gem.c revision 1.127 1 /* $NetBSD: gem.c,v 1.127 2020/02/04 05:25:39 thorpej Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * Copyright (c) 2001-2003 Thomas Moestl
7 * All rights reserved.
8 *
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 /*
34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35 * See `GEM Gigabit Ethernet ASIC Specification'
36 * http://www.sun.com/processors/manuals/ge.pdf
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.127 2020/02/04 05:25:39 thorpej Exp $");
41
42 #include "opt_inet.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/mbuf.h>
48 #include <sys/syslog.h>
49 #include <sys/malloc.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/ioctl.h>
53 #include <sys/errno.h>
54 #include <sys/device.h>
55
56 #include <machine/endian.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71
72 #include <net/bpf.h>
73
74 #include <sys/bus.h>
75 #include <sys/intr.h>
76
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 #include <dev/mii/mii_bitbang.h>
80
81 #include <dev/ic/gemreg.h>
82 #include <dev/ic/gemvar.h>
83
84 #define TRIES 10000
85
86 static void gem_inten(struct gem_softc *);
87 static void gem_start(struct ifnet *);
88 static void gem_stop(struct ifnet *, int);
89 int gem_ioctl(struct ifnet *, u_long, void *);
90 void gem_tick(void *);
91 void gem_watchdog(struct ifnet *);
92 void gem_rx_watchdog(void *);
93 void gem_pcs_start(struct gem_softc *sc);
94 void gem_pcs_stop(struct gem_softc *sc, int);
95 int gem_init(struct ifnet *);
96 void gem_init_regs(struct gem_softc *sc);
97 static int gem_ringsize(int sz);
98 static int gem_meminit(struct gem_softc *);
99 void gem_mifinit(struct gem_softc *);
100 static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
101 uint32_t, uint32_t);
102 void gem_reset(struct gem_softc *);
103 int gem_reset_rx(struct gem_softc *sc);
104 static void gem_reset_rxdma(struct gem_softc *sc);
105 static void gem_rx_common(struct gem_softc *sc);
106 int gem_reset_tx(struct gem_softc *sc);
107 int gem_disable_rx(struct gem_softc *sc);
108 int gem_disable_tx(struct gem_softc *sc);
109 static void gem_rxdrain(struct gem_softc *sc);
110 int gem_add_rxbuf(struct gem_softc *sc, int idx);
111 void gem_setladrf(struct gem_softc *);
112
113 /* MII methods & callbacks */
114 static int gem_mii_readreg(device_t, int, int, uint16_t *);
115 static int gem_mii_writereg(device_t, int, int, uint16_t);
116 static void gem_mii_statchg(struct ifnet *);
117
118 static int gem_ifflags_cb(struct ethercom *);
119
120 void gem_statuschange(struct gem_softc *);
121
122 int gem_ser_mediachange(struct ifnet *);
123 void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
124
125 static void gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
126
127 struct mbuf *gem_get(struct gem_softc *, int, int);
128 int gem_put(struct gem_softc *, int, struct mbuf *);
129 void gem_read(struct gem_softc *, int, int);
130 int gem_pint(struct gem_softc *);
131 int gem_eint(struct gem_softc *, u_int);
132 int gem_rint(struct gem_softc *);
133 int gem_tint(struct gem_softc *);
134 void gem_power(int, void *);
135
136 #ifdef GEM_DEBUG
137 static void gem_txsoft_print(const struct gem_softc *, int, int);
138 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
139 printf x
140 #else
141 #define DPRINTF(sc, x) /* nothing */
142 #endif
143
144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
145
146 int
147 gem_detach(struct gem_softc *sc, int flags)
148 {
149 int i;
150 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
151 bus_space_tag_t t = sc->sc_bustag;
152 bus_space_handle_t h = sc->sc_h1;
153
154 /*
155 * Free any resources we've allocated during the attach.
156 * Do this in reverse order and fall through.
157 */
158 switch (sc->sc_att_stage) {
159 case GEM_ATT_BACKEND_2:
160 case GEM_ATT_BACKEND_1:
161 case GEM_ATT_FINISHED:
162 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
163 gem_stop(&sc->sc_ethercom.ec_if, 1);
164
165 #ifdef GEM_COUNTERS
166 for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
167 evcnt_detach(&sc->sc_ev_rxhist[i]);
168 evcnt_detach(&sc->sc_ev_rxnobuf);
169 evcnt_detach(&sc->sc_ev_rxfull);
170 evcnt_detach(&sc->sc_ev_rxint);
171 evcnt_detach(&sc->sc_ev_txint);
172 #endif
173 evcnt_detach(&sc->sc_ev_intr);
174
175 rnd_detach_source(&sc->rnd_source);
176 ether_ifdetach(ifp);
177 if_detach(ifp);
178 ifmedia_fini(&sc->sc_mii.mii_media);
179
180 callout_destroy(&sc->sc_tick_ch);
181 callout_destroy(&sc->sc_rx_watchdog);
182
183 /*FALLTHROUGH*/
184 case GEM_ATT_MII:
185 sc->sc_att_stage = GEM_ATT_MII;
186 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
187 /*FALLTHROUGH*/
188 case GEM_ATT_7:
189 for (i = 0; i < GEM_NRXDESC; i++) {
190 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
191 bus_dmamap_destroy(sc->sc_dmatag,
192 sc->sc_rxsoft[i].rxs_dmamap);
193 }
194 /*FALLTHROUGH*/
195 case GEM_ATT_6:
196 for (i = 0; i < GEM_TXQUEUELEN; i++) {
197 if (sc->sc_txsoft[i].txs_dmamap != NULL)
198 bus_dmamap_destroy(sc->sc_dmatag,
199 sc->sc_txsoft[i].txs_dmamap);
200 }
201 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
202 /*FALLTHROUGH*/
203 case GEM_ATT_5:
204 bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
205 /*FALLTHROUGH*/
206 case GEM_ATT_4:
207 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
208 /*FALLTHROUGH*/
209 case GEM_ATT_3:
210 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
211 /*FALLTHROUGH*/
212 case GEM_ATT_2:
213 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
214 sizeof(struct gem_control_data));
215 /*FALLTHROUGH*/
216 case GEM_ATT_1:
217 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
218 /*FALLTHROUGH*/
219 case GEM_ATT_0:
220 sc->sc_att_stage = GEM_ATT_0;
221 /*FALLTHROUGH*/
222 case GEM_ATT_BACKEND_0:
223 break;
224 }
225 return 0;
226 }
227
228 static void
229 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
230 {
231 cfattach_t ca = device_cfattach(sc->sc_dev);
232
233 sc->sc_att_stage = stage;
234 (*ca->ca_detach)(sc->sc_dev, 0);
235 }
236
237 /*
238 * gem_attach:
239 *
240 * Attach a Gem interface to the system.
241 */
242 void
243 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
244 {
245 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
246 struct mii_data *mii = &sc->sc_mii;
247 bus_space_tag_t t = sc->sc_bustag;
248 bus_space_handle_t h = sc->sc_h1;
249 struct ifmedia_entry *ife;
250 int i, error, phyaddr;
251 uint32_t v;
252 char *nullbuf;
253
254 /* Make sure the chip is stopped. */
255 ifp->if_softc = sc;
256 gem_reset(sc);
257
258 /*
259 * Allocate the control data structures, and create and load the
260 * DMA map for it. gem_control_data is 9216 bytes, we have space for
261 * the padding buffer in the bus_dmamem_alloc()'d memory.
262 */
263 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
264 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
265 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
266 aprint_error_dev(sc->sc_dev,
267 "unable to allocate control data, error = %d\n",
268 error);
269 gem_partial_detach(sc, GEM_ATT_0);
270 return;
271 }
272
273 /* XXX should map this in with correct endianness */
274 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
275 sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
276 BUS_DMA_COHERENT)) != 0) {
277 aprint_error_dev(sc->sc_dev,
278 "unable to map control data, error = %d\n", error);
279 gem_partial_detach(sc, GEM_ATT_1);
280 return;
281 }
282
283 nullbuf =
284 (char *)sc->sc_control_data + sizeof(struct gem_control_data);
285
286 if ((error = bus_dmamap_create(sc->sc_dmatag,
287 sizeof(struct gem_control_data), 1,
288 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
289 aprint_error_dev(sc->sc_dev,
290 "unable to create control data DMA map, error = %d\n",
291 error);
292 gem_partial_detach(sc, GEM_ATT_2);
293 return;
294 }
295
296 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
297 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
298 0)) != 0) {
299 aprint_error_dev(sc->sc_dev,
300 "unable to load control data DMA map, error = %d\n",
301 error);
302 gem_partial_detach(sc, GEM_ATT_3);
303 return;
304 }
305
306 memset(nullbuf, 0, ETHER_MIN_TX);
307 if ((error = bus_dmamap_create(sc->sc_dmatag,
308 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
309 aprint_error_dev(sc->sc_dev,
310 "unable to create padding DMA map, error = %d\n", error);
311 gem_partial_detach(sc, GEM_ATT_4);
312 return;
313 }
314
315 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
316 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
317 aprint_error_dev(sc->sc_dev,
318 "unable to load padding DMA map, error = %d\n", error);
319 gem_partial_detach(sc, GEM_ATT_5);
320 return;
321 }
322
323 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
324 BUS_DMASYNC_PREWRITE);
325
326 /*
327 * Initialize the transmit job descriptors.
328 */
329 SIMPLEQ_INIT(&sc->sc_txfreeq);
330 SIMPLEQ_INIT(&sc->sc_txdirtyq);
331
332 /*
333 * Create the transmit buffer DMA maps.
334 */
335 for (i = 0; i < GEM_TXQUEUELEN; i++) {
336 struct gem_txsoft *txs;
337
338 txs = &sc->sc_txsoft[i];
339 txs->txs_mbuf = NULL;
340 if ((error = bus_dmamap_create(sc->sc_dmatag,
341 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
342 ETHER_MAX_LEN_JUMBO, 0, 0,
343 &txs->txs_dmamap)) != 0) {
344 aprint_error_dev(sc->sc_dev,
345 "unable to create tx DMA map %d, error = %d\n",
346 i, error);
347 gem_partial_detach(sc, GEM_ATT_6);
348 return;
349 }
350 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
351 }
352
353 /*
354 * Create the receive buffer DMA maps.
355 */
356 for (i = 0; i < GEM_NRXDESC; i++) {
357 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
358 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
359 aprint_error_dev(sc->sc_dev,
360 "unable to create rx DMA map %d, error = %d\n",
361 i, error);
362 gem_partial_detach(sc, GEM_ATT_7);
363 return;
364 }
365 sc->sc_rxsoft[i].rxs_mbuf = NULL;
366 }
367
368 /* Initialize ifmedia structures and MII info */
369 mii->mii_ifp = ifp;
370 mii->mii_readreg = gem_mii_readreg;
371 mii->mii_writereg = gem_mii_writereg;
372 mii->mii_statchg = gem_mii_statchg;
373
374 sc->sc_ethercom.ec_mii = mii;
375
376 /*
377 * Initialization based on `GEM Gigabit Ethernet ASIC Specification'
378 * Section 3.2.1 `Initialization Sequence'.
379 * However, we can't assume SERDES or Serialink if neither
380 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
381 * being set, as both are set on Sun X1141A (with SERDES). So,
382 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
383 * Also, for variants that report 2 PHY's, we prefer the external
384 * PHY over the internal PHY, so we look for that first.
385 */
386 gem_mifinit(sc);
387
388 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
389 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
390 ether_mediastatus);
391 /* Look for external PHY */
392 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
393 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
394 bus_space_write_4(t, h, GEM_MIF_CONFIG,
395 sc->sc_mif_config);
396 switch (sc->sc_variant) {
397 case GEM_SUN_ERI:
398 phyaddr = GEM_PHYAD_EXTERNAL;
399 break;
400 default:
401 phyaddr = MII_PHY_ANY;
402 break;
403 }
404 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
405 MII_OFFSET_ANY, MIIF_FORCEANEG);
406 }
407 #ifdef GEM_DEBUG
408 else
409 aprint_debug_dev(sc->sc_dev, "using external PHY\n");
410 #endif
411 /* Look for internal PHY if no external PHY was found */
412 if (LIST_EMPTY(&mii->mii_phys) &&
413 ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) ||
414 (sc->sc_variant == GEM_APPLE_K2_GMAC))) {
415 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
416 bus_space_write_4(t, h, GEM_MIF_CONFIG,
417 sc->sc_mif_config);
418 switch (sc->sc_variant) {
419 case GEM_SUN_ERI:
420 case GEM_APPLE_K2_GMAC:
421 phyaddr = GEM_PHYAD_INTERNAL;
422 break;
423 case GEM_APPLE_GMAC:
424 phyaddr = GEM_PHYAD_EXTERNAL;
425 break;
426 default:
427 phyaddr = MII_PHY_ANY;
428 break;
429 }
430 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
431 MII_OFFSET_ANY, MIIF_FORCEANEG);
432 #ifdef GEM_DEBUG
433 if (!LIST_EMPTY(&mii->mii_phys))
434 aprint_debug_dev(sc->sc_dev,
435 "using internal PHY\n");
436 #endif
437 }
438 if (LIST_EMPTY(&mii->mii_phys)) {
439 /* No PHY attached */
440 aprint_error_dev(sc->sc_dev,
441 "PHY probe failed\n");
442 gem_partial_detach(sc, GEM_ATT_MII);
443 return;
444 } else {
445 struct mii_softc *child;
446
447 /*
448 * Walk along the list of attached MII devices and
449 * establish an `MII instance' to `PHY number'
450 * mapping.
451 */
452 LIST_FOREACH(child, &mii->mii_phys, mii_list) {
453 /*
454 * Note: we support just one PHY: the internal
455 * or external MII is already selected for us
456 * by the GEM_MIF_CONFIG register.
457 */
458 if (child->mii_phy > 1 || child->mii_inst > 0) {
459 aprint_error_dev(sc->sc_dev,
460 "cannot accommodate MII device"
461 " %s at PHY %d, instance %d\n",
462 device_xname(child->mii_dev),
463 child->mii_phy, child->mii_inst);
464 continue;
465 }
466 sc->sc_phys[child->mii_inst] = child->mii_phy;
467 }
468
469 if (sc->sc_variant != GEM_SUN_ERI)
470 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
471 GEM_MII_DATAPATH_MII);
472
473 /*
474 * XXX - we can really do the following ONLY if the
475 * PHY indeed has the auto negotiation capability!!
476 */
477 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
478 }
479 } else {
480 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
481 gem_ser_mediastatus);
482 /* SERDES or Serialink */
483 if (sc->sc_flags & GEM_SERDES) {
484 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
485 GEM_MII_DATAPATH_SERDES);
486 } else {
487 sc->sc_flags |= GEM_SERIAL;
488 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
489 GEM_MII_DATAPATH_SERIAL);
490 }
491
492 aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
493 sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
494
495 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_AUTO, 0, NULL);
496 /* Check for FDX and HDX capabilities */
497 sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
498 if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
499 ifmedia_add(&mii->mii_media, IFM_ETHER |
500 IFM_1000_SX | IFM_MANUAL | IFM_FDX, 0, NULL);
501 aprint_normal("1000baseSX-FDX, ");
502 }
503 if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
504 ifmedia_add(&mii->mii_media, IFM_ETHER |
505 IFM_1000_SX | IFM_MANUAL | IFM_HDX, 0, NULL);
506 aprint_normal("1000baseSX-HDX, ");
507 }
508 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
509 sc->sc_mii_media = IFM_AUTO;
510 aprint_normal("auto\n");
511
512 gem_pcs_stop(sc, 1);
513 }
514
515 /*
516 * From this point forward, the attachment cannot fail. A failure
517 * before this point releases all resources that may have been
518 * allocated.
519 */
520
521 /* Announce ourselves. */
522 aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
523 ether_sprintf(enaddr));
524
525 /* Get RX FIFO size */
526 sc->sc_rxfifosize = 64 *
527 bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
528 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
529
530 /* Get TX FIFO size */
531 v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
532 aprint_normal(", %uKB TX fifo\n", v / 16);
533
534 /* Initialize ifnet structure. */
535 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
536 ifp->if_softc = sc;
537 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
538 sc->sc_if_flags = ifp->if_flags;
539 #if 0
540 /*
541 * The GEM hardware supports basic TCP checksum offloading only.
542 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
543 * have bugs in the receive checksum, so don't enable it for now.
544 */
545 if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
546 (GEM_IS_APPLE(sc) &&
547 (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
548 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
549 #endif
550 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
551 ifp->if_start = gem_start;
552 ifp->if_ioctl = gem_ioctl;
553 ifp->if_watchdog = gem_watchdog;
554 ifp->if_stop = gem_stop;
555 ifp->if_init = gem_init;
556 IFQ_SET_READY(&ifp->if_snd);
557
558 /*
559 * If we support GigE media, we support jumbo frames too.
560 * Unless we are Apple.
561 */
562 TAILQ_FOREACH(ife, &mii->mii_media.ifm_list, ifm_list) {
563 if (IFM_SUBTYPE(ife->ifm_media) == IFM_1000_T ||
564 IFM_SUBTYPE(ife->ifm_media) == IFM_1000_SX ||
565 IFM_SUBTYPE(ife->ifm_media) == IFM_1000_LX ||
566 IFM_SUBTYPE(ife->ifm_media) == IFM_1000_CX) {
567 if (!GEM_IS_APPLE(sc))
568 sc->sc_ethercom.ec_capabilities
569 |= ETHERCAP_JUMBO_MTU;
570 sc->sc_flags |= GEM_GIGABIT;
571 break;
572 }
573 }
574
575 /* claim 802.1q capability */
576 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
577
578 /* Attach the interface. */
579 if_attach(ifp);
580 if_deferred_start_init(ifp, NULL);
581 ether_ifattach(ifp, enaddr);
582 ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
583
584 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
585 RND_TYPE_NET, RND_FLAG_DEFAULT);
586
587 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
588 NULL, device_xname(sc->sc_dev), "interrupts");
589 #ifdef GEM_COUNTERS
590 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
591 &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
592 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
593 &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
594 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
595 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
596 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
597 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
598 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
599 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
600 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
601 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
602 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
603 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
604 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
605 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
606 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
607 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
608 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
609 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
610 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
611 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
612 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
613 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
614 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
615 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
616 #endif
617
618 callout_init(&sc->sc_tick_ch, 0);
619 callout_init(&sc->sc_rx_watchdog, 0);
620 callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
621
622 sc->sc_att_stage = GEM_ATT_FINISHED;
623
624 return;
625 }
626
627 void
628 gem_tick(void *arg)
629 {
630 struct gem_softc *sc = arg;
631 int s;
632
633 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
634 /*
635 * We have to reset everything if we failed to get a
636 * PCS interrupt. Restarting the callout is handled
637 * in gem_pcs_start().
638 */
639 gem_init(&sc->sc_ethercom.ec_if);
640 } else {
641 s = splnet();
642 mii_tick(&sc->sc_mii);
643 splx(s);
644 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
645 }
646 }
647
648 static int
649 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, uint32_t clr,
650 uint32_t set)
651 {
652 int i;
653 uint32_t reg;
654
655 for (i = TRIES; i--; DELAY(100)) {
656 reg = bus_space_read_4(sc->sc_bustag, h, r);
657 if ((reg & clr) == 0 && (reg & set) == set)
658 return (1);
659 }
660 return (0);
661 }
662
663 void
664 gem_reset(struct gem_softc *sc)
665 {
666 bus_space_tag_t t = sc->sc_bustag;
667 bus_space_handle_t h = sc->sc_h2;
668 int s;
669
670 s = splnet();
671 DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
672 gem_reset_rx(sc);
673 gem_reset_tx(sc);
674
675 /* Do a full reset */
676 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX);
677 if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
678 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
679 splx(s);
680 }
681
682
683 /*
684 * gem_rxdrain:
685 *
686 * Drain the receive queue.
687 */
688 static void
689 gem_rxdrain(struct gem_softc *sc)
690 {
691 struct gem_rxsoft *rxs;
692 int i;
693
694 for (i = 0; i < GEM_NRXDESC; i++) {
695 rxs = &sc->sc_rxsoft[i];
696 if (rxs->rxs_mbuf != NULL) {
697 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
698 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
699 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
700 m_freem(rxs->rxs_mbuf);
701 rxs->rxs_mbuf = NULL;
702 }
703 }
704 }
705
706 /*
707 * Reset the whole thing.
708 */
709 static void
710 gem_stop(struct ifnet *ifp, int disable)
711 {
712 struct gem_softc *sc = ifp->if_softc;
713 struct gem_txsoft *txs;
714
715 DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
716
717 callout_halt(&sc->sc_tick_ch, NULL);
718 callout_halt(&sc->sc_rx_watchdog, NULL);
719 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
720 gem_pcs_stop(sc, disable);
721 else
722 mii_down(&sc->sc_mii);
723
724 /* XXX - Should we reset these instead? */
725 gem_disable_tx(sc);
726 gem_disable_rx(sc);
727
728 /*
729 * Release any queued transmit buffers.
730 */
731 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
732 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
733 if (txs->txs_mbuf != NULL) {
734 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
735 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
736 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
737 m_freem(txs->txs_mbuf);
738 txs->txs_mbuf = NULL;
739 }
740 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
741 }
742
743 /*
744 * Mark the interface down and cancel the watchdog timer.
745 */
746 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
747 sc->sc_if_flags = ifp->if_flags;
748 ifp->if_timer = 0;
749
750 if (disable)
751 gem_rxdrain(sc);
752 }
753
754
755 /*
756 * Reset the receiver
757 */
758 int
759 gem_reset_rx(struct gem_softc *sc)
760 {
761 bus_space_tag_t t = sc->sc_bustag;
762 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
763
764 /*
765 * Resetting while DMA is in progress can cause a bus hang, so we
766 * disable DMA first.
767 */
768 gem_disable_rx(sc);
769 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
770 bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
771 /* Wait till it finishes */
772 if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
773 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
774 /* Wait 5ms extra. */
775 delay(5000);
776
777 /* Finally, reset the ERX */
778 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
779 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
780 /* Wait till it finishes */
781 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
782 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
783 return (1);
784 }
785 return (0);
786 }
787
788
789 /*
790 * Reset the receiver DMA engine.
791 *
792 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
793 * etc in order to reset the receiver DMA engine only and not do a full
794 * reset which amongst others also downs the link and clears the FIFOs.
795 */
796 static void
797 gem_reset_rxdma(struct gem_softc *sc)
798 {
799 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
800 bus_space_tag_t t = sc->sc_bustag;
801 bus_space_handle_t h = sc->sc_h1;
802 int i;
803
804 if (gem_reset_rx(sc) != 0) {
805 gem_init(ifp);
806 return;
807 }
808 for (i = 0; i < GEM_NRXDESC; i++)
809 if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
810 GEM_UPDATE_RXDESC(sc, i);
811 sc->sc_rxptr = 0;
812 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
813 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
814
815 /* Reprogram Descriptor Ring Base Addresses */
816 /* NOTE: we use only 32-bit DMA addresses here. */
817 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
818 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
819
820 /* Redo ERX Configuration */
821 gem_rx_common(sc);
822
823 /* Give the receiver a swift kick */
824 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
825 }
826
827 /*
828 * Common RX configuration for gem_init() and gem_reset_rxdma().
829 */
830 static void
831 gem_rx_common(struct gem_softc *sc)
832 {
833 bus_space_tag_t t = sc->sc_bustag;
834 bus_space_handle_t h = sc->sc_h1;
835 uint32_t v;
836
837 /* Encode Receive Descriptor ring size: four possible values */
838 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
839
840 /* Set receive h/w checksum offset */
841 #ifdef INET
842 v |= (ETHER_HDR_LEN + sizeof(struct ip) +
843 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
844 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
845 #endif
846
847 /* Enable RX DMA */
848 bus_space_write_4(t, h, GEM_RX_CONFIG,
849 v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
850 (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
851
852 /*
853 * The following value is for an OFF Threshold of about 3/4 full
854 * and an ON Threshold of 1/4 full.
855 */
856 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
857 (3 * sc->sc_rxfifosize / 256) |
858 ((sc->sc_rxfifosize / 256) << 12));
859 bus_space_write_4(t, h, GEM_RX_BLANKING,
860 (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
861 }
862
863 /*
864 * Reset the transmitter
865 */
866 int
867 gem_reset_tx(struct gem_softc *sc)
868 {
869 bus_space_tag_t t = sc->sc_bustag;
870 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
871
872 /*
873 * Resetting while DMA is in progress can cause a bus hang, so we
874 * disable DMA first.
875 */
876 gem_disable_tx(sc);
877 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
878 bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
879 /* Wait till it finishes */
880 if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
881 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n"); /* OpenBSD 1.34 */
882 /* Wait 5ms extra. */
883 delay(5000);
884
885 /* Finally, reset the ETX */
886 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
887 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
888 /* Wait till it finishes */
889 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
890 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n"); /* OpenBSD 1.34 */
891 return (1);
892 }
893 return (0);
894 }
895
896 /*
897 * disable receiver.
898 */
899 int
900 gem_disable_rx(struct gem_softc *sc)
901 {
902 bus_space_tag_t t = sc->sc_bustag;
903 bus_space_handle_t h = sc->sc_h1;
904 uint32_t cfg;
905
906 /* Flip the enable bit */
907 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
908 cfg &= ~GEM_MAC_RX_ENABLE;
909 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
910 bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
911 /* Wait for it to finish */
912 return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
913 }
914
915 /*
916 * disable transmitter.
917 */
918 int
919 gem_disable_tx(struct gem_softc *sc)
920 {
921 bus_space_tag_t t = sc->sc_bustag;
922 bus_space_handle_t h = sc->sc_h1;
923 uint32_t cfg;
924
925 /* Flip the enable bit */
926 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
927 cfg &= ~GEM_MAC_TX_ENABLE;
928 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
929 bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
930 /* Wait for it to finish */
931 return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
932 }
933
934 /*
935 * Initialize interface.
936 */
937 int
938 gem_meminit(struct gem_softc *sc)
939 {
940 struct gem_rxsoft *rxs;
941 int i, error;
942
943 /*
944 * Initialize the transmit descriptor ring.
945 */
946 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
947 for (i = 0; i < GEM_NTXDESC; i++) {
948 sc->sc_txdescs[i].gd_flags = 0;
949 sc->sc_txdescs[i].gd_addr = 0;
950 }
951 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
952 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
953 sc->sc_txfree = GEM_NTXDESC-1;
954 sc->sc_txnext = 0;
955 sc->sc_txwin = 0;
956
957 /*
958 * Initialize the receive descriptor and receive job
959 * descriptor rings.
960 */
961 for (i = 0; i < GEM_NRXDESC; i++) {
962 rxs = &sc->sc_rxsoft[i];
963 if (rxs->rxs_mbuf == NULL) {
964 if ((error = gem_add_rxbuf(sc, i)) != 0) {
965 aprint_error_dev(sc->sc_dev,
966 "unable to allocate or map rx "
967 "buffer %d, error = %d\n",
968 i, error);
969 /*
970 * XXX Should attempt to run with fewer receive
971 * XXX buffers instead of just failing.
972 */
973 gem_rxdrain(sc);
974 return (1);
975 }
976 } else
977 GEM_INIT_RXDESC(sc, i);
978 }
979 sc->sc_rxptr = 0;
980 sc->sc_meminited = 1;
981 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
982 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
983
984 return (0);
985 }
986
987 static int
988 gem_ringsize(int sz)
989 {
990 switch (sz) {
991 case 32:
992 return GEM_RING_SZ_32;
993 case 64:
994 return GEM_RING_SZ_64;
995 case 128:
996 return GEM_RING_SZ_128;
997 case 256:
998 return GEM_RING_SZ_256;
999 case 512:
1000 return GEM_RING_SZ_512;
1001 case 1024:
1002 return GEM_RING_SZ_1024;
1003 case 2048:
1004 return GEM_RING_SZ_2048;
1005 case 4096:
1006 return GEM_RING_SZ_4096;
1007 case 8192:
1008 return GEM_RING_SZ_8192;
1009 default:
1010 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1011 return GEM_RING_SZ_32;
1012 }
1013 }
1014
1015
1016 /*
1017 * Start PCS
1018 */
1019 void
1020 gem_pcs_start(struct gem_softc *sc)
1021 {
1022 bus_space_tag_t t = sc->sc_bustag;
1023 bus_space_handle_t h = sc->sc_h1;
1024 uint32_t v;
1025
1026 #ifdef GEM_DEBUG
1027 aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1028 #endif
1029
1030 /*
1031 * Set up. We must disable the MII before modifying the
1032 * GEM_MII_ANAR register
1033 */
1034 if (sc->sc_flags & GEM_SERDES) {
1035 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1036 GEM_MII_DATAPATH_SERDES);
1037 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1038 GEM_MII_SLINK_LOOPBACK);
1039 } else {
1040 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1041 GEM_MII_DATAPATH_SERIAL);
1042 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1043 }
1044 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1045 v = bus_space_read_4(t, h, GEM_MII_ANAR);
1046 v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1047 if (IFM_SUBTYPE(sc->sc_mii_media) == IFM_AUTO)
1048 v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1049 else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_FDX) != 0) {
1050 v |= GEM_MII_ANEG_FUL_DUPLX;
1051 v &= ~GEM_MII_ANEG_HLF_DUPLX;
1052 } else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_HDX) != 0) {
1053 v &= ~GEM_MII_ANEG_FUL_DUPLX;
1054 v |= GEM_MII_ANEG_HLF_DUPLX;
1055 }
1056
1057 /* Configure link. */
1058 bus_space_write_4(t, h, GEM_MII_ANAR, v);
1059 bus_space_write_4(t, h, GEM_MII_CONTROL,
1060 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1061 bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1062 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1063
1064 /* Start the 10 second timer */
1065 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
1066 }
1067
1068 /*
1069 * Stop PCS
1070 */
1071 void
1072 gem_pcs_stop(struct gem_softc *sc, int disable)
1073 {
1074 bus_space_tag_t t = sc->sc_bustag;
1075 bus_space_handle_t h = sc->sc_h1;
1076
1077 #ifdef GEM_DEBUG
1078 aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1079 #endif
1080
1081 /* Tell link partner that we're going away */
1082 bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1083
1084 /*
1085 * Disable PCS MII. The documentation suggests that setting
1086 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1087 * negotiation will shut down the link. However, it appears
1088 * that we also need to unset the datapath mode.
1089 */
1090 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1091 bus_space_write_4(t, h, GEM_MII_CONTROL,
1092 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1093 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1094 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1095
1096 if (disable) {
1097 if (sc->sc_flags & GEM_SERDES)
1098 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1099 GEM_MII_SLINK_POWER_OFF);
1100 else
1101 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1102 GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1103 }
1104
1105 sc->sc_flags &= ~GEM_LINK;
1106 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1107 sc->sc_mii.mii_media_status = IFM_AVALID;
1108 }
1109
1110
1111 /*
1112 * Initialization of interface; set up initialization block
1113 * and transmit/receive descriptor rings.
1114 */
1115 int
1116 gem_init(struct ifnet *ifp)
1117 {
1118 struct gem_softc *sc = ifp->if_softc;
1119 bus_space_tag_t t = sc->sc_bustag;
1120 bus_space_handle_t h = sc->sc_h1;
1121 int rc = 0, s;
1122 u_int max_frame_size;
1123 uint32_t v;
1124
1125 s = splnet();
1126
1127 DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1128 /*
1129 * Initialization sequence. The numbered steps below correspond
1130 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1131 * Channel Engine manual (part of the PCIO manual).
1132 * See also the STP2002-STQ document from Sun Microsystems.
1133 */
1134
1135 /* step 1 & 2. Reset the Ethernet Channel */
1136 gem_stop(ifp, 0);
1137 gem_reset(sc);
1138 DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1139
1140 /* Re-initialize the MIF */
1141 gem_mifinit(sc);
1142
1143 /* Set up correct datapath for non-SERDES/Serialink */
1144 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1145 sc->sc_variant != GEM_SUN_ERI)
1146 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1147 GEM_MII_DATAPATH_MII);
1148
1149 /* Call MI reset function if any */
1150 if (sc->sc_hwreset)
1151 (*sc->sc_hwreset)(sc);
1152
1153 /* step 3. Setup data structures in host memory */
1154 if (gem_meminit(sc) != 0) {
1155 splx(s);
1156 return 1;
1157 }
1158
1159 /* step 4. TX MAC registers & counters */
1160 gem_init_regs(sc);
1161 max_frame_size = uimax(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1162 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1163 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1164 max_frame_size += ETHER_VLAN_ENCAP_LEN;
1165 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1166 max_frame_size|/* burst size */(0x2000<<16));
1167
1168 /* step 5. RX MAC registers & counters */
1169 gem_setladrf(sc);
1170
1171 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1172 /* NOTE: we use only 32-bit DMA addresses here. */
1173 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1174 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1175
1176 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1177 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1178
1179 /* step 8. Global Configuration & Interrupt Mask */
1180 gem_inten(sc);
1181 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1182 GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1183 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1184 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1185 GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1186
1187 /* step 9. ETX Configuration: use mostly default values */
1188
1189 /* Enable TX DMA */
1190 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1191 bus_space_write_4(t, h, GEM_TX_CONFIG,
1192 v | GEM_TX_CONFIG_TXDMA_EN |
1193 (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1194 GEM_TX_CONFIG_TXFIFO_TH));
1195 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1196
1197 /* step 10. ERX Configuration */
1198 gem_rx_common(sc);
1199
1200 /* step 11. Configure Media */
1201 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1202 (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1203 goto out;
1204
1205 /* step 12. RX_MAC Configuration Register */
1206 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1207 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1208 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1209
1210 /* step 14. Issue Transmit Pending command */
1211
1212 /* Call MI initialization function if any */
1213 if (sc->sc_hwinit)
1214 (*sc->sc_hwinit)(sc);
1215
1216 /* step 15. Give the receiver a swift kick */
1217 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1218
1219 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1220 /* Configure PCS */
1221 gem_pcs_start(sc);
1222 else
1223 /* Start the one second timer. */
1224 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1225
1226 sc->sc_flags &= ~GEM_LINK;
1227 ifp->if_flags |= IFF_RUNNING;
1228 ifp->if_flags &= ~IFF_OACTIVE;
1229 ifp->if_timer = 0;
1230 sc->sc_if_flags = ifp->if_flags;
1231 out:
1232 splx(s);
1233
1234 return (0);
1235 }
1236
1237 void
1238 gem_init_regs(struct gem_softc *sc)
1239 {
1240 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1241 bus_space_tag_t t = sc->sc_bustag;
1242 bus_space_handle_t h = sc->sc_h1;
1243 const u_char *laddr = CLLADDR(ifp->if_sadl);
1244 uint32_t v;
1245
1246 /* These regs are not cleared on reset */
1247 if (!sc->sc_inited) {
1248
1249 /* Load recommended values */
1250 bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1251 bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1252 bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1253
1254 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1255 /* Max frame and max burst size */
1256 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1257 ETHER_MAX_LEN | (0x2000<<16));
1258
1259 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1260 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1261 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1262 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1263 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1264 ((laddr[5]<<8)|laddr[4])&0x3ff);
1265
1266 /* Secondary MAC addr set to 0:0:0:0:0:0 */
1267 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1268 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1269 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1270
1271 /* MAC control addr set to 01:80:c2:00:00:01 */
1272 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1273 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1274 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1275
1276 /* MAC filter addr set to 0:0:0:0:0:0 */
1277 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1278 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1279 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1280
1281 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1282 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1283
1284 sc->sc_inited = 1;
1285 }
1286
1287 /* Counters need to be zeroed */
1288 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1289 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1290 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1291 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1292 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1293 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1294 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1295 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1296 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1297 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1298 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1299
1300 /* Set XOFF PAUSE time. */
1301 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1302
1303 /*
1304 * Set the internal arbitration to "infinite" bursts of the
1305 * maximum length of 31 * 64 bytes so DMA transfers aren't
1306 * split up in cache line size chunks. This greatly improves
1307 * especially RX performance.
1308 * Enable silicon bug workarounds for the Apple variants.
1309 */
1310 bus_space_write_4(t, h, GEM_CONFIG,
1311 GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1312 ((sc->sc_flags & GEM_PCI) ?
1313 GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1314 GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1315
1316 /*
1317 * Set the station address.
1318 */
1319 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1320 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1321 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1322
1323 /*
1324 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1325 */
1326 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1327 v = GEM_MAC_XIF_TX_MII_ENA;
1328 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1329 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1330 v |= GEM_MAC_XIF_FDPLX_LED;
1331 if (sc->sc_flags & GEM_GIGABIT)
1332 v |= GEM_MAC_XIF_GMII_MODE;
1333 }
1334 } else {
1335 v |= GEM_MAC_XIF_GMII_MODE;
1336 }
1337 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1338 }
1339
1340 #ifdef GEM_DEBUG
1341 static void
1342 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1343 {
1344 int i;
1345
1346 for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1347 printf("descriptor %d:\t", i);
1348 printf("gd_flags: 0x%016" PRIx64 "\t",
1349 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1350 printf("gd_addr: 0x%016" PRIx64 "\n",
1351 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1352 if (i == lastdesc)
1353 break;
1354 }
1355 }
1356 #endif
1357
1358 static void
1359 gem_start(struct ifnet *ifp)
1360 {
1361 struct gem_softc *sc = ifp->if_softc;
1362 struct mbuf *m0, *m;
1363 struct gem_txsoft *txs;
1364 bus_dmamap_t dmamap;
1365 int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1366 #ifdef GEM_DEBUG
1367 int otxnext;
1368 #endif
1369 uint64_t flags = 0;
1370
1371 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1372 return;
1373
1374 /*
1375 * Remember the previous number of free descriptors and
1376 * the first descriptor we'll use.
1377 */
1378 ofree = sc->sc_txfree;
1379 #ifdef GEM_DEBUG
1380 otxnext = sc->sc_txnext;
1381 #endif
1382
1383 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1384 device_xname(sc->sc_dev), ofree, otxnext));
1385
1386 /*
1387 * Loop through the send queue, setting up transmit descriptors
1388 * until we drain the queue, or use up all available transmit
1389 * descriptors.
1390 */
1391 #ifdef INET
1392 next:
1393 #endif
1394 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1395 sc->sc_txfree != 0) {
1396 /*
1397 * Grab a packet off the queue.
1398 */
1399 IFQ_POLL(&ifp->if_snd, m0);
1400 if (m0 == NULL)
1401 break;
1402 m = NULL;
1403
1404 dmamap = txs->txs_dmamap;
1405
1406 /*
1407 * Load the DMA map. If this fails, the packet either
1408 * didn't fit in the alloted number of segments, or we were
1409 * short on resources. In this case, we'll copy and try
1410 * again.
1411 */
1412 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1413 BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0 ||
1414 (m0->m_pkthdr.len < ETHER_MIN_TX &&
1415 dmamap->dm_nsegs == GEM_NTXSEGS)) {
1416 if (m0->m_pkthdr.len > MCLBYTES) {
1417 aprint_error_dev(sc->sc_dev,
1418 "unable to allocate jumbo Tx cluster\n");
1419 IFQ_DEQUEUE(&ifp->if_snd, m0);
1420 m_freem(m0);
1421 continue;
1422 }
1423 MGETHDR(m, M_DONTWAIT, MT_DATA);
1424 if (m == NULL) {
1425 aprint_error_dev(sc->sc_dev,
1426 "unable to allocate Tx mbuf\n");
1427 break;
1428 }
1429 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1430 if (m0->m_pkthdr.len > MHLEN) {
1431 MCLGET(m, M_DONTWAIT);
1432 if ((m->m_flags & M_EXT) == 0) {
1433 aprint_error_dev(sc->sc_dev,
1434 "unable to allocate Tx cluster\n");
1435 m_freem(m);
1436 break;
1437 }
1438 }
1439 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1440 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1441 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1442 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1443 if (error) {
1444 aprint_error_dev(sc->sc_dev,
1445 "unable to load Tx buffer, error = %d\n",
1446 error);
1447 break;
1448 }
1449 }
1450
1451 /*
1452 * Ensure we have enough descriptors free to describe
1453 * the packet.
1454 */
1455 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1456 (sc->sc_txfree - 1) : sc->sc_txfree)) {
1457 /*
1458 * Not enough free descriptors to transmit this
1459 * packet. We haven't committed to anything yet,
1460 * so just unload the DMA map, put the packet
1461 * back on the queue, and punt. Notify the upper
1462 * layer that there are no more slots left.
1463 *
1464 * XXX We could allocate an mbuf and copy, but
1465 * XXX it is worth it?
1466 */
1467 ifp->if_flags |= IFF_OACTIVE;
1468 sc->sc_if_flags = ifp->if_flags;
1469 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1470 if (m != NULL)
1471 m_freem(m);
1472 break;
1473 }
1474
1475 IFQ_DEQUEUE(&ifp->if_snd, m0);
1476 if (m != NULL) {
1477 m_freem(m0);
1478 m0 = m;
1479 }
1480
1481 /*
1482 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1483 */
1484
1485 /* Sync the DMA map. */
1486 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1487 BUS_DMASYNC_PREWRITE);
1488
1489 /*
1490 * Initialize the transmit descriptors.
1491 */
1492 firsttx = sc->sc_txnext;
1493 for (nexttx = firsttx, seg = 0;
1494 seg < dmamap->dm_nsegs;
1495 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1496
1497 /*
1498 * If this is the first descriptor we're
1499 * enqueueing, set the start of packet flag,
1500 * and the checksum stuff if we want the hardware
1501 * to do it.
1502 */
1503 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1504 if (nexttx == firsttx) {
1505 flags |= GEM_TD_START_OF_PACKET;
1506 #ifdef INET
1507 /* h/w checksum */
1508 if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1509 m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1510 struct ether_header *eh;
1511 uint16_t offset, start;
1512
1513 eh = mtod(m0, struct ether_header *);
1514 switch (ntohs(eh->ether_type)) {
1515 case ETHERTYPE_IP:
1516 start = ETHER_HDR_LEN;
1517 break;
1518 case ETHERTYPE_VLAN:
1519 start = ETHER_HDR_LEN +
1520 ETHER_VLAN_ENCAP_LEN;
1521 break;
1522 default:
1523 /* unsupported, drop it */
1524 bus_dmamap_unload(sc->sc_dmatag,
1525 dmamap);
1526 m_freem(m0);
1527 goto next;
1528 }
1529 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1530 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1531 flags |= (start <<
1532 GEM_TD_CXSUM_STARTSHFT) |
1533 (offset <<
1534 GEM_TD_CXSUM_STUFFSHFT) |
1535 GEM_TD_CXSUM_ENABLE;
1536 }
1537 #endif
1538 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1539 sc->sc_txwin = 0;
1540 flags |= GEM_TD_INTERRUPT_ME;
1541 }
1542 }
1543 sc->sc_txdescs[nexttx].gd_addr =
1544 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1545 if (seg == dmamap->dm_nsegs - 1) {
1546 flags |= GEM_TD_END_OF_PACKET;
1547 } else {
1548 /* last flag set outside of loop */
1549 sc->sc_txdescs[nexttx].gd_flags =
1550 GEM_DMA_WRITE(sc, flags);
1551 }
1552 lasttx = nexttx;
1553 }
1554 if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1555 /* add padding buffer at end of chain */
1556 flags &= ~GEM_TD_END_OF_PACKET;
1557 sc->sc_txdescs[lasttx].gd_flags =
1558 GEM_DMA_WRITE(sc, flags);
1559
1560 sc->sc_txdescs[nexttx].gd_addr =
1561 GEM_DMA_WRITE(sc,
1562 sc->sc_nulldmamap->dm_segs[0].ds_addr);
1563 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1564 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1565 lasttx = nexttx;
1566 nexttx = GEM_NEXTTX(nexttx);
1567 seg++;
1568 }
1569 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1570
1571 KASSERT(lasttx != -1);
1572
1573 /*
1574 * Store a pointer to the packet so we can free it later,
1575 * and remember what txdirty will be once the packet is
1576 * done.
1577 */
1578 txs->txs_mbuf = m0;
1579 txs->txs_firstdesc = sc->sc_txnext;
1580 txs->txs_lastdesc = lasttx;
1581 txs->txs_ndescs = seg;
1582
1583 #ifdef GEM_DEBUG
1584 if (ifp->if_flags & IFF_DEBUG) {
1585 printf(" gem_start %p transmit chain:\n", txs);
1586 gem_txsoft_print(sc, txs->txs_firstdesc,
1587 txs->txs_lastdesc);
1588 }
1589 #endif
1590
1591 /* Sync the descriptors we're using. */
1592 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1593 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1594
1595 /* Advance the tx pointer. */
1596 sc->sc_txfree -= txs->txs_ndescs;
1597 sc->sc_txnext = nexttx;
1598
1599 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1600 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1601
1602 /*
1603 * Pass the packet to any BPF listeners.
1604 */
1605 bpf_mtap(ifp, m0, BPF_D_OUT);
1606 }
1607
1608 if (txs == NULL || sc->sc_txfree == 0) {
1609 /* No more slots left; notify upper layer. */
1610 ifp->if_flags |= IFF_OACTIVE;
1611 sc->sc_if_flags = ifp->if_flags;
1612 }
1613
1614 if (sc->sc_txfree != ofree) {
1615 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1616 device_xname(sc->sc_dev), lasttx, otxnext));
1617 /*
1618 * The entire packet chain is set up.
1619 * Kick the transmitter.
1620 */
1621 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1622 device_xname(sc->sc_dev), nexttx));
1623 bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1624 sc->sc_txnext);
1625
1626 /* Set a watchdog timer in case the chip flakes out. */
1627 ifp->if_timer = 5;
1628 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1629 device_xname(sc->sc_dev), ifp->if_timer));
1630 }
1631 }
1632
1633 /*
1634 * Transmit interrupt.
1635 */
1636 int
1637 gem_tint(struct gem_softc *sc)
1638 {
1639 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1640 bus_space_tag_t t = sc->sc_bustag;
1641 bus_space_handle_t mac = sc->sc_h1;
1642 struct gem_txsoft *txs;
1643 int txlast;
1644 int progress = 0;
1645 uint32_t v;
1646
1647 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1648
1649 DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1650
1651 /* Unload collision counters ... */
1652 v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1653 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1654 if_statadd_ref(nsr, if_collisions, v +
1655 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1656 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT));
1657 if_statadd_ref(nsr, if_oerrors, v);
1658
1659 /* ... then clear the hardware counters. */
1660 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1661 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1662 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1663 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1664
1665 /*
1666 * Go through our Tx list and free mbufs for those
1667 * frames that have been transmitted.
1668 */
1669 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1670 /*
1671 * In theory, we could harvest some descriptors before
1672 * the ring is empty, but that's a bit complicated.
1673 *
1674 * GEM_TX_COMPLETION points to the last descriptor
1675 * processed +1.
1676 *
1677 * Let's assume that the NIC writes back to the Tx
1678 * descriptors before it updates the completion
1679 * register. If the NIC has posted writes to the
1680 * Tx descriptors, PCI ordering requires that the
1681 * posted writes flush to RAM before the register-read
1682 * finishes. So let's read the completion register,
1683 * before syncing the descriptors, so that we
1684 * examine Tx descriptors that are at least as
1685 * current as the completion register.
1686 */
1687 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1688 DPRINTF(sc,
1689 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1690 txs->txs_lastdesc, txlast));
1691 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1692 if (txlast >= txs->txs_firstdesc &&
1693 txlast <= txs->txs_lastdesc)
1694 break;
1695 } else if (txlast >= txs->txs_firstdesc ||
1696 txlast <= txs->txs_lastdesc)
1697 break;
1698
1699 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1700 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1701
1702 #ifdef GEM_DEBUG /* XXX DMA synchronization? */
1703 if (ifp->if_flags & IFF_DEBUG) {
1704 printf(" txsoft %p transmit chain:\n", txs);
1705 gem_txsoft_print(sc, txs->txs_firstdesc,
1706 txs->txs_lastdesc);
1707 }
1708 #endif
1709
1710
1711 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1712 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1713
1714 sc->sc_txfree += txs->txs_ndescs;
1715
1716 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1717 0, txs->txs_dmamap->dm_mapsize,
1718 BUS_DMASYNC_POSTWRITE);
1719 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1720 if (txs->txs_mbuf != NULL) {
1721 m_freem(txs->txs_mbuf);
1722 txs->txs_mbuf = NULL;
1723 }
1724
1725 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1726
1727 if_statinc_ref(nsr, if_opackets);
1728 progress = 1;
1729 }
1730
1731 IF_STAT_PUTREF(ifp);
1732
1733 #if 0
1734 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1735 "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1736 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1737 ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1738 GEM_TX_DATA_PTR_HI) << 32) |
1739 bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1740 GEM_TX_DATA_PTR_LO),
1741 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1742 #endif
1743
1744 if (progress) {
1745 if (sc->sc_txfree == GEM_NTXDESC - 1)
1746 sc->sc_txwin = 0;
1747
1748 /* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1749 ifp->if_flags &= ~IFF_OACTIVE;
1750 sc->sc_if_flags = ifp->if_flags;
1751 ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1752 if_schedule_deferred_start(ifp);
1753 }
1754 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1755 device_xname(sc->sc_dev), ifp->if_timer));
1756
1757 return (1);
1758 }
1759
1760 /*
1761 * Receive interrupt.
1762 */
1763 int
1764 gem_rint(struct gem_softc *sc)
1765 {
1766 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1767 bus_space_tag_t t = sc->sc_bustag;
1768 bus_space_handle_t h = sc->sc_h1;
1769 struct gem_rxsoft *rxs;
1770 struct mbuf *m;
1771 uint64_t rxstat;
1772 uint32_t rxcomp;
1773 int i, len, progress = 0;
1774
1775 DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1776
1777 /*
1778 * Ignore spurious interrupt that sometimes occurs before
1779 * we are set up when we network boot.
1780 */
1781 if (!sc->sc_meminited)
1782 return 1;
1783
1784 /*
1785 * Read the completion register once. This limits
1786 * how long the following loop can execute.
1787 */
1788 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1789
1790 /*
1791 * XXX Read the lastrx only once at the top for speed.
1792 */
1793 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1794 sc->sc_rxptr, rxcomp));
1795
1796 /*
1797 * Go into the loop at least once.
1798 */
1799 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1800 i = GEM_NEXTRX(i)) {
1801 rxs = &sc->sc_rxsoft[i];
1802
1803 GEM_CDRXSYNC(sc, i,
1804 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1805
1806 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1807
1808 if (rxstat & GEM_RD_OWN) {
1809 GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1810 /*
1811 * We have processed all of the receive buffers.
1812 */
1813 break;
1814 }
1815
1816 progress++;
1817
1818 if (rxstat & GEM_RD_BAD_CRC) {
1819 if_statinc(ifp, if_ierrors);
1820 aprint_error_dev(sc->sc_dev,
1821 "receive error: CRC error\n");
1822 GEM_INIT_RXDESC(sc, i);
1823 continue;
1824 }
1825
1826 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1827 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1828 #ifdef GEM_DEBUG
1829 if (ifp->if_flags & IFF_DEBUG) {
1830 printf(" rxsoft %p descriptor %d: ", rxs, i);
1831 printf("gd_flags: 0x%016llx\t", (long long)
1832 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1833 printf("gd_addr: 0x%016llx\n", (long long)
1834 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1835 }
1836 #endif
1837
1838 /* No errors; receive the packet. */
1839 len = GEM_RD_BUFLEN(rxstat);
1840
1841 /*
1842 * Allocate a new mbuf cluster. If that fails, we are
1843 * out of memory, and must drop the packet and recycle
1844 * the buffer that's already attached to this descriptor.
1845 */
1846 m = rxs->rxs_mbuf;
1847 if (gem_add_rxbuf(sc, i) != 0) {
1848 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1849 if_statinc(ifp, if_ierrors);
1850 aprint_error_dev(sc->sc_dev,
1851 "receive error: RX no buffer space\n");
1852 GEM_INIT_RXDESC(sc, i);
1853 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1854 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1855 continue;
1856 }
1857 m->m_data += 2; /* We're already off by two */
1858
1859 m_set_rcvif(m, ifp);
1860 m->m_pkthdr.len = m->m_len = len;
1861
1862 #ifdef INET
1863 /* hardware checksum */
1864 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1865 struct ether_header *eh;
1866 struct ip *ip;
1867 int32_t hlen, pktlen;
1868
1869 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1870 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1871 ETHER_VLAN_ENCAP_LEN;
1872 eh = (struct ether_header *) (mtod(m, char *) +
1873 ETHER_VLAN_ENCAP_LEN);
1874 } else {
1875 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1876 eh = mtod(m, struct ether_header *);
1877 }
1878 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1879 goto swcsum;
1880 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1881
1882 /* IPv4 only */
1883 if (ip->ip_v != IPVERSION)
1884 goto swcsum;
1885
1886 hlen = ip->ip_hl << 2;
1887 if (hlen < sizeof(struct ip))
1888 goto swcsum;
1889
1890 /*
1891 * bail if too short, has random trailing garbage,
1892 * truncated, fragment, or has ethernet pad.
1893 */
1894 if ((ntohs(ip->ip_len) < hlen) ||
1895 (ntohs(ip->ip_len) != pktlen) ||
1896 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1897 goto swcsum;
1898
1899 switch (ip->ip_p) {
1900 case IPPROTO_TCP:
1901 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1902 goto swcsum;
1903 if (pktlen < (hlen + sizeof(struct tcphdr)))
1904 goto swcsum;
1905 m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1906 break;
1907 case IPPROTO_UDP:
1908 /* FALLTHROUGH */
1909 default:
1910 goto swcsum;
1911 }
1912
1913 /* the uncomplemented sum is expected */
1914 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1915
1916 /* if the pkt had ip options, we have to deduct them */
1917 if (hlen > sizeof(struct ip)) {
1918 uint16_t *opts;
1919 uint32_t optsum, temp;
1920
1921 optsum = 0;
1922 temp = hlen - sizeof(struct ip);
1923 opts = (uint16_t *) ((char *) ip +
1924 sizeof(struct ip));
1925
1926 while (temp > 1) {
1927 optsum += ntohs(*opts++);
1928 temp -= 2;
1929 }
1930 while (optsum >> 16)
1931 optsum = (optsum >> 16) +
1932 (optsum & 0xffff);
1933
1934 /* Deduct ip opts sum from hwsum. */
1935 m->m_pkthdr.csum_data += (uint16_t)~optsum;
1936
1937 while (m->m_pkthdr.csum_data >> 16)
1938 m->m_pkthdr.csum_data =
1939 (m->m_pkthdr.csum_data >> 16) +
1940 (m->m_pkthdr.csum_data &
1941 0xffff);
1942 }
1943
1944 m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1945 M_CSUM_NO_PSEUDOHDR;
1946 } else
1947 swcsum:
1948 m->m_pkthdr.csum_flags = 0;
1949 #endif
1950 /* Pass it on. */
1951 if_percpuq_enqueue(ifp->if_percpuq, m);
1952 }
1953
1954 if (progress) {
1955 /* Update the receive pointer. */
1956 if (i == sc->sc_rxptr) {
1957 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1958 #ifdef GEM_DEBUG
1959 if (ifp->if_flags & IFF_DEBUG)
1960 printf("%s: rint: ring wrap\n",
1961 device_xname(sc->sc_dev));
1962 #endif
1963 }
1964 sc->sc_rxptr = i;
1965 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1966 }
1967 #ifdef GEM_COUNTERS
1968 if (progress <= 4) {
1969 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1970 } else if (progress < 32) {
1971 if (progress < 16)
1972 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1973 else
1974 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1975
1976 } else {
1977 if (progress < 64)
1978 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1979 else
1980 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1981 }
1982 #endif
1983
1984 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1985 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1986
1987 /* Read error counters ... */
1988 if_statadd(ifp, if_ierrors,
1989 bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1990 bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1991 bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1992 bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL));
1993
1994 /* ... then clear the hardware counters. */
1995 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1996 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1997 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1998 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1999
2000 return (1);
2001 }
2002
2003
2004 /*
2005 * gem_add_rxbuf:
2006 *
2007 * Add a receive buffer to the indicated descriptor.
2008 */
2009 int
2010 gem_add_rxbuf(struct gem_softc *sc, int idx)
2011 {
2012 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
2013 struct mbuf *m;
2014 int error;
2015
2016 MGETHDR(m, M_DONTWAIT, MT_DATA);
2017 if (m == NULL)
2018 return (ENOBUFS);
2019
2020 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2021 MCLGET(m, M_DONTWAIT);
2022 if ((m->m_flags & M_EXT) == 0) {
2023 m_freem(m);
2024 return (ENOBUFS);
2025 }
2026
2027 #ifdef GEM_DEBUG
2028 /* bzero the packet to check DMA */
2029 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2030 #endif
2031
2032 if (rxs->rxs_mbuf != NULL)
2033 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2034
2035 rxs->rxs_mbuf = m;
2036
2037 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2038 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2039 BUS_DMA_READ | BUS_DMA_NOWAIT);
2040 if (error) {
2041 aprint_error_dev(sc->sc_dev,
2042 "can't load rx DMA map %d, error = %d\n", idx, error);
2043 panic("gem_add_rxbuf"); /* XXX */
2044 }
2045
2046 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2047 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2048
2049 GEM_INIT_RXDESC(sc, idx);
2050
2051 return (0);
2052 }
2053
2054
2055 int
2056 gem_eint(struct gem_softc *sc, u_int status)
2057 {
2058 char bits[128];
2059 uint32_t r, v;
2060
2061 if ((status & GEM_INTR_MIF) != 0) {
2062 printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2063 return (1);
2064 }
2065
2066 if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2067 gem_reset_rxdma(sc);
2068 return (1);
2069 }
2070
2071 if (status & GEM_INTR_BERR) {
2072 if (sc->sc_flags & GEM_PCI)
2073 r = GEM_ERROR_STATUS;
2074 else
2075 r = GEM_SBUS_ERROR_STATUS;
2076 bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2077 v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2078 aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2079 v);
2080 return (1);
2081 }
2082 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2083 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2084
2085 return (1);
2086 }
2087
2088
2089 /*
2090 * PCS interrupts.
2091 * We should receive these when the link status changes, but sometimes
2092 * we don't receive them for link up. We compensate for this in the
2093 * gem_tick() callout.
2094 */
2095 int
2096 gem_pint(struct gem_softc *sc)
2097 {
2098 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2099 bus_space_tag_t t = sc->sc_bustag;
2100 bus_space_handle_t h = sc->sc_h1;
2101 uint32_t v, v2;
2102
2103 /*
2104 * Clear the PCS interrupt from GEM_STATUS. The PCS register is
2105 * latched, so we have to read it twice. There is only one bit in
2106 * use, so the value is meaningless.
2107 */
2108 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2109 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2110
2111 if ((ifp->if_flags & IFF_UP) == 0)
2112 return 1;
2113
2114 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2115 return 1;
2116
2117 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2118 /* If we see remote fault, our link partner is probably going away */
2119 if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2120 gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2121 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2122 /* Otherwise, we may need to wait after auto-negotiation completes */
2123 } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2124 GEM_MII_STATUS_ANEG_CPT) {
2125 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2126 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2127 }
2128 if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2129 if (sc->sc_flags & GEM_LINK) {
2130 return 1;
2131 }
2132 callout_stop(&sc->sc_tick_ch);
2133 v = bus_space_read_4(t, h, GEM_MII_ANAR);
2134 v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2135 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2136 sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2137 v &= v2;
2138 if (v & GEM_MII_ANEG_FUL_DUPLX) {
2139 sc->sc_mii.mii_media_active |= IFM_FDX;
2140 #ifdef GEM_DEBUG
2141 aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2142 #endif
2143 } else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2144 sc->sc_mii.mii_media_active |= IFM_HDX;
2145 #ifdef GEM_DEBUG
2146 aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2147 #endif
2148 } else {
2149 #ifdef GEM_DEBUG
2150 aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2151 #endif
2152 }
2153 gem_statuschange(sc);
2154 } else {
2155 if ((sc->sc_flags & GEM_LINK) == 0) {
2156 return 1;
2157 }
2158 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2159 sc->sc_mii.mii_media_status = IFM_AVALID;
2160 #ifdef GEM_DEBUG
2161 aprint_debug_dev(sc->sc_dev, "link down\n");
2162 #endif
2163 gem_statuschange(sc);
2164
2165 /* Start the 10 second timer */
2166 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2167 }
2168 return 1;
2169 }
2170
2171
2172
2173 int
2174 gem_intr(void *v)
2175 {
2176 struct gem_softc *sc = v;
2177 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2178 bus_space_tag_t t = sc->sc_bustag;
2179 bus_space_handle_t h = sc->sc_h1;
2180 uint32_t status;
2181 int r = 0;
2182 #ifdef GEM_DEBUG
2183 char bits[128];
2184 #endif
2185
2186 /* XXX We should probably mask out interrupts until we're done */
2187
2188 sc->sc_ev_intr.ev_count++;
2189
2190 status = bus_space_read_4(t, h, GEM_STATUS);
2191 #ifdef GEM_DEBUG
2192 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2193 #endif
2194 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2195 device_xname(sc->sc_dev), (status >> 19), bits));
2196
2197 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2198 r |= gem_eint(sc, status);
2199
2200 /* We don't bother with GEM_INTR_TX_DONE */
2201 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2202 GEM_COUNTER_INCR(sc, sc_ev_txint);
2203 r |= gem_tint(sc);
2204 }
2205
2206 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2207 GEM_COUNTER_INCR(sc, sc_ev_rxint);
2208 r |= gem_rint(sc);
2209 }
2210
2211 /* We should eventually do more than just print out error stats. */
2212 if (status & GEM_INTR_TX_MAC) {
2213 int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2214 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2215 printf("%s: MAC tx fault, status %x\n",
2216 device_xname(sc->sc_dev), txstat);
2217 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2218 gem_init(ifp);
2219 }
2220 if (status & GEM_INTR_RX_MAC) {
2221 int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2222 /*
2223 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2224 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2225 * silicon bug so handle them silently. So if we detect
2226 * an RX FIFO overflow, we fire off a timer, and check
2227 * whether we're still making progress by looking at the
2228 * RX FIFO write and read pointers.
2229 */
2230 if (rxstat & GEM_MAC_RX_OVERFLOW) {
2231 if_statinc(ifp, if_ierrors);
2232 aprint_error_dev(sc->sc_dev,
2233 "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
2234 sc->sc_rx_fifo_wr_ptr =
2235 bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2236 sc->sc_rx_fifo_rd_ptr =
2237 bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2238 callout_schedule(&sc->sc_rx_watchdog, 400);
2239 } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2240 printf("%s: MAC rx fault, status 0x%02x\n",
2241 device_xname(sc->sc_dev), rxstat);
2242 }
2243 if (status & GEM_INTR_PCS) {
2244 r |= gem_pint(sc);
2245 }
2246
2247 /* Do we need to do anything with these?
2248 if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2249 status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2250 if ((status2 & GEM_MAC_PAUSED) != 0)
2251 aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2252 GEM_MAC_PAUSE_TIME(status2));
2253 if ((status2 & GEM_MAC_PAUSE) != 0)
2254 aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2255 if ((status2 & GEM_MAC_RESUME) != 0)
2256 aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2257 }
2258 if ((status & GEM_INTR_MIF) != 0)
2259 aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2260 */
2261 rnd_add_uint32(&sc->rnd_source, status);
2262 return (r);
2263 }
2264
2265 void
2266 gem_rx_watchdog(void *arg)
2267 {
2268 struct gem_softc *sc = arg;
2269 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2270 bus_space_tag_t t = sc->sc_bustag;
2271 bus_space_handle_t h = sc->sc_h1;
2272 uint32_t rx_fifo_wr_ptr;
2273 uint32_t rx_fifo_rd_ptr;
2274 uint32_t state;
2275
2276 if ((ifp->if_flags & IFF_RUNNING) == 0) {
2277 aprint_error_dev(sc->sc_dev, "receiver not running\n");
2278 return;
2279 }
2280
2281 rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2282 rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2283 state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
2284 if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
2285 ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
2286 ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
2287 (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
2288 {
2289 /*
2290 * The RX state machine is still in overflow state and
2291 * the RX FIFO write and read pointers seem to be
2292 * stuck. Whack the chip over the head to get things
2293 * going again.
2294 */
2295 aprint_error_dev(sc->sc_dev,
2296 "receiver stuck in overflow, resetting\n");
2297 gem_init(ifp);
2298 } else {
2299 if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
2300 aprint_error_dev(sc->sc_dev,
2301 "rx_watchdog: not in overflow state: 0x%x\n",
2302 state);
2303 }
2304 if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
2305 aprint_error_dev(sc->sc_dev,
2306 "rx_watchdog: wr & rd ptr different\n");
2307 }
2308 if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
2309 aprint_error_dev(sc->sc_dev,
2310 "rx_watchdog: wr pointer != saved\n");
2311 }
2312 if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
2313 aprint_error_dev(sc->sc_dev,
2314 "rx_watchdog: rd pointer != saved\n");
2315 }
2316 aprint_error_dev(sc->sc_dev, "resetting anyway\n");
2317 gem_init(ifp);
2318 }
2319 }
2320
2321 void
2322 gem_watchdog(struct ifnet *ifp)
2323 {
2324 struct gem_softc *sc = ifp->if_softc;
2325
2326 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2327 "GEM_MAC_RX_CONFIG %x\n",
2328 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2329 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2330 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2331
2332 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2333 if_statinc(ifp, if_oerrors);
2334
2335 /* Try to get more packets going. */
2336 gem_init(ifp);
2337 gem_start(ifp);
2338 }
2339
2340 /*
2341 * Initialize the MII Management Interface
2342 */
2343 void
2344 gem_mifinit(struct gem_softc *sc)
2345 {
2346 bus_space_tag_t t = sc->sc_bustag;
2347 bus_space_handle_t mif = sc->sc_h1;
2348
2349 /* Configure the MIF in frame mode */
2350 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2351 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2352 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2353 }
2354
2355 /*
2356 * MII interface
2357 *
2358 * The GEM MII interface supports at least three different operating modes:
2359 *
2360 * Bitbang mode is implemented using data, clock and output enable registers.
2361 *
2362 * Frame mode is implemented by loading a complete frame into the frame
2363 * register and polling the valid bit for completion.
2364 *
2365 * Polling mode uses the frame register but completion is indicated by
2366 * an interrupt.
2367 *
2368 */
2369 static int
2370 gem_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
2371 {
2372 struct gem_softc *sc = device_private(self);
2373 bus_space_tag_t t = sc->sc_bustag;
2374 bus_space_handle_t mif = sc->sc_h1;
2375 int n;
2376 uint32_t v;
2377
2378 #ifdef GEM_DEBUG1
2379 if (sc->sc_debug)
2380 printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2381 #endif
2382
2383 /* Construct the frame command */
2384 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
2385 GEM_MIF_FRAME_READ;
2386
2387 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2388 for (n = 0; n < 100; n++) {
2389 DELAY(1);
2390 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2391 if (v & GEM_MIF_FRAME_TA0) {
2392 *val = v & GEM_MIF_FRAME_DATA;
2393 return 0;
2394 }
2395 }
2396
2397 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2398 return ETIMEDOUT;
2399 }
2400
2401 static int
2402 gem_mii_writereg(device_t self, int phy, int reg, uint16_t val)
2403 {
2404 struct gem_softc *sc = device_private(self);
2405 bus_space_tag_t t = sc->sc_bustag;
2406 bus_space_handle_t mif = sc->sc_h1;
2407 int n;
2408 uint32_t v;
2409
2410 #ifdef GEM_DEBUG1
2411 if (sc->sc_debug)
2412 printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2413 phy, reg, val);
2414 #endif
2415
2416 /* Construct the frame command */
2417 v = GEM_MIF_FRAME_WRITE |
2418 (phy << GEM_MIF_PHY_SHIFT) |
2419 (reg << GEM_MIF_REG_SHIFT) |
2420 (val & GEM_MIF_FRAME_DATA);
2421
2422 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2423 for (n = 0; n < 100; n++) {
2424 DELAY(1);
2425 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2426 if (v & GEM_MIF_FRAME_TA0)
2427 return 0;
2428 }
2429
2430 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2431 return ETIMEDOUT;
2432 }
2433
2434 static void
2435 gem_mii_statchg(struct ifnet *ifp)
2436 {
2437 struct gem_softc *sc = ifp->if_softc;
2438 #ifdef GEM_DEBUG
2439 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2440 #endif
2441
2442 #ifdef GEM_DEBUG
2443 if (sc->sc_debug)
2444 printf("gem_mii_statchg: status change: phy = %d\n",
2445 sc->sc_phys[instance]);
2446 #endif
2447 gem_statuschange(sc);
2448 }
2449
2450 /*
2451 * Common status change for gem_mii_statchg() and gem_pint()
2452 */
2453 void
2454 gem_statuschange(struct gem_softc* sc)
2455 {
2456 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2457 bus_space_tag_t t = sc->sc_bustag;
2458 bus_space_handle_t mac = sc->sc_h1;
2459 int gigabit;
2460 uint32_t rxcfg, txcfg, v;
2461
2462 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2463 IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2464 sc->sc_flags |= GEM_LINK;
2465 else
2466 sc->sc_flags &= ~GEM_LINK;
2467
2468 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2469 gigabit = 1;
2470 else
2471 gigabit = 0;
2472
2473 /*
2474 * The configuration done here corresponds to the steps F) and
2475 * G) and as far as enabling of RX and TX MAC goes also step H)
2476 * of the initialization sequence outlined in section 3.2.1 of
2477 * the GEM Gigabit Ethernet ASIC Specification.
2478 */
2479
2480 rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2481 rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2482 txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2483 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2484 txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2485 else if (gigabit) {
2486 rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2487 txcfg |= GEM_MAC_RX_CARR_EXTEND;
2488 }
2489 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2490 bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2491 BUS_SPACE_BARRIER_WRITE);
2492 if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2493 aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2494 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2495 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2496 bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2497 BUS_SPACE_BARRIER_WRITE);
2498 if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2499 aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2500 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2501
2502 v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2503 ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2504 bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2505
2506 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2507 gigabit != 0)
2508 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2509 GEM_MAC_SLOT_TIME_CARR_EXTEND);
2510 else
2511 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2512 GEM_MAC_SLOT_TIME_NORMAL);
2513
2514 /* XIF Configuration */
2515 if (sc->sc_flags & GEM_LINK)
2516 v = GEM_MAC_XIF_LINK_LED;
2517 else
2518 v = 0;
2519 v |= GEM_MAC_XIF_TX_MII_ENA;
2520
2521 /* If an external transceiver is connected, enable its MII drivers */
2522 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2523 if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2524 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2525 if (gigabit)
2526 v |= GEM_MAC_XIF_GMII_MODE;
2527 else
2528 v &= ~GEM_MAC_XIF_GMII_MODE;
2529 } else
2530 /* Internal MII needs buf enable */
2531 v |= GEM_MAC_XIF_MII_BUF_ENA;
2532 /* MII needs echo disable if half duplex. */
2533 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2534 /* turn on full duplex LED */
2535 v |= GEM_MAC_XIF_FDPLX_LED;
2536 else
2537 /* half duplex -- disable echo */
2538 v |= GEM_MAC_XIF_ECHO_DISABL;
2539 } else {
2540 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2541 v |= GEM_MAC_XIF_FDPLX_LED;
2542 v |= GEM_MAC_XIF_GMII_MODE;
2543 }
2544 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2545
2546 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2547 (sc->sc_flags & GEM_LINK) != 0) {
2548 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2549 txcfg | GEM_MAC_TX_ENABLE);
2550 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2551 rxcfg | GEM_MAC_RX_ENABLE);
2552 }
2553 }
2554
2555 int
2556 gem_ser_mediachange(struct ifnet *ifp)
2557 {
2558 struct gem_softc *sc = ifp->if_softc;
2559 u_int s, t;
2560
2561 if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2562 return EINVAL;
2563
2564 s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2565 if (s == IFM_AUTO) {
2566 if (sc->sc_mii_media != s) {
2567 #ifdef GEM_DEBUG
2568 aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2569 #endif
2570 sc->sc_mii_media = s;
2571 if (ifp->if_flags & IFF_UP) {
2572 gem_pcs_stop(sc, 0);
2573 gem_pcs_start(sc);
2574 }
2575 }
2576 return 0;
2577 }
2578 if (s == IFM_1000_SX) {
2579 t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media)
2580 & (IFM_FDX | IFM_HDX);
2581 if ((sc->sc_mii_media & (IFM_FDX | IFM_HDX)) != t) {
2582 sc->sc_mii_media &= ~(IFM_FDX | IFM_HDX);
2583 sc->sc_mii_media |= t;
2584 #ifdef GEM_DEBUG
2585 aprint_debug_dev(sc->sc_dev,
2586 "setting media to 1000baseSX-%s\n",
2587 t == IFM_FDX ? "FDX" : "HDX");
2588 #endif
2589 if (ifp->if_flags & IFF_UP) {
2590 gem_pcs_stop(sc, 0);
2591 gem_pcs_start(sc);
2592 }
2593 }
2594 return 0;
2595 }
2596 return EINVAL;
2597 }
2598
2599 void
2600 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2601 {
2602 struct gem_softc *sc = ifp->if_softc;
2603
2604 if ((ifp->if_flags & IFF_UP) == 0)
2605 return;
2606 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2607 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2608 }
2609
2610 static int
2611 gem_ifflags_cb(struct ethercom *ec)
2612 {
2613 struct ifnet *ifp = &ec->ec_if;
2614 struct gem_softc *sc = ifp->if_softc;
2615 u_short change = ifp->if_flags ^ sc->sc_if_flags;
2616
2617 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
2618 return ENETRESET;
2619 else if ((change & IFF_PROMISC) != 0)
2620 gem_setladrf(sc);
2621 return 0;
2622 }
2623
2624 /*
2625 * Process an ioctl request.
2626 */
2627 int
2628 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2629 {
2630 struct gem_softc *sc = ifp->if_softc;
2631 int s, error = 0;
2632
2633 s = splnet();
2634
2635 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2636 error = 0;
2637 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2638 ;
2639 else if (ifp->if_flags & IFF_RUNNING) {
2640 /*
2641 * Multicast list has changed; set the hardware filter
2642 * accordingly.
2643 */
2644 gem_setladrf(sc);
2645 }
2646 }
2647
2648 /* Try to get things going again */
2649 if (ifp->if_flags & IFF_UP)
2650 gem_start(ifp);
2651 splx(s);
2652 return (error);
2653 }
2654
2655 static void
2656 gem_inten(struct gem_softc *sc)
2657 {
2658 bus_space_tag_t t = sc->sc_bustag;
2659 bus_space_handle_t h = sc->sc_h1;
2660 uint32_t v;
2661
2662 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2663 v = GEM_INTR_PCS;
2664 else
2665 v = GEM_INTR_MIF;
2666 bus_space_write_4(t, h, GEM_INTMASK,
2667 ~(GEM_INTR_TX_INTME |
2668 GEM_INTR_TX_EMPTY |
2669 GEM_INTR_TX_MAC |
2670 GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF |
2671 GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL |
2672 GEM_INTR_BERR | v));
2673 }
2674
2675 bool
2676 gem_resume(device_t self, const pmf_qual_t *qual)
2677 {
2678 struct gem_softc *sc = device_private(self);
2679
2680 gem_inten(sc);
2681
2682 return true;
2683 }
2684
2685 bool
2686 gem_suspend(device_t self, const pmf_qual_t *qual)
2687 {
2688 struct gem_softc *sc = device_private(self);
2689 bus_space_tag_t t = sc->sc_bustag;
2690 bus_space_handle_t h = sc->sc_h1;
2691
2692 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2693
2694 return true;
2695 }
2696
2697 bool
2698 gem_shutdown(device_t self, int howto)
2699 {
2700 struct gem_softc *sc = device_private(self);
2701 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2702
2703 gem_stop(ifp, 1);
2704
2705 return true;
2706 }
2707
2708 /*
2709 * Set up the logical address filter.
2710 */
2711 void
2712 gem_setladrf(struct gem_softc *sc)
2713 {
2714 struct ethercom *ec = &sc->sc_ethercom;
2715 struct ifnet *ifp = &ec->ec_if;
2716 struct ether_multi *enm;
2717 struct ether_multistep step;
2718 bus_space_tag_t t = sc->sc_bustag;
2719 bus_space_handle_t h = sc->sc_h1;
2720 uint32_t crc;
2721 uint32_t hash[16];
2722 uint32_t v;
2723 int i;
2724
2725 /* Get current RX configuration */
2726 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2727
2728 /*
2729 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2730 * and hash filter. Depending on the case, the right bit will be
2731 * enabled.
2732 */
2733 v &= ~(GEM_MAC_RX_PROMISCUOUS | GEM_MAC_RX_HASH_FILTER |
2734 GEM_MAC_RX_PROMISC_GRP);
2735
2736 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2737 /* Turn on promiscuous mode */
2738 v |= GEM_MAC_RX_PROMISCUOUS;
2739 ifp->if_flags |= IFF_ALLMULTI;
2740 goto chipit;
2741 }
2742
2743 /*
2744 * Set up multicast address filter by passing all multicast addresses
2745 * through a crc generator, and then using the high order 8 bits as an
2746 * index into the 256 bit logical address filter. The high order 4
2747 * bits selects the word, while the other 4 bits select the bit within
2748 * the word (where bit 0 is the MSB).
2749 */
2750
2751 /* Clear hash table */
2752 memset(hash, 0, sizeof(hash));
2753
2754 ETHER_LOCK(ec);
2755 ETHER_FIRST_MULTI(step, ec, enm);
2756 while (enm != NULL) {
2757 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2758 /*
2759 * We must listen to a range of multicast addresses.
2760 * For now, just accept all multicasts, rather than
2761 * trying to set only those filter bits needed to match
2762 * the range. (At this time, the only use of address
2763 * ranges is for IP multicast routing, for which the
2764 * range is big enough to require all bits set.)
2765 * XXX should use the address filters for this
2766 */
2767 ifp->if_flags |= IFF_ALLMULTI;
2768 v |= GEM_MAC_RX_PROMISC_GRP;
2769 ETHER_UNLOCK(ec);
2770 goto chipit;
2771 }
2772
2773 /* Get the LE CRC32 of the address */
2774 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2775
2776 /* Just want the 8 most significant bits. */
2777 crc >>= 24;
2778
2779 /* Set the corresponding bit in the filter. */
2780 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2781
2782 ETHER_NEXT_MULTI(step, enm);
2783 }
2784 ETHER_UNLOCK(ec);
2785
2786 v |= GEM_MAC_RX_HASH_FILTER;
2787 ifp->if_flags &= ~IFF_ALLMULTI;
2788
2789 /* Now load the hash table into the chip (if we are using it) */
2790 for (i = 0; i < 16; i++) {
2791 bus_space_write_4(t, h,
2792 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2793 hash[i]);
2794 }
2795
2796 chipit:
2797 sc->sc_if_flags = ifp->if_flags;
2798 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2799 }
2800