970 				/*
    971 				 * XXX Should attempt to run with fewer receive
    972 				 * XXX buffers instead of just failing.
    973 				 */
    974 				gem_rxdrain(sc);
    975 				return (1);
    976 			}
    977 		} else
    978 			GEM_INIT_RXDESC(sc, i);
    979 	}
    980 	sc->sc_rxptr = 0;
    981 	sc->sc_meminited = 1;
    982 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
    983 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
    984 
    985 	return (0);
    986 }
    987 
    988 static int
    989 gem_ringsize(int sz)
    990 {
    991 	switch (sz) {
    992 	case 32:
    993 		return GEM_RING_SZ_32;
    994 	case 64:
    995 		return GEM_RING_SZ_64;
    996 	case 128:
    997 		return GEM_RING_SZ_128;
    998 	case 256:
    999 		return GEM_RING_SZ_256;
   1000 	case 512:
   1001 		return GEM_RING_SZ_512;
   1002 	case 1024:
   1003 		return GEM_RING_SZ_1024;
   1004 	case 2048:
   1005 		return GEM_RING_SZ_2048;
   1006 	case 4096:
   1007 		return GEM_RING_SZ_4096;
   1008 	case 8192:
   1009 		return GEM_RING_SZ_8192;
   1010 	default:
   1011 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
   1012 		return GEM_RING_SZ_32;
   1013 	}
   1014 }
   1015 
   1016 
   1017 /*
   1018  * Start PCS
   1019  */
   1020 void
   1021 gem_pcs_start(struct gem_softc *sc)
   1022 {
   1023 	bus_space_tag_t t = sc->sc_bustag;
   1024 	bus_space_handle_t h = sc->sc_h1;
   1025 	uint32_t v;
   1026 
   1027 #ifdef GEM_DEBUG
   1028 	aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
   1029 #endif
   1030 
   1031 	/*
   1032 	 * Set up.  We must disable the MII before modifying the
   1033 	 * GEM_MII_ANAR register
   1034 	 */
   1035 	if (sc->sc_flags & GEM_SERDES) {
   1036 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
   1037 		    GEM_MII_DATAPATH_SERDES);
   1038 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1039 		    GEM_MII_SLINK_LOOPBACK);
   1040 	} else {
   1041 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
   1042 		    GEM_MII_DATAPATH_SERIAL);
   1043 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
   1044 	}
   1045 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1046 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
   1047 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
   1048 	if (sc->sc_mii_media == IFM_AUTO)
   1049 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
   1050 	else if (sc->sc_mii_media == IFM_FDX) {
   1051 		v |= GEM_MII_ANEG_FUL_DUPLX;
   1052 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
   1053 	} else if (sc->sc_mii_media == IFM_HDX) {
   1054 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
   1055 		v |= GEM_MII_ANEG_HLF_DUPLX;
   1056 	}
   1057 
   1058 	/* Configure link. */
   1059 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
   1060 	bus_space_write_4(t, h, GEM_MII_CONTROL,
   1061 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
   1062 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
   1063 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
   1064 
   1065 	/* Start the 10 second timer */
   1066 	callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
   1067 }
   1068 
   1069 /*
   1070  * Stop PCS
   1071  */
   1072 void
   1073 gem_pcs_stop(struct gem_softc *sc, int disable)
   1074 {
   1075 	bus_space_tag_t t = sc->sc_bustag;
   1076 	bus_space_handle_t h = sc->sc_h1;
   1077 
   1078 #ifdef GEM_DEBUG
   1079 	aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
   1080 #endif
   1081 
   1082 	/* Tell link partner that we're going away */
   1083 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
   1084 
   1085 	/*
   1086 	 * Disable PCS MII.  The documentation suggests that setting
   1087 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
   1088 	 * negotiation will shut down the link.  However, it appears
   1089 	 * that we also need to unset the datapath mode.
   1090 	 */
   1091 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1092 	bus_space_write_4(t, h, GEM_MII_CONTROL,
   1093 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
   1094 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
   1095 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
   1096 
   1097 	if (disable) {
   1098 		if (sc->sc_flags & GEM_SERDES)
   1099 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1100 				GEM_MII_SLINK_POWER_OFF);
   1101 		else
   1102 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
   1103 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
   1104 	}
   1105 
   1106 	sc->sc_flags &= ~GEM_LINK;
   1107 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
   1108 	sc->sc_mii.mii_media_status = IFM_AVALID;
   1109 }
   1110 
   1111 
   1112 /*
   1113  * Initialization of interface; set up initialization block
   1114  * and transmit/receive descriptor rings.
   1115  */
   1116 int
   1117 gem_init(struct ifnet *ifp)
   1118 {
   1119 	struct gem_softc *sc = ifp->if_softc;
   1120 	bus_space_tag_t t = sc->sc_bustag;
   1121 	bus_space_handle_t h = sc->sc_h1;
   1122 	int rc = 0, s;
   1123 	u_int max_frame_size;
   1124 	uint32_t v;
   1125 
   1126 	s = splnet();
   1127 
   1128 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
   1129 	/*
   1130 	 * Initialization sequence. The numbered steps below correspond
   1131 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
   1132 	 * Channel Engine manual (part of the PCIO manual).
   1133 	 * See also the STP2002-STQ document from Sun Microsystems.
   1134 	 */
   1135 
   1136 	/* step 1 & 2. Reset the Ethernet Channel */
   1137 	gem_stop(ifp, 0);
   1138 	gem_reset(sc);
   1139 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
   1140 
   1141 	/* Re-initialize the MIF */
   1142 	gem_mifinit(sc);
   1143 
   1144 	/* Set up correct datapath for non-SERDES/Serialink */
   1145 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
   1146 	    sc->sc_variant != GEM_SUN_ERI)
   1147 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
   1148 		    GEM_MII_DATAPATH_MII);
   1149 
   1150 	/* Call MI reset function if any */
   1151 	if (sc->sc_hwreset)
   1152 		(*sc->sc_hwreset)(sc);
   1153 
   1154 	/* step 3. Setup data structures in host memory */
   1155 	if (gem_meminit(sc) != 0) {
   1156 		splx(s);
   1157 		return 1;
   1158 	}
   1159 
   1160 	/* step 4. TX MAC registers & counters */
   1161 	gem_init_regs(sc);
   1162 	max_frame_size = uimax(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
   1163 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
   1164 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
   1165 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
   1166 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
   1167 	    max_frame_size|/* burst size */(0x2000<<16));
   1168 
   1169 	/* step 5. RX MAC registers & counters */
   1170 	gem_setladrf(sc);
   1171 
   1172 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
   1173 	/* NOTE: we use only 32-bit DMA addresses here. */
   1174 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
   1175 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
   1176 
   1177 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
   1178 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
   1179 
   1180 	/* step 8. Global Configuration & Interrupt Mask */
   1181 	gem_inten(sc);
   1182 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
   1183 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
   1184 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
   1185 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
   1186 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
   1187 
   1188 	/* step 9. ETX Configuration: use mostly default values */
   1189 
   1190 	/* Enable TX DMA */
   1191 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
   1192 	bus_space_write_4(t, h, GEM_TX_CONFIG,
   1193 	    v | GEM_TX_CONFIG_TXDMA_EN |
   1194 	    (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
   1195 	    GEM_TX_CONFIG_TXFIFO_TH));
   1196 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
   1197 
   1198 	/* step 10. ERX Configuration */
   1199 	gem_rx_common(sc);
   1200 
   1201 	/* step 11. Configure Media */
   1202 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
   1203 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
   1204 		goto out;
   1205 
   1206 	/* step 12. RX_MAC Configuration Register */
   1207 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   1208 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
   1209 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   1210 
   1211 	/* step 14. Issue Transmit Pending command */
   1212 
   1213 	/* Call MI initialization function if any */
   1214 	if (sc->sc_hwinit)
   1215 		(*sc->sc_hwinit)(sc);
   1216 
   1217 
   1218 	/* step 15.  Give the reciever a swift kick */
   1219 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
   1220 
   1221 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
   1222 		/* Configure PCS */
   1223 		gem_pcs_start(sc);
   1224 	else
   1225 		/* Start the one second timer. */
   1226 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
   1227 
   1228 	sc->sc_flags &= ~GEM_LINK;
   1229 	ifp->if_flags |= IFF_RUNNING;
   1230 	ifp->if_flags &= ~IFF_OACTIVE;
   1231 	ifp->if_timer = 0;
   1232 	sc->sc_if_flags = ifp->if_flags;
   1233 out:
   1234 	splx(s);
   1235 
   1236 	return (0);
   1237 }
   1238 
   1239 void
   1240 gem_init_regs(struct gem_softc *sc)
   1241 {
   1242 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1243 	bus_space_tag_t t = sc->sc_bustag;
   1244 	bus_space_handle_t h = sc->sc_h1;
   1245 	const u_char *laddr = CLLADDR(ifp->if_sadl);
   1246 	uint32_t v;
   1247 
   1248 	/* These regs are not cleared on reset */
   1249 	if (!sc->sc_inited) {
   1250 
   1251 		/* Load recommended values */
   1252 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
   1253 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
   1254 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
   1255 
   1256 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
   1257 		/* Max frame and max burst size */
   1258 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
   1259 		    ETHER_MAX_LEN | (0x2000<<16));
   1260 
   1261 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
   1262 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
   1263 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
   1264 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
   1265 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
   1266 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
   1267 
   1268 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
   1269 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
   1270 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
   1271 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
   1272 
   1273 		/* MAC control addr set to 01:80:c2:00:00:01 */
   1274 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
   1275 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
   1276 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
   1277 
   1278 		/* MAC filter addr set to 0:0:0:0:0:0 */
   1279 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
   1280 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
   1281 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
   1282 
   1283 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
   1284 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
   1285 
   1286 		sc->sc_inited = 1;
   1287 	}
   1288 
   1289 	/* Counters need to be zeroed */
   1290 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
   1291 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
   1292 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
   1293 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
   1294 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
   1295 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
   1296 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
   1297 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
   1298 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
   1299 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
   1300 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
   1301 
   1302 	/* Set XOFF PAUSE time. */
   1303 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
   1304 
   1305 	/*
   1306 	 * Set the internal arbitration to "infinite" bursts of the
   1307 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
   1308 	 * split up in cache line size chunks. This greatly improves
   1309 	 * especially RX performance.
   1310 	 * Enable silicon bug workarounds for the Apple variants.
   1311 	 */
   1312 	bus_space_write_4(t, h, GEM_CONFIG,
   1313 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
   1314 	    ((sc->sc_flags & GEM_PCI) ?
   1315 	    GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
   1316 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
   1317 
   1318 	/*
   1319 	 * Set the station address.
   1320 	 */
   1321 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
   1322 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
   1323 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
   1324 
   1325 	/*
   1326 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
   1327 	 */
   1328 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
   1329 	v = GEM_MAC_XIF_TX_MII_ENA;
   1330 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)  {
   1331 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
   1332 			v |= GEM_MAC_XIF_FDPLX_LED;
   1333 				if (sc->sc_flags & GEM_GIGABIT)
   1334 					v |= GEM_MAC_XIF_GMII_MODE;
   1335 		}
   1336 	} else {
   1337 		v |= GEM_MAC_XIF_GMII_MODE;
   1338 	}
   1339 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
   1340 }
   1341 
   1342 #ifdef GEM_DEBUG
   1343 static void
   1344 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
   1345 {
   1346 	int i;
   1347 
   1348 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
   1349 		printf("descriptor %d:\t", i);
   1350 		printf("gd_flags:   0x%016" PRIx64 "\t",
   1351 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
   1352 		printf("gd_addr: 0x%016" PRIx64 "\n",
   1353 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
   1354 		if (i == lastdesc)
   1355 			break;
   1356 	}
   1357 }
   1358 #endif
   1359 
   1360 static void
   1361 gem_start(struct ifnet *ifp)
   1362 {
   1363 	struct gem_softc *sc = ifp->if_softc;
   1364 	struct mbuf *m0, *m;
   1365 	struct gem_txsoft *txs;
   1366 	bus_dmamap_t dmamap;
   1367 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
   1368 #ifdef GEM_DEBUG
   1369 	int otxnext;
   1370 #endif
   1371 	uint64_t flags = 0;
   1372 
   1373 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1374 		return;
   1375 
   1376 	/*
   1377 	 * Remember the previous number of free descriptors and
   1378 	 * the first descriptor we'll use.
   1379 	 */
   1380 	ofree = sc->sc_txfree;
   1381 #ifdef GEM_DEBUG
   1382 	otxnext = sc->sc_txnext;
   1383 #endif
   1384 
   1385 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
   1386 	    device_xname(sc->sc_dev), ofree, otxnext));
   1387 
   1388 	/*
   1389 	 * Loop through the send queue, setting up transmit descriptors
   1390 	 * until we drain the queue, or use up all available transmit
   1391 	 * descriptors.
   1392 	 */
   1393 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   1394 	    sc->sc_txfree != 0) {
   1395 		/*
   1396 		 * Grab a packet off the queue.
   1397 		 */
   1398 		IFQ_POLL(&ifp->if_snd, m0);
   1399 		if (m0 == NULL)
   1400 			break;
   1401 		m = NULL;
   1402 
   1403 		dmamap = txs->txs_dmamap;
   1404 
   1405 		/*
   1406 		 * Load the DMA map.  If this fails, the packet either
   1407 		 * didn't fit in the alloted number of segments, or we were
   1408 		 * short on resources.  In this case, we'll copy and try
   1409 		 * again.
   1410 		 */
   1411 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
   1412 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
   1413 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
   1414 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
   1415 			if (m0->m_pkthdr.len > MCLBYTES) {
   1416 				aprint_error_dev(sc->sc_dev,
   1417 				    "unable to allocate jumbo Tx cluster\n");
   1418 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1419 				m_freem(m0);
   1420 				continue;
   1421 			}
   1422 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1423 			if (m == NULL) {
   1424 				aprint_error_dev(sc->sc_dev,
   1425 				    "unable to allocate Tx mbuf\n");
   1426 				break;
   1427 			}
   1428 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
   1429 			if (m0->m_pkthdr.len > MHLEN) {
   1430 				MCLGET(m, M_DONTWAIT);
   1431 				if ((m->m_flags & M_EXT) == 0) {
   1432 					aprint_error_dev(sc->sc_dev,
   1433 					    "unable to allocate Tx cluster\n");
   1434 					m_freem(m);
   1435 					break;
   1436 				}
   1437 			}
   1438 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
   1439 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1440 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
   1441 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1442 			if (error) {
   1443 				aprint_error_dev(sc->sc_dev,
   1444 				    "unable to load Tx buffer, error = %d\n",
   1445 				    error);
   1446 				break;
   1447 			}
   1448 		}
   1449 
   1450 		/*
   1451 		 * Ensure we have enough descriptors free to describe
   1452 		 * the packet.
   1453 		 */
   1454 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
   1455 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
   1456 			/*
   1457 			 * Not enough free descriptors to transmit this
   1458 			 * packet.  We haven't committed to anything yet,
   1459 			 * so just unload the DMA map, put the packet
   1460 			 * back on the queue, and punt.  Notify the upper
   1461 			 * layer that there are no more slots left.
   1462 			 *
   1463 			 * XXX We could allocate an mbuf and copy, but
   1464 			 * XXX it is worth it?
   1465 			 */
   1466 			ifp->if_flags |= IFF_OACTIVE;
   1467 			sc->sc_if_flags = ifp->if_flags;
   1468 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
   1469 			if (m != NULL)
   1470 				m_freem(m);
   1471 			break;
   1472 		}
   1473 
   1474 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1475 		if (m != NULL) {
   1476 			m_freem(m0);
   1477 			m0 = m;
   1478 		}
   1479 
   1480 		/*
   1481 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1482 		 */
   1483 
   1484 		/* Sync the DMA map. */
   1485 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1486 		    BUS_DMASYNC_PREWRITE);
   1487 
   1488 		/*
   1489 		 * Initialize the transmit descriptors.
   1490 		 */
   1491 		firsttx = sc->sc_txnext;
   1492 		for (nexttx = firsttx, seg = 0;
   1493 		     seg < dmamap->dm_nsegs;
   1494 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
   1495 
   1496 			/*
   1497 			 * If this is the first descriptor we're
   1498 			 * enqueueing, set the start of packet flag,
   1499 			 * and the checksum stuff if we want the hardware
   1500 			 * to do it.
   1501 			 */
   1502 			sc->sc_txdescs[nexttx].gd_addr =
   1503 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
   1504 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
   1505 			if (nexttx == firsttx) {
   1506 				flags |= GEM_TD_START_OF_PACKET;
   1507 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
   1508 					sc->sc_txwin = 0;
   1509 					flags |= GEM_TD_INTERRUPT_ME;
   1510 				}
   1511 
   1512 #ifdef INET
   1513 				/* h/w checksum */
   1514 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
   1515 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1516 					struct ether_header *eh;
   1517 					uint16_t offset, start;
   1518 
   1519 					eh = mtod(m0, struct ether_header *);
   1520 					switch (ntohs(eh->ether_type)) {
   1521 					case ETHERTYPE_IP:
   1522 						start = ETHER_HDR_LEN;
   1523 						break;
   1524 					case ETHERTYPE_VLAN:
   1525 						start = ETHER_HDR_LEN +
   1526 							ETHER_VLAN_ENCAP_LEN;
   1527 						break;
   1528 					default:
   1529 						/* unsupported, drop it */
   1530 						m_free(m0);
   1531 						continue;
   1532 					}
   1533 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1534 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
   1535 					flags |= (start <<
   1536 						  GEM_TD_CXSUM_STARTSHFT) |
   1537 						 (offset <<
   1538 						  GEM_TD_CXSUM_STUFFSHFT) |
   1539 						 GEM_TD_CXSUM_ENABLE;
   1540 				}
   1541 #endif
   1542 			}
   1543 			if (seg == dmamap->dm_nsegs - 1) {
   1544 				flags |= GEM_TD_END_OF_PACKET;
   1545 			} else {
   1546 				/* last flag set outside of loop */
   1547 				sc->sc_txdescs[nexttx].gd_flags =
   1548 					GEM_DMA_WRITE(sc, flags);
   1549 			}
   1550 			lasttx = nexttx;
   1551 		}
   1552 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
   1553 			/* add padding buffer at end of chain */
   1554 			flags &= ~GEM_TD_END_OF_PACKET;
   1555 			sc->sc_txdescs[lasttx].gd_flags =
   1556 			    GEM_DMA_WRITE(sc, flags);
   1557 
   1558 			sc->sc_txdescs[nexttx].gd_addr =
   1559 			    GEM_DMA_WRITE(sc,
   1560 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
   1561 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
   1562 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
   1563 			lasttx = nexttx;
   1564 			nexttx = GEM_NEXTTX(nexttx);
   1565 			seg++;
   1566 		}
   1567 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
   1568 
   1569 		KASSERT(lasttx != -1);
   1570 
   1571 		/*
   1572 		 * Store a pointer to the packet so we can free it later,
   1573 		 * and remember what txdirty will be once the packet is
   1574 		 * done.
   1575 		 */
   1576 		txs->txs_mbuf = m0;
   1577 		txs->txs_firstdesc = sc->sc_txnext;
   1578 		txs->txs_lastdesc = lasttx;
   1579 		txs->txs_ndescs = seg;
   1580 
   1581 #ifdef GEM_DEBUG
   1582 		if (ifp->if_flags & IFF_DEBUG) {
   1583 			printf("     gem_start %p transmit chain:\n", txs);
   1584 			gem_txsoft_print(sc, txs->txs_firstdesc,
   1585 			    txs->txs_lastdesc);
   1586 		}
   1587 #endif
   1588 
   1589 		/* Sync the descriptors we're using. */
   1590 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
   1591 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1592 
   1593 		/* Advance the tx pointer. */
   1594 		sc->sc_txfree -= txs->txs_ndescs;
   1595 		sc->sc_txnext = nexttx;
   1596 
   1597 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1598 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1599 
   1600 		/*
   1601 		 * Pass the packet to any BPF listeners.
   1602 		 */
   1603 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1604 	}
   1605 
   1606 	if (txs == NULL || sc->sc_txfree == 0) {
   1607 		/* No more slots left; notify upper layer. */
   1608 		ifp->if_flags |= IFF_OACTIVE;
   1609 		sc->sc_if_flags = ifp->if_flags;
   1610 	}
   1611 
   1612 	if (sc->sc_txfree != ofree) {
   1613 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   1614 		    device_xname(sc->sc_dev), lasttx, otxnext));
   1615 		/*
   1616 		 * The entire packet chain is set up.
   1617 		 * Kick the transmitter.
   1618 		 */
   1619 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
   1620 			device_xname(sc->sc_dev), nexttx));
   1621 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
   1622 			sc->sc_txnext);
   1623 
   1624 		/* Set a watchdog timer in case the chip flakes out. */
   1625 		ifp->if_timer = 5;
   1626 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
   1627 			device_xname(sc->sc_dev), ifp->if_timer));
   1628 	}
   1629 }
   1630 
   1631 /*
   1632  * Transmit interrupt.
   1633  */
   1634 int
   1635 gem_tint(struct gem_softc *sc)
   1636 {
   1637 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1638 	bus_space_tag_t t = sc->sc_bustag;
   1639 	bus_space_handle_t mac = sc->sc_h1;
   1640 	struct gem_txsoft *txs;
   1641 	int txlast;
   1642 	int progress = 0;
   1643 	uint32_t v;
   1644 
   1645 	DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
   1646 
   1647 	/* Unload collision counters ... */
   1648 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
   1649 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
   1650 	ifp->if_collisions += v +
   1651 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
   1652 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
   1653 	ifp->if_oerrors += v;
   1654 
   1655 	/* ... then clear the hardware counters. */
   1656 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
   1657 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
   1658 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
   1659 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
   1660 
   1661 	/*
   1662 	 * Go through our Tx list and free mbufs for those
   1663 	 * frames that have been transmitted.
   1664 	 */
   1665 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1666 		/*
   1667 		 * In theory, we could harvest some descriptors before
   1668 		 * the ring is empty, but that's a bit complicated.
   1669 		 *
   1670 		 * GEM_TX_COMPLETION points to the last descriptor
   1671 		 * processed +1.
   1672 		 *
   1673 		 * Let's assume that the NIC writes back to the Tx
   1674 		 * descriptors before it updates the completion
   1675 		 * register.  If the NIC has posted writes to the
   1676 		 * Tx descriptors, PCI ordering requires that the
   1677 		 * posted writes flush to RAM before the register-read
   1678 		 * finishes.  So let's read the completion register,
   1679 		 * before syncing the descriptors, so that we
   1680 		 * examine Tx descriptors that are at least as
   1681 		 * current as the completion register.
   1682 		 */
   1683 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
   1684 		DPRINTF(sc,
   1685 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
   1686 				txs->txs_lastdesc, txlast));
   1687 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
   1688 			if (txlast >= txs->txs_firstdesc &&
   1689 			    txlast <= txs->txs_lastdesc)
   1690 				break;
   1691 		} else if (txlast >= txs->txs_firstdesc ||
   1692 			   txlast <= txs->txs_lastdesc)
   1693 			break;
   1694 
   1695 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
   1696 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1697 
   1698 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
   1699 		if (ifp->if_flags & IFF_DEBUG) {
   1700 			printf("    txsoft %p transmit chain:\n", txs);
   1701 			gem_txsoft_print(sc, txs->txs_firstdesc,
   1702 			    txs->txs_lastdesc);
   1703 		}
   1704 #endif
   1705 
   1706 
   1707 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
   1708 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1709 
   1710 		sc->sc_txfree += txs->txs_ndescs;
   1711 
   1712 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
   1713 		    0, txs->txs_dmamap->dm_mapsize,
   1714 		    BUS_DMASYNC_POSTWRITE);
   1715 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
   1716 		if (txs->txs_mbuf != NULL) {
   1717 			m_freem(txs->txs_mbuf);
   1718 			txs->txs_mbuf = NULL;
   1719 		}
   1720 
   1721 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1722 
   1723 		ifp->if_opackets++;
   1724 		progress = 1;
   1725 	}
   1726 
   1727 #if 0
   1728 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
   1729 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
   1730 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
   1731 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
   1732 			GEM_TX_DATA_PTR_HI) << 32) |
   1733 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
   1734 			GEM_TX_DATA_PTR_LO),
   1735 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
   1736 #endif
   1737 
   1738 	if (progress) {
   1739 		if (sc->sc_txfree == GEM_NTXDESC - 1)
   1740 			sc->sc_txwin = 0;
   1741 
   1742 		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
   1743 		ifp->if_flags &= ~IFF_OACTIVE;
   1744 		sc->sc_if_flags = ifp->if_flags;
   1745 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
   1746 		if_schedule_deferred_start(ifp);
   1747 	}
   1748 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
   1749 		device_xname(sc->sc_dev), ifp->if_timer));
   1750 
   1751 	return (1);
   1752 }
   1753 
   1754 /*
   1755  * Receive interrupt.
   1756  */
   1757 int
   1758 gem_rint(struct gem_softc *sc)
   1759 {
   1760 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1761 	bus_space_tag_t t = sc->sc_bustag;
   1762 	bus_space_handle_t h = sc->sc_h1;
   1763 	struct gem_rxsoft *rxs;
   1764 	struct mbuf *m;
   1765 	uint64_t rxstat;
   1766 	uint32_t rxcomp;
   1767 	int i, len, progress = 0;
   1768 
   1769 	DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
   1770 
   1771 	/*
   1772 	 * Ignore spurious interrupt that sometimes occurs before
   1773 	 * we are set up when we network boot.
   1774 	 */
   1775 	if (!sc->sc_meminited)
   1776 		return 1;
   1777 
   1778 	/*
   1779 	 * Read the completion register once.  This limits
   1780 	 * how long the following loop can execute.
   1781 	 */
   1782 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
   1783 
   1784 	/*
   1785 	 * XXX Read the lastrx only once at the top for speed.
   1786 	 */
   1787 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
   1788 		sc->sc_rxptr, rxcomp));
   1789 
   1790 	/*
   1791 	 * Go into the loop at least once.
   1792 	 */
   1793 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
   1794 	     i = GEM_NEXTRX(i)) {
   1795 		rxs = &sc->sc_rxsoft[i];
   1796 
   1797 		GEM_CDRXSYNC(sc, i,
   1798 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1799 
   1800 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
   1801 
   1802 		if (rxstat & GEM_RD_OWN) {
   1803 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1804 			/*
   1805 			 * We have processed all of the receive buffers.
   1806 			 */
   1807 			break;
   1808 		}
   1809 
   1810 		progress++;
   1811 
   1812 		if (rxstat & GEM_RD_BAD_CRC) {
   1813 			ifp->if_ierrors++;
   1814 			aprint_error_dev(sc->sc_dev,
   1815 			    "receive error: CRC error\n");
   1816 			GEM_INIT_RXDESC(sc, i);
   1817 			continue;
   1818 		}
   1819 
   1820 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1821 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1822 #ifdef GEM_DEBUG
   1823 		if (ifp->if_flags & IFF_DEBUG) {
   1824 			printf("    rxsoft %p descriptor %d: ", rxs, i);
   1825 			printf("gd_flags: 0x%016llx\t", (long long)
   1826 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
   1827 			printf("gd_addr: 0x%016llx\n", (long long)
   1828 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
   1829 		}
   1830 #endif
   1831 
   1832 		/* No errors; receive the packet. */
   1833 		len = GEM_RD_BUFLEN(rxstat);
   1834 
   1835 		/*
   1836 		 * Allocate a new mbuf cluster.  If that fails, we are
   1837 		 * out of memory, and must drop the packet and recycle
   1838 		 * the buffer that's already attached to this descriptor.
   1839 		 */
   1840 		m = rxs->rxs_mbuf;
   1841 		if (gem_add_rxbuf(sc, i) != 0) {
   1842 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
   1843 			ifp->if_ierrors++;
   1844 			aprint_error_dev(sc->sc_dev,
   1845 			    "receive error: RX no buffer space\n");
   1846 			GEM_INIT_RXDESC(sc, i);
   1847 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1848 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1849 			continue;
   1850 		}
   1851 		m->m_data += 2; /* We're already off by two */
   1852 
   1853 		m_set_rcvif(m, ifp);
   1854 		m->m_pkthdr.len = m->m_len = len;
   1855 
   1856 #ifdef INET
   1857 		/* hardware checksum */
   1858 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
   1859 			struct ether_header *eh;
   1860 			struct ip *ip;
   1861 			int32_t hlen, pktlen;
   1862 
   1863 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1864 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
   1865 					 ETHER_VLAN_ENCAP_LEN;
   1866 				eh = (struct ether_header *) (mtod(m, char *) +
   1867 					ETHER_VLAN_ENCAP_LEN);
   1868 			} else {
   1869 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
   1870 				eh = mtod(m, struct ether_header *);
   1871 			}
   1872 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
   1873 				goto swcsum;
   1874 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
   1875 
   1876 			/* IPv4 only */
   1877 			if (ip->ip_v != IPVERSION)
   1878 				goto swcsum;
   1879 
   1880 			hlen = ip->ip_hl << 2;
   1881 			if (hlen < sizeof(struct ip))
   1882 				goto swcsum;
   1883 
   1884 			/*
   1885 			 * bail if too short, has random trailing garbage,
   1886 			 * truncated, fragment, or has ethernet pad.
   1887 			 */
   1888 			if ((ntohs(ip->ip_len) < hlen) ||
   1889 			    (ntohs(ip->ip_len) != pktlen) ||
   1890 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
   1891 				goto swcsum;
   1892 
   1893 			switch (ip->ip_p) {
   1894 			case IPPROTO_TCP:
   1895 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
   1896 					goto swcsum;
   1897 				if (pktlen < (hlen + sizeof(struct tcphdr)))
   1898 					goto swcsum;
   1899 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
   1900 				break;
   1901 			case IPPROTO_UDP:
   1902 				/* FALLTHROUGH */
   1903 			default:
   1904 				goto swcsum;
   1905 			}
   1906 
   1907 			/* the uncomplemented sum is expected */
   1908 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
   1909 
   1910 			/* if the pkt had ip options, we have to deduct them */
   1911 			if (hlen > sizeof(struct ip)) {
   1912 				uint16_t *opts;
   1913 				uint32_t optsum, temp;
   1914 
   1915 				optsum = 0;
   1916 				temp = hlen - sizeof(struct ip);
   1917 				opts = (uint16_t *) ((char *) ip +
   1918 					sizeof(struct ip));
   1919 
   1920 				while (temp > 1) {
   1921 					optsum += ntohs(*opts++);
   1922 					temp -= 2;
   1923 				}
   1924 				while (optsum >> 16)
   1925 					optsum = (optsum >> 16) +
   1926 						 (optsum & 0xffff);
   1927 
   1928 				/* Deduct ip opts sum from hwsum. */
   1929 				m->m_pkthdr.csum_data += (uint16_t)~optsum;
   1930 
   1931 				while (m->m_pkthdr.csum_data >> 16)
   1932 					m->m_pkthdr.csum_data =
   1933 						(m->m_pkthdr.csum_data >> 16) +
   1934 						(m->m_pkthdr.csum_data &
   1935 						 0xffff);
   1936 			}
   1937 
   1938 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
   1939 						  M_CSUM_NO_PSEUDOHDR;
   1940 		} else
   1941 swcsum:
   1942 			m->m_pkthdr.csum_flags = 0;
   1943 #endif
   1944 		/* Pass it on. */
   1945 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1946 	}
   1947 
   1948 	if (progress) {
   1949 		/* Update the receive pointer. */
   1950 		if (i == sc->sc_rxptr) {
   1951 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
   1952 #ifdef GEM_DEBUG
   1953 			if (ifp->if_flags & IFF_DEBUG)
   1954 				printf("%s: rint: ring wrap\n",
   1955 				    device_xname(sc->sc_dev));
   1956 #endif
   1957 		}
   1958 		sc->sc_rxptr = i;
   1959 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
   1960 	}
   1961 #ifdef GEM_COUNTERS
   1962 	if (progress <= 4) {
   1963 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
   1964 	} else if (progress < 32) {
   1965 		if (progress < 16)
   1966 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
   1967 		else
   1968 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
   1969 
   1970 	} else {
   1971 		if (progress < 64)
   1972 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
   1973 		else
   1974 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
   1975 	}
   1976 #endif
   1977 
   1978 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
   1979 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
   1980 
   1981 	/* Read error counters ... */
   1982 	ifp->if_ierrors +=
   1983 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
   1984 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
   1985 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
   1986 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
   1987 
   1988 	/* ... then clear the hardware counters. */
   1989 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
   1990 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
   1991 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
   1992 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
   1993 
   1994 	return (1);
   1995 }
   1996 
   1997 
   1998 /*
   1999  * gem_add_rxbuf:
   2000  *
   2001  *	Add a receive buffer to the indicated descriptor.
   2002  */
   2003 int
   2004 gem_add_rxbuf(struct gem_softc *sc, int idx)
   2005 {
   2006 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2007 	struct mbuf *m;
   2008 	int error;
   2009 
   2010 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2011 	if (m == NULL)
   2012 		return (ENOBUFS);
   2013 
   2014 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2015 	MCLGET(m, M_DONTWAIT);
   2016 	if ((m->m_flags & M_EXT) == 0) {
   2017 		m_freem(m);
   2018 		return (ENOBUFS);
   2019 	}
   2020 
   2021 #ifdef GEM_DEBUG
   2022 /* bzero the packet to check DMA */
   2023 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
   2024 #endif
   2025 
   2026 	if (rxs->rxs_mbuf != NULL)
   2027 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
   2028 
   2029 	rxs->rxs_mbuf = m;
   2030 
   2031 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
   2032 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   2033 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2034 	if (error) {
   2035 		aprint_error_dev(sc->sc_dev,
   2036 		    "can't load rx DMA map %d, error = %d\n", idx, error);
   2037 		panic("gem_add_rxbuf");	/* XXX */
   2038 	}
   2039 
   2040 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   2041 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2042 
   2043 	GEM_INIT_RXDESC(sc, idx);
   2044 
   2045 	return (0);
   2046 }
   2047 
   2048 
   2049 int
   2050 gem_eint(struct gem_softc *sc, u_int status)
   2051 {
   2052 	char bits[128];
   2053 	uint32_t r, v;
   2054 
   2055 	if ((status & GEM_INTR_MIF) != 0) {
   2056 		printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
   2057 		return (1);
   2058 	}
   2059 
   2060 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
   2061 		gem_reset_rxdma(sc);
   2062 		return (1);
   2063 	}
   2064 
   2065 	if (status & GEM_INTR_BERR) {
   2066 		if (sc->sc_flags & GEM_PCI)
   2067 			r = GEM_ERROR_STATUS;
   2068 		else
   2069 			r = GEM_SBUS_ERROR_STATUS;
   2070 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
   2071 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
   2072 		aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
   2073 		    v);
   2074 		return (1);
   2075 	}
   2076 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
   2077 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
   2078 
   2079 	return (1);
   2080 }
   2081 
   2082 
   2083 /*
   2084  * PCS interrupts.
   2085  * We should receive these when the link status changes, but sometimes
   2086  * we don't receive them for link up.  We compensate for this in the
   2087  * gem_tick() callout.
   2088  */
   2089 int
   2090 gem_pint(struct gem_softc *sc)
   2091 {
   2092 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2093 	bus_space_tag_t t = sc->sc_bustag;
   2094 	bus_space_handle_t h = sc->sc_h1;
   2095 	uint32_t v, v2;
   2096 
   2097 	/*
   2098 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
   2099 	 * latched, so we have to read it twice.  There is only one bit in
   2100 	 * use, so the value is meaningless.
   2101 	 */
   2102 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
   2103 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
   2104 
   2105 	if ((ifp->if_flags & IFF_UP) == 0)
   2106 		return 1;
   2107 
   2108 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
   2109 		return 1;
   2110 
   2111 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2112 	/* If we see remote fault, our link partner is probably going away */
   2113 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
   2114 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
   2115 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2116 	/* Otherwise, we may need to wait after auto-negotiation completes */
   2117 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
   2118 	    GEM_MII_STATUS_ANEG_CPT) {
   2119 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
   2120 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
   2121 	}
   2122 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
   2123 		if (sc->sc_flags & GEM_LINK) {
   2124 			return 1;
   2125 		}
   2126 		callout_stop(&sc->sc_tick_ch);
   2127 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
   2128 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
   2129 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
   2130 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
   2131 		v &= v2;
   2132 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
   2133 			sc->sc_mii.mii_media_active |= IFM_FDX;
   2134 #ifdef GEM_DEBUG
   2135 			aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
   2136 #endif
   2137 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
   2138 			sc->sc_mii.mii_media_active |= IFM_HDX;
   2139 #ifdef GEM_DEBUG
   2140 			aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
   2141 #endif
   2142 		} else {
   2143 #ifdef GEM_DEBUG
   2144 			aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
   2145 #endif
   2146 		}
   2147 		gem_statuschange(sc);
   2148 	} else {
   2149 		if ((sc->sc_flags & GEM_LINK) == 0) {
   2150 			return 1;
   2151 		}
   2152 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
   2153 		sc->sc_mii.mii_media_status = IFM_AVALID;
   2154 #ifdef GEM_DEBUG
   2155 			aprint_debug_dev(sc->sc_dev, "link down\n");
   2156 #endif
   2157 		gem_statuschange(sc);
   2158 
   2159 		/* Start the 10 second timer */
   2160 		callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
   2161 	}
   2162 	return 1;
   2163 }
   2164 
   2165 
   2166 
   2167 int
   2168 gem_intr(void *v)
   2169 {
   2170 	struct gem_softc *sc = v;
   2171 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2172 	bus_space_tag_t t = sc->sc_bustag;
   2173 	bus_space_handle_t h = sc->sc_h1;
   2174 	uint32_t status;
   2175 	int r = 0;
   2176 #ifdef GEM_DEBUG
   2177 	char bits[128];
   2178 #endif
   2179 
   2180 	/* XXX We should probably mask out interrupts until we're done */
   2181 
   2182 	sc->sc_ev_intr.ev_count++;
   2183 
   2184 	status = bus_space_read_4(t, h, GEM_STATUS);
   2185 #ifdef GEM_DEBUG
   2186 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
   2187 #endif
   2188 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
   2189 		device_xname(sc->sc_dev), (status >> 19), bits));
   2190 
   2191 
   2192 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
   2193 		r |= gem_eint(sc, status);
   2194 
   2195 	/* We don't bother with GEM_INTR_TX_DONE */
   2196 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
   2197 		GEM_COUNTER_INCR(sc, sc_ev_txint);
   2198 		r |= gem_tint(sc);
   2199 	}
   2200 
   2201 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
   2202 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
   2203 		r |= gem_rint(sc);
   2204 	}
   2205 
   2206 	/* We should eventually do more than just print out error stats. */
   2207 	if (status & GEM_INTR_TX_MAC) {
   2208 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
   2209 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
   2210 			printf("%s: MAC tx fault, status %x\n",
   2211 			    device_xname(sc->sc_dev), txstat);
   2212 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
   2213 			gem_init(ifp);
   2214 	}
   2215 	if (status & GEM_INTR_RX_MAC) {
   2216 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
   2217 		/*
   2218 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
   2219 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
   2220 		 * silicon bug so handle them silently.  So if we detect
   2221 		 * an RX FIFO overflow, we fire off a timer, and check
   2222 		 * whether we're still making progress by looking at the
   2223 		 * RX FIFO write and read pointers.
   2224 		 */
   2225 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
   2226 			ifp->if_ierrors++;
   2227 			aprint_error_dev(sc->sc_dev,
   2228 			    "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
   2229 			sc->sc_rx_fifo_wr_ptr =
   2230 				bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
   2231 			sc->sc_rx_fifo_rd_ptr =
   2232 				bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
   2233 			callout_schedule(&sc->sc_rx_watchdog, 400);
   2234 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
   2235 			printf("%s: MAC rx fault, status 0x%02x\n",
   2236 			    device_xname(sc->sc_dev), rxstat);
   2237 	}
   2238 	if (status & GEM_INTR_PCS) {
   2239 		r |= gem_pint(sc);
   2240 	}
   2241 
   2242 /* Do we need to do anything with these?
   2243 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
   2244 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
   2245 		if ((status2 & GEM_MAC_PAUSED) != 0)
   2246 			aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
   2247 			    GEM_MAC_PAUSE_TIME(status2));
   2248 		if ((status2 & GEM_MAC_PAUSE) != 0)
   2249 			aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
   2250 		if ((status2 & GEM_MAC_RESUME) != 0)
   2251 			aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
   2252 	}
   2253 	if ((status & GEM_INTR_MIF) != 0)
   2254 		aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
   2255 */
   2256 	rnd_add_uint32(&sc->rnd_source, status);
   2257 	return (r);
   2258 }
   2259 
   2260 void
   2261 gem_rx_watchdog(void *arg)
   2262 {
   2263 	struct gem_softc *sc = arg;
   2264 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2265 	bus_space_tag_t t = sc->sc_bustag;
   2266 	bus_space_handle_t h = sc->sc_h1;
   2267 	uint32_t rx_fifo_wr_ptr;
   2268 	uint32_t rx_fifo_rd_ptr;
   2269 	uint32_t state;
   2270 
   2271 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
   2272 		aprint_error_dev(sc->sc_dev, "receiver not running\n");
   2273 		return;
   2274 	}
   2275 
   2276 	rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
   2277 	rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
   2278 	state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
   2279 	if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
   2280 	    ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
   2281 	     ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
   2282 	      (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
   2283 	{
   2284 		/*
   2285 		 * The RX state machine is still in overflow state and
   2286 		 * the RX FIFO write and read pointers seem to be
   2287 		 * stuck.  Whack the chip over the head to get things
   2288 		 * going again.
   2289 		 */
   2290 		aprint_error_dev(sc->sc_dev,
   2291 		    "receiver stuck in overflow, resetting\n");
   2292 		gem_init(ifp);
   2293 	} else {
   2294 		if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
   2295 			aprint_error_dev(sc->sc_dev,
   2296 				"rx_watchdog: not in overflow state: 0x%x\n",
   2297 				state);
   2298 		}
   2299 		if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
   2300 			aprint_error_dev(sc->sc_dev,
   2301 				"rx_watchdog: wr & rd ptr different\n");
   2302 		}
   2303 		if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
   2304 			aprint_error_dev(sc->sc_dev,
   2305 				"rx_watchdog: wr pointer != saved\n");
   2306 		}
   2307 		if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
   2308 			aprint_error_dev(sc->sc_dev,
   2309 				"rx_watchdog: rd pointer != saved\n");
   2310 		}
   2311 		aprint_error_dev(sc->sc_dev, "resetting anyway\n");
   2312 		gem_init(ifp);
   2313 	}
   2314 }
   2315 
   2316 void
   2317 gem_watchdog(struct ifnet *ifp)
   2318 {
   2319 	struct gem_softc *sc = ifp->if_softc;
   2320 
   2321 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
   2322 		"GEM_MAC_RX_CONFIG %x\n",
   2323 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
   2324 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
   2325 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
   2326 
   2327 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
   2328 	++ifp->if_oerrors;
   2329 
   2330 	/* Try to get more packets going. */
   2331 	gem_init(ifp);
   2332 	gem_start(ifp);
   2333 }
   2334 
   2335 /*
   2336  * Initialize the MII Management Interface
   2337  */
   2338 void
   2339 gem_mifinit(struct gem_softc *sc)
   2340 {
   2341 	bus_space_tag_t t = sc->sc_bustag;
   2342 	bus_space_handle_t mif = sc->sc_h1;
   2343 
   2344 	/* Configure the MIF in frame mode */
   2345 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   2346 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
   2347 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
   2348 }
   2349 
   2350 /*
   2351  * MII interface
   2352  *
   2353  * The GEM MII interface supports at least three different operating modes:
   2354  *
   2355  * Bitbang mode is implemented using data, clock and output enable registers.
   2356  *
   2357  * Frame mode is implemented by loading a complete frame into the frame
   2358  * register and polling the valid bit for completion.
   2359  *
   2360  * Polling mode uses the frame register but completion is indicated by
   2361  * an interrupt.
   2362  *
   2363  */
   2364 static int
   2365 gem_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   2366 {
   2367 	struct gem_softc *sc = device_private(self);
   2368 	bus_space_tag_t t = sc->sc_bustag;
   2369 	bus_space_handle_t mif = sc->sc_h1;
   2370 	int n;
   2371 	uint32_t v;
   2372 
   2373 #ifdef GEM_DEBUG1
   2374 	if (sc->sc_debug)
   2375 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
   2376 #endif
   2377 
   2378 	/* Construct the frame command */
   2379 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
   2380 		GEM_MIF_FRAME_READ;
   2381 
   2382 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   2383 	for (n = 0; n < 100; n++) {
   2384 		DELAY(1);
   2385 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   2386 		if (v & GEM_MIF_FRAME_TA0) {
   2387 			*val = v & GEM_MIF_FRAME_DATA;
   2388 			return 0;
   2389 		}
   2390 	}
   2391 
   2392 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
   2393 	return ETIMEDOUT;
   2394 }
   2395 
   2396 static int
   2397 gem_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   2398 {
   2399 	struct gem_softc *sc = device_private(self);
   2400 	bus_space_tag_t t = sc->sc_bustag;
   2401 	bus_space_handle_t mif = sc->sc_h1;
   2402 	int n;
   2403 	uint32_t v;
   2404 
   2405 #ifdef GEM_DEBUG1
   2406 	if (sc->sc_debug)
   2407 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
   2408 			phy, reg, val);
   2409 #endif
   2410 
   2411 	/* Construct the frame command */
   2412 	v = GEM_MIF_FRAME_WRITE			|
   2413 	    (phy << GEM_MIF_PHY_SHIFT)		|
   2414 	    (reg << GEM_MIF_REG_SHIFT)		|
   2415 	    (val & GEM_MIF_FRAME_DATA);
   2416 
   2417 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   2418 	for (n = 0; n < 100; n++) {
   2419 		DELAY(1);
   2420 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   2421 		if (v & GEM_MIF_FRAME_TA0)
   2422 			return 0;
   2423 	}
   2424 
   2425 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
   2426 	return ETIMEDOUT;
   2427 }
   2428 
   2429 static void
   2430 gem_mii_statchg(struct ifnet *ifp)
   2431 {
   2432 	struct gem_softc *sc = ifp->if_softc;
   2433 #ifdef GEM_DEBUG
   2434 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   2435 #endif
   2436 
   2437 #ifdef GEM_DEBUG
   2438 	if (sc->sc_debug)
   2439 		printf("gem_mii_statchg: status change: phy = %d\n",
   2440 			sc->sc_phys[instance]);
   2441 #endif
   2442 	gem_statuschange(sc);
   2443 }
   2444 
   2445 /*
   2446  * Common status change for gem_mii_statchg() and gem_pint()
   2447  */
   2448 void
   2449 gem_statuschange(struct gem_softc* sc)
   2450 {
   2451 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2452 	bus_space_tag_t t = sc->sc_bustag;
   2453 	bus_space_handle_t mac = sc->sc_h1;
   2454 	int gigabit;
   2455 	uint32_t rxcfg, txcfg, v;
   2456 
   2457 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
   2458 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
   2459 		sc->sc_flags |= GEM_LINK;
   2460 	else
   2461 		sc->sc_flags &= ~GEM_LINK;
   2462 
   2463 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   2464 		gigabit = 1;
   2465 	else
   2466 		gigabit = 0;
   2467 
   2468 	/*
   2469 	 * The configuration done here corresponds to the steps F) and
   2470 	 * G) and as far as enabling of RX and TX MAC goes also step H)
   2471 	 * of the initialization sequence outlined in section 3.2.1 of
   2472 	 * the GEM Gigabit Ethernet ASIC Specification.
   2473 	 */
   2474 
   2475 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
   2476 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
   2477 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
   2478 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   2479 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
   2480 	else if (gigabit) {
   2481 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
   2482 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
   2483 	}
   2484 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
   2485 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
   2486 	    BUS_SPACE_BARRIER_WRITE);
   2487 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
   2488 		aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
   2489 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
   2490 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
   2491 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
   2492 	    BUS_SPACE_BARRIER_WRITE);
   2493 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
   2494 		aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
   2495 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
   2496 
   2497 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
   2498 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
   2499 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
   2500 
   2501 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
   2502 	    gigabit != 0)
   2503 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
   2504 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
   2505 	else
   2506 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
   2507 		    GEM_MAC_SLOT_TIME_NORMAL);
   2508 
   2509 	/* XIF Configuration */
   2510 	if (sc->sc_flags & GEM_LINK)
   2511 		v = GEM_MAC_XIF_LINK_LED;
   2512 	else
   2513 		v = 0;
   2514 	v |= GEM_MAC_XIF_TX_MII_ENA;
   2515 
   2516 	/* If an external transceiver is connected, enable its MII drivers */
   2517 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
   2518 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
   2519 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
   2520 			if (gigabit)
   2521 				v |= GEM_MAC_XIF_GMII_MODE;
   2522 			else
   2523 				v &= ~GEM_MAC_XIF_GMII_MODE;
   2524 		} else
   2525 			/* Internal MII needs buf enable */
   2526 			v |= GEM_MAC_XIF_MII_BUF_ENA;
   2527 		/* MII needs echo disable if half duplex. */
   2528 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   2529 			/* turn on full duplex LED */
   2530 			v |= GEM_MAC_XIF_FDPLX_LED;
   2531 		else
   2532 			/* half duplex -- disable echo */
   2533 			v |= GEM_MAC_XIF_ECHO_DISABL;
   2534 	} else {
   2535 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   2536 			v |= GEM_MAC_XIF_FDPLX_LED;
   2537 		v |= GEM_MAC_XIF_GMII_MODE;
   2538 	}
   2539 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
   2540 
   2541 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
   2542 	    (sc->sc_flags & GEM_LINK) != 0) {
   2543 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
   2544 		    txcfg | GEM_MAC_TX_ENABLE);
   2545 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
   2546 		    rxcfg | GEM_MAC_RX_ENABLE);
   2547 	}
   2548 }
   2549 
   2550 int
   2551 gem_ser_mediachange(struct ifnet *ifp)
   2552 {
   2553 	struct gem_softc *sc = ifp->if_softc;
   2554 	u_int s, t;
   2555 
   2556 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
   2557 		return EINVAL;
   2558 
   2559 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
   2560 	if (s == IFM_AUTO) {
   2561 		if (sc->sc_mii_media != s) {
   2562 #ifdef GEM_DEBUG
   2563 			aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
   2564 #endif
   2565 			sc->sc_mii_media = s;
   2566 			if (ifp->if_flags & IFF_UP) {
   2567 				gem_pcs_stop(sc, 0);
   2568 				gem_pcs_start(sc);
   2569 			}
   2570 		}
   2571 		return 0;
   2572 	}
   2573 	if (s == IFM_1000_SX) {
   2574 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
   2575 		if (t == IFM_FDX || t == IFM_HDX) {
   2576 			if (sc->sc_mii_media != t) {
   2577 				sc->sc_mii_media = t;
   2578 #ifdef GEM_DEBUG
   2579 				aprint_debug_dev(sc->sc_dev,
   2580 				    "setting media to 1000baseSX-%s\n",
   2581 				    t == IFM_FDX ? "FDX" : "HDX");
   2582 #endif
   2583 				if (ifp->if_flags & IFF_UP) {
   2584 					gem_pcs_stop(sc, 0);
   2585 					gem_pcs_start(sc);
   2586 				}
   2587 			}
   2588 			return 0;
   2589 		}
   2590 	}
   2591 	return EINVAL;
   2592 }
   2593 
   2594 void
   2595 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2596 {
   2597 	struct gem_softc *sc = ifp->if_softc;
   2598 
   2599 	if ((ifp->if_flags & IFF_UP) == 0)
   2600 		return;
   2601 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   2602 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   2603 }
   2604 
   2605 static int
   2606 gem_ifflags_cb(struct ethercom *ec)
   2607 {
   2608 	struct ifnet *ifp = &ec->ec_if;
   2609 	struct gem_softc *sc = ifp->if_softc;
   2610 	int change = ifp->if_flags ^ sc->sc_if_flags;
   2611 
   2612 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
   2613 		return ENETRESET;
   2614 	else if ((change & IFF_PROMISC) != 0)
   2615 		gem_setladrf(sc);
   2616 	return 0;
   2617 }
   2618 
   2619 /*
   2620  * Process an ioctl request.
   2621  */
   2622 int
   2623 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
   2624 {
   2625 	struct gem_softc *sc = ifp->if_softc;
   2626 	int s, error = 0;
   2627 
   2628 	s = splnet();
   2629 
   2630 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2631 		error = 0;
   2632 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   2633 			;
   2634 		else if (ifp->if_flags & IFF_RUNNING) {
   2635 			/*
   2636 			 * Multicast list has changed; set the hardware filter
   2637 			 * accordingly.
   2638 			 */
   2639 			gem_setladrf(sc);
   2640 		}
   2641 	}
   2642 
   2643 	/* Try to get things going again */
   2644 	if (ifp->if_flags & IFF_UP)
   2645 		gem_start(ifp);
   2646 	splx(s);
   2647 	return (error);
   2648 }
   2649 
   2650 static void
   2651 gem_inten(struct gem_softc *sc)
   2652 {
   2653 	bus_space_tag_t t = sc->sc_bustag;
   2654 	bus_space_handle_t h = sc->sc_h1;
   2655 	uint32_t v;
   2656 
   2657 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
   2658 		v = GEM_INTR_PCS;
   2659 	else
   2660 		v = GEM_INTR_MIF;
   2661 	bus_space_write_4(t, h, GEM_INTMASK,
   2662 		      ~(GEM_INTR_TX_INTME |
   2663 			GEM_INTR_TX_EMPTY |
   2664 			GEM_INTR_TX_MAC |
   2665 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
   2666 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
   2667 			GEM_INTR_BERR | v));
   2668 }
   2669 
   2670 bool
   2671 gem_resume(device_t self, const pmf_qual_t *qual)
   2672 {
   2673 	struct gem_softc *sc = device_private(self);
   2674 
   2675 	gem_inten(sc);
   2676 
   2677 	return true;
   2678 }
   2679 
   2680 bool
   2681 gem_suspend(device_t self, const pmf_qual_t *qual)
   2682 {
   2683 	struct gem_softc *sc = device_private(self);
   2684 	bus_space_tag_t t = sc->sc_bustag;
   2685 	bus_space_handle_t h = sc->sc_h1;
   2686 
   2687 	bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
   2688 
   2689 	return true;
   2690 }
   2691 
   2692 bool
   2693 gem_shutdown(device_t self, int howto)
   2694 {
   2695 	struct gem_softc *sc = device_private(self);
   2696 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2697 
   2698 	gem_stop(ifp, 1);
   2699 
   2700 	return true;
   2701 }
   2702 
   2703 /*
   2704  * Set up the logical address filter.
   2705  */
   2706 void
   2707 gem_setladrf(struct gem_softc *sc)
   2708 {
   2709 	struct ethercom *ec = &sc->sc_ethercom;
   2710 	struct ifnet *ifp = &ec->ec_if;
   2711 	struct ether_multi *enm;
   2712 	struct ether_multistep step;
   2713 	bus_space_tag_t t = sc->sc_bustag;
   2714 	bus_space_handle_t h = sc->sc_h1;
   2715 	uint32_t crc;
   2716 	uint32_t hash[16];
   2717 	uint32_t v;
   2718 	int i;
   2719 
   2720 	/* Get current RX configuration */
   2721 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   2722 
   2723 	/*
   2724 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
   2725 	 * and hash filter.  Depending on the case, the right bit will be
   2726 	 * enabled.
   2727 	 */
   2728 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
   2729 	    GEM_MAC_RX_PROMISC_GRP);
   2730 
   2731 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   2732 		/* Turn on promiscuous mode */
   2733 		v |= GEM_MAC_RX_PROMISCUOUS;
   2734 		ifp->if_flags |= IFF_ALLMULTI;
   2735 		goto chipit;
   2736 	}
   2737 
   2738 	/*
   2739 	 * Set up multicast address filter by passing all multicast addresses
   2740 	 * through a crc generator, and then using the high order 8 bits as an
   2741 	 * index into the 256 bit logical address filter.  The high order 4
   2742 	 * bits selects the word, while the other 4 bits select the bit within
   2743 	 * the word (where bit 0 is the MSB).
   2744 	 */
   2745 
   2746 	/* Clear hash table */
   2747 	memset(hash, 0, sizeof(hash));
   2748 
   2749 	ETHER_FIRST_MULTI(step, ec, enm);
   2750 	while (enm != NULL) {
   2751 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2752 			/*
   2753 			 * We must listen to a range of multicast addresses.
   2754 			 * For now, just accept all multicasts, rather than
   2755 			 * trying to set only those filter bits needed to match
   2756 			 * the range.  (At this time, the only use of address
   2757 			 * ranges is for IP multicast routing, for which the
   2758 			 * range is big enough to require all bits set.)
   2759 			 * XXX should use the address filters for this
   2760 			 */
   2761 			ifp->if_flags |= IFF_ALLMULTI;
   2762 			v |= GEM_MAC_RX_PROMISC_GRP;
   2763 			goto chipit;
   2764 		}
   2765 
   2766 		/* Get the LE CRC32 of the address */
   2767 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
   2768 
   2769 		/* Just want the 8 most significant bits. */
   2770 		crc >>= 24;
   2771 
   2772 		/* Set the corresponding bit in the filter. */
   2773 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
   2774 
   2775 		ETHER_NEXT_MULTI(step, enm);
   2776 	}
   2777 
   2778 	v |= GEM_MAC_RX_HASH_FILTER;
   2779 	ifp->if_flags &= ~IFF_ALLMULTI;
   2780 
   2781 	/* Now load the hash table into the chip (if we are using it) */
   2782 	for (i = 0; i < 16; i++) {
   2783 		bus_space_write_4(t, h,
   2784 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
   2785 		    hash[i]);
   2786 	}
   2787 
   2788 chipit:
   2789 	sc->sc_if_flags = ifp->if_flags;
   2790 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   2791 }
   2792