gem.c revision 1.132 1 /* $NetBSD: gem.c,v 1.132 2020/09/15 08:33:40 mrg Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * Copyright (c) 2001-2003 Thomas Moestl
7 * All rights reserved.
8 *
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 /*
34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35 * See `GEM Gigabit Ethernet ASIC Specification'
36 * http://www.sun.com/processors/manuals/ge.pdf
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.132 2020/09/15 08:33:40 mrg Exp $");
41
42 #include "opt_inet.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/mbuf.h>
48 #include <sys/syslog.h>
49 #include <sys/malloc.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/ioctl.h>
53 #include <sys/errno.h>
54 #include <sys/device.h>
55
56 #include <machine/endian.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71
72 #include <net/bpf.h>
73
74 #include <sys/bus.h>
75 #include <sys/intr.h>
76
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 #include <dev/mii/mii_bitbang.h>
80
81 #include <dev/ic/gemreg.h>
82 #include <dev/ic/gemvar.h>
83
84 #define TRIES 10000
85
86 static void gem_inten(struct gem_softc *);
87 static void gem_start(struct ifnet *);
88 static void gem_stop(struct ifnet *, int);
89 int gem_ioctl(struct ifnet *, u_long, void *);
90 void gem_tick(void *);
91 void gem_watchdog(struct ifnet *);
92 void gem_rx_watchdog(void *);
93 void gem_pcs_start(struct gem_softc *sc);
94 void gem_pcs_stop(struct gem_softc *sc, int);
95 int gem_init(struct ifnet *);
96 void gem_init_regs(struct gem_softc *sc);
97 static int gem_ringsize(int sz);
98 static int gem_meminit(struct gem_softc *);
99 void gem_mifinit(struct gem_softc *);
100 static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
101 uint32_t, uint32_t);
102 void gem_reset(struct gem_softc *);
103 int gem_reset_rx(struct gem_softc *sc);
104 static void gem_reset_rxdma(struct gem_softc *sc);
105 static void gem_rx_common(struct gem_softc *sc);
106 int gem_reset_tx(struct gem_softc *sc);
107 int gem_disable_rx(struct gem_softc *sc);
108 int gem_disable_tx(struct gem_softc *sc);
109 static void gem_rxdrain(struct gem_softc *sc);
110 int gem_add_rxbuf(struct gem_softc *sc, int idx);
111 void gem_setladrf(struct gem_softc *);
112
113 /* MII methods & callbacks */
114 static int gem_mii_readreg(device_t, int, int, uint16_t *);
115 static int gem_mii_writereg(device_t, int, int, uint16_t);
116 static void gem_mii_statchg(struct ifnet *);
117
118 static int gem_ifflags_cb(struct ethercom *);
119
120 void gem_statuschange(struct gem_softc *);
121
122 int gem_ser_mediachange(struct ifnet *);
123 void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
124
125 static void gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
126
127 struct mbuf *gem_get(struct gem_softc *, int, int);
128 int gem_put(struct gem_softc *, int, struct mbuf *);
129 void gem_read(struct gem_softc *, int, int);
130 int gem_pint(struct gem_softc *);
131 int gem_eint(struct gem_softc *, u_int);
132 int gem_rint(struct gem_softc *);
133 int gem_tint(struct gem_softc *);
134 void gem_power(int, void *);
135
136 #ifdef GEM_DEBUG
137 static void gem_txsoft_print(const struct gem_softc *, int, int);
138 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
139 printf x
140 #else
141 #define DPRINTF(sc, x) /* nothing */
142 #endif
143
144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
145
146 int
147 gem_detach(struct gem_softc *sc, int flags)
148 {
149 int i;
150 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
151 bus_space_tag_t t = sc->sc_bustag;
152 bus_space_handle_t h = sc->sc_h1;
153
154 /*
155 * Free any resources we've allocated during the attach.
156 * Do this in reverse order and fall through.
157 */
158 switch (sc->sc_att_stage) {
159 case GEM_ATT_BACKEND_2:
160 case GEM_ATT_BACKEND_1:
161 case GEM_ATT_FINISHED:
162 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
163 gem_stop(&sc->sc_ethercom.ec_if, 1);
164
165 #ifdef GEM_COUNTERS
166 for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
167 evcnt_detach(&sc->sc_ev_rxhist[i]);
168 evcnt_detach(&sc->sc_ev_rxnobuf);
169 evcnt_detach(&sc->sc_ev_rxfull);
170 evcnt_detach(&sc->sc_ev_rxint);
171 evcnt_detach(&sc->sc_ev_txint);
172 #endif
173 evcnt_detach(&sc->sc_ev_intr);
174
175 rnd_detach_source(&sc->rnd_source);
176 ether_ifdetach(ifp);
177 if_detach(ifp);
178
179 callout_destroy(&sc->sc_tick_ch);
180 callout_destroy(&sc->sc_rx_watchdog);
181
182 /*FALLTHROUGH*/
183 case GEM_ATT_MII:
184 sc->sc_att_stage = GEM_ATT_MII;
185 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
186 ifmedia_fini(&sc->sc_mii.mii_media);
187
188 /*FALLTHROUGH*/
189 case GEM_ATT_7:
190 for (i = 0; i < GEM_NRXDESC; i++) {
191 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
192 bus_dmamap_destroy(sc->sc_dmatag,
193 sc->sc_rxsoft[i].rxs_dmamap);
194 }
195 /*FALLTHROUGH*/
196 case GEM_ATT_6:
197 for (i = 0; i < GEM_TXQUEUELEN; i++) {
198 if (sc->sc_txsoft[i].txs_dmamap != NULL)
199 bus_dmamap_destroy(sc->sc_dmatag,
200 sc->sc_txsoft[i].txs_dmamap);
201 }
202 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
203 /*FALLTHROUGH*/
204 case GEM_ATT_5:
205 bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
206 /*FALLTHROUGH*/
207 case GEM_ATT_4:
208 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
209 /*FALLTHROUGH*/
210 case GEM_ATT_3:
211 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
212 /*FALLTHROUGH*/
213 case GEM_ATT_2:
214 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
215 sizeof(struct gem_control_data));
216 /*FALLTHROUGH*/
217 case GEM_ATT_1:
218 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
219 /*FALLTHROUGH*/
220 case GEM_ATT_0:
221 sc->sc_att_stage = GEM_ATT_0;
222 /*FALLTHROUGH*/
223 case GEM_ATT_BACKEND_0:
224 break;
225 }
226 return 0;
227 }
228
229 static void
230 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
231 {
232 cfattach_t ca = device_cfattach(sc->sc_dev);
233
234 sc->sc_att_stage = stage;
235 (*ca->ca_detach)(sc->sc_dev, 0);
236 }
237
238 /*
239 * gem_attach:
240 *
241 * Attach a Gem interface to the system.
242 */
243 void
244 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
245 {
246 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
247 struct mii_data *mii = &sc->sc_mii;
248 bus_space_tag_t t = sc->sc_bustag;
249 bus_space_handle_t h = sc->sc_h1;
250 struct ifmedia_entry *ife;
251 int i, error, phyaddr;
252 uint32_t v;
253 char *nullbuf;
254
255 /* Make sure the chip is stopped. */
256 ifp->if_softc = sc;
257 gem_reset(sc);
258
259 /*
260 * Allocate the control data structures, and create and load the
261 * DMA map for it. gem_control_data is 9216 bytes, we have space for
262 * the padding buffer in the bus_dmamem_alloc()'d memory.
263 */
264 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
265 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
266 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
267 aprint_error_dev(sc->sc_dev,
268 "unable to allocate control data, error = %d\n",
269 error);
270 gem_partial_detach(sc, GEM_ATT_0);
271 return;
272 }
273
274 /* XXX should map this in with correct endianness */
275 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
276 sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
277 BUS_DMA_COHERENT)) != 0) {
278 aprint_error_dev(sc->sc_dev,
279 "unable to map control data, error = %d\n", error);
280 gem_partial_detach(sc, GEM_ATT_1);
281 return;
282 }
283
284 nullbuf =
285 (char *)sc->sc_control_data + sizeof(struct gem_control_data);
286
287 if ((error = bus_dmamap_create(sc->sc_dmatag,
288 sizeof(struct gem_control_data), 1,
289 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
290 aprint_error_dev(sc->sc_dev,
291 "unable to create control data DMA map, error = %d\n",
292 error);
293 gem_partial_detach(sc, GEM_ATT_2);
294 return;
295 }
296
297 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
298 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
299 0)) != 0) {
300 aprint_error_dev(sc->sc_dev,
301 "unable to load control data DMA map, error = %d\n",
302 error);
303 gem_partial_detach(sc, GEM_ATT_3);
304 return;
305 }
306
307 memset(nullbuf, 0, ETHER_MIN_TX);
308 if ((error = bus_dmamap_create(sc->sc_dmatag,
309 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
310 aprint_error_dev(sc->sc_dev,
311 "unable to create padding DMA map, error = %d\n", error);
312 gem_partial_detach(sc, GEM_ATT_4);
313 return;
314 }
315
316 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
317 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
318 aprint_error_dev(sc->sc_dev,
319 "unable to load padding DMA map, error = %d\n", error);
320 gem_partial_detach(sc, GEM_ATT_5);
321 return;
322 }
323
324 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
325 BUS_DMASYNC_PREWRITE);
326
327 /*
328 * Initialize the transmit job descriptors.
329 */
330 SIMPLEQ_INIT(&sc->sc_txfreeq);
331 SIMPLEQ_INIT(&sc->sc_txdirtyq);
332
333 /*
334 * Create the transmit buffer DMA maps.
335 */
336 for (i = 0; i < GEM_TXQUEUELEN; i++) {
337 struct gem_txsoft *txs;
338
339 txs = &sc->sc_txsoft[i];
340 txs->txs_mbuf = NULL;
341 if ((error = bus_dmamap_create(sc->sc_dmatag,
342 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
343 ETHER_MAX_LEN_JUMBO, 0, 0,
344 &txs->txs_dmamap)) != 0) {
345 aprint_error_dev(sc->sc_dev,
346 "unable to create tx DMA map %d, error = %d\n",
347 i, error);
348 gem_partial_detach(sc, GEM_ATT_6);
349 return;
350 }
351 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
352 }
353
354 /*
355 * Create the receive buffer DMA maps.
356 */
357 for (i = 0; i < GEM_NRXDESC; i++) {
358 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
359 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
360 aprint_error_dev(sc->sc_dev,
361 "unable to create rx DMA map %d, error = %d\n",
362 i, error);
363 gem_partial_detach(sc, GEM_ATT_7);
364 return;
365 }
366 sc->sc_rxsoft[i].rxs_mbuf = NULL;
367 }
368
369 /* Initialize ifmedia structures and MII info */
370 mii->mii_ifp = ifp;
371 mii->mii_readreg = gem_mii_readreg;
372 mii->mii_writereg = gem_mii_writereg;
373 mii->mii_statchg = gem_mii_statchg;
374
375 sc->sc_ethercom.ec_mii = mii;
376
377 /*
378 * Initialization based on `GEM Gigabit Ethernet ASIC Specification'
379 * Section 3.2.1 `Initialization Sequence'.
380 * However, we can't assume SERDES or Serialink if neither
381 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
382 * being set, as both are set on Sun X1141A (with SERDES). So,
383 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
384 * Also, for variants that report 2 PHY's, we prefer the external
385 * PHY over the internal PHY, so we look for that first.
386 */
387 gem_mifinit(sc);
388
389 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
390 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
391 ether_mediastatus);
392 /* Look for external PHY */
393 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
394 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
395 bus_space_write_4(t, h, GEM_MIF_CONFIG,
396 sc->sc_mif_config);
397 switch (sc->sc_variant) {
398 case GEM_SUN_ERI:
399 phyaddr = GEM_PHYAD_EXTERNAL;
400 break;
401 default:
402 phyaddr = MII_PHY_ANY;
403 break;
404 }
405 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
406 MII_OFFSET_ANY, MIIF_FORCEANEG);
407 }
408 #ifdef GEM_DEBUG
409 else
410 aprint_debug_dev(sc->sc_dev, "using external PHY\n");
411 #endif
412 /* Look for internal PHY if no external PHY was found */
413 if (LIST_EMPTY(&mii->mii_phys) &&
414 ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) ||
415 (sc->sc_variant == GEM_APPLE_K2_GMAC))) {
416 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
417 bus_space_write_4(t, h, GEM_MIF_CONFIG,
418 sc->sc_mif_config);
419 switch (sc->sc_variant) {
420 case GEM_SUN_ERI:
421 case GEM_APPLE_K2_GMAC:
422 phyaddr = GEM_PHYAD_INTERNAL;
423 break;
424 case GEM_APPLE_GMAC:
425 phyaddr = GEM_PHYAD_EXTERNAL;
426 break;
427 default:
428 phyaddr = MII_PHY_ANY;
429 break;
430 }
431 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
432 MII_OFFSET_ANY, MIIF_FORCEANEG);
433 #ifdef GEM_DEBUG
434 if (!LIST_EMPTY(&mii->mii_phys))
435 aprint_debug_dev(sc->sc_dev,
436 "using internal PHY\n");
437 #endif
438 }
439 if (LIST_EMPTY(&mii->mii_phys)) {
440 /* No PHY attached */
441 aprint_error_dev(sc->sc_dev,
442 "PHY probe failed\n");
443 gem_partial_detach(sc, GEM_ATT_MII);
444 return;
445 } else {
446 struct mii_softc *child;
447
448 /*
449 * Walk along the list of attached MII devices and
450 * establish an `MII instance' to `PHY number'
451 * mapping.
452 */
453 LIST_FOREACH(child, &mii->mii_phys, mii_list) {
454 /*
455 * Note: we support just one PHY: the internal
456 * or external MII is already selected for us
457 * by the GEM_MIF_CONFIG register.
458 */
459 if (child->mii_phy > 1 || child->mii_inst > 0) {
460 aprint_error_dev(sc->sc_dev,
461 "cannot accommodate MII device"
462 " %s at PHY %d, instance %d\n",
463 device_xname(child->mii_dev),
464 child->mii_phy, child->mii_inst);
465 continue;
466 }
467 sc->sc_phys[child->mii_inst] = child->mii_phy;
468 }
469
470 if (sc->sc_variant != GEM_SUN_ERI)
471 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
472 GEM_MII_DATAPATH_MII);
473
474 /*
475 * XXX - we can really do the following ONLY if the
476 * PHY indeed has the auto negotiation capability!!
477 */
478 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
479 }
480 } else {
481 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
482 gem_ser_mediastatus);
483 /* SERDES or Serialink */
484 if (sc->sc_flags & GEM_SERDES) {
485 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
486 GEM_MII_DATAPATH_SERDES);
487 } else {
488 sc->sc_flags |= GEM_SERIAL;
489 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
490 GEM_MII_DATAPATH_SERIAL);
491 }
492
493 aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
494 sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
495
496 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_AUTO, 0, NULL);
497 /* Check for FDX and HDX capabilities */
498 sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
499 if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
500 ifmedia_add(&mii->mii_media, IFM_ETHER |
501 IFM_1000_SX | IFM_MANUAL | IFM_FDX, 0, NULL);
502 aprint_normal("1000baseSX-FDX, ");
503 }
504 if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
505 ifmedia_add(&mii->mii_media, IFM_ETHER |
506 IFM_1000_SX | IFM_MANUAL | IFM_HDX, 0, NULL);
507 aprint_normal("1000baseSX-HDX, ");
508 }
509 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
510 sc->sc_mii_media = IFM_AUTO;
511 aprint_normal("auto\n");
512
513 gem_pcs_stop(sc, 1);
514 }
515
516 /*
517 * From this point forward, the attachment cannot fail. A failure
518 * before this point releases all resources that may have been
519 * allocated.
520 */
521
522 /* Announce ourselves. */
523 aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
524 ether_sprintf(enaddr));
525
526 /* Get RX FIFO size */
527 sc->sc_rxfifosize = 64 *
528 bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
529 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
530
531 /* Get TX FIFO size */
532 v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
533 aprint_normal(", %uKB TX fifo\n", v / 16);
534
535 /* Initialize ifnet structure. */
536 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
537 ifp->if_softc = sc;
538 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
539 sc->sc_if_flags = ifp->if_flags;
540 #if 0
541 /*
542 * The GEM hardware supports basic TCP checksum offloading only.
543 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
544 * have bugs in the receive checksum, so don't enable it for now.
545 */
546 if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
547 (GEM_IS_APPLE(sc) &&
548 (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
549 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
550 #endif
551 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
552 ifp->if_start = gem_start;
553 ifp->if_ioctl = gem_ioctl;
554 ifp->if_watchdog = gem_watchdog;
555 ifp->if_stop = gem_stop;
556 ifp->if_init = gem_init;
557 IFQ_SET_READY(&ifp->if_snd);
558
559 /*
560 * If we support GigE media, we support jumbo frames too.
561 * Unless we are Apple.
562 */
563 TAILQ_FOREACH(ife, &mii->mii_media.ifm_list, ifm_list) {
564 if (IFM_SUBTYPE(ife->ifm_media) == IFM_1000_T ||
565 IFM_SUBTYPE(ife->ifm_media) == IFM_1000_SX ||
566 IFM_SUBTYPE(ife->ifm_media) == IFM_1000_LX ||
567 IFM_SUBTYPE(ife->ifm_media) == IFM_1000_CX) {
568 if (!GEM_IS_APPLE(sc))
569 sc->sc_ethercom.ec_capabilities
570 |= ETHERCAP_JUMBO_MTU;
571 sc->sc_flags |= GEM_GIGABIT;
572 break;
573 }
574 }
575
576 /* claim 802.1q capability */
577 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
578
579 /* Attach the interface. */
580 if_attach(ifp);
581 if_deferred_start_init(ifp, NULL);
582 ether_ifattach(ifp, enaddr);
583 ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
584
585 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
586 RND_TYPE_NET, RND_FLAG_DEFAULT);
587
588 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
589 NULL, device_xname(sc->sc_dev), "interrupts");
590 #ifdef GEM_COUNTERS
591 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
592 &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
593 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
594 &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
595 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
596 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
597 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
598 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
599 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
600 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
601 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
602 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
603 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
604 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
605 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
606 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
607 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
608 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
609 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
610 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
611 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
612 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
613 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
614 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
615 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
616 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
617 #endif
618
619 callout_init(&sc->sc_tick_ch, 0);
620 callout_setfunc(&sc->sc_tick_ch, gem_tick, sc);
621
622 callout_init(&sc->sc_rx_watchdog, 0);
623 callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
624
625 sc->sc_att_stage = GEM_ATT_FINISHED;
626
627 return;
628 }
629
630 void
631 gem_tick(void *arg)
632 {
633 struct gem_softc *sc = arg;
634 int s;
635
636 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
637 /*
638 * We have to reset everything if we failed to get a
639 * PCS interrupt. Restarting the callout is handled
640 * in gem_pcs_start().
641 */
642 gem_init(&sc->sc_ethercom.ec_if);
643 } else {
644 s = splnet();
645 mii_tick(&sc->sc_mii);
646 splx(s);
647 callout_schedule(&sc->sc_tick_ch, hz);
648 }
649 }
650
651 static int
652 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, uint32_t clr,
653 uint32_t set)
654 {
655 int i;
656 uint32_t reg;
657
658 for (i = TRIES; i--; DELAY(100)) {
659 reg = bus_space_read_4(sc->sc_bustag, h, r);
660 if ((reg & clr) == 0 && (reg & set) == set)
661 return (1);
662 }
663 return (0);
664 }
665
666 void
667 gem_reset(struct gem_softc *sc)
668 {
669 bus_space_tag_t t = sc->sc_bustag;
670 bus_space_handle_t h = sc->sc_h2;
671 int s;
672
673 s = splnet();
674 DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
675 gem_reset_rx(sc);
676 gem_reset_tx(sc);
677
678 /* Do a full reset */
679 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX);
680 if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
681 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
682 splx(s);
683 }
684
685
686 /*
687 * gem_rxdrain:
688 *
689 * Drain the receive queue.
690 */
691 static void
692 gem_rxdrain(struct gem_softc *sc)
693 {
694 struct gem_rxsoft *rxs;
695 int i;
696
697 for (i = 0; i < GEM_NRXDESC; i++) {
698 rxs = &sc->sc_rxsoft[i];
699 if (rxs->rxs_mbuf != NULL) {
700 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
701 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
702 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
703 m_freem(rxs->rxs_mbuf);
704 rxs->rxs_mbuf = NULL;
705 }
706 }
707 }
708
709 /*
710 * Reset the whole thing.
711 */
712 static void
713 gem_stop(struct ifnet *ifp, int disable)
714 {
715 struct gem_softc *sc = ifp->if_softc;
716 struct gem_txsoft *txs;
717
718 DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
719
720 callout_halt(&sc->sc_tick_ch, NULL);
721 callout_halt(&sc->sc_rx_watchdog, NULL);
722 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
723 gem_pcs_stop(sc, disable);
724 else
725 mii_down(&sc->sc_mii);
726
727 /* XXX - Should we reset these instead? */
728 gem_disable_tx(sc);
729 gem_disable_rx(sc);
730
731 /*
732 * Release any queued transmit buffers.
733 */
734 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
735 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
736 if (txs->txs_mbuf != NULL) {
737 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
738 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
739 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
740 m_freem(txs->txs_mbuf);
741 txs->txs_mbuf = NULL;
742 }
743 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
744 }
745
746 /*
747 * Mark the interface down and cancel the watchdog timer.
748 */
749 ifp->if_flags &= ~IFF_RUNNING;
750 sc->sc_if_flags = ifp->if_flags;
751 ifp->if_timer = 0;
752
753 if (disable)
754 gem_rxdrain(sc);
755 }
756
757
758 /*
759 * Reset the receiver
760 */
761 int
762 gem_reset_rx(struct gem_softc *sc)
763 {
764 bus_space_tag_t t = sc->sc_bustag;
765 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
766
767 /*
768 * Resetting while DMA is in progress can cause a bus hang, so we
769 * disable DMA first.
770 */
771 gem_disable_rx(sc);
772 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
773 bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
774 /* Wait till it finishes */
775 if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
776 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
777 /* Wait 5ms extra. */
778 delay(5000);
779
780 /* Finally, reset the ERX */
781 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
782 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
783 /* Wait till it finishes */
784 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
785 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
786 return (1);
787 }
788 return (0);
789 }
790
791
792 /*
793 * Reset the receiver DMA engine.
794 *
795 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
796 * etc in order to reset the receiver DMA engine only and not do a full
797 * reset which amongst others also downs the link and clears the FIFOs.
798 */
799 static void
800 gem_reset_rxdma(struct gem_softc *sc)
801 {
802 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
803 bus_space_tag_t t = sc->sc_bustag;
804 bus_space_handle_t h = sc->sc_h1;
805 int i;
806
807 if (gem_reset_rx(sc) != 0) {
808 gem_init(ifp);
809 return;
810 }
811 for (i = 0; i < GEM_NRXDESC; i++)
812 if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
813 GEM_UPDATE_RXDESC(sc, i);
814 sc->sc_rxptr = 0;
815 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
816 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
817
818 /* Reprogram Descriptor Ring Base Addresses */
819 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
820 ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32);
821 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
822
823 /* Redo ERX Configuration */
824 gem_rx_common(sc);
825
826 /* Give the receiver a swift kick */
827 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
828 }
829
830 /*
831 * Common RX configuration for gem_init() and gem_reset_rxdma().
832 */
833 static void
834 gem_rx_common(struct gem_softc *sc)
835 {
836 bus_space_tag_t t = sc->sc_bustag;
837 bus_space_handle_t h = sc->sc_h1;
838 uint32_t v;
839
840 /* Encode Receive Descriptor ring size: four possible values */
841 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
842
843 /* Set receive h/w checksum offset */
844 #ifdef INET
845 v |= (ETHER_HDR_LEN + sizeof(struct ip) +
846 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
847 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
848 #endif
849
850 /* Enable RX DMA */
851 bus_space_write_4(t, h, GEM_RX_CONFIG,
852 v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
853 (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
854
855 /*
856 * The following value is for an OFF Threshold of about 3/4 full
857 * and an ON Threshold of 1/4 full.
858 */
859 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
860 (3 * sc->sc_rxfifosize / 256) |
861 ((sc->sc_rxfifosize / 256) << 12));
862 bus_space_write_4(t, h, GEM_RX_BLANKING,
863 (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
864 }
865
866 /*
867 * Reset the transmitter
868 */
869 int
870 gem_reset_tx(struct gem_softc *sc)
871 {
872 bus_space_tag_t t = sc->sc_bustag;
873 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
874
875 /*
876 * Resetting while DMA is in progress can cause a bus hang, so we
877 * disable DMA first.
878 */
879 gem_disable_tx(sc);
880 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
881 bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
882 /* Wait till it finishes */
883 if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
884 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
885 /* Wait 5ms extra. */
886 delay(5000);
887
888 /* Finally, reset the ETX */
889 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
890 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
891 /* Wait till it finishes */
892 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
893 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
894 return (1);
895 }
896 return (0);
897 }
898
899 /*
900 * disable receiver.
901 */
902 int
903 gem_disable_rx(struct gem_softc *sc)
904 {
905 bus_space_tag_t t = sc->sc_bustag;
906 bus_space_handle_t h = sc->sc_h1;
907 uint32_t cfg;
908
909 /* Flip the enable bit */
910 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
911 cfg &= ~GEM_MAC_RX_ENABLE;
912 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
913 bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
914 /* Wait for it to finish */
915 return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
916 }
917
918 /*
919 * disable transmitter.
920 */
921 int
922 gem_disable_tx(struct gem_softc *sc)
923 {
924 bus_space_tag_t t = sc->sc_bustag;
925 bus_space_handle_t h = sc->sc_h1;
926 uint32_t cfg;
927
928 /* Flip the enable bit */
929 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
930 cfg &= ~GEM_MAC_TX_ENABLE;
931 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
932 bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
933 /* Wait for it to finish */
934 return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
935 }
936
937 /*
938 * Initialize interface.
939 */
940 int
941 gem_meminit(struct gem_softc *sc)
942 {
943 struct gem_rxsoft *rxs;
944 int i, error;
945
946 /*
947 * Initialize the transmit descriptor ring.
948 */
949 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
950 for (i = 0; i < GEM_NTXDESC; i++) {
951 sc->sc_txdescs[i].gd_flags = 0;
952 sc->sc_txdescs[i].gd_addr = 0;
953 }
954 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
955 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
956 sc->sc_txfree = GEM_NTXDESC-1;
957 sc->sc_txnext = 0;
958 sc->sc_txwin = 0;
959
960 /*
961 * Initialize the receive descriptor and receive job
962 * descriptor rings.
963 */
964 for (i = 0; i < GEM_NRXDESC; i++) {
965 rxs = &sc->sc_rxsoft[i];
966 if (rxs->rxs_mbuf == NULL) {
967 if ((error = gem_add_rxbuf(sc, i)) != 0) {
968 aprint_error_dev(sc->sc_dev,
969 "unable to allocate or map rx "
970 "buffer %d, error = %d\n",
971 i, error);
972 /*
973 * XXX Should attempt to run with fewer receive
974 * XXX buffers instead of just failing.
975 */
976 gem_rxdrain(sc);
977 return (1);
978 }
979 } else
980 GEM_INIT_RXDESC(sc, i);
981 }
982 sc->sc_rxptr = 0;
983 sc->sc_meminited = 1;
984 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
985 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
986
987 return (0);
988 }
989
990 static int
991 gem_ringsize(int sz)
992 {
993 switch (sz) {
994 case 32:
995 return GEM_RING_SZ_32;
996 case 64:
997 return GEM_RING_SZ_64;
998 case 128:
999 return GEM_RING_SZ_128;
1000 case 256:
1001 return GEM_RING_SZ_256;
1002 case 512:
1003 return GEM_RING_SZ_512;
1004 case 1024:
1005 return GEM_RING_SZ_1024;
1006 case 2048:
1007 return GEM_RING_SZ_2048;
1008 case 4096:
1009 return GEM_RING_SZ_4096;
1010 case 8192:
1011 return GEM_RING_SZ_8192;
1012 default:
1013 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1014 return GEM_RING_SZ_32;
1015 }
1016 }
1017
1018
1019 /*
1020 * Start PCS
1021 */
1022 void
1023 gem_pcs_start(struct gem_softc *sc)
1024 {
1025 bus_space_tag_t t = sc->sc_bustag;
1026 bus_space_handle_t h = sc->sc_h1;
1027 uint32_t v;
1028
1029 #ifdef GEM_DEBUG
1030 aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1031 #endif
1032
1033 /*
1034 * Set up. We must disable the MII before modifying the
1035 * GEM_MII_ANAR register
1036 */
1037 if (sc->sc_flags & GEM_SERDES) {
1038 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1039 GEM_MII_DATAPATH_SERDES);
1040 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1041 GEM_MII_SLINK_LOOPBACK);
1042 } else {
1043 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1044 GEM_MII_DATAPATH_SERIAL);
1045 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1046 }
1047 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1048 v = bus_space_read_4(t, h, GEM_MII_ANAR);
1049 v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1050 if (IFM_SUBTYPE(sc->sc_mii_media) == IFM_AUTO)
1051 v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1052 else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_FDX) != 0) {
1053 v |= GEM_MII_ANEG_FUL_DUPLX;
1054 v &= ~GEM_MII_ANEG_HLF_DUPLX;
1055 } else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_HDX) != 0) {
1056 v &= ~GEM_MII_ANEG_FUL_DUPLX;
1057 v |= GEM_MII_ANEG_HLF_DUPLX;
1058 }
1059
1060 /* Configure link. */
1061 bus_space_write_4(t, h, GEM_MII_ANAR, v);
1062 bus_space_write_4(t, h, GEM_MII_CONTROL,
1063 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1064 bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1065 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1066
1067 /* Start the 10 second timer */
1068 callout_schedule(&sc->sc_tick_ch, hz * 10);
1069 }
1070
1071 /*
1072 * Stop PCS
1073 */
1074 void
1075 gem_pcs_stop(struct gem_softc *sc, int disable)
1076 {
1077 bus_space_tag_t t = sc->sc_bustag;
1078 bus_space_handle_t h = sc->sc_h1;
1079
1080 #ifdef GEM_DEBUG
1081 aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1082 #endif
1083
1084 /* Tell link partner that we're going away */
1085 bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1086
1087 /*
1088 * Disable PCS MII. The documentation suggests that setting
1089 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1090 * negotiation will shut down the link. However, it appears
1091 * that we also need to unset the datapath mode.
1092 */
1093 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1094 bus_space_write_4(t, h, GEM_MII_CONTROL,
1095 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1096 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1097 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1098
1099 if (disable) {
1100 if (sc->sc_flags & GEM_SERDES)
1101 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1102 GEM_MII_SLINK_POWER_OFF);
1103 else
1104 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1105 GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1106 }
1107
1108 sc->sc_flags &= ~GEM_LINK;
1109 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1110 sc->sc_mii.mii_media_status = IFM_AVALID;
1111 }
1112
1113
1114 /*
1115 * Initialization of interface; set up initialization block
1116 * and transmit/receive descriptor rings.
1117 */
1118 int
1119 gem_init(struct ifnet *ifp)
1120 {
1121 struct gem_softc *sc = ifp->if_softc;
1122 bus_space_tag_t t = sc->sc_bustag;
1123 bus_space_handle_t h = sc->sc_h1;
1124 int rc = 0, s;
1125 u_int max_frame_size;
1126 uint32_t v;
1127
1128 s = splnet();
1129
1130 DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1131 /*
1132 * Initialization sequence. The numbered steps below correspond
1133 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1134 * Channel Engine manual (part of the PCIO manual).
1135 * See also the STP2002-STQ document from Sun Microsystems.
1136 */
1137
1138 /* step 1 & 2. Reset the Ethernet Channel */
1139 gem_stop(ifp, 0);
1140 gem_reset(sc);
1141 DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1142
1143 /* Re-initialize the MIF */
1144 gem_mifinit(sc);
1145
1146 /* Set up correct datapath for non-SERDES/Serialink */
1147 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1148 sc->sc_variant != GEM_SUN_ERI)
1149 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1150 GEM_MII_DATAPATH_MII);
1151
1152 /* Call MI reset function if any */
1153 if (sc->sc_hwreset)
1154 (*sc->sc_hwreset)(sc);
1155
1156 /* step 3. Setup data structures in host memory */
1157 if (gem_meminit(sc) != 0) {
1158 splx(s);
1159 return 1;
1160 }
1161
1162 /* step 4. TX MAC registers & counters */
1163 gem_init_regs(sc);
1164 max_frame_size = uimax(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1165 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1166 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1167 max_frame_size += ETHER_VLAN_ENCAP_LEN;
1168 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1169 max_frame_size|/* burst size */(0x2000<<16));
1170
1171 /* step 5. RX MAC registers & counters */
1172 gem_setladrf(sc);
1173
1174 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1175 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI,
1176 ((uint64_t)GEM_CDTXADDR(sc, 0)) >> 32);
1177 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1178
1179 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
1180 ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32);
1181 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1182
1183 /* step 8. Global Configuration & Interrupt Mask */
1184 gem_inten(sc);
1185 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1186 GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1187 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1188 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1189 GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1190
1191 /* step 9. ETX Configuration: use mostly default values */
1192
1193 /* Enable TX DMA */
1194 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1195 bus_space_write_4(t, h, GEM_TX_CONFIG,
1196 v | GEM_TX_CONFIG_TXDMA_EN |
1197 (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1198 GEM_TX_CONFIG_TXFIFO_TH));
1199 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1200
1201 /* step 10. ERX Configuration */
1202 gem_rx_common(sc);
1203
1204 /* step 11. Configure Media */
1205 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1206 (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1207 goto out;
1208
1209 /* step 12. RX_MAC Configuration Register */
1210 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1211 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1212 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1213
1214 /* step 14. Issue Transmit Pending command */
1215
1216 /* Call MI initialization function if any */
1217 if (sc->sc_hwinit)
1218 (*sc->sc_hwinit)(sc);
1219
1220 /* step 15. Give the receiver a swift kick */
1221 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1222
1223 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1224 /* Configure PCS */
1225 gem_pcs_start(sc);
1226 else
1227 /* Start the one second timer. */
1228 callout_schedule(&sc->sc_tick_ch, hz);
1229
1230 sc->sc_flags &= ~GEM_LINK;
1231 ifp->if_flags |= IFF_RUNNING;
1232 ifp->if_timer = 0;
1233 sc->sc_if_flags = ifp->if_flags;
1234 out:
1235 splx(s);
1236
1237 return (0);
1238 }
1239
1240 void
1241 gem_init_regs(struct gem_softc *sc)
1242 {
1243 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1244 bus_space_tag_t t = sc->sc_bustag;
1245 bus_space_handle_t h = sc->sc_h1;
1246 const u_char *laddr = CLLADDR(ifp->if_sadl);
1247 uint32_t v;
1248
1249 /* These regs are not cleared on reset */
1250 if (!sc->sc_inited) {
1251
1252 /* Load recommended values */
1253 bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1254 bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1255 bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1256
1257 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1258 /* Max frame and max burst size */
1259 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1260 ETHER_MAX_LEN | (0x2000<<16));
1261
1262 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1263 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1264 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1265 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1266 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1267 ((laddr[5]<<8)|laddr[4])&0x3ff);
1268
1269 /* Secondary MAC addr set to 0:0:0:0:0:0 */
1270 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1271 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1272 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1273
1274 /* MAC control addr set to 01:80:c2:00:00:01 */
1275 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1276 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1277 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1278
1279 /* MAC filter addr set to 0:0:0:0:0:0 */
1280 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1281 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1282 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1283
1284 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1285 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1286
1287 sc->sc_inited = 1;
1288 }
1289
1290 /* Counters need to be zeroed */
1291 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1292 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1293 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1294 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1295 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1296 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1297 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1298 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1299 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1300 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1301 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1302
1303 /* Set XOFF PAUSE time. */
1304 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1305
1306 /*
1307 * Set the internal arbitration to "infinite" bursts of the
1308 * maximum length of 31 * 64 bytes so DMA transfers aren't
1309 * split up in cache line size chunks. This greatly improves
1310 * especially RX performance.
1311 * Enable silicon bug workarounds for the Apple variants.
1312 */
1313 bus_space_write_4(t, h, GEM_CONFIG,
1314 GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1315 ((sc->sc_flags & GEM_PCI) ?
1316 GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1317 GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1318
1319 /*
1320 * Set the station address.
1321 */
1322 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1323 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1324 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1325
1326 /*
1327 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1328 */
1329 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1330 v = GEM_MAC_XIF_TX_MII_ENA;
1331 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1332 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1333 v |= GEM_MAC_XIF_FDPLX_LED;
1334 if (sc->sc_flags & GEM_GIGABIT)
1335 v |= GEM_MAC_XIF_GMII_MODE;
1336 }
1337 } else {
1338 v |= GEM_MAC_XIF_GMII_MODE;
1339 }
1340 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1341 }
1342
1343 #ifdef GEM_DEBUG
1344 static void
1345 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1346 {
1347 int i;
1348
1349 for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1350 printf("descriptor %d:\t", i);
1351 printf("gd_flags: 0x%016" PRIx64 "\t",
1352 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1353 printf("gd_addr: 0x%016" PRIx64 "\n",
1354 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1355 if (i == lastdesc)
1356 break;
1357 }
1358 }
1359 #endif
1360
1361 static void
1362 gem_start(struct ifnet *ifp)
1363 {
1364 struct gem_softc *sc = ifp->if_softc;
1365 struct mbuf *m0, *m;
1366 struct gem_txsoft *txs;
1367 bus_dmamap_t dmamap;
1368 int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1369 #ifdef GEM_DEBUG
1370 int otxnext;
1371 #endif
1372 uint64_t flags = 0;
1373
1374 if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
1375 return;
1376
1377 /*
1378 * Remember the previous number of free descriptors and
1379 * the first descriptor we'll use.
1380 */
1381 ofree = sc->sc_txfree;
1382 #ifdef GEM_DEBUG
1383 otxnext = sc->sc_txnext;
1384 #endif
1385
1386 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1387 device_xname(sc->sc_dev), ofree, otxnext));
1388
1389 /*
1390 * Loop through the send queue, setting up transmit descriptors
1391 * until we drain the queue, or use up all available transmit
1392 * descriptors.
1393 */
1394 #ifdef INET
1395 next:
1396 #endif
1397 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1398 sc->sc_txfree != 0) {
1399 /*
1400 * Grab a packet off the queue.
1401 */
1402 IFQ_POLL(&ifp->if_snd, m0);
1403 if (m0 == NULL)
1404 break;
1405 m = NULL;
1406
1407 dmamap = txs->txs_dmamap;
1408
1409 /*
1410 * Load the DMA map. If this fails, the packet either
1411 * didn't fit in the alloted number of segments, or we were
1412 * short on resources. In this case, we'll copy and try
1413 * again.
1414 */
1415 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1416 BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0 ||
1417 (m0->m_pkthdr.len < ETHER_MIN_TX &&
1418 dmamap->dm_nsegs == GEM_NTXSEGS)) {
1419 if (m0->m_pkthdr.len > MCLBYTES) {
1420 aprint_error_dev(sc->sc_dev,
1421 "unable to allocate jumbo Tx cluster\n");
1422 IFQ_DEQUEUE(&ifp->if_snd, m0);
1423 m_freem(m0);
1424 continue;
1425 }
1426 MGETHDR(m, M_DONTWAIT, MT_DATA);
1427 if (m == NULL) {
1428 aprint_error_dev(sc->sc_dev,
1429 "unable to allocate Tx mbuf\n");
1430 break;
1431 }
1432 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1433 if (m0->m_pkthdr.len > MHLEN) {
1434 MCLGET(m, M_DONTWAIT);
1435 if ((m->m_flags & M_EXT) == 0) {
1436 aprint_error_dev(sc->sc_dev,
1437 "unable to allocate Tx cluster\n");
1438 m_freem(m);
1439 break;
1440 }
1441 }
1442 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1443 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1444 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1445 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1446 if (error) {
1447 aprint_error_dev(sc->sc_dev,
1448 "unable to load Tx buffer, error = %d\n",
1449 error);
1450 break;
1451 }
1452 }
1453
1454 /*
1455 * Ensure we have enough descriptors free to describe
1456 * the packet.
1457 */
1458 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1459 (sc->sc_txfree - 1) : sc->sc_txfree)) {
1460 /*
1461 * Not enough free descriptors to transmit this
1462 * packet.
1463 */
1464 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1465 if (m != NULL)
1466 m_freem(m);
1467 break;
1468 }
1469
1470 IFQ_DEQUEUE(&ifp->if_snd, m0);
1471 if (m != NULL) {
1472 m_freem(m0);
1473 m0 = m;
1474 }
1475
1476 /*
1477 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1478 */
1479
1480 /* Sync the DMA map. */
1481 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1482 BUS_DMASYNC_PREWRITE);
1483
1484 /*
1485 * Initialize the transmit descriptors.
1486 */
1487 firsttx = sc->sc_txnext;
1488 for (nexttx = firsttx, seg = 0;
1489 seg < dmamap->dm_nsegs;
1490 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1491
1492 /*
1493 * If this is the first descriptor we're
1494 * enqueueing, set the start of packet flag,
1495 * and the checksum stuff if we want the hardware
1496 * to do it.
1497 */
1498 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1499 if (nexttx == firsttx) {
1500 flags |= GEM_TD_START_OF_PACKET;
1501 #ifdef INET
1502 /* h/w checksum */
1503 if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1504 m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1505 struct ether_header *eh;
1506 uint16_t offset, start;
1507
1508 eh = mtod(m0, struct ether_header *);
1509 switch (ntohs(eh->ether_type)) {
1510 case ETHERTYPE_IP:
1511 start = ETHER_HDR_LEN;
1512 break;
1513 case ETHERTYPE_VLAN:
1514 start = ETHER_HDR_LEN +
1515 ETHER_VLAN_ENCAP_LEN;
1516 break;
1517 default:
1518 /* unsupported, drop it */
1519 bus_dmamap_unload(sc->sc_dmatag,
1520 dmamap);
1521 m_freem(m0);
1522 goto next;
1523 }
1524 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1525 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1526 flags |= (start <<
1527 GEM_TD_CXSUM_STARTSHFT) |
1528 (offset <<
1529 GEM_TD_CXSUM_STUFFSHFT) |
1530 GEM_TD_CXSUM_ENABLE;
1531 }
1532 #endif
1533 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1534 sc->sc_txwin = 0;
1535 flags |= GEM_TD_INTERRUPT_ME;
1536 }
1537 }
1538 sc->sc_txdescs[nexttx].gd_addr =
1539 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1540 if (seg == dmamap->dm_nsegs - 1) {
1541 flags |= GEM_TD_END_OF_PACKET;
1542 } else {
1543 /* last flag set outside of loop */
1544 sc->sc_txdescs[nexttx].gd_flags =
1545 GEM_DMA_WRITE(sc, flags);
1546 }
1547 lasttx = nexttx;
1548 }
1549 if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1550 /* add padding buffer at end of chain */
1551 flags &= ~GEM_TD_END_OF_PACKET;
1552 sc->sc_txdescs[lasttx].gd_flags =
1553 GEM_DMA_WRITE(sc, flags);
1554
1555 sc->sc_txdescs[nexttx].gd_addr =
1556 GEM_DMA_WRITE(sc,
1557 sc->sc_nulldmamap->dm_segs[0].ds_addr);
1558 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1559 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1560 lasttx = nexttx;
1561 nexttx = GEM_NEXTTX(nexttx);
1562 seg++;
1563 }
1564 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1565
1566 KASSERT(lasttx != -1);
1567
1568 /*
1569 * Store a pointer to the packet so we can free it later,
1570 * and remember what txdirty will be once the packet is
1571 * done.
1572 */
1573 txs->txs_mbuf = m0;
1574 txs->txs_firstdesc = sc->sc_txnext;
1575 txs->txs_lastdesc = lasttx;
1576 txs->txs_ndescs = seg;
1577
1578 #ifdef GEM_DEBUG
1579 if (ifp->if_flags & IFF_DEBUG) {
1580 printf(" gem_start %p transmit chain:\n", txs);
1581 gem_txsoft_print(sc, txs->txs_firstdesc,
1582 txs->txs_lastdesc);
1583 }
1584 #endif
1585
1586 /* Sync the descriptors we're using. */
1587 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1588 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1589
1590 /* Advance the tx pointer. */
1591 sc->sc_txfree -= txs->txs_ndescs;
1592 sc->sc_txnext = nexttx;
1593
1594 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1595 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1596
1597 /*
1598 * Pass the packet to any BPF listeners.
1599 */
1600 bpf_mtap(ifp, m0, BPF_D_OUT);
1601 }
1602
1603 if (sc->sc_txfree != ofree) {
1604 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1605 device_xname(sc->sc_dev), lasttx, otxnext));
1606 /*
1607 * The entire packet chain is set up.
1608 * Kick the transmitter.
1609 */
1610 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1611 device_xname(sc->sc_dev), nexttx));
1612 bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1613 sc->sc_txnext);
1614
1615 /* Set a watchdog timer in case the chip flakes out. */
1616 ifp->if_timer = 5;
1617 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1618 device_xname(sc->sc_dev), ifp->if_timer));
1619 }
1620 }
1621
1622 /*
1623 * Transmit interrupt.
1624 */
1625 int
1626 gem_tint(struct gem_softc *sc)
1627 {
1628 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1629 bus_space_tag_t t = sc->sc_bustag;
1630 bus_space_handle_t mac = sc->sc_h1;
1631 struct gem_txsoft *txs;
1632 int txlast;
1633 int progress = 0;
1634 uint32_t v;
1635
1636 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1637
1638 DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1639
1640 /* Unload collision counters ... */
1641 v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1642 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1643 if_statadd_ref(nsr, if_collisions, v +
1644 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1645 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT));
1646 if_statadd_ref(nsr, if_oerrors, v);
1647
1648 /* ... then clear the hardware counters. */
1649 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1650 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1651 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1652 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1653
1654 /*
1655 * Go through our Tx list and free mbufs for those
1656 * frames that have been transmitted.
1657 */
1658 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1659 /*
1660 * In theory, we could harvest some descriptors before
1661 * the ring is empty, but that's a bit complicated.
1662 *
1663 * GEM_TX_COMPLETION points to the last descriptor
1664 * processed +1.
1665 *
1666 * Let's assume that the NIC writes back to the Tx
1667 * descriptors before it updates the completion
1668 * register. If the NIC has posted writes to the
1669 * Tx descriptors, PCI ordering requires that the
1670 * posted writes flush to RAM before the register-read
1671 * finishes. So let's read the completion register,
1672 * before syncing the descriptors, so that we
1673 * examine Tx descriptors that are at least as
1674 * current as the completion register.
1675 */
1676 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1677 DPRINTF(sc,
1678 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1679 txs->txs_lastdesc, txlast));
1680 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1681 if (txlast >= txs->txs_firstdesc &&
1682 txlast <= txs->txs_lastdesc)
1683 break;
1684 } else if (txlast >= txs->txs_firstdesc ||
1685 txlast <= txs->txs_lastdesc)
1686 break;
1687
1688 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1689 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1690
1691 #ifdef GEM_DEBUG /* XXX DMA synchronization? */
1692 if (ifp->if_flags & IFF_DEBUG) {
1693 printf(" txsoft %p transmit chain:\n", txs);
1694 gem_txsoft_print(sc, txs->txs_firstdesc,
1695 txs->txs_lastdesc);
1696 }
1697 #endif
1698
1699
1700 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1701 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1702
1703 sc->sc_txfree += txs->txs_ndescs;
1704
1705 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1706 0, txs->txs_dmamap->dm_mapsize,
1707 BUS_DMASYNC_POSTWRITE);
1708 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1709 if (txs->txs_mbuf != NULL) {
1710 m_freem(txs->txs_mbuf);
1711 txs->txs_mbuf = NULL;
1712 }
1713
1714 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1715
1716 if_statinc_ref(nsr, if_opackets);
1717 progress = 1;
1718 }
1719
1720 IF_STAT_PUTREF(ifp);
1721
1722 #if 0
1723 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1724 "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1725 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1726 ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1727 GEM_TX_DATA_PTR_HI) << 32) |
1728 bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1729 GEM_TX_DATA_PTR_LO),
1730 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1731 #endif
1732
1733 if (progress) {
1734 if (sc->sc_txfree == GEM_NTXDESC - 1)
1735 sc->sc_txwin = 0;
1736
1737 ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1738 if_schedule_deferred_start(ifp);
1739 }
1740 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1741 device_xname(sc->sc_dev), ifp->if_timer));
1742
1743 return (1);
1744 }
1745
1746 /*
1747 * Receive interrupt.
1748 */
1749 int
1750 gem_rint(struct gem_softc *sc)
1751 {
1752 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1753 bus_space_tag_t t = sc->sc_bustag;
1754 bus_space_handle_t h = sc->sc_h1;
1755 struct gem_rxsoft *rxs;
1756 struct mbuf *m;
1757 uint64_t rxstat;
1758 uint32_t rxcomp;
1759 int i, len, progress = 0;
1760
1761 DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1762
1763 /*
1764 * Ignore spurious interrupt that sometimes occurs before
1765 * we are set up when we network boot.
1766 */
1767 if (!sc->sc_meminited)
1768 return 1;
1769
1770 /*
1771 * Read the completion register once. This limits
1772 * how long the following loop can execute.
1773 */
1774 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1775
1776 /*
1777 * XXX Read the lastrx only once at the top for speed.
1778 */
1779 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1780 sc->sc_rxptr, rxcomp));
1781
1782 /*
1783 * Go into the loop at least once.
1784 */
1785 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1786 i = GEM_NEXTRX(i)) {
1787 rxs = &sc->sc_rxsoft[i];
1788
1789 GEM_CDRXSYNC(sc, i,
1790 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1791
1792 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1793
1794 if (rxstat & GEM_RD_OWN) {
1795 GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1796 /*
1797 * We have processed all of the receive buffers.
1798 */
1799 break;
1800 }
1801
1802 progress++;
1803
1804 if (rxstat & GEM_RD_BAD_CRC) {
1805 if_statinc(ifp, if_ierrors);
1806 aprint_error_dev(sc->sc_dev,
1807 "receive error: CRC error\n");
1808 GEM_INIT_RXDESC(sc, i);
1809 continue;
1810 }
1811
1812 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1813 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1814 #ifdef GEM_DEBUG
1815 if (ifp->if_flags & IFF_DEBUG) {
1816 printf(" rxsoft %p descriptor %d: ", rxs, i);
1817 printf("gd_flags: 0x%016llx\t", (long long)
1818 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1819 printf("gd_addr: 0x%016llx\n", (long long)
1820 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1821 }
1822 #endif
1823
1824 /* No errors; receive the packet. */
1825 len = GEM_RD_BUFLEN(rxstat);
1826
1827 /*
1828 * Allocate a new mbuf cluster. If that fails, we are
1829 * out of memory, and must drop the packet and recycle
1830 * the buffer that's already attached to this descriptor.
1831 */
1832 m = rxs->rxs_mbuf;
1833 if (gem_add_rxbuf(sc, i) != 0) {
1834 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1835 if_statinc(ifp, if_ierrors);
1836 aprint_error_dev(sc->sc_dev,
1837 "receive error: RX no buffer space\n");
1838 GEM_INIT_RXDESC(sc, i);
1839 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1840 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1841 continue;
1842 }
1843 m->m_data += 2; /* We're already off by two */
1844
1845 m_set_rcvif(m, ifp);
1846 m->m_pkthdr.len = m->m_len = len;
1847
1848 #ifdef INET
1849 /* hardware checksum */
1850 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1851 struct ether_header *eh;
1852 struct ip *ip;
1853 int32_t hlen, pktlen;
1854
1855 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1856 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1857 ETHER_VLAN_ENCAP_LEN;
1858 eh = (struct ether_header *) (mtod(m, char *) +
1859 ETHER_VLAN_ENCAP_LEN);
1860 } else {
1861 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1862 eh = mtod(m, struct ether_header *);
1863 }
1864 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1865 goto swcsum;
1866 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1867
1868 /* IPv4 only */
1869 if (ip->ip_v != IPVERSION)
1870 goto swcsum;
1871
1872 hlen = ip->ip_hl << 2;
1873 if (hlen < sizeof(struct ip))
1874 goto swcsum;
1875
1876 /*
1877 * bail if too short, has random trailing garbage,
1878 * truncated, fragment, or has ethernet pad.
1879 */
1880 if ((ntohs(ip->ip_len) < hlen) ||
1881 (ntohs(ip->ip_len) != pktlen) ||
1882 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1883 goto swcsum;
1884
1885 switch (ip->ip_p) {
1886 case IPPROTO_TCP:
1887 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1888 goto swcsum;
1889 if (pktlen < (hlen + sizeof(struct tcphdr)))
1890 goto swcsum;
1891 m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1892 break;
1893 case IPPROTO_UDP:
1894 /* FALLTHROUGH */
1895 default:
1896 goto swcsum;
1897 }
1898
1899 /* the uncomplemented sum is expected */
1900 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1901
1902 /* if the pkt had ip options, we have to deduct them */
1903 if (hlen > sizeof(struct ip)) {
1904 uint16_t *opts;
1905 uint32_t optsum, temp;
1906
1907 optsum = 0;
1908 temp = hlen - sizeof(struct ip);
1909 opts = (uint16_t *) ((char *) ip +
1910 sizeof(struct ip));
1911
1912 while (temp > 1) {
1913 optsum += ntohs(*opts++);
1914 temp -= 2;
1915 }
1916 while (optsum >> 16)
1917 optsum = (optsum >> 16) +
1918 (optsum & 0xffff);
1919
1920 /* Deduct ip opts sum from hwsum. */
1921 m->m_pkthdr.csum_data += (uint16_t)~optsum;
1922
1923 while (m->m_pkthdr.csum_data >> 16)
1924 m->m_pkthdr.csum_data =
1925 (m->m_pkthdr.csum_data >> 16) +
1926 (m->m_pkthdr.csum_data &
1927 0xffff);
1928 }
1929
1930 m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1931 M_CSUM_NO_PSEUDOHDR;
1932 } else
1933 swcsum:
1934 m->m_pkthdr.csum_flags = 0;
1935 #endif
1936 /* Pass it on. */
1937 if_percpuq_enqueue(ifp->if_percpuq, m);
1938 }
1939
1940 if (progress) {
1941 /* Update the receive pointer. */
1942 if (i == sc->sc_rxptr) {
1943 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1944 #ifdef GEM_DEBUG
1945 if (ifp->if_flags & IFF_DEBUG)
1946 printf("%s: rint: ring wrap\n",
1947 device_xname(sc->sc_dev));
1948 #endif
1949 }
1950 sc->sc_rxptr = i;
1951 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1952 }
1953 #ifdef GEM_COUNTERS
1954 if (progress <= 4) {
1955 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1956 } else if (progress < 32) {
1957 if (progress < 16)
1958 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1959 else
1960 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1961
1962 } else {
1963 if (progress < 64)
1964 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1965 else
1966 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1967 }
1968 #endif
1969
1970 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1971 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1972
1973 /* Read error counters ... */
1974 if_statadd(ifp, if_ierrors,
1975 bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1976 bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1977 bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1978 bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL));
1979
1980 /* ... then clear the hardware counters. */
1981 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1982 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1983 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1984 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1985
1986 return (1);
1987 }
1988
1989
1990 /*
1991 * gem_add_rxbuf:
1992 *
1993 * Add a receive buffer to the indicated descriptor.
1994 */
1995 int
1996 gem_add_rxbuf(struct gem_softc *sc, int idx)
1997 {
1998 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1999 struct mbuf *m;
2000 int error;
2001
2002 MGETHDR(m, M_DONTWAIT, MT_DATA);
2003 if (m == NULL)
2004 return (ENOBUFS);
2005
2006 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2007 MCLGET(m, M_DONTWAIT);
2008 if ((m->m_flags & M_EXT) == 0) {
2009 m_freem(m);
2010 return (ENOBUFS);
2011 }
2012
2013 #ifdef GEM_DEBUG
2014 /* bzero the packet to check DMA */
2015 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2016 #endif
2017
2018 if (rxs->rxs_mbuf != NULL)
2019 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2020
2021 rxs->rxs_mbuf = m;
2022
2023 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2024 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2025 BUS_DMA_READ | BUS_DMA_NOWAIT);
2026 if (error) {
2027 aprint_error_dev(sc->sc_dev,
2028 "can't load rx DMA map %d, error = %d\n", idx, error);
2029 panic("gem_add_rxbuf"); /* XXX */
2030 }
2031
2032 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2033 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2034
2035 GEM_INIT_RXDESC(sc, idx);
2036
2037 return (0);
2038 }
2039
2040
2041 int
2042 gem_eint(struct gem_softc *sc, u_int status)
2043 {
2044 char bits[128];
2045 uint32_t r, v;
2046
2047 if ((status & GEM_INTR_MIF) != 0) {
2048 printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2049 return (1);
2050 }
2051
2052 if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2053 gem_reset_rxdma(sc);
2054 return (1);
2055 }
2056
2057 if (status & GEM_INTR_BERR) {
2058 if (sc->sc_flags & GEM_PCI)
2059 r = GEM_ERROR_STATUS;
2060 else
2061 r = GEM_SBUS_ERROR_STATUS;
2062 bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2063 v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2064 aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2065 v);
2066 return (1);
2067 }
2068 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2069 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2070
2071 return (1);
2072 }
2073
2074
2075 /*
2076 * PCS interrupts.
2077 * We should receive these when the link status changes, but sometimes
2078 * we don't receive them for link up. We compensate for this in the
2079 * gem_tick() callout.
2080 */
2081 int
2082 gem_pint(struct gem_softc *sc)
2083 {
2084 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2085 bus_space_tag_t t = sc->sc_bustag;
2086 bus_space_handle_t h = sc->sc_h1;
2087 uint32_t v, v2;
2088
2089 /*
2090 * Clear the PCS interrupt from GEM_STATUS. The PCS register is
2091 * latched, so we have to read it twice. There is only one bit in
2092 * use, so the value is meaningless.
2093 */
2094 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2095 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2096
2097 if ((ifp->if_flags & IFF_UP) == 0)
2098 return 1;
2099
2100 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2101 return 1;
2102
2103 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2104 /* If we see remote fault, our link partner is probably going away */
2105 if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2106 gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2107 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2108 /* Otherwise, we may need to wait after auto-negotiation completes */
2109 } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2110 GEM_MII_STATUS_ANEG_CPT) {
2111 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2112 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2113 }
2114 if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2115 if (sc->sc_flags & GEM_LINK) {
2116 return 1;
2117 }
2118 callout_stop(&sc->sc_tick_ch);
2119 v = bus_space_read_4(t, h, GEM_MII_ANAR);
2120 v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2121 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2122 sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2123 v &= v2;
2124 if (v & GEM_MII_ANEG_FUL_DUPLX) {
2125 sc->sc_mii.mii_media_active |= IFM_FDX;
2126 #ifdef GEM_DEBUG
2127 aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2128 #endif
2129 } else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2130 sc->sc_mii.mii_media_active |= IFM_HDX;
2131 #ifdef GEM_DEBUG
2132 aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2133 #endif
2134 } else {
2135 #ifdef GEM_DEBUG
2136 aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2137 #endif
2138 }
2139 gem_statuschange(sc);
2140 } else {
2141 if ((sc->sc_flags & GEM_LINK) == 0) {
2142 return 1;
2143 }
2144 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2145 sc->sc_mii.mii_media_status = IFM_AVALID;
2146 #ifdef GEM_DEBUG
2147 aprint_debug_dev(sc->sc_dev, "link down\n");
2148 #endif
2149 gem_statuschange(sc);
2150
2151 /* Start the 10 second timer */
2152 callout_schedule(&sc->sc_tick_ch, hz * 10);
2153 }
2154 return 1;
2155 }
2156
2157
2158
2159 int
2160 gem_intr(void *v)
2161 {
2162 struct gem_softc *sc = v;
2163 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2164 bus_space_tag_t t = sc->sc_bustag;
2165 bus_space_handle_t h = sc->sc_h1;
2166 uint32_t status;
2167 int r = 0;
2168 #ifdef GEM_DEBUG
2169 char bits[128];
2170 #endif
2171
2172 /* XXX We should probably mask out interrupts until we're done */
2173
2174 sc->sc_ev_intr.ev_count++;
2175
2176 status = bus_space_read_4(t, h, GEM_STATUS);
2177 #ifdef GEM_DEBUG
2178 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2179 #endif
2180 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2181 device_xname(sc->sc_dev), (status >> 19), bits));
2182
2183 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2184 r |= gem_eint(sc, status);
2185
2186 /* We don't bother with GEM_INTR_TX_DONE */
2187 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2188 GEM_COUNTER_INCR(sc, sc_ev_txint);
2189 r |= gem_tint(sc);
2190 }
2191
2192 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2193 GEM_COUNTER_INCR(sc, sc_ev_rxint);
2194 r |= gem_rint(sc);
2195 }
2196
2197 /* We should eventually do more than just print out error stats. */
2198 if (status & GEM_INTR_TX_MAC) {
2199 int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2200 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2201 printf("%s: MAC tx fault, status %x\n",
2202 device_xname(sc->sc_dev), txstat);
2203 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2204 gem_init(ifp);
2205 }
2206 if (status & GEM_INTR_RX_MAC) {
2207 int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2208 /*
2209 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2210 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2211 * silicon bug so handle them silently. So if we detect
2212 * an RX FIFO overflow, we fire off a timer, and check
2213 * whether we're still making progress by looking at the
2214 * RX FIFO write and read pointers.
2215 */
2216 if (rxstat & GEM_MAC_RX_OVERFLOW) {
2217 if_statinc(ifp, if_ierrors);
2218 aprint_error_dev(sc->sc_dev,
2219 "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
2220 sc->sc_rx_fifo_wr_ptr =
2221 bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2222 sc->sc_rx_fifo_rd_ptr =
2223 bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2224 callout_schedule(&sc->sc_rx_watchdog, 400);
2225 } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2226 printf("%s: MAC rx fault, status 0x%02x\n",
2227 device_xname(sc->sc_dev), rxstat);
2228 }
2229 if (status & GEM_INTR_PCS) {
2230 r |= gem_pint(sc);
2231 }
2232
2233 /* Do we need to do anything with these?
2234 if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2235 status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2236 if ((status2 & GEM_MAC_PAUSED) != 0)
2237 aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2238 GEM_MAC_PAUSE_TIME(status2));
2239 if ((status2 & GEM_MAC_PAUSE) != 0)
2240 aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2241 if ((status2 & GEM_MAC_RESUME) != 0)
2242 aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2243 }
2244 if ((status & GEM_INTR_MIF) != 0)
2245 aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2246 */
2247 rnd_add_uint32(&sc->rnd_source, status);
2248 return (r);
2249 }
2250
2251 void
2252 gem_rx_watchdog(void *arg)
2253 {
2254 struct gem_softc *sc = arg;
2255 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2256 bus_space_tag_t t = sc->sc_bustag;
2257 bus_space_handle_t h = sc->sc_h1;
2258 uint32_t rx_fifo_wr_ptr;
2259 uint32_t rx_fifo_rd_ptr;
2260 uint32_t state;
2261
2262 if ((ifp->if_flags & IFF_RUNNING) == 0) {
2263 aprint_error_dev(sc->sc_dev, "receiver not running\n");
2264 return;
2265 }
2266
2267 rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2268 rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2269 state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
2270 if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
2271 ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
2272 ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
2273 (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
2274 {
2275 /*
2276 * The RX state machine is still in overflow state and
2277 * the RX FIFO write and read pointers seem to be
2278 * stuck. Whack the chip over the head to get things
2279 * going again.
2280 */
2281 aprint_error_dev(sc->sc_dev,
2282 "receiver stuck in overflow, resetting\n");
2283 gem_init(ifp);
2284 } else {
2285 if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
2286 aprint_error_dev(sc->sc_dev,
2287 "rx_watchdog: not in overflow state: 0x%x\n",
2288 state);
2289 }
2290 if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
2291 aprint_error_dev(sc->sc_dev,
2292 "rx_watchdog: wr & rd ptr different\n");
2293 }
2294 if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
2295 aprint_error_dev(sc->sc_dev,
2296 "rx_watchdog: wr pointer != saved\n");
2297 }
2298 if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
2299 aprint_error_dev(sc->sc_dev,
2300 "rx_watchdog: rd pointer != saved\n");
2301 }
2302 aprint_error_dev(sc->sc_dev, "resetting anyway\n");
2303 gem_init(ifp);
2304 }
2305 }
2306
2307 void
2308 gem_watchdog(struct ifnet *ifp)
2309 {
2310 struct gem_softc *sc = ifp->if_softc;
2311
2312 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2313 "GEM_MAC_RX_CONFIG %x\n",
2314 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2315 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2316 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2317
2318 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2319 if_statinc(ifp, if_oerrors);
2320
2321 /* Try to get more packets going. */
2322 gem_init(ifp);
2323 gem_start(ifp);
2324 }
2325
2326 /*
2327 * Initialize the MII Management Interface
2328 */
2329 void
2330 gem_mifinit(struct gem_softc *sc)
2331 {
2332 bus_space_tag_t t = sc->sc_bustag;
2333 bus_space_handle_t mif = sc->sc_h1;
2334
2335 /* Configure the MIF in frame mode */
2336 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2337 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2338 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2339 }
2340
2341 /*
2342 * MII interface
2343 *
2344 * The GEM MII interface supports at least three different operating modes:
2345 *
2346 * Bitbang mode is implemented using data, clock and output enable registers.
2347 *
2348 * Frame mode is implemented by loading a complete frame into the frame
2349 * register and polling the valid bit for completion.
2350 *
2351 * Polling mode uses the frame register but completion is indicated by
2352 * an interrupt.
2353 *
2354 */
2355 static int
2356 gem_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
2357 {
2358 struct gem_softc *sc = device_private(self);
2359 bus_space_tag_t t = sc->sc_bustag;
2360 bus_space_handle_t mif = sc->sc_h1;
2361 int n;
2362 uint32_t v;
2363
2364 #ifdef GEM_DEBUG1
2365 if (sc->sc_debug)
2366 printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2367 #endif
2368
2369 /* Construct the frame command */
2370 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
2371 GEM_MIF_FRAME_READ;
2372
2373 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2374 for (n = 0; n < 100; n++) {
2375 DELAY(1);
2376 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2377 if (v & GEM_MIF_FRAME_TA0) {
2378 *val = v & GEM_MIF_FRAME_DATA;
2379 return 0;
2380 }
2381 }
2382
2383 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2384 return ETIMEDOUT;
2385 }
2386
2387 static int
2388 gem_mii_writereg(device_t self, int phy, int reg, uint16_t val)
2389 {
2390 struct gem_softc *sc = device_private(self);
2391 bus_space_tag_t t = sc->sc_bustag;
2392 bus_space_handle_t mif = sc->sc_h1;
2393 int n;
2394 uint32_t v;
2395
2396 #ifdef GEM_DEBUG1
2397 if (sc->sc_debug)
2398 printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2399 phy, reg, val);
2400 #endif
2401
2402 /* Construct the frame command */
2403 v = GEM_MIF_FRAME_WRITE |
2404 (phy << GEM_MIF_PHY_SHIFT) |
2405 (reg << GEM_MIF_REG_SHIFT) |
2406 (val & GEM_MIF_FRAME_DATA);
2407
2408 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2409 for (n = 0; n < 100; n++) {
2410 DELAY(1);
2411 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2412 if (v & GEM_MIF_FRAME_TA0)
2413 return 0;
2414 }
2415
2416 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2417 return ETIMEDOUT;
2418 }
2419
2420 static void
2421 gem_mii_statchg(struct ifnet *ifp)
2422 {
2423 struct gem_softc *sc = ifp->if_softc;
2424 #ifdef GEM_DEBUG
2425 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2426 #endif
2427
2428 #ifdef GEM_DEBUG
2429 if (sc->sc_debug)
2430 printf("gem_mii_statchg: status change: phy = %d\n",
2431 sc->sc_phys[instance]);
2432 #endif
2433 gem_statuschange(sc);
2434 }
2435
2436 /*
2437 * Common status change for gem_mii_statchg() and gem_pint()
2438 */
2439 void
2440 gem_statuschange(struct gem_softc* sc)
2441 {
2442 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2443 bus_space_tag_t t = sc->sc_bustag;
2444 bus_space_handle_t mac = sc->sc_h1;
2445 int gigabit;
2446 uint32_t rxcfg, txcfg, v;
2447
2448 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2449 IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2450 sc->sc_flags |= GEM_LINK;
2451 else
2452 sc->sc_flags &= ~GEM_LINK;
2453
2454 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2455 gigabit = 1;
2456 else
2457 gigabit = 0;
2458
2459 /*
2460 * The configuration done here corresponds to the steps F) and
2461 * G) and as far as enabling of RX and TX MAC goes also step H)
2462 * of the initialization sequence outlined in section 3.2.1 of
2463 * the GEM Gigabit Ethernet ASIC Specification.
2464 */
2465
2466 rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2467 rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2468 txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2469 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2470 txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2471 else if (gigabit) {
2472 rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2473 txcfg |= GEM_MAC_RX_CARR_EXTEND;
2474 }
2475 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2476 bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2477 BUS_SPACE_BARRIER_WRITE);
2478 if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2479 aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2480 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2481 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2482 bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2483 BUS_SPACE_BARRIER_WRITE);
2484 if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2485 aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2486 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2487
2488 v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2489 ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2490 bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2491
2492 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2493 gigabit != 0)
2494 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2495 GEM_MAC_SLOT_TIME_CARR_EXTEND);
2496 else
2497 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2498 GEM_MAC_SLOT_TIME_NORMAL);
2499
2500 /* XIF Configuration */
2501 if (sc->sc_flags & GEM_LINK)
2502 v = GEM_MAC_XIF_LINK_LED;
2503 else
2504 v = 0;
2505 v |= GEM_MAC_XIF_TX_MII_ENA;
2506
2507 /* If an external transceiver is connected, enable its MII drivers */
2508 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2509 if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2510 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2511 if (gigabit)
2512 v |= GEM_MAC_XIF_GMII_MODE;
2513 else
2514 v &= ~GEM_MAC_XIF_GMII_MODE;
2515 } else
2516 /* Internal MII needs buf enable */
2517 v |= GEM_MAC_XIF_MII_BUF_ENA;
2518 /* MII needs echo disable if half duplex. */
2519 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2520 /* turn on full duplex LED */
2521 v |= GEM_MAC_XIF_FDPLX_LED;
2522 else
2523 /* half duplex -- disable echo */
2524 v |= GEM_MAC_XIF_ECHO_DISABL;
2525 } else {
2526 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2527 v |= GEM_MAC_XIF_FDPLX_LED;
2528 v |= GEM_MAC_XIF_GMII_MODE;
2529 }
2530 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2531
2532 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2533 (sc->sc_flags & GEM_LINK) != 0) {
2534 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2535 txcfg | GEM_MAC_TX_ENABLE);
2536 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2537 rxcfg | GEM_MAC_RX_ENABLE);
2538 }
2539 }
2540
2541 int
2542 gem_ser_mediachange(struct ifnet *ifp)
2543 {
2544 struct gem_softc *sc = ifp->if_softc;
2545 u_int s, t;
2546
2547 if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2548 return EINVAL;
2549
2550 s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2551 if (s == IFM_AUTO) {
2552 if (sc->sc_mii_media != s) {
2553 #ifdef GEM_DEBUG
2554 aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2555 #endif
2556 sc->sc_mii_media = s;
2557 if (ifp->if_flags & IFF_UP) {
2558 gem_pcs_stop(sc, 0);
2559 gem_pcs_start(sc);
2560 }
2561 }
2562 return 0;
2563 }
2564 if (s == IFM_1000_SX) {
2565 t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media)
2566 & (IFM_FDX | IFM_HDX);
2567 if ((sc->sc_mii_media & (IFM_FDX | IFM_HDX)) != t) {
2568 sc->sc_mii_media &= ~(IFM_FDX | IFM_HDX);
2569 sc->sc_mii_media |= t;
2570 #ifdef GEM_DEBUG
2571 aprint_debug_dev(sc->sc_dev,
2572 "setting media to 1000baseSX-%s\n",
2573 t == IFM_FDX ? "FDX" : "HDX");
2574 #endif
2575 if (ifp->if_flags & IFF_UP) {
2576 gem_pcs_stop(sc, 0);
2577 gem_pcs_start(sc);
2578 }
2579 }
2580 return 0;
2581 }
2582 return EINVAL;
2583 }
2584
2585 void
2586 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2587 {
2588 struct gem_softc *sc = ifp->if_softc;
2589
2590 if ((ifp->if_flags & IFF_UP) == 0)
2591 return;
2592 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2593 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2594 }
2595
2596 static int
2597 gem_ifflags_cb(struct ethercom *ec)
2598 {
2599 struct ifnet *ifp = &ec->ec_if;
2600 struct gem_softc *sc = ifp->if_softc;
2601 u_short change = ifp->if_flags ^ sc->sc_if_flags;
2602
2603 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
2604 return ENETRESET;
2605 else if ((change & IFF_PROMISC) != 0)
2606 gem_setladrf(sc);
2607 return 0;
2608 }
2609
2610 /*
2611 * Process an ioctl request.
2612 */
2613 int
2614 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2615 {
2616 struct gem_softc *sc = ifp->if_softc;
2617 int s, error = 0;
2618
2619 s = splnet();
2620
2621 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2622 error = 0;
2623 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2624 ;
2625 else if (ifp->if_flags & IFF_RUNNING) {
2626 /*
2627 * Multicast list has changed; set the hardware filter
2628 * accordingly.
2629 */
2630 gem_setladrf(sc);
2631 }
2632 }
2633
2634 /* Try to get things going again */
2635 if (ifp->if_flags & IFF_UP)
2636 gem_start(ifp);
2637 splx(s);
2638 return (error);
2639 }
2640
2641 static void
2642 gem_inten(struct gem_softc *sc)
2643 {
2644 bus_space_tag_t t = sc->sc_bustag;
2645 bus_space_handle_t h = sc->sc_h1;
2646 uint32_t v;
2647
2648 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2649 v = GEM_INTR_PCS;
2650 else
2651 v = GEM_INTR_MIF;
2652 bus_space_write_4(t, h, GEM_INTMASK,
2653 ~(GEM_INTR_TX_INTME |
2654 GEM_INTR_TX_EMPTY |
2655 GEM_INTR_TX_MAC |
2656 GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF |
2657 GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL |
2658 GEM_INTR_BERR | v));
2659 }
2660
2661 bool
2662 gem_resume(device_t self, const pmf_qual_t *qual)
2663 {
2664 struct gem_softc *sc = device_private(self);
2665
2666 gem_inten(sc);
2667
2668 return true;
2669 }
2670
2671 bool
2672 gem_suspend(device_t self, const pmf_qual_t *qual)
2673 {
2674 struct gem_softc *sc = device_private(self);
2675 bus_space_tag_t t = sc->sc_bustag;
2676 bus_space_handle_t h = sc->sc_h1;
2677
2678 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2679
2680 return true;
2681 }
2682
2683 bool
2684 gem_shutdown(device_t self, int howto)
2685 {
2686 struct gem_softc *sc = device_private(self);
2687 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2688
2689 gem_stop(ifp, 1);
2690
2691 return true;
2692 }
2693
2694 /*
2695 * Set up the logical address filter.
2696 */
2697 void
2698 gem_setladrf(struct gem_softc *sc)
2699 {
2700 struct ethercom *ec = &sc->sc_ethercom;
2701 struct ifnet *ifp = &ec->ec_if;
2702 struct ether_multi *enm;
2703 struct ether_multistep step;
2704 bus_space_tag_t t = sc->sc_bustag;
2705 bus_space_handle_t h = sc->sc_h1;
2706 uint32_t crc;
2707 uint32_t hash[16];
2708 uint32_t v;
2709 int i;
2710
2711 /* Get current RX configuration */
2712 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2713
2714 /*
2715 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2716 * and hash filter. Depending on the case, the right bit will be
2717 * enabled.
2718 */
2719 v &= ~(GEM_MAC_RX_PROMISCUOUS | GEM_MAC_RX_HASH_FILTER |
2720 GEM_MAC_RX_PROMISC_GRP);
2721
2722 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2723 /* Turn on promiscuous mode */
2724 v |= GEM_MAC_RX_PROMISCUOUS;
2725 ifp->if_flags |= IFF_ALLMULTI;
2726 goto chipit;
2727 }
2728
2729 /*
2730 * Set up multicast address filter by passing all multicast addresses
2731 * through a crc generator, and then using the high order 8 bits as an
2732 * index into the 256 bit logical address filter. The high order 4
2733 * bits selects the word, while the other 4 bits select the bit within
2734 * the word (where bit 0 is the MSB).
2735 */
2736
2737 /* Clear hash table */
2738 memset(hash, 0, sizeof(hash));
2739
2740 ETHER_LOCK(ec);
2741 ETHER_FIRST_MULTI(step, ec, enm);
2742 while (enm != NULL) {
2743 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2744 /*
2745 * We must listen to a range of multicast addresses.
2746 * For now, just accept all multicasts, rather than
2747 * trying to set only those filter bits needed to match
2748 * the range. (At this time, the only use of address
2749 * ranges is for IP multicast routing, for which the
2750 * range is big enough to require all bits set.)
2751 * XXX should use the address filters for this
2752 */
2753 ifp->if_flags |= IFF_ALLMULTI;
2754 v |= GEM_MAC_RX_PROMISC_GRP;
2755 ETHER_UNLOCK(ec);
2756 goto chipit;
2757 }
2758
2759 /* Get the LE CRC32 of the address */
2760 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2761
2762 /* Just want the 8 most significant bits. */
2763 crc >>= 24;
2764
2765 /* Set the corresponding bit in the filter. */
2766 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2767
2768 ETHER_NEXT_MULTI(step, enm);
2769 }
2770 ETHER_UNLOCK(ec);
2771
2772 v |= GEM_MAC_RX_HASH_FILTER;
2773 ifp->if_flags &= ~IFF_ALLMULTI;
2774
2775 /* Now load the hash table into the chip (if we are using it) */
2776 for (i = 0; i < 16; i++) {
2777 bus_space_write_4(t, h,
2778 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2779 hash[i]);
2780 }
2781
2782 chipit:
2783 sc->sc_if_flags = ifp->if_flags;
2784 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2785 }
2786