gem.c revision 1.113 1 /* $NetBSD: gem.c,v 1.113 2019/01/22 03:42:26 msaitoh Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * Copyright (c) 2001-2003 Thomas Moestl
7 * All rights reserved.
8 *
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 /*
34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35 * See `GEM Gigabit Ethernet ASIC Specification'
36 * http://www.sun.com/processors/manuals/ge.pdf
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.113 2019/01/22 03:42:26 msaitoh Exp $");
41
42 #include "opt_inet.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/mbuf.h>
48 #include <sys/syslog.h>
49 #include <sys/malloc.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/ioctl.h>
53 #include <sys/errno.h>
54 #include <sys/device.h>
55
56 #include <machine/endian.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71
72 #include <net/bpf.h>
73
74 #include <sys/bus.h>
75 #include <sys/intr.h>
76
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 #include <dev/mii/mii_bitbang.h>
80
81 #include <dev/ic/gemreg.h>
82 #include <dev/ic/gemvar.h>
83
84 #define TRIES 10000
85
86 static void gem_inten(struct gem_softc *);
87 static void gem_start(struct ifnet *);
88 static void gem_stop(struct ifnet *, int);
89 int gem_ioctl(struct ifnet *, u_long, void *);
90 void gem_tick(void *);
91 void gem_watchdog(struct ifnet *);
92 void gem_rx_watchdog(void *);
93 void gem_pcs_start(struct gem_softc *sc);
94 void gem_pcs_stop(struct gem_softc *sc, int);
95 int gem_init(struct ifnet *);
96 void gem_init_regs(struct gem_softc *sc);
97 static int gem_ringsize(int sz);
98 static int gem_meminit(struct gem_softc *);
99 void gem_mifinit(struct gem_softc *);
100 static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
101 uint32_t, uint32_t);
102 void gem_reset(struct gem_softc *);
103 int gem_reset_rx(struct gem_softc *sc);
104 static void gem_reset_rxdma(struct gem_softc *sc);
105 static void gem_rx_common(struct gem_softc *sc);
106 int gem_reset_tx(struct gem_softc *sc);
107 int gem_disable_rx(struct gem_softc *sc);
108 int gem_disable_tx(struct gem_softc *sc);
109 static void gem_rxdrain(struct gem_softc *sc);
110 int gem_add_rxbuf(struct gem_softc *sc, int idx);
111 void gem_setladrf(struct gem_softc *);
112
113 /* MII methods & callbacks */
114 static int gem_mii_readreg(device_t, int, int, uint16_t *);
115 static int gem_mii_writereg(device_t, int, int, uint16_t);
116 static void gem_mii_statchg(struct ifnet *);
117
118 static int gem_ifflags_cb(struct ethercom *);
119
120 void gem_statuschange(struct gem_softc *);
121
122 int gem_ser_mediachange(struct ifnet *);
123 void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
124
125 static void gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
126
127 struct mbuf *gem_get(struct gem_softc *, int, int);
128 int gem_put(struct gem_softc *, int, struct mbuf *);
129 void gem_read(struct gem_softc *, int, int);
130 int gem_pint(struct gem_softc *);
131 int gem_eint(struct gem_softc *, u_int);
132 int gem_rint(struct gem_softc *);
133 int gem_tint(struct gem_softc *);
134 void gem_power(int, void *);
135
136 #ifdef GEM_DEBUG
137 static void gem_txsoft_print(const struct gem_softc *, int, int);
138 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
139 printf x
140 #else
141 #define DPRINTF(sc, x) /* nothing */
142 #endif
143
144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
145
146 int
147 gem_detach(struct gem_softc *sc, int flags)
148 {
149 int i;
150 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
151 bus_space_tag_t t = sc->sc_bustag;
152 bus_space_handle_t h = sc->sc_h1;
153
154 /*
155 * Free any resources we've allocated during the attach.
156 * Do this in reverse order and fall through.
157 */
158 switch (sc->sc_att_stage) {
159 case GEM_ATT_BACKEND_2:
160 case GEM_ATT_BACKEND_1:
161 case GEM_ATT_FINISHED:
162 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
163 gem_stop(&sc->sc_ethercom.ec_if, 1);
164
165 #ifdef GEM_COUNTERS
166 for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
167 evcnt_detach(&sc->sc_ev_rxhist[i]);
168 evcnt_detach(&sc->sc_ev_rxnobuf);
169 evcnt_detach(&sc->sc_ev_rxfull);
170 evcnt_detach(&sc->sc_ev_rxint);
171 evcnt_detach(&sc->sc_ev_txint);
172 #endif
173 evcnt_detach(&sc->sc_ev_intr);
174
175 rnd_detach_source(&sc->rnd_source);
176 ether_ifdetach(ifp);
177 if_detach(ifp);
178 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
179
180 callout_destroy(&sc->sc_tick_ch);
181 callout_destroy(&sc->sc_rx_watchdog);
182
183 /*FALLTHROUGH*/
184 case GEM_ATT_MII:
185 sc->sc_att_stage = GEM_ATT_MII;
186 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
187 /*FALLTHROUGH*/
188 case GEM_ATT_7:
189 for (i = 0; i < GEM_NRXDESC; i++) {
190 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
191 bus_dmamap_destroy(sc->sc_dmatag,
192 sc->sc_rxsoft[i].rxs_dmamap);
193 }
194 /*FALLTHROUGH*/
195 case GEM_ATT_6:
196 for (i = 0; i < GEM_TXQUEUELEN; i++) {
197 if (sc->sc_txsoft[i].txs_dmamap != NULL)
198 bus_dmamap_destroy(sc->sc_dmatag,
199 sc->sc_txsoft[i].txs_dmamap);
200 }
201 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
202 /*FALLTHROUGH*/
203 case GEM_ATT_5:
204 bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
205 /*FALLTHROUGH*/
206 case GEM_ATT_4:
207 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
208 /*FALLTHROUGH*/
209 case GEM_ATT_3:
210 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
211 /*FALLTHROUGH*/
212 case GEM_ATT_2:
213 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
214 sizeof(struct gem_control_data));
215 /*FALLTHROUGH*/
216 case GEM_ATT_1:
217 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
218 /*FALLTHROUGH*/
219 case GEM_ATT_0:
220 sc->sc_att_stage = GEM_ATT_0;
221 /*FALLTHROUGH*/
222 case GEM_ATT_BACKEND_0:
223 break;
224 }
225 return 0;
226 }
227
228 static void
229 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
230 {
231 cfattach_t ca = device_cfattach(sc->sc_dev);
232
233 sc->sc_att_stage = stage;
234 (*ca->ca_detach)(sc->sc_dev, 0);
235 }
236
237 /*
238 * gem_attach:
239 *
240 * Attach a Gem interface to the system.
241 */
242 void
243 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
244 {
245 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
246 struct mii_data *mii = &sc->sc_mii;
247 bus_space_tag_t t = sc->sc_bustag;
248 bus_space_handle_t h = sc->sc_h1;
249 struct ifmedia_entry *ifm;
250 int i, error, phyaddr;
251 uint32_t v;
252 char *nullbuf;
253
254 /* Make sure the chip is stopped. */
255 ifp->if_softc = sc;
256 gem_reset(sc);
257
258 /*
259 * Allocate the control data structures, and create and load the
260 * DMA map for it. gem_control_data is 9216 bytes, we have space for
261 * the padding buffer in the bus_dmamem_alloc()'d memory.
262 */
263 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
264 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
265 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
266 aprint_error_dev(sc->sc_dev,
267 "unable to allocate control data, error = %d\n",
268 error);
269 gem_partial_detach(sc, GEM_ATT_0);
270 return;
271 }
272
273 /* XXX should map this in with correct endianness */
274 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
275 sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
276 BUS_DMA_COHERENT)) != 0) {
277 aprint_error_dev(sc->sc_dev,
278 "unable to map control data, error = %d\n", error);
279 gem_partial_detach(sc, GEM_ATT_1);
280 return;
281 }
282
283 nullbuf =
284 (char *)sc->sc_control_data + sizeof(struct gem_control_data);
285
286 if ((error = bus_dmamap_create(sc->sc_dmatag,
287 sizeof(struct gem_control_data), 1,
288 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
289 aprint_error_dev(sc->sc_dev,
290 "unable to create control data DMA map, error = %d\n",
291 error);
292 gem_partial_detach(sc, GEM_ATT_2);
293 return;
294 }
295
296 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
297 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
298 0)) != 0) {
299 aprint_error_dev(sc->sc_dev,
300 "unable to load control data DMA map, error = %d\n",
301 error);
302 gem_partial_detach(sc, GEM_ATT_3);
303 return;
304 }
305
306 memset(nullbuf, 0, ETHER_MIN_TX);
307 if ((error = bus_dmamap_create(sc->sc_dmatag,
308 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
309 aprint_error_dev(sc->sc_dev,
310 "unable to create padding DMA map, error = %d\n", error);
311 gem_partial_detach(sc, GEM_ATT_4);
312 return;
313 }
314
315 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
316 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
317 aprint_error_dev(sc->sc_dev,
318 "unable to load padding DMA map, error = %d\n", error);
319 gem_partial_detach(sc, GEM_ATT_5);
320 return;
321 }
322
323 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
324 BUS_DMASYNC_PREWRITE);
325
326 /*
327 * Initialize the transmit job descriptors.
328 */
329 SIMPLEQ_INIT(&sc->sc_txfreeq);
330 SIMPLEQ_INIT(&sc->sc_txdirtyq);
331
332 /*
333 * Create the transmit buffer DMA maps.
334 */
335 for (i = 0; i < GEM_TXQUEUELEN; i++) {
336 struct gem_txsoft *txs;
337
338 txs = &sc->sc_txsoft[i];
339 txs->txs_mbuf = NULL;
340 if ((error = bus_dmamap_create(sc->sc_dmatag,
341 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
342 ETHER_MAX_LEN_JUMBO, 0, 0,
343 &txs->txs_dmamap)) != 0) {
344 aprint_error_dev(sc->sc_dev,
345 "unable to create tx DMA map %d, error = %d\n",
346 i, error);
347 gem_partial_detach(sc, GEM_ATT_6);
348 return;
349 }
350 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
351 }
352
353 /*
354 * Create the receive buffer DMA maps.
355 */
356 for (i = 0; i < GEM_NRXDESC; i++) {
357 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
358 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
359 aprint_error_dev(sc->sc_dev,
360 "unable to create rx DMA map %d, error = %d\n",
361 i, error);
362 gem_partial_detach(sc, GEM_ATT_7);
363 return;
364 }
365 sc->sc_rxsoft[i].rxs_mbuf = NULL;
366 }
367
368 /* Initialize ifmedia structures and MII info */
369 mii->mii_ifp = ifp;
370 mii->mii_readreg = gem_mii_readreg;
371 mii->mii_writereg = gem_mii_writereg;
372 mii->mii_statchg = gem_mii_statchg;
373
374 sc->sc_ethercom.ec_mii = mii;
375
376 /*
377 * Initialization based on `GEM Gigabit Ethernet ASIC Specification'
378 * Section 3.2.1 `Initialization Sequence'.
379 * However, we can't assume SERDES or Serialink if neither
380 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
381 * being set, as both are set on Sun X1141A (with SERDES). So,
382 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
383 * Also, for variants that report 2 PHY's, we prefer the external
384 * PHY over the internal PHY, so we look for that first.
385 */
386 gem_mifinit(sc);
387
388 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
389 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
390 ether_mediastatus);
391 /* Look for external PHY */
392 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
393 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
394 bus_space_write_4(t, h, GEM_MIF_CONFIG,
395 sc->sc_mif_config);
396 switch (sc->sc_variant) {
397 case GEM_SUN_ERI:
398 phyaddr = GEM_PHYAD_EXTERNAL;
399 break;
400 default:
401 phyaddr = MII_PHY_ANY;
402 break;
403 }
404 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
405 MII_OFFSET_ANY, MIIF_FORCEANEG);
406 }
407 #ifdef GEM_DEBUG
408 else
409 aprint_debug_dev(sc->sc_dev, "using external PHY\n");
410 #endif
411 /* Look for internal PHY if no external PHY was found */
412 if (LIST_EMPTY(&mii->mii_phys) &&
413 ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) ||
414 (sc->sc_variant == GEM_APPLE_K2_GMAC))) {
415 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
416 bus_space_write_4(t, h, GEM_MIF_CONFIG,
417 sc->sc_mif_config);
418 switch (sc->sc_variant) {
419 case GEM_SUN_ERI:
420 case GEM_APPLE_K2_GMAC:
421 phyaddr = GEM_PHYAD_INTERNAL;
422 break;
423 case GEM_APPLE_GMAC:
424 phyaddr = GEM_PHYAD_EXTERNAL;
425 break;
426 default:
427 phyaddr = MII_PHY_ANY;
428 break;
429 }
430 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
431 MII_OFFSET_ANY, MIIF_FORCEANEG);
432 #ifdef GEM_DEBUG
433 if (!LIST_EMPTY(&mii->mii_phys))
434 aprint_debug_dev(sc->sc_dev,
435 "using internal PHY\n");
436 #endif
437 }
438 if (LIST_EMPTY(&mii->mii_phys)) {
439 /* No PHY attached */
440 aprint_error_dev(sc->sc_dev,
441 "PHY probe failed\n");
442 gem_partial_detach(sc, GEM_ATT_MII);
443 return;
444 } else {
445 struct mii_softc *child;
446
447 /*
448 * Walk along the list of attached MII devices and
449 * establish an `MII instance' to `PHY number'
450 * mapping.
451 */
452 LIST_FOREACH(child, &mii->mii_phys, mii_list) {
453 /*
454 * Note: we support just one PHY: the internal
455 * or external MII is already selected for us
456 * by the GEM_MIF_CONFIG register.
457 */
458 if (child->mii_phy > 1 || child->mii_inst > 0) {
459 aprint_error_dev(sc->sc_dev,
460 "cannot accommodate MII device"
461 " %s at PHY %d, instance %d\n",
462 device_xname(child->mii_dev),
463 child->mii_phy, child->mii_inst);
464 continue;
465 }
466 sc->sc_phys[child->mii_inst] = child->mii_phy;
467 }
468
469 if (sc->sc_variant != GEM_SUN_ERI)
470 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
471 GEM_MII_DATAPATH_MII);
472
473 /*
474 * XXX - we can really do the following ONLY if the
475 * PHY indeed has the auto negotiation capability!!
476 */
477 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
478 }
479 } else {
480 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
481 gem_ser_mediastatus);
482 /* SERDES or Serialink */
483 if (sc->sc_flags & GEM_SERDES) {
484 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
485 GEM_MII_DATAPATH_SERDES);
486 } else {
487 sc->sc_flags |= GEM_SERIAL;
488 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
489 GEM_MII_DATAPATH_SERIAL);
490 }
491
492 aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
493 sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
494
495 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
496 /* Check for FDX and HDX capabilities */
497 sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
498 if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
499 ifmedia_add(&sc->sc_mii.mii_media,
500 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
501 aprint_normal("1000baseSX-FDX, ");
502 }
503 if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
504 ifmedia_add(&sc->sc_mii.mii_media,
505 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
506 aprint_normal("1000baseSX-HDX, ");
507 }
508 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
509 sc->sc_mii_media = IFM_AUTO;
510 aprint_normal("auto\n");
511
512 gem_pcs_stop(sc, 1);
513 }
514
515 /*
516 * From this point forward, the attachment cannot fail. A failure
517 * before this point releases all resources that may have been
518 * allocated.
519 */
520
521 /* Announce ourselves. */
522 aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
523 ether_sprintf(enaddr));
524
525 /* Get RX FIFO size */
526 sc->sc_rxfifosize = 64 *
527 bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
528 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
529
530 /* Get TX FIFO size */
531 v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
532 aprint_normal(", %uKB TX fifo\n", v / 16);
533
534 /* Initialize ifnet structure. */
535 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
536 ifp->if_softc = sc;
537 ifp->if_flags =
538 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
539 sc->sc_if_flags = ifp->if_flags;
540 #if 0
541 /*
542 * The GEM hardware supports basic TCP checksum offloading only.
543 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
544 * have bugs in the receive checksum, so don't enable it for now.
545 */
546 if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
547 (GEM_IS_APPLE(sc) &&
548 (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
549 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
550 #endif
551 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
552 ifp->if_start = gem_start;
553 ifp->if_ioctl = gem_ioctl;
554 ifp->if_watchdog = gem_watchdog;
555 ifp->if_stop = gem_stop;
556 ifp->if_init = gem_init;
557 IFQ_SET_READY(&ifp->if_snd);
558
559 /*
560 * If we support GigE media, we support jumbo frames too.
561 * Unless we are Apple.
562 */
563 TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
564 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
565 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
566 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
567 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
568 if (!GEM_IS_APPLE(sc))
569 sc->sc_ethercom.ec_capabilities
570 |= ETHERCAP_JUMBO_MTU;
571 sc->sc_flags |= GEM_GIGABIT;
572 break;
573 }
574 }
575
576 /* claim 802.1q capability */
577 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
578
579 /* Attach the interface. */
580 if_attach(ifp);
581 if_deferred_start_init(ifp, NULL);
582 ether_ifattach(ifp, enaddr);
583 ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
584
585 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
586 RND_TYPE_NET, RND_FLAG_DEFAULT);
587
588 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
589 NULL, device_xname(sc->sc_dev), "interrupts");
590 #ifdef GEM_COUNTERS
591 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
592 &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
593 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
594 &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
595 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
596 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
597 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
598 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
599 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
600 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
601 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
602 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
603 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
604 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
605 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
606 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
607 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
608 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
609 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
610 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
611 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
612 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
613 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
614 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
615 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
616 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
617 #endif
618
619 callout_init(&sc->sc_tick_ch, 0);
620 callout_init(&sc->sc_rx_watchdog, 0);
621 callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
622
623 sc->sc_att_stage = GEM_ATT_FINISHED;
624
625 return;
626 }
627
628 void
629 gem_tick(void *arg)
630 {
631 struct gem_softc *sc = arg;
632 int s;
633
634 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
635 /*
636 * We have to reset everything if we failed to get a
637 * PCS interrupt. Restarting the callout is handled
638 * in gem_pcs_start().
639 */
640 gem_init(&sc->sc_ethercom.ec_if);
641 } else {
642 s = splnet();
643 mii_tick(&sc->sc_mii);
644 splx(s);
645 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
646 }
647 }
648
649 static int
650 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, uint32_t clr,
651 uint32_t set)
652 {
653 int i;
654 uint32_t reg;
655
656 for (i = TRIES; i--; DELAY(100)) {
657 reg = bus_space_read_4(sc->sc_bustag, h, r);
658 if ((reg & clr) == 0 && (reg & set) == set)
659 return (1);
660 }
661 return (0);
662 }
663
664 void
665 gem_reset(struct gem_softc *sc)
666 {
667 bus_space_tag_t t = sc->sc_bustag;
668 bus_space_handle_t h = sc->sc_h2;
669 int s;
670
671 s = splnet();
672 DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
673 gem_reset_rx(sc);
674 gem_reset_tx(sc);
675
676 /* Do a full reset */
677 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
678 if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
679 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
680 splx(s);
681 }
682
683
684 /*
685 * gem_rxdrain:
686 *
687 * Drain the receive queue.
688 */
689 static void
690 gem_rxdrain(struct gem_softc *sc)
691 {
692 struct gem_rxsoft *rxs;
693 int i;
694
695 for (i = 0; i < GEM_NRXDESC; i++) {
696 rxs = &sc->sc_rxsoft[i];
697 if (rxs->rxs_mbuf != NULL) {
698 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
699 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
700 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
701 m_freem(rxs->rxs_mbuf);
702 rxs->rxs_mbuf = NULL;
703 }
704 }
705 }
706
707 /*
708 * Reset the whole thing.
709 */
710 static void
711 gem_stop(struct ifnet *ifp, int disable)
712 {
713 struct gem_softc *sc = ifp->if_softc;
714 struct gem_txsoft *txs;
715
716 DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
717
718 callout_halt(&sc->sc_tick_ch, NULL);
719 callout_halt(&sc->sc_rx_watchdog, NULL);
720 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
721 gem_pcs_stop(sc, disable);
722 else
723 mii_down(&sc->sc_mii);
724
725 /* XXX - Should we reset these instead? */
726 gem_disable_tx(sc);
727 gem_disable_rx(sc);
728
729 /*
730 * Release any queued transmit buffers.
731 */
732 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
733 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
734 if (txs->txs_mbuf != NULL) {
735 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
736 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
737 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
738 m_freem(txs->txs_mbuf);
739 txs->txs_mbuf = NULL;
740 }
741 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
742 }
743
744 /*
745 * Mark the interface down and cancel the watchdog timer.
746 */
747 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
748 sc->sc_if_flags = ifp->if_flags;
749 ifp->if_timer = 0;
750
751 if (disable)
752 gem_rxdrain(sc);
753 }
754
755
756 /*
757 * Reset the receiver
758 */
759 int
760 gem_reset_rx(struct gem_softc *sc)
761 {
762 bus_space_tag_t t = sc->sc_bustag;
763 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
764
765 /*
766 * Resetting while DMA is in progress can cause a bus hang, so we
767 * disable DMA first.
768 */
769 gem_disable_rx(sc);
770 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
771 bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
772 /* Wait till it finishes */
773 if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
774 aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
775 /* Wait 5ms extra. */
776 delay(5000);
777
778 /* Finally, reset the ERX */
779 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
780 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
781 /* Wait till it finishes */
782 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
783 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
784 return (1);
785 }
786 return (0);
787 }
788
789
790 /*
791 * Reset the receiver DMA engine.
792 *
793 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
794 * etc in order to reset the receiver DMA engine only and not do a full
795 * reset which amongst others also downs the link and clears the FIFOs.
796 */
797 static void
798 gem_reset_rxdma(struct gem_softc *sc)
799 {
800 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
801 bus_space_tag_t t = sc->sc_bustag;
802 bus_space_handle_t h = sc->sc_h1;
803 int i;
804
805 if (gem_reset_rx(sc) != 0) {
806 gem_init(ifp);
807 return;
808 }
809 for (i = 0; i < GEM_NRXDESC; i++)
810 if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
811 GEM_UPDATE_RXDESC(sc, i);
812 sc->sc_rxptr = 0;
813 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
814 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
815
816 /* Reprogram Descriptor Ring Base Addresses */
817 /* NOTE: we use only 32-bit DMA addresses here. */
818 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
819 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
820
821 /* Redo ERX Configuration */
822 gem_rx_common(sc);
823
824 /* Give the reciever a swift kick */
825 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
826 }
827
828 /*
829 * Common RX configuration for gem_init() and gem_reset_rxdma().
830 */
831 static void
832 gem_rx_common(struct gem_softc *sc)
833 {
834 bus_space_tag_t t = sc->sc_bustag;
835 bus_space_handle_t h = sc->sc_h1;
836 uint32_t v;
837
838 /* Encode Receive Descriptor ring size: four possible values */
839 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
840
841 /* Set receive h/w checksum offset */
842 #ifdef INET
843 v |= (ETHER_HDR_LEN + sizeof(struct ip) +
844 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
845 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
846 #endif
847
848 /* Enable RX DMA */
849 bus_space_write_4(t, h, GEM_RX_CONFIG,
850 v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
851 (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
852
853 /*
854 * The following value is for an OFF Threshold of about 3/4 full
855 * and an ON Threshold of 1/4 full.
856 */
857 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
858 (3 * sc->sc_rxfifosize / 256) |
859 ((sc->sc_rxfifosize / 256) << 12));
860 bus_space_write_4(t, h, GEM_RX_BLANKING,
861 (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
862 }
863
864 /*
865 * Reset the transmitter
866 */
867 int
868 gem_reset_tx(struct gem_softc *sc)
869 {
870 bus_space_tag_t t = sc->sc_bustag;
871 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
872
873 /*
874 * Resetting while DMA is in progress can cause a bus hang, so we
875 * disable DMA first.
876 */
877 gem_disable_tx(sc);
878 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
879 bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
880 /* Wait till it finishes */
881 if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
882 aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
883 /* Wait 5ms extra. */
884 delay(5000);
885
886 /* Finally, reset the ETX */
887 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
888 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
889 /* Wait till it finishes */
890 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
891 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
892 return (1);
893 }
894 return (0);
895 }
896
897 /*
898 * disable receiver.
899 */
900 int
901 gem_disable_rx(struct gem_softc *sc)
902 {
903 bus_space_tag_t t = sc->sc_bustag;
904 bus_space_handle_t h = sc->sc_h1;
905 uint32_t cfg;
906
907 /* Flip the enable bit */
908 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
909 cfg &= ~GEM_MAC_RX_ENABLE;
910 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
911 bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
912 /* Wait for it to finish */
913 return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
914 }
915
916 /*
917 * disable transmitter.
918 */
919 int
920 gem_disable_tx(struct gem_softc *sc)
921 {
922 bus_space_tag_t t = sc->sc_bustag;
923 bus_space_handle_t h = sc->sc_h1;
924 uint32_t cfg;
925
926 /* Flip the enable bit */
927 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
928 cfg &= ~GEM_MAC_TX_ENABLE;
929 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
930 bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
931 /* Wait for it to finish */
932 return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
933 }
934
935 /*
936 * Initialize interface.
937 */
938 int
939 gem_meminit(struct gem_softc *sc)
940 {
941 struct gem_rxsoft *rxs;
942 int i, error;
943
944 /*
945 * Initialize the transmit descriptor ring.
946 */
947 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
948 for (i = 0; i < GEM_NTXDESC; i++) {
949 sc->sc_txdescs[i].gd_flags = 0;
950 sc->sc_txdescs[i].gd_addr = 0;
951 }
952 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
953 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
954 sc->sc_txfree = GEM_NTXDESC-1;
955 sc->sc_txnext = 0;
956 sc->sc_txwin = 0;
957
958 /*
959 * Initialize the receive descriptor and receive job
960 * descriptor rings.
961 */
962 for (i = 0; i < GEM_NRXDESC; i++) {
963 rxs = &sc->sc_rxsoft[i];
964 if (rxs->rxs_mbuf == NULL) {
965 if ((error = gem_add_rxbuf(sc, i)) != 0) {
966 aprint_error_dev(sc->sc_dev,
967 "unable to allocate or map rx "
968 "buffer %d, error = %d\n",
969 i, error);
970 /*
971 * XXX Should attempt to run with fewer receive
972 * XXX buffers instead of just failing.
973 */
974 gem_rxdrain(sc);
975 return (1);
976 }
977 } else
978 GEM_INIT_RXDESC(sc, i);
979 }
980 sc->sc_rxptr = 0;
981 sc->sc_meminited = 1;
982 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
983 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
984
985 return (0);
986 }
987
988 static int
989 gem_ringsize(int sz)
990 {
991 switch (sz) {
992 case 32:
993 return GEM_RING_SZ_32;
994 case 64:
995 return GEM_RING_SZ_64;
996 case 128:
997 return GEM_RING_SZ_128;
998 case 256:
999 return GEM_RING_SZ_256;
1000 case 512:
1001 return GEM_RING_SZ_512;
1002 case 1024:
1003 return GEM_RING_SZ_1024;
1004 case 2048:
1005 return GEM_RING_SZ_2048;
1006 case 4096:
1007 return GEM_RING_SZ_4096;
1008 case 8192:
1009 return GEM_RING_SZ_8192;
1010 default:
1011 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1012 return GEM_RING_SZ_32;
1013 }
1014 }
1015
1016
1017 /*
1018 * Start PCS
1019 */
1020 void
1021 gem_pcs_start(struct gem_softc *sc)
1022 {
1023 bus_space_tag_t t = sc->sc_bustag;
1024 bus_space_handle_t h = sc->sc_h1;
1025 uint32_t v;
1026
1027 #ifdef GEM_DEBUG
1028 aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1029 #endif
1030
1031 /*
1032 * Set up. We must disable the MII before modifying the
1033 * GEM_MII_ANAR register
1034 */
1035 if (sc->sc_flags & GEM_SERDES) {
1036 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1037 GEM_MII_DATAPATH_SERDES);
1038 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1039 GEM_MII_SLINK_LOOPBACK);
1040 } else {
1041 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1042 GEM_MII_DATAPATH_SERIAL);
1043 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1044 }
1045 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1046 v = bus_space_read_4(t, h, GEM_MII_ANAR);
1047 v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1048 if (sc->sc_mii_media == IFM_AUTO)
1049 v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1050 else if (sc->sc_mii_media == IFM_FDX) {
1051 v |= GEM_MII_ANEG_FUL_DUPLX;
1052 v &= ~GEM_MII_ANEG_HLF_DUPLX;
1053 } else if (sc->sc_mii_media == IFM_HDX) {
1054 v &= ~GEM_MII_ANEG_FUL_DUPLX;
1055 v |= GEM_MII_ANEG_HLF_DUPLX;
1056 }
1057
1058 /* Configure link. */
1059 bus_space_write_4(t, h, GEM_MII_ANAR, v);
1060 bus_space_write_4(t, h, GEM_MII_CONTROL,
1061 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1062 bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1063 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1064
1065 /* Start the 10 second timer */
1066 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
1067 }
1068
1069 /*
1070 * Stop PCS
1071 */
1072 void
1073 gem_pcs_stop(struct gem_softc *sc, int disable)
1074 {
1075 bus_space_tag_t t = sc->sc_bustag;
1076 bus_space_handle_t h = sc->sc_h1;
1077
1078 #ifdef GEM_DEBUG
1079 aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1080 #endif
1081
1082 /* Tell link partner that we're going away */
1083 bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1084
1085 /*
1086 * Disable PCS MII. The documentation suggests that setting
1087 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1088 * negotiation will shut down the link. However, it appears
1089 * that we also need to unset the datapath mode.
1090 */
1091 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1092 bus_space_write_4(t, h, GEM_MII_CONTROL,
1093 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1094 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1095 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1096
1097 if (disable) {
1098 if (sc->sc_flags & GEM_SERDES)
1099 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1100 GEM_MII_SLINK_POWER_OFF);
1101 else
1102 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1103 GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1104 }
1105
1106 sc->sc_flags &= ~GEM_LINK;
1107 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1108 sc->sc_mii.mii_media_status = IFM_AVALID;
1109 }
1110
1111
1112 /*
1113 * Initialization of interface; set up initialization block
1114 * and transmit/receive descriptor rings.
1115 */
1116 int
1117 gem_init(struct ifnet *ifp)
1118 {
1119 struct gem_softc *sc = ifp->if_softc;
1120 bus_space_tag_t t = sc->sc_bustag;
1121 bus_space_handle_t h = sc->sc_h1;
1122 int rc = 0, s;
1123 u_int max_frame_size;
1124 uint32_t v;
1125
1126 s = splnet();
1127
1128 DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1129 /*
1130 * Initialization sequence. The numbered steps below correspond
1131 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1132 * Channel Engine manual (part of the PCIO manual).
1133 * See also the STP2002-STQ document from Sun Microsystems.
1134 */
1135
1136 /* step 1 & 2. Reset the Ethernet Channel */
1137 gem_stop(ifp, 0);
1138 gem_reset(sc);
1139 DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1140
1141 /* Re-initialize the MIF */
1142 gem_mifinit(sc);
1143
1144 /* Set up correct datapath for non-SERDES/Serialink */
1145 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1146 sc->sc_variant != GEM_SUN_ERI)
1147 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1148 GEM_MII_DATAPATH_MII);
1149
1150 /* Call MI reset function if any */
1151 if (sc->sc_hwreset)
1152 (*sc->sc_hwreset)(sc);
1153
1154 /* step 3. Setup data structures in host memory */
1155 if (gem_meminit(sc) != 0) {
1156 splx(s);
1157 return 1;
1158 }
1159
1160 /* step 4. TX MAC registers & counters */
1161 gem_init_regs(sc);
1162 max_frame_size = uimax(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1163 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1164 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1165 max_frame_size += ETHER_VLAN_ENCAP_LEN;
1166 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1167 max_frame_size|/* burst size */(0x2000<<16));
1168
1169 /* step 5. RX MAC registers & counters */
1170 gem_setladrf(sc);
1171
1172 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1173 /* NOTE: we use only 32-bit DMA addresses here. */
1174 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1175 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1176
1177 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1178 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1179
1180 /* step 8. Global Configuration & Interrupt Mask */
1181 gem_inten(sc);
1182 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1183 GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1184 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1185 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1186 GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1187
1188 /* step 9. ETX Configuration: use mostly default values */
1189
1190 /* Enable TX DMA */
1191 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1192 bus_space_write_4(t, h, GEM_TX_CONFIG,
1193 v | GEM_TX_CONFIG_TXDMA_EN |
1194 (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1195 GEM_TX_CONFIG_TXFIFO_TH));
1196 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1197
1198 /* step 10. ERX Configuration */
1199 gem_rx_common(sc);
1200
1201 /* step 11. Configure Media */
1202 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1203 (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1204 goto out;
1205
1206 /* step 12. RX_MAC Configuration Register */
1207 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1208 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1209 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1210
1211 /* step 14. Issue Transmit Pending command */
1212
1213 /* Call MI initialization function if any */
1214 if (sc->sc_hwinit)
1215 (*sc->sc_hwinit)(sc);
1216
1217
1218 /* step 15. Give the reciever a swift kick */
1219 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1220
1221 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1222 /* Configure PCS */
1223 gem_pcs_start(sc);
1224 else
1225 /* Start the one second timer. */
1226 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1227
1228 sc->sc_flags &= ~GEM_LINK;
1229 ifp->if_flags |= IFF_RUNNING;
1230 ifp->if_flags &= ~IFF_OACTIVE;
1231 ifp->if_timer = 0;
1232 sc->sc_if_flags = ifp->if_flags;
1233 out:
1234 splx(s);
1235
1236 return (0);
1237 }
1238
1239 void
1240 gem_init_regs(struct gem_softc *sc)
1241 {
1242 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1243 bus_space_tag_t t = sc->sc_bustag;
1244 bus_space_handle_t h = sc->sc_h1;
1245 const u_char *laddr = CLLADDR(ifp->if_sadl);
1246 uint32_t v;
1247
1248 /* These regs are not cleared on reset */
1249 if (!sc->sc_inited) {
1250
1251 /* Load recommended values */
1252 bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1253 bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1254 bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1255
1256 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1257 /* Max frame and max burst size */
1258 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1259 ETHER_MAX_LEN | (0x2000<<16));
1260
1261 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1262 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1263 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1264 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1265 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1266 ((laddr[5]<<8)|laddr[4])&0x3ff);
1267
1268 /* Secondary MAC addr set to 0:0:0:0:0:0 */
1269 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1270 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1271 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1272
1273 /* MAC control addr set to 01:80:c2:00:00:01 */
1274 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1275 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1276 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1277
1278 /* MAC filter addr set to 0:0:0:0:0:0 */
1279 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1280 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1281 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1282
1283 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1284 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1285
1286 sc->sc_inited = 1;
1287 }
1288
1289 /* Counters need to be zeroed */
1290 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1291 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1292 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1293 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1294 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1295 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1296 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1297 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1298 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1299 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1300 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1301
1302 /* Set XOFF PAUSE time. */
1303 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1304
1305 /*
1306 * Set the internal arbitration to "infinite" bursts of the
1307 * maximum length of 31 * 64 bytes so DMA transfers aren't
1308 * split up in cache line size chunks. This greatly improves
1309 * especially RX performance.
1310 * Enable silicon bug workarounds for the Apple variants.
1311 */
1312 bus_space_write_4(t, h, GEM_CONFIG,
1313 GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1314 ((sc->sc_flags & GEM_PCI) ?
1315 GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1316 GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1317
1318 /*
1319 * Set the station address.
1320 */
1321 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1322 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1323 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1324
1325 /*
1326 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1327 */
1328 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1329 v = GEM_MAC_XIF_TX_MII_ENA;
1330 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1331 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1332 v |= GEM_MAC_XIF_FDPLX_LED;
1333 if (sc->sc_flags & GEM_GIGABIT)
1334 v |= GEM_MAC_XIF_GMII_MODE;
1335 }
1336 } else {
1337 v |= GEM_MAC_XIF_GMII_MODE;
1338 }
1339 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1340 }
1341
1342 #ifdef GEM_DEBUG
1343 static void
1344 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1345 {
1346 int i;
1347
1348 for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1349 printf("descriptor %d:\t", i);
1350 printf("gd_flags: 0x%016" PRIx64 "\t",
1351 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1352 printf("gd_addr: 0x%016" PRIx64 "\n",
1353 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1354 if (i == lastdesc)
1355 break;
1356 }
1357 }
1358 #endif
1359
1360 static void
1361 gem_start(struct ifnet *ifp)
1362 {
1363 struct gem_softc *sc = ifp->if_softc;
1364 struct mbuf *m0, *m;
1365 struct gem_txsoft *txs;
1366 bus_dmamap_t dmamap;
1367 int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1368 #ifdef GEM_DEBUG
1369 int otxnext;
1370 #endif
1371 uint64_t flags = 0;
1372
1373 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1374 return;
1375
1376 /*
1377 * Remember the previous number of free descriptors and
1378 * the first descriptor we'll use.
1379 */
1380 ofree = sc->sc_txfree;
1381 #ifdef GEM_DEBUG
1382 otxnext = sc->sc_txnext;
1383 #endif
1384
1385 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1386 device_xname(sc->sc_dev), ofree, otxnext));
1387
1388 /*
1389 * Loop through the send queue, setting up transmit descriptors
1390 * until we drain the queue, or use up all available transmit
1391 * descriptors.
1392 */
1393 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1394 sc->sc_txfree != 0) {
1395 /*
1396 * Grab a packet off the queue.
1397 */
1398 IFQ_POLL(&ifp->if_snd, m0);
1399 if (m0 == NULL)
1400 break;
1401 m = NULL;
1402
1403 dmamap = txs->txs_dmamap;
1404
1405 /*
1406 * Load the DMA map. If this fails, the packet either
1407 * didn't fit in the alloted number of segments, or we were
1408 * short on resources. In this case, we'll copy and try
1409 * again.
1410 */
1411 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1412 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1413 (m0->m_pkthdr.len < ETHER_MIN_TX &&
1414 dmamap->dm_nsegs == GEM_NTXSEGS)) {
1415 if (m0->m_pkthdr.len > MCLBYTES) {
1416 aprint_error_dev(sc->sc_dev,
1417 "unable to allocate jumbo Tx cluster\n");
1418 IFQ_DEQUEUE(&ifp->if_snd, m0);
1419 m_freem(m0);
1420 continue;
1421 }
1422 MGETHDR(m, M_DONTWAIT, MT_DATA);
1423 if (m == NULL) {
1424 aprint_error_dev(sc->sc_dev,
1425 "unable to allocate Tx mbuf\n");
1426 break;
1427 }
1428 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1429 if (m0->m_pkthdr.len > MHLEN) {
1430 MCLGET(m, M_DONTWAIT);
1431 if ((m->m_flags & M_EXT) == 0) {
1432 aprint_error_dev(sc->sc_dev,
1433 "unable to allocate Tx cluster\n");
1434 m_freem(m);
1435 break;
1436 }
1437 }
1438 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1439 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1440 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1441 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1442 if (error) {
1443 aprint_error_dev(sc->sc_dev,
1444 "unable to load Tx buffer, error = %d\n",
1445 error);
1446 break;
1447 }
1448 }
1449
1450 /*
1451 * Ensure we have enough descriptors free to describe
1452 * the packet.
1453 */
1454 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1455 (sc->sc_txfree - 1) : sc->sc_txfree)) {
1456 /*
1457 * Not enough free descriptors to transmit this
1458 * packet. We haven't committed to anything yet,
1459 * so just unload the DMA map, put the packet
1460 * back on the queue, and punt. Notify the upper
1461 * layer that there are no more slots left.
1462 *
1463 * XXX We could allocate an mbuf and copy, but
1464 * XXX it is worth it?
1465 */
1466 ifp->if_flags |= IFF_OACTIVE;
1467 sc->sc_if_flags = ifp->if_flags;
1468 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1469 if (m != NULL)
1470 m_freem(m);
1471 break;
1472 }
1473
1474 IFQ_DEQUEUE(&ifp->if_snd, m0);
1475 if (m != NULL) {
1476 m_freem(m0);
1477 m0 = m;
1478 }
1479
1480 /*
1481 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1482 */
1483
1484 /* Sync the DMA map. */
1485 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1486 BUS_DMASYNC_PREWRITE);
1487
1488 /*
1489 * Initialize the transmit descriptors.
1490 */
1491 firsttx = sc->sc_txnext;
1492 for (nexttx = firsttx, seg = 0;
1493 seg < dmamap->dm_nsegs;
1494 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1495
1496 /*
1497 * If this is the first descriptor we're
1498 * enqueueing, set the start of packet flag,
1499 * and the checksum stuff if we want the hardware
1500 * to do it.
1501 */
1502 sc->sc_txdescs[nexttx].gd_addr =
1503 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1504 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1505 if (nexttx == firsttx) {
1506 flags |= GEM_TD_START_OF_PACKET;
1507 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1508 sc->sc_txwin = 0;
1509 flags |= GEM_TD_INTERRUPT_ME;
1510 }
1511
1512 #ifdef INET
1513 /* h/w checksum */
1514 if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1515 m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1516 struct ether_header *eh;
1517 uint16_t offset, start;
1518
1519 eh = mtod(m0, struct ether_header *);
1520 switch (ntohs(eh->ether_type)) {
1521 case ETHERTYPE_IP:
1522 start = ETHER_HDR_LEN;
1523 break;
1524 case ETHERTYPE_VLAN:
1525 start = ETHER_HDR_LEN +
1526 ETHER_VLAN_ENCAP_LEN;
1527 break;
1528 default:
1529 /* unsupported, drop it */
1530 m_free(m0);
1531 continue;
1532 }
1533 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1534 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1535 flags |= (start <<
1536 GEM_TD_CXSUM_STARTSHFT) |
1537 (offset <<
1538 GEM_TD_CXSUM_STUFFSHFT) |
1539 GEM_TD_CXSUM_ENABLE;
1540 }
1541 #endif
1542 }
1543 if (seg == dmamap->dm_nsegs - 1) {
1544 flags |= GEM_TD_END_OF_PACKET;
1545 } else {
1546 /* last flag set outside of loop */
1547 sc->sc_txdescs[nexttx].gd_flags =
1548 GEM_DMA_WRITE(sc, flags);
1549 }
1550 lasttx = nexttx;
1551 }
1552 if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1553 /* add padding buffer at end of chain */
1554 flags &= ~GEM_TD_END_OF_PACKET;
1555 sc->sc_txdescs[lasttx].gd_flags =
1556 GEM_DMA_WRITE(sc, flags);
1557
1558 sc->sc_txdescs[nexttx].gd_addr =
1559 GEM_DMA_WRITE(sc,
1560 sc->sc_nulldmamap->dm_segs[0].ds_addr);
1561 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1562 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1563 lasttx = nexttx;
1564 nexttx = GEM_NEXTTX(nexttx);
1565 seg++;
1566 }
1567 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1568
1569 KASSERT(lasttx != -1);
1570
1571 /*
1572 * Store a pointer to the packet so we can free it later,
1573 * and remember what txdirty will be once the packet is
1574 * done.
1575 */
1576 txs->txs_mbuf = m0;
1577 txs->txs_firstdesc = sc->sc_txnext;
1578 txs->txs_lastdesc = lasttx;
1579 txs->txs_ndescs = seg;
1580
1581 #ifdef GEM_DEBUG
1582 if (ifp->if_flags & IFF_DEBUG) {
1583 printf(" gem_start %p transmit chain:\n", txs);
1584 gem_txsoft_print(sc, txs->txs_firstdesc,
1585 txs->txs_lastdesc);
1586 }
1587 #endif
1588
1589 /* Sync the descriptors we're using. */
1590 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1591 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1592
1593 /* Advance the tx pointer. */
1594 sc->sc_txfree -= txs->txs_ndescs;
1595 sc->sc_txnext = nexttx;
1596
1597 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1598 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1599
1600 /*
1601 * Pass the packet to any BPF listeners.
1602 */
1603 bpf_mtap(ifp, m0, BPF_D_OUT);
1604 }
1605
1606 if (txs == NULL || sc->sc_txfree == 0) {
1607 /* No more slots left; notify upper layer. */
1608 ifp->if_flags |= IFF_OACTIVE;
1609 sc->sc_if_flags = ifp->if_flags;
1610 }
1611
1612 if (sc->sc_txfree != ofree) {
1613 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1614 device_xname(sc->sc_dev), lasttx, otxnext));
1615 /*
1616 * The entire packet chain is set up.
1617 * Kick the transmitter.
1618 */
1619 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1620 device_xname(sc->sc_dev), nexttx));
1621 bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1622 sc->sc_txnext);
1623
1624 /* Set a watchdog timer in case the chip flakes out. */
1625 ifp->if_timer = 5;
1626 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1627 device_xname(sc->sc_dev), ifp->if_timer));
1628 }
1629 }
1630
1631 /*
1632 * Transmit interrupt.
1633 */
1634 int
1635 gem_tint(struct gem_softc *sc)
1636 {
1637 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1638 bus_space_tag_t t = sc->sc_bustag;
1639 bus_space_handle_t mac = sc->sc_h1;
1640 struct gem_txsoft *txs;
1641 int txlast;
1642 int progress = 0;
1643 uint32_t v;
1644
1645 DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1646
1647 /* Unload collision counters ... */
1648 v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1649 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1650 ifp->if_collisions += v +
1651 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1652 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1653 ifp->if_oerrors += v;
1654
1655 /* ... then clear the hardware counters. */
1656 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1657 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1658 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1659 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1660
1661 /*
1662 * Go through our Tx list and free mbufs for those
1663 * frames that have been transmitted.
1664 */
1665 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1666 /*
1667 * In theory, we could harvest some descriptors before
1668 * the ring is empty, but that's a bit complicated.
1669 *
1670 * GEM_TX_COMPLETION points to the last descriptor
1671 * processed +1.
1672 *
1673 * Let's assume that the NIC writes back to the Tx
1674 * descriptors before it updates the completion
1675 * register. If the NIC has posted writes to the
1676 * Tx descriptors, PCI ordering requires that the
1677 * posted writes flush to RAM before the register-read
1678 * finishes. So let's read the completion register,
1679 * before syncing the descriptors, so that we
1680 * examine Tx descriptors that are at least as
1681 * current as the completion register.
1682 */
1683 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1684 DPRINTF(sc,
1685 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1686 txs->txs_lastdesc, txlast));
1687 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1688 if (txlast >= txs->txs_firstdesc &&
1689 txlast <= txs->txs_lastdesc)
1690 break;
1691 } else if (txlast >= txs->txs_firstdesc ||
1692 txlast <= txs->txs_lastdesc)
1693 break;
1694
1695 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1696 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1697
1698 #ifdef GEM_DEBUG /* XXX DMA synchronization? */
1699 if (ifp->if_flags & IFF_DEBUG) {
1700 printf(" txsoft %p transmit chain:\n", txs);
1701 gem_txsoft_print(sc, txs->txs_firstdesc,
1702 txs->txs_lastdesc);
1703 }
1704 #endif
1705
1706
1707 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1708 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1709
1710 sc->sc_txfree += txs->txs_ndescs;
1711
1712 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1713 0, txs->txs_dmamap->dm_mapsize,
1714 BUS_DMASYNC_POSTWRITE);
1715 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1716 if (txs->txs_mbuf != NULL) {
1717 m_freem(txs->txs_mbuf);
1718 txs->txs_mbuf = NULL;
1719 }
1720
1721 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1722
1723 ifp->if_opackets++;
1724 progress = 1;
1725 }
1726
1727 #if 0
1728 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1729 "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1730 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1731 ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1732 GEM_TX_DATA_PTR_HI) << 32) |
1733 bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1734 GEM_TX_DATA_PTR_LO),
1735 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1736 #endif
1737
1738 if (progress) {
1739 if (sc->sc_txfree == GEM_NTXDESC - 1)
1740 sc->sc_txwin = 0;
1741
1742 /* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1743 ifp->if_flags &= ~IFF_OACTIVE;
1744 sc->sc_if_flags = ifp->if_flags;
1745 ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1746 if_schedule_deferred_start(ifp);
1747 }
1748 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1749 device_xname(sc->sc_dev), ifp->if_timer));
1750
1751 return (1);
1752 }
1753
1754 /*
1755 * Receive interrupt.
1756 */
1757 int
1758 gem_rint(struct gem_softc *sc)
1759 {
1760 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1761 bus_space_tag_t t = sc->sc_bustag;
1762 bus_space_handle_t h = sc->sc_h1;
1763 struct gem_rxsoft *rxs;
1764 struct mbuf *m;
1765 uint64_t rxstat;
1766 uint32_t rxcomp;
1767 int i, len, progress = 0;
1768
1769 DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1770
1771 /*
1772 * Ignore spurious interrupt that sometimes occurs before
1773 * we are set up when we network boot.
1774 */
1775 if (!sc->sc_meminited)
1776 return 1;
1777
1778 /*
1779 * Read the completion register once. This limits
1780 * how long the following loop can execute.
1781 */
1782 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1783
1784 /*
1785 * XXX Read the lastrx only once at the top for speed.
1786 */
1787 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1788 sc->sc_rxptr, rxcomp));
1789
1790 /*
1791 * Go into the loop at least once.
1792 */
1793 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1794 i = GEM_NEXTRX(i)) {
1795 rxs = &sc->sc_rxsoft[i];
1796
1797 GEM_CDRXSYNC(sc, i,
1798 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1799
1800 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1801
1802 if (rxstat & GEM_RD_OWN) {
1803 GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1804 /*
1805 * We have processed all of the receive buffers.
1806 */
1807 break;
1808 }
1809
1810 progress++;
1811
1812 if (rxstat & GEM_RD_BAD_CRC) {
1813 ifp->if_ierrors++;
1814 aprint_error_dev(sc->sc_dev,
1815 "receive error: CRC error\n");
1816 GEM_INIT_RXDESC(sc, i);
1817 continue;
1818 }
1819
1820 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1821 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1822 #ifdef GEM_DEBUG
1823 if (ifp->if_flags & IFF_DEBUG) {
1824 printf(" rxsoft %p descriptor %d: ", rxs, i);
1825 printf("gd_flags: 0x%016llx\t", (long long)
1826 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1827 printf("gd_addr: 0x%016llx\n", (long long)
1828 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1829 }
1830 #endif
1831
1832 /* No errors; receive the packet. */
1833 len = GEM_RD_BUFLEN(rxstat);
1834
1835 /*
1836 * Allocate a new mbuf cluster. If that fails, we are
1837 * out of memory, and must drop the packet and recycle
1838 * the buffer that's already attached to this descriptor.
1839 */
1840 m = rxs->rxs_mbuf;
1841 if (gem_add_rxbuf(sc, i) != 0) {
1842 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1843 ifp->if_ierrors++;
1844 aprint_error_dev(sc->sc_dev,
1845 "receive error: RX no buffer space\n");
1846 GEM_INIT_RXDESC(sc, i);
1847 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1848 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1849 continue;
1850 }
1851 m->m_data += 2; /* We're already off by two */
1852
1853 m_set_rcvif(m, ifp);
1854 m->m_pkthdr.len = m->m_len = len;
1855
1856 #ifdef INET
1857 /* hardware checksum */
1858 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1859 struct ether_header *eh;
1860 struct ip *ip;
1861 int32_t hlen, pktlen;
1862
1863 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1864 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1865 ETHER_VLAN_ENCAP_LEN;
1866 eh = (struct ether_header *) (mtod(m, char *) +
1867 ETHER_VLAN_ENCAP_LEN);
1868 } else {
1869 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1870 eh = mtod(m, struct ether_header *);
1871 }
1872 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1873 goto swcsum;
1874 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1875
1876 /* IPv4 only */
1877 if (ip->ip_v != IPVERSION)
1878 goto swcsum;
1879
1880 hlen = ip->ip_hl << 2;
1881 if (hlen < sizeof(struct ip))
1882 goto swcsum;
1883
1884 /*
1885 * bail if too short, has random trailing garbage,
1886 * truncated, fragment, or has ethernet pad.
1887 */
1888 if ((ntohs(ip->ip_len) < hlen) ||
1889 (ntohs(ip->ip_len) != pktlen) ||
1890 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1891 goto swcsum;
1892
1893 switch (ip->ip_p) {
1894 case IPPROTO_TCP:
1895 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1896 goto swcsum;
1897 if (pktlen < (hlen + sizeof(struct tcphdr)))
1898 goto swcsum;
1899 m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1900 break;
1901 case IPPROTO_UDP:
1902 /* FALLTHROUGH */
1903 default:
1904 goto swcsum;
1905 }
1906
1907 /* the uncomplemented sum is expected */
1908 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1909
1910 /* if the pkt had ip options, we have to deduct them */
1911 if (hlen > sizeof(struct ip)) {
1912 uint16_t *opts;
1913 uint32_t optsum, temp;
1914
1915 optsum = 0;
1916 temp = hlen - sizeof(struct ip);
1917 opts = (uint16_t *) ((char *) ip +
1918 sizeof(struct ip));
1919
1920 while (temp > 1) {
1921 optsum += ntohs(*opts++);
1922 temp -= 2;
1923 }
1924 while (optsum >> 16)
1925 optsum = (optsum >> 16) +
1926 (optsum & 0xffff);
1927
1928 /* Deduct ip opts sum from hwsum. */
1929 m->m_pkthdr.csum_data += (uint16_t)~optsum;
1930
1931 while (m->m_pkthdr.csum_data >> 16)
1932 m->m_pkthdr.csum_data =
1933 (m->m_pkthdr.csum_data >> 16) +
1934 (m->m_pkthdr.csum_data &
1935 0xffff);
1936 }
1937
1938 m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1939 M_CSUM_NO_PSEUDOHDR;
1940 } else
1941 swcsum:
1942 m->m_pkthdr.csum_flags = 0;
1943 #endif
1944 /* Pass it on. */
1945 if_percpuq_enqueue(ifp->if_percpuq, m);
1946 }
1947
1948 if (progress) {
1949 /* Update the receive pointer. */
1950 if (i == sc->sc_rxptr) {
1951 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1952 #ifdef GEM_DEBUG
1953 if (ifp->if_flags & IFF_DEBUG)
1954 printf("%s: rint: ring wrap\n",
1955 device_xname(sc->sc_dev));
1956 #endif
1957 }
1958 sc->sc_rxptr = i;
1959 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1960 }
1961 #ifdef GEM_COUNTERS
1962 if (progress <= 4) {
1963 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1964 } else if (progress < 32) {
1965 if (progress < 16)
1966 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1967 else
1968 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1969
1970 } else {
1971 if (progress < 64)
1972 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1973 else
1974 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1975 }
1976 #endif
1977
1978 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1979 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1980
1981 /* Read error counters ... */
1982 ifp->if_ierrors +=
1983 bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1984 bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1985 bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1986 bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1987
1988 /* ... then clear the hardware counters. */
1989 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1990 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1991 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1992 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1993
1994 return (1);
1995 }
1996
1997
1998 /*
1999 * gem_add_rxbuf:
2000 *
2001 * Add a receive buffer to the indicated descriptor.
2002 */
2003 int
2004 gem_add_rxbuf(struct gem_softc *sc, int idx)
2005 {
2006 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
2007 struct mbuf *m;
2008 int error;
2009
2010 MGETHDR(m, M_DONTWAIT, MT_DATA);
2011 if (m == NULL)
2012 return (ENOBUFS);
2013
2014 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2015 MCLGET(m, M_DONTWAIT);
2016 if ((m->m_flags & M_EXT) == 0) {
2017 m_freem(m);
2018 return (ENOBUFS);
2019 }
2020
2021 #ifdef GEM_DEBUG
2022 /* bzero the packet to check DMA */
2023 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2024 #endif
2025
2026 if (rxs->rxs_mbuf != NULL)
2027 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2028
2029 rxs->rxs_mbuf = m;
2030
2031 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2032 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2033 BUS_DMA_READ|BUS_DMA_NOWAIT);
2034 if (error) {
2035 aprint_error_dev(sc->sc_dev,
2036 "can't load rx DMA map %d, error = %d\n", idx, error);
2037 panic("gem_add_rxbuf"); /* XXX */
2038 }
2039
2040 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2041 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2042
2043 GEM_INIT_RXDESC(sc, idx);
2044
2045 return (0);
2046 }
2047
2048
2049 int
2050 gem_eint(struct gem_softc *sc, u_int status)
2051 {
2052 char bits[128];
2053 uint32_t r, v;
2054
2055 if ((status & GEM_INTR_MIF) != 0) {
2056 printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2057 return (1);
2058 }
2059
2060 if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2061 gem_reset_rxdma(sc);
2062 return (1);
2063 }
2064
2065 if (status & GEM_INTR_BERR) {
2066 if (sc->sc_flags & GEM_PCI)
2067 r = GEM_ERROR_STATUS;
2068 else
2069 r = GEM_SBUS_ERROR_STATUS;
2070 bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2071 v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2072 aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2073 v);
2074 return (1);
2075 }
2076 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2077 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2078
2079 return (1);
2080 }
2081
2082
2083 /*
2084 * PCS interrupts.
2085 * We should receive these when the link status changes, but sometimes
2086 * we don't receive them for link up. We compensate for this in the
2087 * gem_tick() callout.
2088 */
2089 int
2090 gem_pint(struct gem_softc *sc)
2091 {
2092 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2093 bus_space_tag_t t = sc->sc_bustag;
2094 bus_space_handle_t h = sc->sc_h1;
2095 uint32_t v, v2;
2096
2097 /*
2098 * Clear the PCS interrupt from GEM_STATUS. The PCS register is
2099 * latched, so we have to read it twice. There is only one bit in
2100 * use, so the value is meaningless.
2101 */
2102 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2103 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2104
2105 if ((ifp->if_flags & IFF_UP) == 0)
2106 return 1;
2107
2108 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2109 return 1;
2110
2111 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2112 /* If we see remote fault, our link partner is probably going away */
2113 if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2114 gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2115 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2116 /* Otherwise, we may need to wait after auto-negotiation completes */
2117 } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2118 GEM_MII_STATUS_ANEG_CPT) {
2119 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2120 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2121 }
2122 if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2123 if (sc->sc_flags & GEM_LINK) {
2124 return 1;
2125 }
2126 callout_stop(&sc->sc_tick_ch);
2127 v = bus_space_read_4(t, h, GEM_MII_ANAR);
2128 v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2129 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2130 sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2131 v &= v2;
2132 if (v & GEM_MII_ANEG_FUL_DUPLX) {
2133 sc->sc_mii.mii_media_active |= IFM_FDX;
2134 #ifdef GEM_DEBUG
2135 aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2136 #endif
2137 } else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2138 sc->sc_mii.mii_media_active |= IFM_HDX;
2139 #ifdef GEM_DEBUG
2140 aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2141 #endif
2142 } else {
2143 #ifdef GEM_DEBUG
2144 aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2145 #endif
2146 }
2147 gem_statuschange(sc);
2148 } else {
2149 if ((sc->sc_flags & GEM_LINK) == 0) {
2150 return 1;
2151 }
2152 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2153 sc->sc_mii.mii_media_status = IFM_AVALID;
2154 #ifdef GEM_DEBUG
2155 aprint_debug_dev(sc->sc_dev, "link down\n");
2156 #endif
2157 gem_statuschange(sc);
2158
2159 /* Start the 10 second timer */
2160 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2161 }
2162 return 1;
2163 }
2164
2165
2166
2167 int
2168 gem_intr(void *v)
2169 {
2170 struct gem_softc *sc = v;
2171 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2172 bus_space_tag_t t = sc->sc_bustag;
2173 bus_space_handle_t h = sc->sc_h1;
2174 uint32_t status;
2175 int r = 0;
2176 #ifdef GEM_DEBUG
2177 char bits[128];
2178 #endif
2179
2180 /* XXX We should probably mask out interrupts until we're done */
2181
2182 sc->sc_ev_intr.ev_count++;
2183
2184 status = bus_space_read_4(t, h, GEM_STATUS);
2185 #ifdef GEM_DEBUG
2186 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2187 #endif
2188 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2189 device_xname(sc->sc_dev), (status >> 19), bits));
2190
2191
2192 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2193 r |= gem_eint(sc, status);
2194
2195 /* We don't bother with GEM_INTR_TX_DONE */
2196 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2197 GEM_COUNTER_INCR(sc, sc_ev_txint);
2198 r |= gem_tint(sc);
2199 }
2200
2201 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2202 GEM_COUNTER_INCR(sc, sc_ev_rxint);
2203 r |= gem_rint(sc);
2204 }
2205
2206 /* We should eventually do more than just print out error stats. */
2207 if (status & GEM_INTR_TX_MAC) {
2208 int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2209 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2210 printf("%s: MAC tx fault, status %x\n",
2211 device_xname(sc->sc_dev), txstat);
2212 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2213 gem_init(ifp);
2214 }
2215 if (status & GEM_INTR_RX_MAC) {
2216 int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2217 /*
2218 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2219 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2220 * silicon bug so handle them silently. So if we detect
2221 * an RX FIFO overflow, we fire off a timer, and check
2222 * whether we're still making progress by looking at the
2223 * RX FIFO write and read pointers.
2224 */
2225 if (rxstat & GEM_MAC_RX_OVERFLOW) {
2226 ifp->if_ierrors++;
2227 aprint_error_dev(sc->sc_dev,
2228 "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
2229 sc->sc_rx_fifo_wr_ptr =
2230 bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2231 sc->sc_rx_fifo_rd_ptr =
2232 bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2233 callout_schedule(&sc->sc_rx_watchdog, 400);
2234 } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2235 printf("%s: MAC rx fault, status 0x%02x\n",
2236 device_xname(sc->sc_dev), rxstat);
2237 }
2238 if (status & GEM_INTR_PCS) {
2239 r |= gem_pint(sc);
2240 }
2241
2242 /* Do we need to do anything with these?
2243 if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2244 status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2245 if ((status2 & GEM_MAC_PAUSED) != 0)
2246 aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2247 GEM_MAC_PAUSE_TIME(status2));
2248 if ((status2 & GEM_MAC_PAUSE) != 0)
2249 aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2250 if ((status2 & GEM_MAC_RESUME) != 0)
2251 aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2252 }
2253 if ((status & GEM_INTR_MIF) != 0)
2254 aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2255 */
2256 rnd_add_uint32(&sc->rnd_source, status);
2257 return (r);
2258 }
2259
2260 void
2261 gem_rx_watchdog(void *arg)
2262 {
2263 struct gem_softc *sc = arg;
2264 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2265 bus_space_tag_t t = sc->sc_bustag;
2266 bus_space_handle_t h = sc->sc_h1;
2267 uint32_t rx_fifo_wr_ptr;
2268 uint32_t rx_fifo_rd_ptr;
2269 uint32_t state;
2270
2271 if ((ifp->if_flags & IFF_RUNNING) == 0) {
2272 aprint_error_dev(sc->sc_dev, "receiver not running\n");
2273 return;
2274 }
2275
2276 rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2277 rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2278 state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
2279 if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
2280 ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
2281 ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
2282 (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
2283 {
2284 /*
2285 * The RX state machine is still in overflow state and
2286 * the RX FIFO write and read pointers seem to be
2287 * stuck. Whack the chip over the head to get things
2288 * going again.
2289 */
2290 aprint_error_dev(sc->sc_dev,
2291 "receiver stuck in overflow, resetting\n");
2292 gem_init(ifp);
2293 } else {
2294 if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
2295 aprint_error_dev(sc->sc_dev,
2296 "rx_watchdog: not in overflow state: 0x%x\n",
2297 state);
2298 }
2299 if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
2300 aprint_error_dev(sc->sc_dev,
2301 "rx_watchdog: wr & rd ptr different\n");
2302 }
2303 if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
2304 aprint_error_dev(sc->sc_dev,
2305 "rx_watchdog: wr pointer != saved\n");
2306 }
2307 if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
2308 aprint_error_dev(sc->sc_dev,
2309 "rx_watchdog: rd pointer != saved\n");
2310 }
2311 aprint_error_dev(sc->sc_dev, "resetting anyway\n");
2312 gem_init(ifp);
2313 }
2314 }
2315
2316 void
2317 gem_watchdog(struct ifnet *ifp)
2318 {
2319 struct gem_softc *sc = ifp->if_softc;
2320
2321 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2322 "GEM_MAC_RX_CONFIG %x\n",
2323 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2324 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2325 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2326
2327 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2328 ++ifp->if_oerrors;
2329
2330 /* Try to get more packets going. */
2331 gem_init(ifp);
2332 gem_start(ifp);
2333 }
2334
2335 /*
2336 * Initialize the MII Management Interface
2337 */
2338 void
2339 gem_mifinit(struct gem_softc *sc)
2340 {
2341 bus_space_tag_t t = sc->sc_bustag;
2342 bus_space_handle_t mif = sc->sc_h1;
2343
2344 /* Configure the MIF in frame mode */
2345 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2346 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2347 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2348 }
2349
2350 /*
2351 * MII interface
2352 *
2353 * The GEM MII interface supports at least three different operating modes:
2354 *
2355 * Bitbang mode is implemented using data, clock and output enable registers.
2356 *
2357 * Frame mode is implemented by loading a complete frame into the frame
2358 * register and polling the valid bit for completion.
2359 *
2360 * Polling mode uses the frame register but completion is indicated by
2361 * an interrupt.
2362 *
2363 */
2364 static int
2365 gem_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
2366 {
2367 struct gem_softc *sc = device_private(self);
2368 bus_space_tag_t t = sc->sc_bustag;
2369 bus_space_handle_t mif = sc->sc_h1;
2370 int n;
2371 uint32_t v;
2372
2373 #ifdef GEM_DEBUG1
2374 if (sc->sc_debug)
2375 printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2376 #endif
2377
2378 /* Construct the frame command */
2379 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
2380 GEM_MIF_FRAME_READ;
2381
2382 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2383 for (n = 0; n < 100; n++) {
2384 DELAY(1);
2385 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2386 if (v & GEM_MIF_FRAME_TA0) {
2387 *val = v & GEM_MIF_FRAME_DATA;
2388 return 0;
2389 }
2390 }
2391
2392 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2393 return ETIMEDOUT;
2394 }
2395
2396 static int
2397 gem_mii_writereg(device_t self, int phy, int reg, uint16_t val)
2398 {
2399 struct gem_softc *sc = device_private(self);
2400 bus_space_tag_t t = sc->sc_bustag;
2401 bus_space_handle_t mif = sc->sc_h1;
2402 int n;
2403 uint32_t v;
2404
2405 #ifdef GEM_DEBUG1
2406 if (sc->sc_debug)
2407 printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2408 phy, reg, val);
2409 #endif
2410
2411 /* Construct the frame command */
2412 v = GEM_MIF_FRAME_WRITE |
2413 (phy << GEM_MIF_PHY_SHIFT) |
2414 (reg << GEM_MIF_REG_SHIFT) |
2415 (val & GEM_MIF_FRAME_DATA);
2416
2417 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2418 for (n = 0; n < 100; n++) {
2419 DELAY(1);
2420 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2421 if (v & GEM_MIF_FRAME_TA0)
2422 return 0;
2423 }
2424
2425 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2426 return ETIMEDOUT;
2427 }
2428
2429 static void
2430 gem_mii_statchg(struct ifnet *ifp)
2431 {
2432 struct gem_softc *sc = ifp->if_softc;
2433 #ifdef GEM_DEBUG
2434 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2435 #endif
2436
2437 #ifdef GEM_DEBUG
2438 if (sc->sc_debug)
2439 printf("gem_mii_statchg: status change: phy = %d\n",
2440 sc->sc_phys[instance]);
2441 #endif
2442 gem_statuschange(sc);
2443 }
2444
2445 /*
2446 * Common status change for gem_mii_statchg() and gem_pint()
2447 */
2448 void
2449 gem_statuschange(struct gem_softc* sc)
2450 {
2451 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2452 bus_space_tag_t t = sc->sc_bustag;
2453 bus_space_handle_t mac = sc->sc_h1;
2454 int gigabit;
2455 uint32_t rxcfg, txcfg, v;
2456
2457 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2458 IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2459 sc->sc_flags |= GEM_LINK;
2460 else
2461 sc->sc_flags &= ~GEM_LINK;
2462
2463 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2464 gigabit = 1;
2465 else
2466 gigabit = 0;
2467
2468 /*
2469 * The configuration done here corresponds to the steps F) and
2470 * G) and as far as enabling of RX and TX MAC goes also step H)
2471 * of the initialization sequence outlined in section 3.2.1 of
2472 * the GEM Gigabit Ethernet ASIC Specification.
2473 */
2474
2475 rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2476 rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2477 txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2478 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2479 txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2480 else if (gigabit) {
2481 rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2482 txcfg |= GEM_MAC_RX_CARR_EXTEND;
2483 }
2484 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2485 bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2486 BUS_SPACE_BARRIER_WRITE);
2487 if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2488 aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2489 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2490 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2491 bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2492 BUS_SPACE_BARRIER_WRITE);
2493 if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2494 aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2495 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2496
2497 v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2498 ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2499 bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2500
2501 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2502 gigabit != 0)
2503 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2504 GEM_MAC_SLOT_TIME_CARR_EXTEND);
2505 else
2506 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2507 GEM_MAC_SLOT_TIME_NORMAL);
2508
2509 /* XIF Configuration */
2510 if (sc->sc_flags & GEM_LINK)
2511 v = GEM_MAC_XIF_LINK_LED;
2512 else
2513 v = 0;
2514 v |= GEM_MAC_XIF_TX_MII_ENA;
2515
2516 /* If an external transceiver is connected, enable its MII drivers */
2517 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2518 if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2519 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2520 if (gigabit)
2521 v |= GEM_MAC_XIF_GMII_MODE;
2522 else
2523 v &= ~GEM_MAC_XIF_GMII_MODE;
2524 } else
2525 /* Internal MII needs buf enable */
2526 v |= GEM_MAC_XIF_MII_BUF_ENA;
2527 /* MII needs echo disable if half duplex. */
2528 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2529 /* turn on full duplex LED */
2530 v |= GEM_MAC_XIF_FDPLX_LED;
2531 else
2532 /* half duplex -- disable echo */
2533 v |= GEM_MAC_XIF_ECHO_DISABL;
2534 } else {
2535 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2536 v |= GEM_MAC_XIF_FDPLX_LED;
2537 v |= GEM_MAC_XIF_GMII_MODE;
2538 }
2539 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2540
2541 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2542 (sc->sc_flags & GEM_LINK) != 0) {
2543 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2544 txcfg | GEM_MAC_TX_ENABLE);
2545 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2546 rxcfg | GEM_MAC_RX_ENABLE);
2547 }
2548 }
2549
2550 int
2551 gem_ser_mediachange(struct ifnet *ifp)
2552 {
2553 struct gem_softc *sc = ifp->if_softc;
2554 u_int s, t;
2555
2556 if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2557 return EINVAL;
2558
2559 s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2560 if (s == IFM_AUTO) {
2561 if (sc->sc_mii_media != s) {
2562 #ifdef GEM_DEBUG
2563 aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2564 #endif
2565 sc->sc_mii_media = s;
2566 if (ifp->if_flags & IFF_UP) {
2567 gem_pcs_stop(sc, 0);
2568 gem_pcs_start(sc);
2569 }
2570 }
2571 return 0;
2572 }
2573 if (s == IFM_1000_SX) {
2574 t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2575 if (t == IFM_FDX || t == IFM_HDX) {
2576 if (sc->sc_mii_media != t) {
2577 sc->sc_mii_media = t;
2578 #ifdef GEM_DEBUG
2579 aprint_debug_dev(sc->sc_dev,
2580 "setting media to 1000baseSX-%s\n",
2581 t == IFM_FDX ? "FDX" : "HDX");
2582 #endif
2583 if (ifp->if_flags & IFF_UP) {
2584 gem_pcs_stop(sc, 0);
2585 gem_pcs_start(sc);
2586 }
2587 }
2588 return 0;
2589 }
2590 }
2591 return EINVAL;
2592 }
2593
2594 void
2595 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2596 {
2597 struct gem_softc *sc = ifp->if_softc;
2598
2599 if ((ifp->if_flags & IFF_UP) == 0)
2600 return;
2601 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2602 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2603 }
2604
2605 static int
2606 gem_ifflags_cb(struct ethercom *ec)
2607 {
2608 struct ifnet *ifp = &ec->ec_if;
2609 struct gem_softc *sc = ifp->if_softc;
2610 int change = ifp->if_flags ^ sc->sc_if_flags;
2611
2612 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2613 return ENETRESET;
2614 else if ((change & IFF_PROMISC) != 0)
2615 gem_setladrf(sc);
2616 return 0;
2617 }
2618
2619 /*
2620 * Process an ioctl request.
2621 */
2622 int
2623 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2624 {
2625 struct gem_softc *sc = ifp->if_softc;
2626 int s, error = 0;
2627
2628 s = splnet();
2629
2630 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2631 error = 0;
2632 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2633 ;
2634 else if (ifp->if_flags & IFF_RUNNING) {
2635 /*
2636 * Multicast list has changed; set the hardware filter
2637 * accordingly.
2638 */
2639 gem_setladrf(sc);
2640 }
2641 }
2642
2643 /* Try to get things going again */
2644 if (ifp->if_flags & IFF_UP)
2645 gem_start(ifp);
2646 splx(s);
2647 return (error);
2648 }
2649
2650 static void
2651 gem_inten(struct gem_softc *sc)
2652 {
2653 bus_space_tag_t t = sc->sc_bustag;
2654 bus_space_handle_t h = sc->sc_h1;
2655 uint32_t v;
2656
2657 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2658 v = GEM_INTR_PCS;
2659 else
2660 v = GEM_INTR_MIF;
2661 bus_space_write_4(t, h, GEM_INTMASK,
2662 ~(GEM_INTR_TX_INTME |
2663 GEM_INTR_TX_EMPTY |
2664 GEM_INTR_TX_MAC |
2665 GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
2666 GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
2667 GEM_INTR_BERR | v));
2668 }
2669
2670 bool
2671 gem_resume(device_t self, const pmf_qual_t *qual)
2672 {
2673 struct gem_softc *sc = device_private(self);
2674
2675 gem_inten(sc);
2676
2677 return true;
2678 }
2679
2680 bool
2681 gem_suspend(device_t self, const pmf_qual_t *qual)
2682 {
2683 struct gem_softc *sc = device_private(self);
2684 bus_space_tag_t t = sc->sc_bustag;
2685 bus_space_handle_t h = sc->sc_h1;
2686
2687 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2688
2689 return true;
2690 }
2691
2692 bool
2693 gem_shutdown(device_t self, int howto)
2694 {
2695 struct gem_softc *sc = device_private(self);
2696 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2697
2698 gem_stop(ifp, 1);
2699
2700 return true;
2701 }
2702
2703 /*
2704 * Set up the logical address filter.
2705 */
2706 void
2707 gem_setladrf(struct gem_softc *sc)
2708 {
2709 struct ethercom *ec = &sc->sc_ethercom;
2710 struct ifnet *ifp = &ec->ec_if;
2711 struct ether_multi *enm;
2712 struct ether_multistep step;
2713 bus_space_tag_t t = sc->sc_bustag;
2714 bus_space_handle_t h = sc->sc_h1;
2715 uint32_t crc;
2716 uint32_t hash[16];
2717 uint32_t v;
2718 int i;
2719
2720 /* Get current RX configuration */
2721 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2722
2723 /*
2724 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2725 * and hash filter. Depending on the case, the right bit will be
2726 * enabled.
2727 */
2728 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2729 GEM_MAC_RX_PROMISC_GRP);
2730
2731 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2732 /* Turn on promiscuous mode */
2733 v |= GEM_MAC_RX_PROMISCUOUS;
2734 ifp->if_flags |= IFF_ALLMULTI;
2735 goto chipit;
2736 }
2737
2738 /*
2739 * Set up multicast address filter by passing all multicast addresses
2740 * through a crc generator, and then using the high order 8 bits as an
2741 * index into the 256 bit logical address filter. The high order 4
2742 * bits selects the word, while the other 4 bits select the bit within
2743 * the word (where bit 0 is the MSB).
2744 */
2745
2746 /* Clear hash table */
2747 memset(hash, 0, sizeof(hash));
2748
2749 ETHER_FIRST_MULTI(step, ec, enm);
2750 while (enm != NULL) {
2751 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2752 /*
2753 * We must listen to a range of multicast addresses.
2754 * For now, just accept all multicasts, rather than
2755 * trying to set only those filter bits needed to match
2756 * the range. (At this time, the only use of address
2757 * ranges is for IP multicast routing, for which the
2758 * range is big enough to require all bits set.)
2759 * XXX should use the address filters for this
2760 */
2761 ifp->if_flags |= IFF_ALLMULTI;
2762 v |= GEM_MAC_RX_PROMISC_GRP;
2763 goto chipit;
2764 }
2765
2766 /* Get the LE CRC32 of the address */
2767 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2768
2769 /* Just want the 8 most significant bits. */
2770 crc >>= 24;
2771
2772 /* Set the corresponding bit in the filter. */
2773 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2774
2775 ETHER_NEXT_MULTI(step, enm);
2776 }
2777
2778 v |= GEM_MAC_RX_HASH_FILTER;
2779 ifp->if_flags &= ~IFF_ALLMULTI;
2780
2781 /* Now load the hash table into the chip (if we are using it) */
2782 for (i = 0; i < 16; i++) {
2783 bus_space_write_4(t, h,
2784 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2785 hash[i]);
2786 }
2787
2788 chipit:
2789 sc->sc_if_flags = ifp->if_flags;
2790 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2791 }
2792