gem.c revision 1.131 1 /* $NetBSD: gem.c,v 1.131 2020/07/15 01:42:27 msaitoh Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * Copyright (c) 2001-2003 Thomas Moestl
7 * All rights reserved.
8 *
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 /*
34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35 * See `GEM Gigabit Ethernet ASIC Specification'
36 * http://www.sun.com/processors/manuals/ge.pdf
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.131 2020/07/15 01:42:27 msaitoh Exp $");
41
42 #include "opt_inet.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/mbuf.h>
48 #include <sys/syslog.h>
49 #include <sys/malloc.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/ioctl.h>
53 #include <sys/errno.h>
54 #include <sys/device.h>
55
56 #include <machine/endian.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71
72 #include <net/bpf.h>
73
74 #include <sys/bus.h>
75 #include <sys/intr.h>
76
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 #include <dev/mii/mii_bitbang.h>
80
81 #include <dev/ic/gemreg.h>
82 #include <dev/ic/gemvar.h>
83
84 #define TRIES 10000
85
86 static void gem_inten(struct gem_softc *);
87 static void gem_start(struct ifnet *);
88 static void gem_stop(struct ifnet *, int);
89 int gem_ioctl(struct ifnet *, u_long, void *);
90 void gem_tick(void *);
91 void gem_watchdog(struct ifnet *);
92 void gem_rx_watchdog(void *);
93 void gem_pcs_start(struct gem_softc *sc);
94 void gem_pcs_stop(struct gem_softc *sc, int);
95 int gem_init(struct ifnet *);
96 void gem_init_regs(struct gem_softc *sc);
97 static int gem_ringsize(int sz);
98 static int gem_meminit(struct gem_softc *);
99 void gem_mifinit(struct gem_softc *);
100 static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
101 uint32_t, uint32_t);
102 void gem_reset(struct gem_softc *);
103 int gem_reset_rx(struct gem_softc *sc);
104 static void gem_reset_rxdma(struct gem_softc *sc);
105 static void gem_rx_common(struct gem_softc *sc);
106 int gem_reset_tx(struct gem_softc *sc);
107 int gem_disable_rx(struct gem_softc *sc);
108 int gem_disable_tx(struct gem_softc *sc);
109 static void gem_rxdrain(struct gem_softc *sc);
110 int gem_add_rxbuf(struct gem_softc *sc, int idx);
111 void gem_setladrf(struct gem_softc *);
112
113 /* MII methods & callbacks */
114 static int gem_mii_readreg(device_t, int, int, uint16_t *);
115 static int gem_mii_writereg(device_t, int, int, uint16_t);
116 static void gem_mii_statchg(struct ifnet *);
117
118 static int gem_ifflags_cb(struct ethercom *);
119
120 void gem_statuschange(struct gem_softc *);
121
122 int gem_ser_mediachange(struct ifnet *);
123 void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
124
125 static void gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
126
127 struct mbuf *gem_get(struct gem_softc *, int, int);
128 int gem_put(struct gem_softc *, int, struct mbuf *);
129 void gem_read(struct gem_softc *, int, int);
130 int gem_pint(struct gem_softc *);
131 int gem_eint(struct gem_softc *, u_int);
132 int gem_rint(struct gem_softc *);
133 int gem_tint(struct gem_softc *);
134 void gem_power(int, void *);
135
136 #ifdef GEM_DEBUG
137 static void gem_txsoft_print(const struct gem_softc *, int, int);
138 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
139 printf x
140 #else
141 #define DPRINTF(sc, x) /* nothing */
142 #endif
143
144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
145
146 int
147 gem_detach(struct gem_softc *sc, int flags)
148 {
149 int i;
150 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
151 bus_space_tag_t t = sc->sc_bustag;
152 bus_space_handle_t h = sc->sc_h1;
153
154 /*
155 * Free any resources we've allocated during the attach.
156 * Do this in reverse order and fall through.
157 */
158 switch (sc->sc_att_stage) {
159 case GEM_ATT_BACKEND_2:
160 case GEM_ATT_BACKEND_1:
161 case GEM_ATT_FINISHED:
162 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
163 gem_stop(&sc->sc_ethercom.ec_if, 1);
164
165 #ifdef GEM_COUNTERS
166 for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
167 evcnt_detach(&sc->sc_ev_rxhist[i]);
168 evcnt_detach(&sc->sc_ev_rxnobuf);
169 evcnt_detach(&sc->sc_ev_rxfull);
170 evcnt_detach(&sc->sc_ev_rxint);
171 evcnt_detach(&sc->sc_ev_txint);
172 #endif
173 evcnt_detach(&sc->sc_ev_intr);
174
175 rnd_detach_source(&sc->rnd_source);
176 ether_ifdetach(ifp);
177 if_detach(ifp);
178 ifmedia_fini(&sc->sc_mii.mii_media);
179
180 callout_destroy(&sc->sc_tick_ch);
181 callout_destroy(&sc->sc_rx_watchdog);
182
183 /*FALLTHROUGH*/
184 case GEM_ATT_MII:
185 sc->sc_att_stage = GEM_ATT_MII;
186 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
187 /*FALLTHROUGH*/
188 case GEM_ATT_7:
189 for (i = 0; i < GEM_NRXDESC; i++) {
190 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
191 bus_dmamap_destroy(sc->sc_dmatag,
192 sc->sc_rxsoft[i].rxs_dmamap);
193 }
194 /*FALLTHROUGH*/
195 case GEM_ATT_6:
196 for (i = 0; i < GEM_TXQUEUELEN; i++) {
197 if (sc->sc_txsoft[i].txs_dmamap != NULL)
198 bus_dmamap_destroy(sc->sc_dmatag,
199 sc->sc_txsoft[i].txs_dmamap);
200 }
201 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
202 /*FALLTHROUGH*/
203 case GEM_ATT_5:
204 bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
205 /*FALLTHROUGH*/
206 case GEM_ATT_4:
207 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
208 /*FALLTHROUGH*/
209 case GEM_ATT_3:
210 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
211 /*FALLTHROUGH*/
212 case GEM_ATT_2:
213 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
214 sizeof(struct gem_control_data));
215 /*FALLTHROUGH*/
216 case GEM_ATT_1:
217 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
218 /*FALLTHROUGH*/
219 case GEM_ATT_0:
220 sc->sc_att_stage = GEM_ATT_0;
221 /*FALLTHROUGH*/
222 case GEM_ATT_BACKEND_0:
223 break;
224 }
225 return 0;
226 }
227
228 static void
229 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
230 {
231 cfattach_t ca = device_cfattach(sc->sc_dev);
232
233 sc->sc_att_stage = stage;
234 (*ca->ca_detach)(sc->sc_dev, 0);
235 }
236
237 /*
238 * gem_attach:
239 *
240 * Attach a Gem interface to the system.
241 */
242 void
243 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
244 {
245 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
246 struct mii_data *mii = &sc->sc_mii;
247 bus_space_tag_t t = sc->sc_bustag;
248 bus_space_handle_t h = sc->sc_h1;
249 struct ifmedia_entry *ife;
250 int i, error, phyaddr;
251 uint32_t v;
252 char *nullbuf;
253
254 /* Make sure the chip is stopped. */
255 ifp->if_softc = sc;
256 gem_reset(sc);
257
258 /*
259 * Allocate the control data structures, and create and load the
260 * DMA map for it. gem_control_data is 9216 bytes, we have space for
261 * the padding buffer in the bus_dmamem_alloc()'d memory.
262 */
263 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
264 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
265 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
266 aprint_error_dev(sc->sc_dev,
267 "unable to allocate control data, error = %d\n",
268 error);
269 gem_partial_detach(sc, GEM_ATT_0);
270 return;
271 }
272
273 /* XXX should map this in with correct endianness */
274 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
275 sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
276 BUS_DMA_COHERENT)) != 0) {
277 aprint_error_dev(sc->sc_dev,
278 "unable to map control data, error = %d\n", error);
279 gem_partial_detach(sc, GEM_ATT_1);
280 return;
281 }
282
283 nullbuf =
284 (char *)sc->sc_control_data + sizeof(struct gem_control_data);
285
286 if ((error = bus_dmamap_create(sc->sc_dmatag,
287 sizeof(struct gem_control_data), 1,
288 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
289 aprint_error_dev(sc->sc_dev,
290 "unable to create control data DMA map, error = %d\n",
291 error);
292 gem_partial_detach(sc, GEM_ATT_2);
293 return;
294 }
295
296 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
297 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
298 0)) != 0) {
299 aprint_error_dev(sc->sc_dev,
300 "unable to load control data DMA map, error = %d\n",
301 error);
302 gem_partial_detach(sc, GEM_ATT_3);
303 return;
304 }
305
306 memset(nullbuf, 0, ETHER_MIN_TX);
307 if ((error = bus_dmamap_create(sc->sc_dmatag,
308 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
309 aprint_error_dev(sc->sc_dev,
310 "unable to create padding DMA map, error = %d\n", error);
311 gem_partial_detach(sc, GEM_ATT_4);
312 return;
313 }
314
315 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
316 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
317 aprint_error_dev(sc->sc_dev,
318 "unable to load padding DMA map, error = %d\n", error);
319 gem_partial_detach(sc, GEM_ATT_5);
320 return;
321 }
322
323 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
324 BUS_DMASYNC_PREWRITE);
325
326 /*
327 * Initialize the transmit job descriptors.
328 */
329 SIMPLEQ_INIT(&sc->sc_txfreeq);
330 SIMPLEQ_INIT(&sc->sc_txdirtyq);
331
332 /*
333 * Create the transmit buffer DMA maps.
334 */
335 for (i = 0; i < GEM_TXQUEUELEN; i++) {
336 struct gem_txsoft *txs;
337
338 txs = &sc->sc_txsoft[i];
339 txs->txs_mbuf = NULL;
340 if ((error = bus_dmamap_create(sc->sc_dmatag,
341 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
342 ETHER_MAX_LEN_JUMBO, 0, 0,
343 &txs->txs_dmamap)) != 0) {
344 aprint_error_dev(sc->sc_dev,
345 "unable to create tx DMA map %d, error = %d\n",
346 i, error);
347 gem_partial_detach(sc, GEM_ATT_6);
348 return;
349 }
350 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
351 }
352
353 /*
354 * Create the receive buffer DMA maps.
355 */
356 for (i = 0; i < GEM_NRXDESC; i++) {
357 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
358 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
359 aprint_error_dev(sc->sc_dev,
360 "unable to create rx DMA map %d, error = %d\n",
361 i, error);
362 gem_partial_detach(sc, GEM_ATT_7);
363 return;
364 }
365 sc->sc_rxsoft[i].rxs_mbuf = NULL;
366 }
367
368 /* Initialize ifmedia structures and MII info */
369 mii->mii_ifp = ifp;
370 mii->mii_readreg = gem_mii_readreg;
371 mii->mii_writereg = gem_mii_writereg;
372 mii->mii_statchg = gem_mii_statchg;
373
374 sc->sc_ethercom.ec_mii = mii;
375
376 /*
377 * Initialization based on `GEM Gigabit Ethernet ASIC Specification'
378 * Section 3.2.1 `Initialization Sequence'.
379 * However, we can't assume SERDES or Serialink if neither
380 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
381 * being set, as both are set on Sun X1141A (with SERDES). So,
382 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
383 * Also, for variants that report 2 PHY's, we prefer the external
384 * PHY over the internal PHY, so we look for that first.
385 */
386 gem_mifinit(sc);
387
388 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
389 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
390 ether_mediastatus);
391 /* Look for external PHY */
392 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
393 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
394 bus_space_write_4(t, h, GEM_MIF_CONFIG,
395 sc->sc_mif_config);
396 switch (sc->sc_variant) {
397 case GEM_SUN_ERI:
398 phyaddr = GEM_PHYAD_EXTERNAL;
399 break;
400 default:
401 phyaddr = MII_PHY_ANY;
402 break;
403 }
404 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
405 MII_OFFSET_ANY, MIIF_FORCEANEG);
406 }
407 #ifdef GEM_DEBUG
408 else
409 aprint_debug_dev(sc->sc_dev, "using external PHY\n");
410 #endif
411 /* Look for internal PHY if no external PHY was found */
412 if (LIST_EMPTY(&mii->mii_phys) &&
413 ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) ||
414 (sc->sc_variant == GEM_APPLE_K2_GMAC))) {
415 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
416 bus_space_write_4(t, h, GEM_MIF_CONFIG,
417 sc->sc_mif_config);
418 switch (sc->sc_variant) {
419 case GEM_SUN_ERI:
420 case GEM_APPLE_K2_GMAC:
421 phyaddr = GEM_PHYAD_INTERNAL;
422 break;
423 case GEM_APPLE_GMAC:
424 phyaddr = GEM_PHYAD_EXTERNAL;
425 break;
426 default:
427 phyaddr = MII_PHY_ANY;
428 break;
429 }
430 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
431 MII_OFFSET_ANY, MIIF_FORCEANEG);
432 #ifdef GEM_DEBUG
433 if (!LIST_EMPTY(&mii->mii_phys))
434 aprint_debug_dev(sc->sc_dev,
435 "using internal PHY\n");
436 #endif
437 }
438 if (LIST_EMPTY(&mii->mii_phys)) {
439 /* No PHY attached */
440 aprint_error_dev(sc->sc_dev,
441 "PHY probe failed\n");
442 gem_partial_detach(sc, GEM_ATT_MII);
443 return;
444 } else {
445 struct mii_softc *child;
446
447 /*
448 * Walk along the list of attached MII devices and
449 * establish an `MII instance' to `PHY number'
450 * mapping.
451 */
452 LIST_FOREACH(child, &mii->mii_phys, mii_list) {
453 /*
454 * Note: we support just one PHY: the internal
455 * or external MII is already selected for us
456 * by the GEM_MIF_CONFIG register.
457 */
458 if (child->mii_phy > 1 || child->mii_inst > 0) {
459 aprint_error_dev(sc->sc_dev,
460 "cannot accommodate MII device"
461 " %s at PHY %d, instance %d\n",
462 device_xname(child->mii_dev),
463 child->mii_phy, child->mii_inst);
464 continue;
465 }
466 sc->sc_phys[child->mii_inst] = child->mii_phy;
467 }
468
469 if (sc->sc_variant != GEM_SUN_ERI)
470 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
471 GEM_MII_DATAPATH_MII);
472
473 /*
474 * XXX - we can really do the following ONLY if the
475 * PHY indeed has the auto negotiation capability!!
476 */
477 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
478 }
479 } else {
480 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
481 gem_ser_mediastatus);
482 /* SERDES or Serialink */
483 if (sc->sc_flags & GEM_SERDES) {
484 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
485 GEM_MII_DATAPATH_SERDES);
486 } else {
487 sc->sc_flags |= GEM_SERIAL;
488 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
489 GEM_MII_DATAPATH_SERIAL);
490 }
491
492 aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
493 sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
494
495 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_AUTO, 0, NULL);
496 /* Check for FDX and HDX capabilities */
497 sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
498 if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
499 ifmedia_add(&mii->mii_media, IFM_ETHER |
500 IFM_1000_SX | IFM_MANUAL | IFM_FDX, 0, NULL);
501 aprint_normal("1000baseSX-FDX, ");
502 }
503 if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
504 ifmedia_add(&mii->mii_media, IFM_ETHER |
505 IFM_1000_SX | IFM_MANUAL | IFM_HDX, 0, NULL);
506 aprint_normal("1000baseSX-HDX, ");
507 }
508 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
509 sc->sc_mii_media = IFM_AUTO;
510 aprint_normal("auto\n");
511
512 gem_pcs_stop(sc, 1);
513 }
514
515 /*
516 * From this point forward, the attachment cannot fail. A failure
517 * before this point releases all resources that may have been
518 * allocated.
519 */
520
521 /* Announce ourselves. */
522 aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
523 ether_sprintf(enaddr));
524
525 /* Get RX FIFO size */
526 sc->sc_rxfifosize = 64 *
527 bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
528 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
529
530 /* Get TX FIFO size */
531 v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
532 aprint_normal(", %uKB TX fifo\n", v / 16);
533
534 /* Initialize ifnet structure. */
535 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
536 ifp->if_softc = sc;
537 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
538 sc->sc_if_flags = ifp->if_flags;
539 #if 0
540 /*
541 * The GEM hardware supports basic TCP checksum offloading only.
542 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
543 * have bugs in the receive checksum, so don't enable it for now.
544 */
545 if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
546 (GEM_IS_APPLE(sc) &&
547 (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
548 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
549 #endif
550 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
551 ifp->if_start = gem_start;
552 ifp->if_ioctl = gem_ioctl;
553 ifp->if_watchdog = gem_watchdog;
554 ifp->if_stop = gem_stop;
555 ifp->if_init = gem_init;
556 IFQ_SET_READY(&ifp->if_snd);
557
558 /*
559 * If we support GigE media, we support jumbo frames too.
560 * Unless we are Apple.
561 */
562 TAILQ_FOREACH(ife, &mii->mii_media.ifm_list, ifm_list) {
563 if (IFM_SUBTYPE(ife->ifm_media) == IFM_1000_T ||
564 IFM_SUBTYPE(ife->ifm_media) == IFM_1000_SX ||
565 IFM_SUBTYPE(ife->ifm_media) == IFM_1000_LX ||
566 IFM_SUBTYPE(ife->ifm_media) == IFM_1000_CX) {
567 if (!GEM_IS_APPLE(sc))
568 sc->sc_ethercom.ec_capabilities
569 |= ETHERCAP_JUMBO_MTU;
570 sc->sc_flags |= GEM_GIGABIT;
571 break;
572 }
573 }
574
575 /* claim 802.1q capability */
576 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
577
578 /* Attach the interface. */
579 if_attach(ifp);
580 if_deferred_start_init(ifp, NULL);
581 ether_ifattach(ifp, enaddr);
582 ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
583
584 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
585 RND_TYPE_NET, RND_FLAG_DEFAULT);
586
587 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
588 NULL, device_xname(sc->sc_dev), "interrupts");
589 #ifdef GEM_COUNTERS
590 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
591 &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
592 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
593 &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
594 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
595 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
596 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
597 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
598 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
599 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
600 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
601 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
602 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
603 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
604 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
605 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
606 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
607 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
608 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
609 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
610 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
611 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
612 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
613 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
614 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
615 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
616 #endif
617
618 callout_init(&sc->sc_tick_ch, 0);
619 callout_setfunc(&sc->sc_tick_ch, gem_tick, sc);
620
621 callout_init(&sc->sc_rx_watchdog, 0);
622 callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
623
624 sc->sc_att_stage = GEM_ATT_FINISHED;
625
626 return;
627 }
628
629 void
630 gem_tick(void *arg)
631 {
632 struct gem_softc *sc = arg;
633 int s;
634
635 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
636 /*
637 * We have to reset everything if we failed to get a
638 * PCS interrupt. Restarting the callout is handled
639 * in gem_pcs_start().
640 */
641 gem_init(&sc->sc_ethercom.ec_if);
642 } else {
643 s = splnet();
644 mii_tick(&sc->sc_mii);
645 splx(s);
646 callout_schedule(&sc->sc_tick_ch, hz);
647 }
648 }
649
650 static int
651 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, uint32_t clr,
652 uint32_t set)
653 {
654 int i;
655 uint32_t reg;
656
657 for (i = TRIES; i--; DELAY(100)) {
658 reg = bus_space_read_4(sc->sc_bustag, h, r);
659 if ((reg & clr) == 0 && (reg & set) == set)
660 return (1);
661 }
662 return (0);
663 }
664
665 void
666 gem_reset(struct gem_softc *sc)
667 {
668 bus_space_tag_t t = sc->sc_bustag;
669 bus_space_handle_t h = sc->sc_h2;
670 int s;
671
672 s = splnet();
673 DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
674 gem_reset_rx(sc);
675 gem_reset_tx(sc);
676
677 /* Do a full reset */
678 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX);
679 if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
680 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
681 splx(s);
682 }
683
684
685 /*
686 * gem_rxdrain:
687 *
688 * Drain the receive queue.
689 */
690 static void
691 gem_rxdrain(struct gem_softc *sc)
692 {
693 struct gem_rxsoft *rxs;
694 int i;
695
696 for (i = 0; i < GEM_NRXDESC; i++) {
697 rxs = &sc->sc_rxsoft[i];
698 if (rxs->rxs_mbuf != NULL) {
699 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
700 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
701 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
702 m_freem(rxs->rxs_mbuf);
703 rxs->rxs_mbuf = NULL;
704 }
705 }
706 }
707
708 /*
709 * Reset the whole thing.
710 */
711 static void
712 gem_stop(struct ifnet *ifp, int disable)
713 {
714 struct gem_softc *sc = ifp->if_softc;
715 struct gem_txsoft *txs;
716
717 DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
718
719 callout_halt(&sc->sc_tick_ch, NULL);
720 callout_halt(&sc->sc_rx_watchdog, NULL);
721 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
722 gem_pcs_stop(sc, disable);
723 else
724 mii_down(&sc->sc_mii);
725
726 /* XXX - Should we reset these instead? */
727 gem_disable_tx(sc);
728 gem_disable_rx(sc);
729
730 /*
731 * Release any queued transmit buffers.
732 */
733 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
734 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
735 if (txs->txs_mbuf != NULL) {
736 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
737 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
738 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
739 m_freem(txs->txs_mbuf);
740 txs->txs_mbuf = NULL;
741 }
742 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
743 }
744
745 /*
746 * Mark the interface down and cancel the watchdog timer.
747 */
748 ifp->if_flags &= ~IFF_RUNNING;
749 sc->sc_if_flags = ifp->if_flags;
750 ifp->if_timer = 0;
751
752 if (disable)
753 gem_rxdrain(sc);
754 }
755
756
757 /*
758 * Reset the receiver
759 */
760 int
761 gem_reset_rx(struct gem_softc *sc)
762 {
763 bus_space_tag_t t = sc->sc_bustag;
764 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
765
766 /*
767 * Resetting while DMA is in progress can cause a bus hang, so we
768 * disable DMA first.
769 */
770 gem_disable_rx(sc);
771 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
772 bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
773 /* Wait till it finishes */
774 if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
775 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
776 /* Wait 5ms extra. */
777 delay(5000);
778
779 /* Finally, reset the ERX */
780 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
781 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
782 /* Wait till it finishes */
783 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
784 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
785 return (1);
786 }
787 return (0);
788 }
789
790
791 /*
792 * Reset the receiver DMA engine.
793 *
794 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
795 * etc in order to reset the receiver DMA engine only and not do a full
796 * reset which amongst others also downs the link and clears the FIFOs.
797 */
798 static void
799 gem_reset_rxdma(struct gem_softc *sc)
800 {
801 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
802 bus_space_tag_t t = sc->sc_bustag;
803 bus_space_handle_t h = sc->sc_h1;
804 int i;
805
806 if (gem_reset_rx(sc) != 0) {
807 gem_init(ifp);
808 return;
809 }
810 for (i = 0; i < GEM_NRXDESC; i++)
811 if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
812 GEM_UPDATE_RXDESC(sc, i);
813 sc->sc_rxptr = 0;
814 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
815 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
816
817 /* Reprogram Descriptor Ring Base Addresses */
818 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
819 ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32);
820 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
821
822 /* Redo ERX Configuration */
823 gem_rx_common(sc);
824
825 /* Give the receiver a swift kick */
826 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
827 }
828
829 /*
830 * Common RX configuration for gem_init() and gem_reset_rxdma().
831 */
832 static void
833 gem_rx_common(struct gem_softc *sc)
834 {
835 bus_space_tag_t t = sc->sc_bustag;
836 bus_space_handle_t h = sc->sc_h1;
837 uint32_t v;
838
839 /* Encode Receive Descriptor ring size: four possible values */
840 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
841
842 /* Set receive h/w checksum offset */
843 #ifdef INET
844 v |= (ETHER_HDR_LEN + sizeof(struct ip) +
845 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
846 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
847 #endif
848
849 /* Enable RX DMA */
850 bus_space_write_4(t, h, GEM_RX_CONFIG,
851 v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
852 (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
853
854 /*
855 * The following value is for an OFF Threshold of about 3/4 full
856 * and an ON Threshold of 1/4 full.
857 */
858 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
859 (3 * sc->sc_rxfifosize / 256) |
860 ((sc->sc_rxfifosize / 256) << 12));
861 bus_space_write_4(t, h, GEM_RX_BLANKING,
862 (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
863 }
864
865 /*
866 * Reset the transmitter
867 */
868 int
869 gem_reset_tx(struct gem_softc *sc)
870 {
871 bus_space_tag_t t = sc->sc_bustag;
872 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
873
874 /*
875 * Resetting while DMA is in progress can cause a bus hang, so we
876 * disable DMA first.
877 */
878 gem_disable_tx(sc);
879 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
880 bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
881 /* Wait till it finishes */
882 if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
883 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
884 /* Wait 5ms extra. */
885 delay(5000);
886
887 /* Finally, reset the ETX */
888 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
889 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
890 /* Wait till it finishes */
891 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
892 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
893 return (1);
894 }
895 return (0);
896 }
897
898 /*
899 * disable receiver.
900 */
901 int
902 gem_disable_rx(struct gem_softc *sc)
903 {
904 bus_space_tag_t t = sc->sc_bustag;
905 bus_space_handle_t h = sc->sc_h1;
906 uint32_t cfg;
907
908 /* Flip the enable bit */
909 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
910 cfg &= ~GEM_MAC_RX_ENABLE;
911 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
912 bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
913 /* Wait for it to finish */
914 return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
915 }
916
917 /*
918 * disable transmitter.
919 */
920 int
921 gem_disable_tx(struct gem_softc *sc)
922 {
923 bus_space_tag_t t = sc->sc_bustag;
924 bus_space_handle_t h = sc->sc_h1;
925 uint32_t cfg;
926
927 /* Flip the enable bit */
928 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
929 cfg &= ~GEM_MAC_TX_ENABLE;
930 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
931 bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
932 /* Wait for it to finish */
933 return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
934 }
935
936 /*
937 * Initialize interface.
938 */
939 int
940 gem_meminit(struct gem_softc *sc)
941 {
942 struct gem_rxsoft *rxs;
943 int i, error;
944
945 /*
946 * Initialize the transmit descriptor ring.
947 */
948 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
949 for (i = 0; i < GEM_NTXDESC; i++) {
950 sc->sc_txdescs[i].gd_flags = 0;
951 sc->sc_txdescs[i].gd_addr = 0;
952 }
953 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
954 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
955 sc->sc_txfree = GEM_NTXDESC-1;
956 sc->sc_txnext = 0;
957 sc->sc_txwin = 0;
958
959 /*
960 * Initialize the receive descriptor and receive job
961 * descriptor rings.
962 */
963 for (i = 0; i < GEM_NRXDESC; i++) {
964 rxs = &sc->sc_rxsoft[i];
965 if (rxs->rxs_mbuf == NULL) {
966 if ((error = gem_add_rxbuf(sc, i)) != 0) {
967 aprint_error_dev(sc->sc_dev,
968 "unable to allocate or map rx "
969 "buffer %d, error = %d\n",
970 i, error);
971 /*
972 * XXX Should attempt to run with fewer receive
973 * XXX buffers instead of just failing.
974 */
975 gem_rxdrain(sc);
976 return (1);
977 }
978 } else
979 GEM_INIT_RXDESC(sc, i);
980 }
981 sc->sc_rxptr = 0;
982 sc->sc_meminited = 1;
983 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
984 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
985
986 return (0);
987 }
988
989 static int
990 gem_ringsize(int sz)
991 {
992 switch (sz) {
993 case 32:
994 return GEM_RING_SZ_32;
995 case 64:
996 return GEM_RING_SZ_64;
997 case 128:
998 return GEM_RING_SZ_128;
999 case 256:
1000 return GEM_RING_SZ_256;
1001 case 512:
1002 return GEM_RING_SZ_512;
1003 case 1024:
1004 return GEM_RING_SZ_1024;
1005 case 2048:
1006 return GEM_RING_SZ_2048;
1007 case 4096:
1008 return GEM_RING_SZ_4096;
1009 case 8192:
1010 return GEM_RING_SZ_8192;
1011 default:
1012 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1013 return GEM_RING_SZ_32;
1014 }
1015 }
1016
1017
1018 /*
1019 * Start PCS
1020 */
1021 void
1022 gem_pcs_start(struct gem_softc *sc)
1023 {
1024 bus_space_tag_t t = sc->sc_bustag;
1025 bus_space_handle_t h = sc->sc_h1;
1026 uint32_t v;
1027
1028 #ifdef GEM_DEBUG
1029 aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1030 #endif
1031
1032 /*
1033 * Set up. We must disable the MII before modifying the
1034 * GEM_MII_ANAR register
1035 */
1036 if (sc->sc_flags & GEM_SERDES) {
1037 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1038 GEM_MII_DATAPATH_SERDES);
1039 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1040 GEM_MII_SLINK_LOOPBACK);
1041 } else {
1042 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1043 GEM_MII_DATAPATH_SERIAL);
1044 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1045 }
1046 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1047 v = bus_space_read_4(t, h, GEM_MII_ANAR);
1048 v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1049 if (IFM_SUBTYPE(sc->sc_mii_media) == IFM_AUTO)
1050 v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1051 else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_FDX) != 0) {
1052 v |= GEM_MII_ANEG_FUL_DUPLX;
1053 v &= ~GEM_MII_ANEG_HLF_DUPLX;
1054 } else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_HDX) != 0) {
1055 v &= ~GEM_MII_ANEG_FUL_DUPLX;
1056 v |= GEM_MII_ANEG_HLF_DUPLX;
1057 }
1058
1059 /* Configure link. */
1060 bus_space_write_4(t, h, GEM_MII_ANAR, v);
1061 bus_space_write_4(t, h, GEM_MII_CONTROL,
1062 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1063 bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1064 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1065
1066 /* Start the 10 second timer */
1067 callout_schedule(&sc->sc_tick_ch, hz * 10);
1068 }
1069
1070 /*
1071 * Stop PCS
1072 */
1073 void
1074 gem_pcs_stop(struct gem_softc *sc, int disable)
1075 {
1076 bus_space_tag_t t = sc->sc_bustag;
1077 bus_space_handle_t h = sc->sc_h1;
1078
1079 #ifdef GEM_DEBUG
1080 aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1081 #endif
1082
1083 /* Tell link partner that we're going away */
1084 bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1085
1086 /*
1087 * Disable PCS MII. The documentation suggests that setting
1088 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1089 * negotiation will shut down the link. However, it appears
1090 * that we also need to unset the datapath mode.
1091 */
1092 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1093 bus_space_write_4(t, h, GEM_MII_CONTROL,
1094 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1095 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1096 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1097
1098 if (disable) {
1099 if (sc->sc_flags & GEM_SERDES)
1100 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1101 GEM_MII_SLINK_POWER_OFF);
1102 else
1103 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1104 GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1105 }
1106
1107 sc->sc_flags &= ~GEM_LINK;
1108 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1109 sc->sc_mii.mii_media_status = IFM_AVALID;
1110 }
1111
1112
1113 /*
1114 * Initialization of interface; set up initialization block
1115 * and transmit/receive descriptor rings.
1116 */
1117 int
1118 gem_init(struct ifnet *ifp)
1119 {
1120 struct gem_softc *sc = ifp->if_softc;
1121 bus_space_tag_t t = sc->sc_bustag;
1122 bus_space_handle_t h = sc->sc_h1;
1123 int rc = 0, s;
1124 u_int max_frame_size;
1125 uint32_t v;
1126
1127 s = splnet();
1128
1129 DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1130 /*
1131 * Initialization sequence. The numbered steps below correspond
1132 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1133 * Channel Engine manual (part of the PCIO manual).
1134 * See also the STP2002-STQ document from Sun Microsystems.
1135 */
1136
1137 /* step 1 & 2. Reset the Ethernet Channel */
1138 gem_stop(ifp, 0);
1139 gem_reset(sc);
1140 DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1141
1142 /* Re-initialize the MIF */
1143 gem_mifinit(sc);
1144
1145 /* Set up correct datapath for non-SERDES/Serialink */
1146 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1147 sc->sc_variant != GEM_SUN_ERI)
1148 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1149 GEM_MII_DATAPATH_MII);
1150
1151 /* Call MI reset function if any */
1152 if (sc->sc_hwreset)
1153 (*sc->sc_hwreset)(sc);
1154
1155 /* step 3. Setup data structures in host memory */
1156 if (gem_meminit(sc) != 0) {
1157 splx(s);
1158 return 1;
1159 }
1160
1161 /* step 4. TX MAC registers & counters */
1162 gem_init_regs(sc);
1163 max_frame_size = uimax(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1164 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1165 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1166 max_frame_size += ETHER_VLAN_ENCAP_LEN;
1167 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1168 max_frame_size|/* burst size */(0x2000<<16));
1169
1170 /* step 5. RX MAC registers & counters */
1171 gem_setladrf(sc);
1172
1173 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1174 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI,
1175 ((uint64_t)GEM_CDTXADDR(sc, 0)) >> 32);
1176 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1177
1178 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
1179 ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32);
1180 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1181
1182 /* step 8. Global Configuration & Interrupt Mask */
1183 gem_inten(sc);
1184 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1185 GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1186 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1187 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1188 GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1189
1190 /* step 9. ETX Configuration: use mostly default values */
1191
1192 /* Enable TX DMA */
1193 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1194 bus_space_write_4(t, h, GEM_TX_CONFIG,
1195 v | GEM_TX_CONFIG_TXDMA_EN |
1196 (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1197 GEM_TX_CONFIG_TXFIFO_TH));
1198 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1199
1200 /* step 10. ERX Configuration */
1201 gem_rx_common(sc);
1202
1203 /* step 11. Configure Media */
1204 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1205 (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1206 goto out;
1207
1208 /* step 12. RX_MAC Configuration Register */
1209 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1210 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1211 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1212
1213 /* step 14. Issue Transmit Pending command */
1214
1215 /* Call MI initialization function if any */
1216 if (sc->sc_hwinit)
1217 (*sc->sc_hwinit)(sc);
1218
1219 /* step 15. Give the receiver a swift kick */
1220 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1221
1222 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1223 /* Configure PCS */
1224 gem_pcs_start(sc);
1225 else
1226 /* Start the one second timer. */
1227 callout_schedule(&sc->sc_tick_ch, hz);
1228
1229 sc->sc_flags &= ~GEM_LINK;
1230 ifp->if_flags |= IFF_RUNNING;
1231 ifp->if_timer = 0;
1232 sc->sc_if_flags = ifp->if_flags;
1233 out:
1234 splx(s);
1235
1236 return (0);
1237 }
1238
1239 void
1240 gem_init_regs(struct gem_softc *sc)
1241 {
1242 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1243 bus_space_tag_t t = sc->sc_bustag;
1244 bus_space_handle_t h = sc->sc_h1;
1245 const u_char *laddr = CLLADDR(ifp->if_sadl);
1246 uint32_t v;
1247
1248 /* These regs are not cleared on reset */
1249 if (!sc->sc_inited) {
1250
1251 /* Load recommended values */
1252 bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1253 bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1254 bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1255
1256 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1257 /* Max frame and max burst size */
1258 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1259 ETHER_MAX_LEN | (0x2000<<16));
1260
1261 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1262 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1263 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1264 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1265 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1266 ((laddr[5]<<8)|laddr[4])&0x3ff);
1267
1268 /* Secondary MAC addr set to 0:0:0:0:0:0 */
1269 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1270 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1271 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1272
1273 /* MAC control addr set to 01:80:c2:00:00:01 */
1274 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1275 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1276 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1277
1278 /* MAC filter addr set to 0:0:0:0:0:0 */
1279 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1280 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1281 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1282
1283 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1284 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1285
1286 sc->sc_inited = 1;
1287 }
1288
1289 /* Counters need to be zeroed */
1290 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1291 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1292 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1293 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1294 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1295 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1296 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1297 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1298 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1299 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1300 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1301
1302 /* Set XOFF PAUSE time. */
1303 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1304
1305 /*
1306 * Set the internal arbitration to "infinite" bursts of the
1307 * maximum length of 31 * 64 bytes so DMA transfers aren't
1308 * split up in cache line size chunks. This greatly improves
1309 * especially RX performance.
1310 * Enable silicon bug workarounds for the Apple variants.
1311 */
1312 bus_space_write_4(t, h, GEM_CONFIG,
1313 GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1314 ((sc->sc_flags & GEM_PCI) ?
1315 GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1316 GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1317
1318 /*
1319 * Set the station address.
1320 */
1321 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1322 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1323 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1324
1325 /*
1326 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1327 */
1328 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1329 v = GEM_MAC_XIF_TX_MII_ENA;
1330 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1331 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1332 v |= GEM_MAC_XIF_FDPLX_LED;
1333 if (sc->sc_flags & GEM_GIGABIT)
1334 v |= GEM_MAC_XIF_GMII_MODE;
1335 }
1336 } else {
1337 v |= GEM_MAC_XIF_GMII_MODE;
1338 }
1339 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1340 }
1341
1342 #ifdef GEM_DEBUG
1343 static void
1344 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1345 {
1346 int i;
1347
1348 for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1349 printf("descriptor %d:\t", i);
1350 printf("gd_flags: 0x%016" PRIx64 "\t",
1351 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1352 printf("gd_addr: 0x%016" PRIx64 "\n",
1353 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1354 if (i == lastdesc)
1355 break;
1356 }
1357 }
1358 #endif
1359
1360 static void
1361 gem_start(struct ifnet *ifp)
1362 {
1363 struct gem_softc *sc = ifp->if_softc;
1364 struct mbuf *m0, *m;
1365 struct gem_txsoft *txs;
1366 bus_dmamap_t dmamap;
1367 int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1368 #ifdef GEM_DEBUG
1369 int otxnext;
1370 #endif
1371 uint64_t flags = 0;
1372
1373 if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
1374 return;
1375
1376 /*
1377 * Remember the previous number of free descriptors and
1378 * the first descriptor we'll use.
1379 */
1380 ofree = sc->sc_txfree;
1381 #ifdef GEM_DEBUG
1382 otxnext = sc->sc_txnext;
1383 #endif
1384
1385 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1386 device_xname(sc->sc_dev), ofree, otxnext));
1387
1388 /*
1389 * Loop through the send queue, setting up transmit descriptors
1390 * until we drain the queue, or use up all available transmit
1391 * descriptors.
1392 */
1393 #ifdef INET
1394 next:
1395 #endif
1396 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1397 sc->sc_txfree != 0) {
1398 /*
1399 * Grab a packet off the queue.
1400 */
1401 IFQ_POLL(&ifp->if_snd, m0);
1402 if (m0 == NULL)
1403 break;
1404 m = NULL;
1405
1406 dmamap = txs->txs_dmamap;
1407
1408 /*
1409 * Load the DMA map. If this fails, the packet either
1410 * didn't fit in the alloted number of segments, or we were
1411 * short on resources. In this case, we'll copy and try
1412 * again.
1413 */
1414 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1415 BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0 ||
1416 (m0->m_pkthdr.len < ETHER_MIN_TX &&
1417 dmamap->dm_nsegs == GEM_NTXSEGS)) {
1418 if (m0->m_pkthdr.len > MCLBYTES) {
1419 aprint_error_dev(sc->sc_dev,
1420 "unable to allocate jumbo Tx cluster\n");
1421 IFQ_DEQUEUE(&ifp->if_snd, m0);
1422 m_freem(m0);
1423 continue;
1424 }
1425 MGETHDR(m, M_DONTWAIT, MT_DATA);
1426 if (m == NULL) {
1427 aprint_error_dev(sc->sc_dev,
1428 "unable to allocate Tx mbuf\n");
1429 break;
1430 }
1431 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1432 if (m0->m_pkthdr.len > MHLEN) {
1433 MCLGET(m, M_DONTWAIT);
1434 if ((m->m_flags & M_EXT) == 0) {
1435 aprint_error_dev(sc->sc_dev,
1436 "unable to allocate Tx cluster\n");
1437 m_freem(m);
1438 break;
1439 }
1440 }
1441 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1442 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1443 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1444 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1445 if (error) {
1446 aprint_error_dev(sc->sc_dev,
1447 "unable to load Tx buffer, error = %d\n",
1448 error);
1449 break;
1450 }
1451 }
1452
1453 /*
1454 * Ensure we have enough descriptors free to describe
1455 * the packet.
1456 */
1457 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1458 (sc->sc_txfree - 1) : sc->sc_txfree)) {
1459 /*
1460 * Not enough free descriptors to transmit this
1461 * packet.
1462 */
1463 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1464 if (m != NULL)
1465 m_freem(m);
1466 break;
1467 }
1468
1469 IFQ_DEQUEUE(&ifp->if_snd, m0);
1470 if (m != NULL) {
1471 m_freem(m0);
1472 m0 = m;
1473 }
1474
1475 /*
1476 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1477 */
1478
1479 /* Sync the DMA map. */
1480 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1481 BUS_DMASYNC_PREWRITE);
1482
1483 /*
1484 * Initialize the transmit descriptors.
1485 */
1486 firsttx = sc->sc_txnext;
1487 for (nexttx = firsttx, seg = 0;
1488 seg < dmamap->dm_nsegs;
1489 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1490
1491 /*
1492 * If this is the first descriptor we're
1493 * enqueueing, set the start of packet flag,
1494 * and the checksum stuff if we want the hardware
1495 * to do it.
1496 */
1497 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1498 if (nexttx == firsttx) {
1499 flags |= GEM_TD_START_OF_PACKET;
1500 #ifdef INET
1501 /* h/w checksum */
1502 if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1503 m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1504 struct ether_header *eh;
1505 uint16_t offset, start;
1506
1507 eh = mtod(m0, struct ether_header *);
1508 switch (ntohs(eh->ether_type)) {
1509 case ETHERTYPE_IP:
1510 start = ETHER_HDR_LEN;
1511 break;
1512 case ETHERTYPE_VLAN:
1513 start = ETHER_HDR_LEN +
1514 ETHER_VLAN_ENCAP_LEN;
1515 break;
1516 default:
1517 /* unsupported, drop it */
1518 bus_dmamap_unload(sc->sc_dmatag,
1519 dmamap);
1520 m_freem(m0);
1521 goto next;
1522 }
1523 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1524 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1525 flags |= (start <<
1526 GEM_TD_CXSUM_STARTSHFT) |
1527 (offset <<
1528 GEM_TD_CXSUM_STUFFSHFT) |
1529 GEM_TD_CXSUM_ENABLE;
1530 }
1531 #endif
1532 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1533 sc->sc_txwin = 0;
1534 flags |= GEM_TD_INTERRUPT_ME;
1535 }
1536 }
1537 sc->sc_txdescs[nexttx].gd_addr =
1538 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1539 if (seg == dmamap->dm_nsegs - 1) {
1540 flags |= GEM_TD_END_OF_PACKET;
1541 } else {
1542 /* last flag set outside of loop */
1543 sc->sc_txdescs[nexttx].gd_flags =
1544 GEM_DMA_WRITE(sc, flags);
1545 }
1546 lasttx = nexttx;
1547 }
1548 if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1549 /* add padding buffer at end of chain */
1550 flags &= ~GEM_TD_END_OF_PACKET;
1551 sc->sc_txdescs[lasttx].gd_flags =
1552 GEM_DMA_WRITE(sc, flags);
1553
1554 sc->sc_txdescs[nexttx].gd_addr =
1555 GEM_DMA_WRITE(sc,
1556 sc->sc_nulldmamap->dm_segs[0].ds_addr);
1557 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1558 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1559 lasttx = nexttx;
1560 nexttx = GEM_NEXTTX(nexttx);
1561 seg++;
1562 }
1563 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1564
1565 KASSERT(lasttx != -1);
1566
1567 /*
1568 * Store a pointer to the packet so we can free it later,
1569 * and remember what txdirty will be once the packet is
1570 * done.
1571 */
1572 txs->txs_mbuf = m0;
1573 txs->txs_firstdesc = sc->sc_txnext;
1574 txs->txs_lastdesc = lasttx;
1575 txs->txs_ndescs = seg;
1576
1577 #ifdef GEM_DEBUG
1578 if (ifp->if_flags & IFF_DEBUG) {
1579 printf(" gem_start %p transmit chain:\n", txs);
1580 gem_txsoft_print(sc, txs->txs_firstdesc,
1581 txs->txs_lastdesc);
1582 }
1583 #endif
1584
1585 /* Sync the descriptors we're using. */
1586 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1587 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1588
1589 /* Advance the tx pointer. */
1590 sc->sc_txfree -= txs->txs_ndescs;
1591 sc->sc_txnext = nexttx;
1592
1593 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1594 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1595
1596 /*
1597 * Pass the packet to any BPF listeners.
1598 */
1599 bpf_mtap(ifp, m0, BPF_D_OUT);
1600 }
1601
1602 if (sc->sc_txfree != ofree) {
1603 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1604 device_xname(sc->sc_dev), lasttx, otxnext));
1605 /*
1606 * The entire packet chain is set up.
1607 * Kick the transmitter.
1608 */
1609 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1610 device_xname(sc->sc_dev), nexttx));
1611 bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1612 sc->sc_txnext);
1613
1614 /* Set a watchdog timer in case the chip flakes out. */
1615 ifp->if_timer = 5;
1616 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1617 device_xname(sc->sc_dev), ifp->if_timer));
1618 }
1619 }
1620
1621 /*
1622 * Transmit interrupt.
1623 */
1624 int
1625 gem_tint(struct gem_softc *sc)
1626 {
1627 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1628 bus_space_tag_t t = sc->sc_bustag;
1629 bus_space_handle_t mac = sc->sc_h1;
1630 struct gem_txsoft *txs;
1631 int txlast;
1632 int progress = 0;
1633 uint32_t v;
1634
1635 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1636
1637 DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1638
1639 /* Unload collision counters ... */
1640 v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1641 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1642 if_statadd_ref(nsr, if_collisions, v +
1643 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1644 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT));
1645 if_statadd_ref(nsr, if_oerrors, v);
1646
1647 /* ... then clear the hardware counters. */
1648 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1649 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1650 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1651 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1652
1653 /*
1654 * Go through our Tx list and free mbufs for those
1655 * frames that have been transmitted.
1656 */
1657 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1658 /*
1659 * In theory, we could harvest some descriptors before
1660 * the ring is empty, but that's a bit complicated.
1661 *
1662 * GEM_TX_COMPLETION points to the last descriptor
1663 * processed +1.
1664 *
1665 * Let's assume that the NIC writes back to the Tx
1666 * descriptors before it updates the completion
1667 * register. If the NIC has posted writes to the
1668 * Tx descriptors, PCI ordering requires that the
1669 * posted writes flush to RAM before the register-read
1670 * finishes. So let's read the completion register,
1671 * before syncing the descriptors, so that we
1672 * examine Tx descriptors that are at least as
1673 * current as the completion register.
1674 */
1675 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1676 DPRINTF(sc,
1677 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1678 txs->txs_lastdesc, txlast));
1679 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1680 if (txlast >= txs->txs_firstdesc &&
1681 txlast <= txs->txs_lastdesc)
1682 break;
1683 } else if (txlast >= txs->txs_firstdesc ||
1684 txlast <= txs->txs_lastdesc)
1685 break;
1686
1687 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1688 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1689
1690 #ifdef GEM_DEBUG /* XXX DMA synchronization? */
1691 if (ifp->if_flags & IFF_DEBUG) {
1692 printf(" txsoft %p transmit chain:\n", txs);
1693 gem_txsoft_print(sc, txs->txs_firstdesc,
1694 txs->txs_lastdesc);
1695 }
1696 #endif
1697
1698
1699 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1700 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1701
1702 sc->sc_txfree += txs->txs_ndescs;
1703
1704 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1705 0, txs->txs_dmamap->dm_mapsize,
1706 BUS_DMASYNC_POSTWRITE);
1707 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1708 if (txs->txs_mbuf != NULL) {
1709 m_freem(txs->txs_mbuf);
1710 txs->txs_mbuf = NULL;
1711 }
1712
1713 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1714
1715 if_statinc_ref(nsr, if_opackets);
1716 progress = 1;
1717 }
1718
1719 IF_STAT_PUTREF(ifp);
1720
1721 #if 0
1722 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1723 "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1724 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1725 ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1726 GEM_TX_DATA_PTR_HI) << 32) |
1727 bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1728 GEM_TX_DATA_PTR_LO),
1729 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1730 #endif
1731
1732 if (progress) {
1733 if (sc->sc_txfree == GEM_NTXDESC - 1)
1734 sc->sc_txwin = 0;
1735
1736 ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1737 if_schedule_deferred_start(ifp);
1738 }
1739 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1740 device_xname(sc->sc_dev), ifp->if_timer));
1741
1742 return (1);
1743 }
1744
1745 /*
1746 * Receive interrupt.
1747 */
1748 int
1749 gem_rint(struct gem_softc *sc)
1750 {
1751 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1752 bus_space_tag_t t = sc->sc_bustag;
1753 bus_space_handle_t h = sc->sc_h1;
1754 struct gem_rxsoft *rxs;
1755 struct mbuf *m;
1756 uint64_t rxstat;
1757 uint32_t rxcomp;
1758 int i, len, progress = 0;
1759
1760 DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1761
1762 /*
1763 * Ignore spurious interrupt that sometimes occurs before
1764 * we are set up when we network boot.
1765 */
1766 if (!sc->sc_meminited)
1767 return 1;
1768
1769 /*
1770 * Read the completion register once. This limits
1771 * how long the following loop can execute.
1772 */
1773 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1774
1775 /*
1776 * XXX Read the lastrx only once at the top for speed.
1777 */
1778 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1779 sc->sc_rxptr, rxcomp));
1780
1781 /*
1782 * Go into the loop at least once.
1783 */
1784 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1785 i = GEM_NEXTRX(i)) {
1786 rxs = &sc->sc_rxsoft[i];
1787
1788 GEM_CDRXSYNC(sc, i,
1789 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1790
1791 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1792
1793 if (rxstat & GEM_RD_OWN) {
1794 GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1795 /*
1796 * We have processed all of the receive buffers.
1797 */
1798 break;
1799 }
1800
1801 progress++;
1802
1803 if (rxstat & GEM_RD_BAD_CRC) {
1804 if_statinc(ifp, if_ierrors);
1805 aprint_error_dev(sc->sc_dev,
1806 "receive error: CRC error\n");
1807 GEM_INIT_RXDESC(sc, i);
1808 continue;
1809 }
1810
1811 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1812 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1813 #ifdef GEM_DEBUG
1814 if (ifp->if_flags & IFF_DEBUG) {
1815 printf(" rxsoft %p descriptor %d: ", rxs, i);
1816 printf("gd_flags: 0x%016llx\t", (long long)
1817 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1818 printf("gd_addr: 0x%016llx\n", (long long)
1819 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1820 }
1821 #endif
1822
1823 /* No errors; receive the packet. */
1824 len = GEM_RD_BUFLEN(rxstat);
1825
1826 /*
1827 * Allocate a new mbuf cluster. If that fails, we are
1828 * out of memory, and must drop the packet and recycle
1829 * the buffer that's already attached to this descriptor.
1830 */
1831 m = rxs->rxs_mbuf;
1832 if (gem_add_rxbuf(sc, i) != 0) {
1833 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1834 if_statinc(ifp, if_ierrors);
1835 aprint_error_dev(sc->sc_dev,
1836 "receive error: RX no buffer space\n");
1837 GEM_INIT_RXDESC(sc, i);
1838 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1839 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1840 continue;
1841 }
1842 m->m_data += 2; /* We're already off by two */
1843
1844 m_set_rcvif(m, ifp);
1845 m->m_pkthdr.len = m->m_len = len;
1846
1847 #ifdef INET
1848 /* hardware checksum */
1849 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1850 struct ether_header *eh;
1851 struct ip *ip;
1852 int32_t hlen, pktlen;
1853
1854 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1855 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1856 ETHER_VLAN_ENCAP_LEN;
1857 eh = (struct ether_header *) (mtod(m, char *) +
1858 ETHER_VLAN_ENCAP_LEN);
1859 } else {
1860 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1861 eh = mtod(m, struct ether_header *);
1862 }
1863 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1864 goto swcsum;
1865 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1866
1867 /* IPv4 only */
1868 if (ip->ip_v != IPVERSION)
1869 goto swcsum;
1870
1871 hlen = ip->ip_hl << 2;
1872 if (hlen < sizeof(struct ip))
1873 goto swcsum;
1874
1875 /*
1876 * bail if too short, has random trailing garbage,
1877 * truncated, fragment, or has ethernet pad.
1878 */
1879 if ((ntohs(ip->ip_len) < hlen) ||
1880 (ntohs(ip->ip_len) != pktlen) ||
1881 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1882 goto swcsum;
1883
1884 switch (ip->ip_p) {
1885 case IPPROTO_TCP:
1886 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1887 goto swcsum;
1888 if (pktlen < (hlen + sizeof(struct tcphdr)))
1889 goto swcsum;
1890 m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1891 break;
1892 case IPPROTO_UDP:
1893 /* FALLTHROUGH */
1894 default:
1895 goto swcsum;
1896 }
1897
1898 /* the uncomplemented sum is expected */
1899 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1900
1901 /* if the pkt had ip options, we have to deduct them */
1902 if (hlen > sizeof(struct ip)) {
1903 uint16_t *opts;
1904 uint32_t optsum, temp;
1905
1906 optsum = 0;
1907 temp = hlen - sizeof(struct ip);
1908 opts = (uint16_t *) ((char *) ip +
1909 sizeof(struct ip));
1910
1911 while (temp > 1) {
1912 optsum += ntohs(*opts++);
1913 temp -= 2;
1914 }
1915 while (optsum >> 16)
1916 optsum = (optsum >> 16) +
1917 (optsum & 0xffff);
1918
1919 /* Deduct ip opts sum from hwsum. */
1920 m->m_pkthdr.csum_data += (uint16_t)~optsum;
1921
1922 while (m->m_pkthdr.csum_data >> 16)
1923 m->m_pkthdr.csum_data =
1924 (m->m_pkthdr.csum_data >> 16) +
1925 (m->m_pkthdr.csum_data &
1926 0xffff);
1927 }
1928
1929 m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1930 M_CSUM_NO_PSEUDOHDR;
1931 } else
1932 swcsum:
1933 m->m_pkthdr.csum_flags = 0;
1934 #endif
1935 /* Pass it on. */
1936 if_percpuq_enqueue(ifp->if_percpuq, m);
1937 }
1938
1939 if (progress) {
1940 /* Update the receive pointer. */
1941 if (i == sc->sc_rxptr) {
1942 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1943 #ifdef GEM_DEBUG
1944 if (ifp->if_flags & IFF_DEBUG)
1945 printf("%s: rint: ring wrap\n",
1946 device_xname(sc->sc_dev));
1947 #endif
1948 }
1949 sc->sc_rxptr = i;
1950 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1951 }
1952 #ifdef GEM_COUNTERS
1953 if (progress <= 4) {
1954 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1955 } else if (progress < 32) {
1956 if (progress < 16)
1957 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1958 else
1959 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1960
1961 } else {
1962 if (progress < 64)
1963 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1964 else
1965 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1966 }
1967 #endif
1968
1969 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1970 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1971
1972 /* Read error counters ... */
1973 if_statadd(ifp, if_ierrors,
1974 bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1975 bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1976 bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1977 bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL));
1978
1979 /* ... then clear the hardware counters. */
1980 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1981 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1982 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1983 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1984
1985 return (1);
1986 }
1987
1988
1989 /*
1990 * gem_add_rxbuf:
1991 *
1992 * Add a receive buffer to the indicated descriptor.
1993 */
1994 int
1995 gem_add_rxbuf(struct gem_softc *sc, int idx)
1996 {
1997 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1998 struct mbuf *m;
1999 int error;
2000
2001 MGETHDR(m, M_DONTWAIT, MT_DATA);
2002 if (m == NULL)
2003 return (ENOBUFS);
2004
2005 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2006 MCLGET(m, M_DONTWAIT);
2007 if ((m->m_flags & M_EXT) == 0) {
2008 m_freem(m);
2009 return (ENOBUFS);
2010 }
2011
2012 #ifdef GEM_DEBUG
2013 /* bzero the packet to check DMA */
2014 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2015 #endif
2016
2017 if (rxs->rxs_mbuf != NULL)
2018 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2019
2020 rxs->rxs_mbuf = m;
2021
2022 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2023 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2024 BUS_DMA_READ | BUS_DMA_NOWAIT);
2025 if (error) {
2026 aprint_error_dev(sc->sc_dev,
2027 "can't load rx DMA map %d, error = %d\n", idx, error);
2028 panic("gem_add_rxbuf"); /* XXX */
2029 }
2030
2031 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2032 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2033
2034 GEM_INIT_RXDESC(sc, idx);
2035
2036 return (0);
2037 }
2038
2039
2040 int
2041 gem_eint(struct gem_softc *sc, u_int status)
2042 {
2043 char bits[128];
2044 uint32_t r, v;
2045
2046 if ((status & GEM_INTR_MIF) != 0) {
2047 printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2048 return (1);
2049 }
2050
2051 if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2052 gem_reset_rxdma(sc);
2053 return (1);
2054 }
2055
2056 if (status & GEM_INTR_BERR) {
2057 if (sc->sc_flags & GEM_PCI)
2058 r = GEM_ERROR_STATUS;
2059 else
2060 r = GEM_SBUS_ERROR_STATUS;
2061 bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2062 v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2063 aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2064 v);
2065 return (1);
2066 }
2067 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2068 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2069
2070 return (1);
2071 }
2072
2073
2074 /*
2075 * PCS interrupts.
2076 * We should receive these when the link status changes, but sometimes
2077 * we don't receive them for link up. We compensate for this in the
2078 * gem_tick() callout.
2079 */
2080 int
2081 gem_pint(struct gem_softc *sc)
2082 {
2083 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2084 bus_space_tag_t t = sc->sc_bustag;
2085 bus_space_handle_t h = sc->sc_h1;
2086 uint32_t v, v2;
2087
2088 /*
2089 * Clear the PCS interrupt from GEM_STATUS. The PCS register is
2090 * latched, so we have to read it twice. There is only one bit in
2091 * use, so the value is meaningless.
2092 */
2093 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2094 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2095
2096 if ((ifp->if_flags & IFF_UP) == 0)
2097 return 1;
2098
2099 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2100 return 1;
2101
2102 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2103 /* If we see remote fault, our link partner is probably going away */
2104 if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2105 gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2106 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2107 /* Otherwise, we may need to wait after auto-negotiation completes */
2108 } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2109 GEM_MII_STATUS_ANEG_CPT) {
2110 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2111 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2112 }
2113 if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2114 if (sc->sc_flags & GEM_LINK) {
2115 return 1;
2116 }
2117 callout_stop(&sc->sc_tick_ch);
2118 v = bus_space_read_4(t, h, GEM_MII_ANAR);
2119 v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2120 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2121 sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2122 v &= v2;
2123 if (v & GEM_MII_ANEG_FUL_DUPLX) {
2124 sc->sc_mii.mii_media_active |= IFM_FDX;
2125 #ifdef GEM_DEBUG
2126 aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2127 #endif
2128 } else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2129 sc->sc_mii.mii_media_active |= IFM_HDX;
2130 #ifdef GEM_DEBUG
2131 aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2132 #endif
2133 } else {
2134 #ifdef GEM_DEBUG
2135 aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2136 #endif
2137 }
2138 gem_statuschange(sc);
2139 } else {
2140 if ((sc->sc_flags & GEM_LINK) == 0) {
2141 return 1;
2142 }
2143 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2144 sc->sc_mii.mii_media_status = IFM_AVALID;
2145 #ifdef GEM_DEBUG
2146 aprint_debug_dev(sc->sc_dev, "link down\n");
2147 #endif
2148 gem_statuschange(sc);
2149
2150 /* Start the 10 second timer */
2151 callout_schedule(&sc->sc_tick_ch, hz * 10);
2152 }
2153 return 1;
2154 }
2155
2156
2157
2158 int
2159 gem_intr(void *v)
2160 {
2161 struct gem_softc *sc = v;
2162 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2163 bus_space_tag_t t = sc->sc_bustag;
2164 bus_space_handle_t h = sc->sc_h1;
2165 uint32_t status;
2166 int r = 0;
2167 #ifdef GEM_DEBUG
2168 char bits[128];
2169 #endif
2170
2171 /* XXX We should probably mask out interrupts until we're done */
2172
2173 sc->sc_ev_intr.ev_count++;
2174
2175 status = bus_space_read_4(t, h, GEM_STATUS);
2176 #ifdef GEM_DEBUG
2177 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2178 #endif
2179 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2180 device_xname(sc->sc_dev), (status >> 19), bits));
2181
2182 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2183 r |= gem_eint(sc, status);
2184
2185 /* We don't bother with GEM_INTR_TX_DONE */
2186 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2187 GEM_COUNTER_INCR(sc, sc_ev_txint);
2188 r |= gem_tint(sc);
2189 }
2190
2191 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2192 GEM_COUNTER_INCR(sc, sc_ev_rxint);
2193 r |= gem_rint(sc);
2194 }
2195
2196 /* We should eventually do more than just print out error stats. */
2197 if (status & GEM_INTR_TX_MAC) {
2198 int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2199 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2200 printf("%s: MAC tx fault, status %x\n",
2201 device_xname(sc->sc_dev), txstat);
2202 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2203 gem_init(ifp);
2204 }
2205 if (status & GEM_INTR_RX_MAC) {
2206 int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2207 /*
2208 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2209 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2210 * silicon bug so handle them silently. So if we detect
2211 * an RX FIFO overflow, we fire off a timer, and check
2212 * whether we're still making progress by looking at the
2213 * RX FIFO write and read pointers.
2214 */
2215 if (rxstat & GEM_MAC_RX_OVERFLOW) {
2216 if_statinc(ifp, if_ierrors);
2217 aprint_error_dev(sc->sc_dev,
2218 "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
2219 sc->sc_rx_fifo_wr_ptr =
2220 bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2221 sc->sc_rx_fifo_rd_ptr =
2222 bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2223 callout_schedule(&sc->sc_rx_watchdog, 400);
2224 } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2225 printf("%s: MAC rx fault, status 0x%02x\n",
2226 device_xname(sc->sc_dev), rxstat);
2227 }
2228 if (status & GEM_INTR_PCS) {
2229 r |= gem_pint(sc);
2230 }
2231
2232 /* Do we need to do anything with these?
2233 if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2234 status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2235 if ((status2 & GEM_MAC_PAUSED) != 0)
2236 aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2237 GEM_MAC_PAUSE_TIME(status2));
2238 if ((status2 & GEM_MAC_PAUSE) != 0)
2239 aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2240 if ((status2 & GEM_MAC_RESUME) != 0)
2241 aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2242 }
2243 if ((status & GEM_INTR_MIF) != 0)
2244 aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2245 */
2246 rnd_add_uint32(&sc->rnd_source, status);
2247 return (r);
2248 }
2249
2250 void
2251 gem_rx_watchdog(void *arg)
2252 {
2253 struct gem_softc *sc = arg;
2254 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2255 bus_space_tag_t t = sc->sc_bustag;
2256 bus_space_handle_t h = sc->sc_h1;
2257 uint32_t rx_fifo_wr_ptr;
2258 uint32_t rx_fifo_rd_ptr;
2259 uint32_t state;
2260
2261 if ((ifp->if_flags & IFF_RUNNING) == 0) {
2262 aprint_error_dev(sc->sc_dev, "receiver not running\n");
2263 return;
2264 }
2265
2266 rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2267 rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2268 state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
2269 if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
2270 ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
2271 ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
2272 (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
2273 {
2274 /*
2275 * The RX state machine is still in overflow state and
2276 * the RX FIFO write and read pointers seem to be
2277 * stuck. Whack the chip over the head to get things
2278 * going again.
2279 */
2280 aprint_error_dev(sc->sc_dev,
2281 "receiver stuck in overflow, resetting\n");
2282 gem_init(ifp);
2283 } else {
2284 if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
2285 aprint_error_dev(sc->sc_dev,
2286 "rx_watchdog: not in overflow state: 0x%x\n",
2287 state);
2288 }
2289 if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
2290 aprint_error_dev(sc->sc_dev,
2291 "rx_watchdog: wr & rd ptr different\n");
2292 }
2293 if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
2294 aprint_error_dev(sc->sc_dev,
2295 "rx_watchdog: wr pointer != saved\n");
2296 }
2297 if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
2298 aprint_error_dev(sc->sc_dev,
2299 "rx_watchdog: rd pointer != saved\n");
2300 }
2301 aprint_error_dev(sc->sc_dev, "resetting anyway\n");
2302 gem_init(ifp);
2303 }
2304 }
2305
2306 void
2307 gem_watchdog(struct ifnet *ifp)
2308 {
2309 struct gem_softc *sc = ifp->if_softc;
2310
2311 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2312 "GEM_MAC_RX_CONFIG %x\n",
2313 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2314 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2315 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2316
2317 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2318 if_statinc(ifp, if_oerrors);
2319
2320 /* Try to get more packets going. */
2321 gem_init(ifp);
2322 gem_start(ifp);
2323 }
2324
2325 /*
2326 * Initialize the MII Management Interface
2327 */
2328 void
2329 gem_mifinit(struct gem_softc *sc)
2330 {
2331 bus_space_tag_t t = sc->sc_bustag;
2332 bus_space_handle_t mif = sc->sc_h1;
2333
2334 /* Configure the MIF in frame mode */
2335 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2336 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2337 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2338 }
2339
2340 /*
2341 * MII interface
2342 *
2343 * The GEM MII interface supports at least three different operating modes:
2344 *
2345 * Bitbang mode is implemented using data, clock and output enable registers.
2346 *
2347 * Frame mode is implemented by loading a complete frame into the frame
2348 * register and polling the valid bit for completion.
2349 *
2350 * Polling mode uses the frame register but completion is indicated by
2351 * an interrupt.
2352 *
2353 */
2354 static int
2355 gem_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
2356 {
2357 struct gem_softc *sc = device_private(self);
2358 bus_space_tag_t t = sc->sc_bustag;
2359 bus_space_handle_t mif = sc->sc_h1;
2360 int n;
2361 uint32_t v;
2362
2363 #ifdef GEM_DEBUG1
2364 if (sc->sc_debug)
2365 printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2366 #endif
2367
2368 /* Construct the frame command */
2369 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
2370 GEM_MIF_FRAME_READ;
2371
2372 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2373 for (n = 0; n < 100; n++) {
2374 DELAY(1);
2375 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2376 if (v & GEM_MIF_FRAME_TA0) {
2377 *val = v & GEM_MIF_FRAME_DATA;
2378 return 0;
2379 }
2380 }
2381
2382 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2383 return ETIMEDOUT;
2384 }
2385
2386 static int
2387 gem_mii_writereg(device_t self, int phy, int reg, uint16_t val)
2388 {
2389 struct gem_softc *sc = device_private(self);
2390 bus_space_tag_t t = sc->sc_bustag;
2391 bus_space_handle_t mif = sc->sc_h1;
2392 int n;
2393 uint32_t v;
2394
2395 #ifdef GEM_DEBUG1
2396 if (sc->sc_debug)
2397 printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2398 phy, reg, val);
2399 #endif
2400
2401 /* Construct the frame command */
2402 v = GEM_MIF_FRAME_WRITE |
2403 (phy << GEM_MIF_PHY_SHIFT) |
2404 (reg << GEM_MIF_REG_SHIFT) |
2405 (val & GEM_MIF_FRAME_DATA);
2406
2407 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2408 for (n = 0; n < 100; n++) {
2409 DELAY(1);
2410 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2411 if (v & GEM_MIF_FRAME_TA0)
2412 return 0;
2413 }
2414
2415 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2416 return ETIMEDOUT;
2417 }
2418
2419 static void
2420 gem_mii_statchg(struct ifnet *ifp)
2421 {
2422 struct gem_softc *sc = ifp->if_softc;
2423 #ifdef GEM_DEBUG
2424 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2425 #endif
2426
2427 #ifdef GEM_DEBUG
2428 if (sc->sc_debug)
2429 printf("gem_mii_statchg: status change: phy = %d\n",
2430 sc->sc_phys[instance]);
2431 #endif
2432 gem_statuschange(sc);
2433 }
2434
2435 /*
2436 * Common status change for gem_mii_statchg() and gem_pint()
2437 */
2438 void
2439 gem_statuschange(struct gem_softc* sc)
2440 {
2441 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2442 bus_space_tag_t t = sc->sc_bustag;
2443 bus_space_handle_t mac = sc->sc_h1;
2444 int gigabit;
2445 uint32_t rxcfg, txcfg, v;
2446
2447 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2448 IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2449 sc->sc_flags |= GEM_LINK;
2450 else
2451 sc->sc_flags &= ~GEM_LINK;
2452
2453 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2454 gigabit = 1;
2455 else
2456 gigabit = 0;
2457
2458 /*
2459 * The configuration done here corresponds to the steps F) and
2460 * G) and as far as enabling of RX and TX MAC goes also step H)
2461 * of the initialization sequence outlined in section 3.2.1 of
2462 * the GEM Gigabit Ethernet ASIC Specification.
2463 */
2464
2465 rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2466 rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2467 txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2468 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2469 txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2470 else if (gigabit) {
2471 rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2472 txcfg |= GEM_MAC_RX_CARR_EXTEND;
2473 }
2474 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2475 bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2476 BUS_SPACE_BARRIER_WRITE);
2477 if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2478 aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2479 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2480 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2481 bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2482 BUS_SPACE_BARRIER_WRITE);
2483 if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2484 aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2485 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2486
2487 v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2488 ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2489 bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2490
2491 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2492 gigabit != 0)
2493 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2494 GEM_MAC_SLOT_TIME_CARR_EXTEND);
2495 else
2496 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2497 GEM_MAC_SLOT_TIME_NORMAL);
2498
2499 /* XIF Configuration */
2500 if (sc->sc_flags & GEM_LINK)
2501 v = GEM_MAC_XIF_LINK_LED;
2502 else
2503 v = 0;
2504 v |= GEM_MAC_XIF_TX_MII_ENA;
2505
2506 /* If an external transceiver is connected, enable its MII drivers */
2507 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2508 if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2509 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2510 if (gigabit)
2511 v |= GEM_MAC_XIF_GMII_MODE;
2512 else
2513 v &= ~GEM_MAC_XIF_GMII_MODE;
2514 } else
2515 /* Internal MII needs buf enable */
2516 v |= GEM_MAC_XIF_MII_BUF_ENA;
2517 /* MII needs echo disable if half duplex. */
2518 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2519 /* turn on full duplex LED */
2520 v |= GEM_MAC_XIF_FDPLX_LED;
2521 else
2522 /* half duplex -- disable echo */
2523 v |= GEM_MAC_XIF_ECHO_DISABL;
2524 } else {
2525 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2526 v |= GEM_MAC_XIF_FDPLX_LED;
2527 v |= GEM_MAC_XIF_GMII_MODE;
2528 }
2529 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2530
2531 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2532 (sc->sc_flags & GEM_LINK) != 0) {
2533 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2534 txcfg | GEM_MAC_TX_ENABLE);
2535 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2536 rxcfg | GEM_MAC_RX_ENABLE);
2537 }
2538 }
2539
2540 int
2541 gem_ser_mediachange(struct ifnet *ifp)
2542 {
2543 struct gem_softc *sc = ifp->if_softc;
2544 u_int s, t;
2545
2546 if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2547 return EINVAL;
2548
2549 s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2550 if (s == IFM_AUTO) {
2551 if (sc->sc_mii_media != s) {
2552 #ifdef GEM_DEBUG
2553 aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2554 #endif
2555 sc->sc_mii_media = s;
2556 if (ifp->if_flags & IFF_UP) {
2557 gem_pcs_stop(sc, 0);
2558 gem_pcs_start(sc);
2559 }
2560 }
2561 return 0;
2562 }
2563 if (s == IFM_1000_SX) {
2564 t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media)
2565 & (IFM_FDX | IFM_HDX);
2566 if ((sc->sc_mii_media & (IFM_FDX | IFM_HDX)) != t) {
2567 sc->sc_mii_media &= ~(IFM_FDX | IFM_HDX);
2568 sc->sc_mii_media |= t;
2569 #ifdef GEM_DEBUG
2570 aprint_debug_dev(sc->sc_dev,
2571 "setting media to 1000baseSX-%s\n",
2572 t == IFM_FDX ? "FDX" : "HDX");
2573 #endif
2574 if (ifp->if_flags & IFF_UP) {
2575 gem_pcs_stop(sc, 0);
2576 gem_pcs_start(sc);
2577 }
2578 }
2579 return 0;
2580 }
2581 return EINVAL;
2582 }
2583
2584 void
2585 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2586 {
2587 struct gem_softc *sc = ifp->if_softc;
2588
2589 if ((ifp->if_flags & IFF_UP) == 0)
2590 return;
2591 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2592 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2593 }
2594
2595 static int
2596 gem_ifflags_cb(struct ethercom *ec)
2597 {
2598 struct ifnet *ifp = &ec->ec_if;
2599 struct gem_softc *sc = ifp->if_softc;
2600 u_short change = ifp->if_flags ^ sc->sc_if_flags;
2601
2602 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
2603 return ENETRESET;
2604 else if ((change & IFF_PROMISC) != 0)
2605 gem_setladrf(sc);
2606 return 0;
2607 }
2608
2609 /*
2610 * Process an ioctl request.
2611 */
2612 int
2613 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2614 {
2615 struct gem_softc *sc = ifp->if_softc;
2616 int s, error = 0;
2617
2618 s = splnet();
2619
2620 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2621 error = 0;
2622 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2623 ;
2624 else if (ifp->if_flags & IFF_RUNNING) {
2625 /*
2626 * Multicast list has changed; set the hardware filter
2627 * accordingly.
2628 */
2629 gem_setladrf(sc);
2630 }
2631 }
2632
2633 /* Try to get things going again */
2634 if (ifp->if_flags & IFF_UP)
2635 gem_start(ifp);
2636 splx(s);
2637 return (error);
2638 }
2639
2640 static void
2641 gem_inten(struct gem_softc *sc)
2642 {
2643 bus_space_tag_t t = sc->sc_bustag;
2644 bus_space_handle_t h = sc->sc_h1;
2645 uint32_t v;
2646
2647 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2648 v = GEM_INTR_PCS;
2649 else
2650 v = GEM_INTR_MIF;
2651 bus_space_write_4(t, h, GEM_INTMASK,
2652 ~(GEM_INTR_TX_INTME |
2653 GEM_INTR_TX_EMPTY |
2654 GEM_INTR_TX_MAC |
2655 GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF |
2656 GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL |
2657 GEM_INTR_BERR | v));
2658 }
2659
2660 bool
2661 gem_resume(device_t self, const pmf_qual_t *qual)
2662 {
2663 struct gem_softc *sc = device_private(self);
2664
2665 gem_inten(sc);
2666
2667 return true;
2668 }
2669
2670 bool
2671 gem_suspend(device_t self, const pmf_qual_t *qual)
2672 {
2673 struct gem_softc *sc = device_private(self);
2674 bus_space_tag_t t = sc->sc_bustag;
2675 bus_space_handle_t h = sc->sc_h1;
2676
2677 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2678
2679 return true;
2680 }
2681
2682 bool
2683 gem_shutdown(device_t self, int howto)
2684 {
2685 struct gem_softc *sc = device_private(self);
2686 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2687
2688 gem_stop(ifp, 1);
2689
2690 return true;
2691 }
2692
2693 /*
2694 * Set up the logical address filter.
2695 */
2696 void
2697 gem_setladrf(struct gem_softc *sc)
2698 {
2699 struct ethercom *ec = &sc->sc_ethercom;
2700 struct ifnet *ifp = &ec->ec_if;
2701 struct ether_multi *enm;
2702 struct ether_multistep step;
2703 bus_space_tag_t t = sc->sc_bustag;
2704 bus_space_handle_t h = sc->sc_h1;
2705 uint32_t crc;
2706 uint32_t hash[16];
2707 uint32_t v;
2708 int i;
2709
2710 /* Get current RX configuration */
2711 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2712
2713 /*
2714 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2715 * and hash filter. Depending on the case, the right bit will be
2716 * enabled.
2717 */
2718 v &= ~(GEM_MAC_RX_PROMISCUOUS | GEM_MAC_RX_HASH_FILTER |
2719 GEM_MAC_RX_PROMISC_GRP);
2720
2721 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2722 /* Turn on promiscuous mode */
2723 v |= GEM_MAC_RX_PROMISCUOUS;
2724 ifp->if_flags |= IFF_ALLMULTI;
2725 goto chipit;
2726 }
2727
2728 /*
2729 * Set up multicast address filter by passing all multicast addresses
2730 * through a crc generator, and then using the high order 8 bits as an
2731 * index into the 256 bit logical address filter. The high order 4
2732 * bits selects the word, while the other 4 bits select the bit within
2733 * the word (where bit 0 is the MSB).
2734 */
2735
2736 /* Clear hash table */
2737 memset(hash, 0, sizeof(hash));
2738
2739 ETHER_LOCK(ec);
2740 ETHER_FIRST_MULTI(step, ec, enm);
2741 while (enm != NULL) {
2742 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2743 /*
2744 * We must listen to a range of multicast addresses.
2745 * For now, just accept all multicasts, rather than
2746 * trying to set only those filter bits needed to match
2747 * the range. (At this time, the only use of address
2748 * ranges is for IP multicast routing, for which the
2749 * range is big enough to require all bits set.)
2750 * XXX should use the address filters for this
2751 */
2752 ifp->if_flags |= IFF_ALLMULTI;
2753 v |= GEM_MAC_RX_PROMISC_GRP;
2754 ETHER_UNLOCK(ec);
2755 goto chipit;
2756 }
2757
2758 /* Get the LE CRC32 of the address */
2759 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2760
2761 /* Just want the 8 most significant bits. */
2762 crc >>= 24;
2763
2764 /* Set the corresponding bit in the filter. */
2765 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2766
2767 ETHER_NEXT_MULTI(step, enm);
2768 }
2769 ETHER_UNLOCK(ec);
2770
2771 v |= GEM_MAC_RX_HASH_FILTER;
2772 ifp->if_flags &= ~IFF_ALLMULTI;
2773
2774 /* Now load the hash table into the chip (if we are using it) */
2775 for (i = 0; i < 16; i++) {
2776 bus_space_write_4(t, h,
2777 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2778 hash[i]);
2779 }
2780
2781 chipit:
2782 sc->sc_if_flags = ifp->if_flags;
2783 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2784 }
2785