gem.c revision 1.14 1 /* $NetBSD: gem.c,v 1.14 2002/05/08 02:12:55 matt Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * All rights reserved.
7 *
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32 /*
33 * Driver for Sun GEM ethernet controllers.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.14 2002/05/08 02:12:55 matt Exp $");
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/syslog.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52
53 #include <machine/endian.h>
54
55 #include <uvm/uvm_extern.h>
56
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <machine/bus.h>
67 #include <machine/intr.h>
68
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71 #include <dev/mii/mii_bitbang.h>
72
73 #include <dev/ic/gemreg.h>
74 #include <dev/ic/gemvar.h>
75
76 #define TRIES 10000
77
78 void gem_start __P((struct ifnet *));
79 void gem_stop __P((struct ifnet *, int));
80 int gem_ioctl __P((struct ifnet *, u_long, caddr_t));
81 void gem_tick __P((void *));
82 void gem_watchdog __P((struct ifnet *));
83 void gem_shutdown __P((void *));
84 int gem_init __P((struct ifnet *));
85 void gem_init_regs(struct gem_softc *sc);
86 static int gem_ringsize(int sz);
87 int gem_meminit __P((struct gem_softc *));
88 void gem_mifinit __P((struct gem_softc *));
89 void gem_reset __P((struct gem_softc *));
90 int gem_reset_rx(struct gem_softc *sc);
91 int gem_reset_tx(struct gem_softc *sc);
92 int gem_disable_rx(struct gem_softc *sc);
93 int gem_disable_tx(struct gem_softc *sc);
94 void gem_rxdrain(struct gem_softc *sc);
95 int gem_add_rxbuf(struct gem_softc *sc, int idx);
96 void gem_setladrf __P((struct gem_softc *));
97
98 /* MII methods & callbacks */
99 static int gem_mii_readreg __P((struct device *, int, int));
100 static void gem_mii_writereg __P((struct device *, int, int, int));
101 static void gem_mii_statchg __P((struct device *));
102
103 int gem_mediachange __P((struct ifnet *));
104 void gem_mediastatus __P((struct ifnet *, struct ifmediareq *));
105
106 struct mbuf *gem_get __P((struct gem_softc *, int, int));
107 int gem_put __P((struct gem_softc *, int, struct mbuf *));
108 void gem_read __P((struct gem_softc *, int, int));
109 int gem_eint __P((struct gem_softc *, u_int));
110 int gem_rint __P((struct gem_softc *));
111 int gem_tint __P((struct gem_softc *));
112 void gem_power __P((int, void *));
113
114 #ifdef GEM_DEBUG
115 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
116 printf x
117 #else
118 #define DPRINTF(sc, x) /* nothing */
119 #endif
120
121
122 /*
123 * gem_attach:
124 *
125 * Attach a Gem interface to the system.
126 */
127 void
128 gem_attach(sc, enaddr)
129 struct gem_softc *sc;
130 const uint8_t *enaddr;
131 {
132 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
133 struct mii_data *mii = &sc->sc_mii;
134 struct mii_softc *child;
135 int i, error;
136
137 /* Make sure the chip is stopped. */
138 ifp->if_softc = sc;
139 gem_reset(sc);
140
141 /*
142 * Allocate the control data structures, and create and load the
143 * DMA map for it.
144 */
145 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
146 sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
147 1, &sc->sc_cdnseg, 0)) != 0) {
148 printf("%s: unable to allocate control data, error = %d\n",
149 sc->sc_dev.dv_xname, error);
150 goto fail_0;
151 }
152
153 /* XXX should map this in with correct endianness */
154 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
155 sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
156 BUS_DMA_COHERENT)) != 0) {
157 printf("%s: unable to map control data, error = %d\n",
158 sc->sc_dev.dv_xname, error);
159 goto fail_1;
160 }
161
162 if ((error = bus_dmamap_create(sc->sc_dmatag,
163 sizeof(struct gem_control_data), 1,
164 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
165 printf("%s: unable to create control data DMA map, "
166 "error = %d\n", sc->sc_dev.dv_xname, error);
167 goto fail_2;
168 }
169
170 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
171 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
172 0)) != 0) {
173 printf("%s: unable to load control data DMA map, error = %d\n",
174 sc->sc_dev.dv_xname, error);
175 goto fail_3;
176 }
177
178 /*
179 * Initialize the transmit job descriptors.
180 */
181 SIMPLEQ_INIT(&sc->sc_txfreeq);
182 SIMPLEQ_INIT(&sc->sc_txdirtyq);
183
184 /*
185 * Create the transmit buffer DMA maps.
186 */
187 for (i = 0; i < GEM_TXQUEUELEN; i++) {
188 struct gem_txsoft *txs;
189
190 txs = &sc->sc_txsoft[i];
191 txs->txs_mbuf = NULL;
192 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
193 GEM_NTXSEGS, MCLBYTES, 0, 0,
194 &txs->txs_dmamap)) != 0) {
195 printf("%s: unable to create tx DMA map %d, "
196 "error = %d\n", sc->sc_dev.dv_xname, i, error);
197 goto fail_4;
198 }
199 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
200 }
201
202 /*
203 * Create the receive buffer DMA maps.
204 */
205 for (i = 0; i < GEM_NRXDESC; i++) {
206 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
207 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
208 printf("%s: unable to create rx DMA map %d, "
209 "error = %d\n", sc->sc_dev.dv_xname, i, error);
210 goto fail_5;
211 }
212 sc->sc_rxsoft[i].rxs_mbuf = NULL;
213 }
214
215 /*
216 * From this point forward, the attachment cannot fail. A failure
217 * before this point releases all resources that may have been
218 * allocated.
219 */
220
221 /* Announce ourselves. */
222 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
223 ether_sprintf(enaddr));
224
225 /* Initialize ifnet structure. */
226 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
227 ifp->if_softc = sc;
228 ifp->if_flags =
229 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
230 ifp->if_start = gem_start;
231 ifp->if_ioctl = gem_ioctl;
232 ifp->if_watchdog = gem_watchdog;
233 ifp->if_stop = gem_stop;
234 ifp->if_init = gem_init;
235 IFQ_SET_READY(&ifp->if_snd);
236
237 /* Initialize ifmedia structures and MII info */
238 mii->mii_ifp = ifp;
239 mii->mii_readreg = gem_mii_readreg;
240 mii->mii_writereg = gem_mii_writereg;
241 mii->mii_statchg = gem_mii_statchg;
242
243 ifmedia_init(&mii->mii_media, 0, gem_mediachange, gem_mediastatus);
244
245 gem_mifinit(sc);
246
247 mii_attach(&sc->sc_dev, mii, 0xffffffff,
248 MII_PHY_ANY, MII_OFFSET_ANY, 0);
249
250 child = LIST_FIRST(&mii->mii_phys);
251 if (child == NULL) {
252 /* No PHY attached */
253 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
254 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
255 } else {
256 /*
257 * Walk along the list of attached MII devices and
258 * establish an `MII instance' to `phy number'
259 * mapping. We'll use this mapping in media change
260 * requests to determine which phy to use to program
261 * the MIF configuration register.
262 */
263 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
264 /*
265 * Note: we support just two PHYs: the built-in
266 * internal device and an external on the MII
267 * connector.
268 */
269 if (child->mii_phy > 1 || child->mii_inst > 1) {
270 printf("%s: cannot accomodate MII device %s"
271 " at phy %d, instance %d\n",
272 sc->sc_dev.dv_xname,
273 child->mii_dev.dv_xname,
274 child->mii_phy, child->mii_inst);
275 continue;
276 }
277
278 sc->sc_phys[child->mii_inst] = child->mii_phy;
279 }
280
281 /*
282 * Now select and activate the PHY we will use.
283 *
284 * The order of preference is External (MDI1),
285 * Internal (MDI0), Serial Link (no MII).
286 */
287 if (sc->sc_phys[1]) {
288 #ifdef DEBUG
289 printf("using external phy\n");
290 #endif
291 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
292 } else {
293 #ifdef DEBUG
294 printf("using internal phy\n");
295 #endif
296 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
297 }
298 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
299 sc->sc_mif_config);
300
301 /*
302 * XXX - we can really do the following ONLY if the
303 * phy indeed has the auto negotiation capability!!
304 */
305 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
306 }
307
308 /* claim 802.1q capability */
309 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
310
311 /* Attach the interface. */
312 if_attach(ifp);
313 ether_ifattach(ifp, enaddr);
314
315 sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
316 if (sc->sc_sh == NULL)
317 panic("gem_config: can't establish shutdownhook");
318
319 #if NRND > 0
320 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
321 RND_TYPE_NET, 0);
322 #endif
323
324
325 #if notyet
326 /*
327 * Add a suspend hook to make sure we come back up after a
328 * resume.
329 */
330 sc->sc_powerhook = powerhook_establish(gem_power, sc);
331 if (sc->sc_powerhook == NULL)
332 printf("%s: WARNING: unable to establish power hook\n",
333 sc->sc_dev.dv_xname);
334 #endif
335
336 callout_init(&sc->sc_tick_ch);
337 return;
338
339 /*
340 * Free any resources we've allocated during the failed attach
341 * attempt. Do this in reverse order and fall through.
342 */
343 fail_5:
344 for (i = 0; i < GEM_NRXDESC; i++) {
345 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
346 bus_dmamap_destroy(sc->sc_dmatag,
347 sc->sc_rxsoft[i].rxs_dmamap);
348 }
349 fail_4:
350 for (i = 0; i < GEM_TXQUEUELEN; i++) {
351 if (sc->sc_txsoft[i].txs_dmamap != NULL)
352 bus_dmamap_destroy(sc->sc_dmatag,
353 sc->sc_txsoft[i].txs_dmamap);
354 }
355 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
356 fail_3:
357 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
358 fail_2:
359 bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
360 sizeof(struct gem_control_data));
361 fail_1:
362 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
363 fail_0:
364 return;
365 }
366
367
368 void
369 gem_tick(arg)
370 void *arg;
371 {
372 struct gem_softc *sc = arg;
373 int s;
374
375 s = splnet();
376 mii_tick(&sc->sc_mii);
377 splx(s);
378
379 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
380
381 }
382
383 void
384 gem_reset(sc)
385 struct gem_softc *sc;
386 {
387 bus_space_tag_t t = sc->sc_bustag;
388 bus_space_handle_t h = sc->sc_h;
389 int i;
390 int s;
391
392 s = splnet();
393 DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
394 gem_reset_rx(sc);
395 gem_reset_tx(sc);
396
397 /* Do a full reset */
398 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
399 for (i=TRIES; i--; delay(100))
400 if ((bus_space_read_4(t, h, GEM_RESET) &
401 (GEM_RESET_RX|GEM_RESET_TX)) == 0)
402 break;
403 if ((bus_space_read_4(t, h, GEM_RESET) &
404 (GEM_RESET_RX|GEM_RESET_TX)) != 0) {
405 printf("%s: cannot reset device\n",
406 sc->sc_dev.dv_xname);
407 }
408 splx(s);
409 }
410
411
412 /*
413 * gem_rxdrain:
414 *
415 * Drain the receive queue.
416 */
417 void
418 gem_rxdrain(struct gem_softc *sc)
419 {
420 struct gem_rxsoft *rxs;
421 int i;
422
423 for (i = 0; i < GEM_NRXDESC; i++) {
424 rxs = &sc->sc_rxsoft[i];
425 if (rxs->rxs_mbuf != NULL) {
426 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
427 m_freem(rxs->rxs_mbuf);
428 rxs->rxs_mbuf = NULL;
429 }
430 }
431 }
432
433 /*
434 * Reset the whole thing.
435 */
436 void
437 gem_stop(struct ifnet *ifp, int disable)
438 {
439 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
440 struct gem_txsoft *txs;
441
442 DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
443
444 callout_stop(&sc->sc_tick_ch);
445 mii_down(&sc->sc_mii);
446
447 /* XXX - Should we reset these instead? */
448 gem_disable_rx(sc);
449 gem_disable_rx(sc);
450
451 /*
452 * Release any queued transmit buffers.
453 */
454 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
455 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
456 if (txs->txs_mbuf != NULL) {
457 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
458 m_freem(txs->txs_mbuf);
459 txs->txs_mbuf = NULL;
460 }
461 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
462 }
463
464 if (disable) {
465 gem_rxdrain(sc);
466 }
467
468 /*
469 * Mark the interface down and cancel the watchdog timer.
470 */
471 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
472 ifp->if_timer = 0;
473 }
474
475
476 /*
477 * Reset the receiver
478 */
479 int
480 gem_reset_rx(struct gem_softc *sc)
481 {
482 bus_space_tag_t t = sc->sc_bustag;
483 bus_space_handle_t h = sc->sc_h;
484 int i;
485
486
487 /*
488 * Resetting while DMA is in progress can cause a bus hang, so we
489 * disable DMA first.
490 */
491 gem_disable_rx(sc);
492 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
493 /* Wait till it finishes */
494 for (i=TRIES; i--; delay(100))
495 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
496 break;
497 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
498 printf("%s: cannot disable read dma\n",
499 sc->sc_dev.dv_xname);
500
501 /* Wait 5ms extra. */
502 delay(5000);
503
504 /* Finally, reset the ERX */
505 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
506 /* Wait till it finishes */
507 for (i=TRIES; i--; delay(100))
508 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
509 break;
510 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
511 printf("%s: cannot reset receiver\n",
512 sc->sc_dev.dv_xname);
513 return (1);
514 }
515 return (0);
516 }
517
518
519 /*
520 * Reset the transmitter
521 */
522 int
523 gem_reset_tx(struct gem_softc *sc)
524 {
525 bus_space_tag_t t = sc->sc_bustag;
526 bus_space_handle_t h = sc->sc_h;
527 int i;
528
529 /*
530 * Resetting while DMA is in progress can cause a bus hang, so we
531 * disable DMA first.
532 */
533 gem_disable_tx(sc);
534 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
535 /* Wait till it finishes */
536 for (i=TRIES; i--; delay(100))
537 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
538 break;
539 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
540 printf("%s: cannot disable read dma\n",
541 sc->sc_dev.dv_xname);
542
543 /* Wait 5ms extra. */
544 delay(5000);
545
546 /* Finally, reset the ETX */
547 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
548 /* Wait till it finishes */
549 for (i=TRIES; i--; delay(100))
550 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
551 break;
552 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
553 printf("%s: cannot reset receiver\n",
554 sc->sc_dev.dv_xname);
555 return (1);
556 }
557 return (0);
558 }
559
560 /*
561 * disable receiver.
562 */
563 int
564 gem_disable_rx(struct gem_softc *sc)
565 {
566 bus_space_tag_t t = sc->sc_bustag;
567 bus_space_handle_t h = sc->sc_h;
568 int i;
569 u_int32_t cfg;
570
571 /* Flip the enable bit */
572 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
573 cfg &= ~GEM_MAC_RX_ENABLE;
574 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
575
576 /* Wait for it to finish */
577 for (i=TRIES; i--; delay(100))
578 if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
579 GEM_MAC_RX_ENABLE) == 0)
580 return (0);
581 return (1);
582 }
583
584 /*
585 * disable transmitter.
586 */
587 int
588 gem_disable_tx(struct gem_softc *sc)
589 {
590 bus_space_tag_t t = sc->sc_bustag;
591 bus_space_handle_t h = sc->sc_h;
592 int i;
593 u_int32_t cfg;
594
595 /* Flip the enable bit */
596 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
597 cfg &= ~GEM_MAC_TX_ENABLE;
598 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
599
600 /* Wait for it to finish */
601 for (i=TRIES; i--; delay(100))
602 if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
603 GEM_MAC_TX_ENABLE) == 0)
604 return (0);
605 return (1);
606 }
607
608 /*
609 * Initialize interface.
610 */
611 int
612 gem_meminit(struct gem_softc *sc)
613 {
614 struct gem_rxsoft *rxs;
615 int i, error;
616
617 /*
618 * Initialize the transmit descriptor ring.
619 */
620 memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
621 for (i = 0; i < GEM_NTXDESC; i++) {
622 sc->sc_txdescs[i].gd_flags = 0;
623 sc->sc_txdescs[i].gd_addr = 0;
624 }
625 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
626 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
627 sc->sc_txfree = GEM_NTXDESC-1;
628 sc->sc_txnext = 0;
629 sc->sc_txwin = 0;
630
631 /*
632 * Initialize the receive descriptor and receive job
633 * descriptor rings.
634 */
635 for (i = 0; i < GEM_NRXDESC; i++) {
636 rxs = &sc->sc_rxsoft[i];
637 if (rxs->rxs_mbuf == NULL) {
638 if ((error = gem_add_rxbuf(sc, i)) != 0) {
639 printf("%s: unable to allocate or map rx "
640 "buffer %d, error = %d\n",
641 sc->sc_dev.dv_xname, i, error);
642 /*
643 * XXX Should attempt to run with fewer receive
644 * XXX buffers instead of just failing.
645 */
646 gem_rxdrain(sc);
647 return (1);
648 }
649 } else
650 GEM_INIT_RXDESC(sc, i);
651 }
652 sc->sc_rxptr = 0;
653
654 return (0);
655 }
656
657 static int
658 gem_ringsize(int sz)
659 {
660 int v;
661
662 switch (sz) {
663 case 32:
664 v = GEM_RING_SZ_32;
665 break;
666 case 64:
667 v = GEM_RING_SZ_64;
668 break;
669 case 128:
670 v = GEM_RING_SZ_128;
671 break;
672 case 256:
673 v = GEM_RING_SZ_256;
674 break;
675 case 512:
676 v = GEM_RING_SZ_512;
677 break;
678 case 1024:
679 v = GEM_RING_SZ_1024;
680 break;
681 case 2048:
682 v = GEM_RING_SZ_2048;
683 break;
684 case 4096:
685 v = GEM_RING_SZ_4096;
686 break;
687 case 8192:
688 v = GEM_RING_SZ_8192;
689 break;
690 default:
691 printf("gem: invalid Receive Descriptor ring size\n");
692 break;
693 }
694 return (v);
695 }
696
697 /*
698 * Initialization of interface; set up initialization block
699 * and transmit/receive descriptor rings.
700 */
701 int
702 gem_init(struct ifnet *ifp)
703 {
704 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
705 bus_space_tag_t t = sc->sc_bustag;
706 bus_space_handle_t h = sc->sc_h;
707 int s;
708 u_int32_t v;
709
710 s = splnet();
711
712 DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
713 /*
714 * Initialization sequence. The numbered steps below correspond
715 * to the sequence outlined in section 6.3.5.1 in the Ethernet
716 * Channel Engine manual (part of the PCIO manual).
717 * See also the STP2002-STQ document from Sun Microsystems.
718 */
719
720 /* step 1 & 2. Reset the Ethernet Channel */
721 gem_stop(ifp, 0);
722 gem_reset(sc);
723 DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
724
725 /* Re-initialize the MIF */
726 gem_mifinit(sc);
727
728 /* Call MI reset function if any */
729 if (sc->sc_hwreset)
730 (*sc->sc_hwreset)(sc);
731
732 /* step 3. Setup data structures in host memory */
733 gem_meminit(sc);
734
735 /* step 4. TX MAC registers & counters */
736 gem_init_regs(sc);
737 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
738 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
739 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN + sizeof(struct ether_header):
740 ETHER_MAX_LEN + sizeof(struct ether_header)) | (0x2000<<16));
741
742 /* step 5. RX MAC registers & counters */
743 gem_setladrf(sc);
744
745 /* step 6 & 7. Program Descriptor Ring Base Addresses */
746 /* NOTE: we use only 32-bit DMA addresses here. */
747 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
748 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
749
750 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
751 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
752
753 /* step 8. Global Configuration & Interrupt Mask */
754 bus_space_write_4(t, h, GEM_INTMASK,
755 ~(GEM_INTR_TX_INTME|
756 GEM_INTR_TX_EMPTY|
757 GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
758 GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
759 GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
760 GEM_INTR_BERR));
761 bus_space_write_4(t, h, GEM_MAC_RX_MASK, 0); /* XXXX */
762 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
763 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
764
765 /* step 9. ETX Configuration: use mostly default values */
766
767 /* Enable DMA */
768 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
769 bus_space_write_4(t, h, GEM_TX_CONFIG,
770 v|GEM_TX_CONFIG_TXDMA_EN|
771 ((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
772 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
773
774 /* step 10. ERX Configuration */
775
776 /* Encode Receive Descriptor ring size: four possible values */
777 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
778
779 /* Enable DMA */
780 bus_space_write_4(t, h, GEM_RX_CONFIG,
781 v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
782 (2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
783 (0<<GEM_RX_CONFIG_CXM_START_SHFT));
784 /*
785 * The following value is for an OFF Threshold of about 15.5 Kbytes
786 * and an ON Threshold of 4K bytes.
787 */
788 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH, 0xf8 | (0x40 << 12));
789 bus_space_write_4(t, h, GEM_RX_BLANKING, (2<<12)|6);
790
791 /* step 11. Configure Media */
792 gem_mii_statchg(&sc->sc_dev);
793
794 /* XXXX Serial link needs a whole different setup. */
795
796
797 /* step 12. RX_MAC Configuration Register */
798 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
799 v |= GEM_MAC_RX_ENABLE;
800 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
801
802 /* step 14. Issue Transmit Pending command */
803
804 /* Call MI initialization function if any */
805 if (sc->sc_hwinit)
806 (*sc->sc_hwinit)(sc);
807
808
809 /* step 15. Give the reciever a swift kick */
810 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
811
812 /* Start the one second timer. */
813 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
814
815 ifp->if_flags |= IFF_RUNNING;
816 ifp->if_flags &= ~IFF_OACTIVE;
817 ifp->if_timer = 0;
818 splx(s);
819
820 return (0);
821 }
822
823 void
824 gem_init_regs(struct gem_softc *sc)
825 {
826 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
827 bus_space_tag_t t = sc->sc_bustag;
828 bus_space_handle_t h = sc->sc_h;
829 const u_char *laddr = LLADDR(ifp->if_sadl);
830
831 /* These regs are not cleared on reset */
832 if (!sc->sc_inited) {
833
834 /* Wooo. Magic values. */
835 bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
836 bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
837 bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
838
839 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
840 /* Max frame and max burst size */
841 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
842 (ifp->if_mtu+18) | (0x2000<<16)/* Burst size */);
843 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
844 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
845 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
846 /* Dunno.... */
847 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
848 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
849 ((laddr[5]<<8)|laddr[4])&0x3ff);
850
851 /* Secondary MAC addr set to 0:0:0:0:0:0 */
852 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
853 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
854 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
855
856 /* MAC control addr set to 01:80:c2:00:00:01 */
857 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
858 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
859 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
860
861 /* MAC filter addr set to 0:0:0:0:0:0 */
862 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
863 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
864 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
865
866 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
867 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
868
869 sc->sc_inited = 1;
870 }
871
872 /* Counters need to be zeroed */
873 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
874 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
875 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
876 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
877 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
878 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
879 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
880 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
881 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
882 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
883 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
884
885 /* Un-pause stuff */
886 #if 0
887 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
888 #else
889 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
890 #endif
891
892 /*
893 * Set the station address.
894 */
895 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
896 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
897 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
898
899 }
900
901
902
903 void
904 gem_start(ifp)
905 struct ifnet *ifp;
906 {
907 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
908 struct mbuf *m0, *m;
909 struct gem_txsoft *txs, *last_txs;
910 bus_dmamap_t dmamap;
911 int error, firsttx, nexttx, lasttx, ofree, seg;
912
913 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
914 return;
915
916 /*
917 * Remember the previous number of free descriptors and
918 * the first descriptor we'll use.
919 */
920 ofree = sc->sc_txfree;
921 firsttx = sc->sc_txnext;
922
923 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
924 sc->sc_dev.dv_xname, ofree, firsttx));
925
926 /*
927 * Loop through the send queue, setting up transmit descriptors
928 * until we drain the queue, or use up all available transmit
929 * descriptors.
930 */
931 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
932 sc->sc_txfree != 0) {
933 /*
934 * Grab a packet off the queue.
935 */
936 IFQ_POLL(&ifp->if_snd, m0);
937 if (m0 == NULL)
938 break;
939 m = NULL;
940
941 dmamap = txs->txs_dmamap;
942
943 /*
944 * Load the DMA map. If this fails, the packet either
945 * didn't fit in the alloted number of segments, or we were
946 * short on resources. In this case, we'll copy and try
947 * again.
948 */
949 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
950 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
951 MGETHDR(m, M_DONTWAIT, MT_DATA);
952 if (m == NULL) {
953 printf("%s: unable to allocate Tx mbuf\n",
954 sc->sc_dev.dv_xname);
955 break;
956 }
957 if (m0->m_pkthdr.len > MHLEN) {
958 MCLGET(m, M_DONTWAIT);
959 if ((m->m_flags & M_EXT) == 0) {
960 printf("%s: unable to allocate Tx "
961 "cluster\n", sc->sc_dev.dv_xname);
962 m_freem(m);
963 break;
964 }
965 }
966 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
967 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
968 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
969 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
970 if (error) {
971 printf("%s: unable to load Tx buffer, "
972 "error = %d\n", sc->sc_dev.dv_xname, error);
973 break;
974 }
975 }
976
977 /*
978 * Ensure we have enough descriptors free to describe
979 * the packet.
980 */
981 if (dmamap->dm_nsegs > sc->sc_txfree) {
982 /*
983 * Not enough free descriptors to transmit this
984 * packet. We haven't committed to anything yet,
985 * so just unload the DMA map, put the packet
986 * back on the queue, and punt. Notify the upper
987 * layer that there are no more slots left.
988 *
989 * XXX We could allocate an mbuf and copy, but
990 * XXX it is worth it?
991 */
992 ifp->if_flags |= IFF_OACTIVE;
993 bus_dmamap_unload(sc->sc_dmatag, dmamap);
994 if (m != NULL)
995 m_freem(m);
996 break;
997 }
998
999 IFQ_DEQUEUE(&ifp->if_snd, m0);
1000 if (m != NULL) {
1001 m_freem(m0);
1002 m0 = m;
1003 }
1004
1005 /*
1006 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1007 */
1008
1009 /* Sync the DMA map. */
1010 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1011 BUS_DMASYNC_PREWRITE);
1012
1013 /*
1014 * Initialize the transmit descriptors.
1015 */
1016 for (nexttx = sc->sc_txnext, seg = 0;
1017 seg < dmamap->dm_nsegs;
1018 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1019 uint64_t flags;
1020
1021 /*
1022 * If this is the first descriptor we're
1023 * enqueueing, set the start of packet flag,
1024 * and the checksum stuff if we want the hardware
1025 * to do it.
1026 */
1027 sc->sc_txdescs[nexttx].gd_addr =
1028 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1029 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1030 if (nexttx == firsttx) {
1031 flags |= GEM_TD_START_OF_PACKET;
1032 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1033 sc->sc_txwin = 0;
1034 flags |= GEM_TD_INTERRUPT_ME;
1035 }
1036 }
1037 if (seg == dmamap->dm_nsegs - 1) {
1038 flags |= GEM_TD_END_OF_PACKET;
1039 }
1040 sc->sc_txdescs[nexttx].gd_flags =
1041 GEM_DMA_WRITE(sc, flags);
1042 lasttx = nexttx;
1043 }
1044
1045 #ifdef GEM_DEBUG
1046 if (ifp->if_flags & IFF_DEBUG) {
1047 printf(" gem_start %p transmit chain:\n", txs);
1048 for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1049 printf("descriptor %d:\t", seg);
1050 printf("gd_flags: 0x%016llx\t", (long long)
1051 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1052 printf("gd_addr: 0x%016llx\n", (long long)
1053 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1054 if (seg == lasttx)
1055 break;
1056 }
1057 }
1058 #endif
1059
1060 /* Sync the descriptors we're using. */
1061 GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1062 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1063
1064 /*
1065 * Store a pointer to the packet so we can free it later,
1066 * and remember what txdirty will be once the packet is
1067 * done.
1068 */
1069 txs->txs_mbuf = m0;
1070 txs->txs_firstdesc = sc->sc_txnext;
1071 txs->txs_lastdesc = lasttx;
1072 txs->txs_ndescs = dmamap->dm_nsegs;
1073
1074 /* Advance the tx pointer. */
1075 sc->sc_txfree -= dmamap->dm_nsegs;
1076 sc->sc_txnext = nexttx;
1077
1078 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1079 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1080
1081 last_txs = txs;
1082
1083 #if NBPFILTER > 0
1084 /*
1085 * Pass the packet to any BPF listeners.
1086 */
1087 if (ifp->if_bpf)
1088 bpf_mtap(ifp->if_bpf, m0);
1089 #endif /* NBPFILTER > 0 */
1090 }
1091
1092 if (txs == NULL || sc->sc_txfree == 0) {
1093 /* No more slots left; notify upper layer. */
1094 ifp->if_flags |= IFF_OACTIVE;
1095 }
1096
1097 if (sc->sc_txfree != ofree) {
1098 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1099 sc->sc_dev.dv_xname, lasttx, firsttx));
1100 /*
1101 * The entire packet chain is set up.
1102 * Kick the transmitter.
1103 */
1104 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1105 sc->sc_dev.dv_xname, nexttx));
1106 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1107 sc->sc_txnext);
1108
1109 /* Set a watchdog timer in case the chip flakes out. */
1110 ifp->if_timer = 5;
1111 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1112 sc->sc_dev.dv_xname, ifp->if_timer));
1113 }
1114 }
1115
1116 /*
1117 * Transmit interrupt.
1118 */
1119 int
1120 gem_tint(sc)
1121 struct gem_softc *sc;
1122 {
1123 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1124 bus_space_tag_t t = sc->sc_bustag;
1125 bus_space_handle_t mac = sc->sc_h;
1126 struct gem_txsoft *txs;
1127 int txlast;
1128 int progress = 0;
1129
1130
1131 DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1132
1133 /*
1134 * Unload collision counters
1135 */
1136 ifp->if_collisions +=
1137 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1138 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1139 bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1140 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1141
1142 /*
1143 * then clear the hardware counters.
1144 */
1145 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1146 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1147 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1148 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1149
1150 /*
1151 * Go through our Tx list and free mbufs for those
1152 * frames that have been transmitted.
1153 */
1154 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1155 GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1156 txs->txs_ndescs,
1157 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1158
1159 #ifdef GEM_DEBUG
1160 if (ifp->if_flags & IFF_DEBUG) {
1161 int i;
1162 printf(" txsoft %p transmit chain:\n", txs);
1163 for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1164 printf("descriptor %d: ", i);
1165 printf("gd_flags: 0x%016llx\t", (long long)
1166 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1167 printf("gd_addr: 0x%016llx\n", (long long)
1168 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1169 if (i == txs->txs_lastdesc)
1170 break;
1171 }
1172 }
1173 #endif
1174
1175 /*
1176 * In theory, we could harveast some descriptors before
1177 * the ring is empty, but that's a bit complicated.
1178 *
1179 * GEM_TX_COMPLETION points to the last descriptor
1180 * processed +1.
1181 */
1182 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1183 DPRINTF(sc,
1184 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1185 txs->txs_lastdesc, txlast));
1186 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1187 if ((txlast >= txs->txs_firstdesc) &&
1188 (txlast <= txs->txs_lastdesc))
1189 break;
1190 } else {
1191 /* Ick -- this command wraps */
1192 if ((txlast >= txs->txs_firstdesc) ||
1193 (txlast <= txs->txs_lastdesc))
1194 break;
1195 }
1196
1197 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1198 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1199
1200 sc->sc_txfree += txs->txs_ndescs;
1201
1202 if (txs->txs_mbuf == NULL) {
1203 #ifdef DIAGNOSTIC
1204 panic("gem_txintr: null mbuf");
1205 #endif
1206 }
1207
1208 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1209 0, txs->txs_dmamap->dm_mapsize,
1210 BUS_DMASYNC_POSTWRITE);
1211 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1212 m_freem(txs->txs_mbuf);
1213 txs->txs_mbuf = NULL;
1214
1215 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1216
1217 ifp->if_opackets++;
1218 progress = 1;
1219 }
1220
1221 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1222 "GEM_TX_DATA_PTR %llx "
1223 "GEM_TX_COMPLETION %x\n",
1224 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1225 ((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1226 GEM_TX_DATA_PTR_HI) << 32) |
1227 bus_space_read_4(sc->sc_bustag, sc->sc_h,
1228 GEM_TX_DATA_PTR_LO),
1229 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1230
1231 if (progress) {
1232 if (sc->sc_txfree == GEM_NTXDESC - 1)
1233 sc->sc_txwin = 0;
1234
1235 ifp->if_flags &= ~IFF_OACTIVE;
1236 gem_start(ifp);
1237
1238 if (SIMPLEQ_FIRST(&sc->sc_txdirtyq) == NULL)
1239 ifp->if_timer = 0;
1240 }
1241 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1242 sc->sc_dev.dv_xname, ifp->if_timer));
1243
1244 return (1);
1245 }
1246
1247 /*
1248 * Receive interrupt.
1249 */
1250 int
1251 gem_rint(sc)
1252 struct gem_softc *sc;
1253 {
1254 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1255 bus_space_tag_t t = sc->sc_bustag;
1256 bus_space_handle_t h = sc->sc_h;
1257 struct ether_header *eh;
1258 struct gem_rxsoft *rxs;
1259 struct mbuf *m;
1260 u_int64_t rxstat;
1261 int i, len;
1262
1263 DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1264 /*
1265 * XXXX Read the lastrx only once at the top for speed.
1266 */
1267 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1268 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1269 for (i = sc->sc_rxptr; i != bus_space_read_4(t, h, GEM_RX_COMPLETION);
1270 i = GEM_NEXTRX(i)) {
1271 rxs = &sc->sc_rxsoft[i];
1272
1273 GEM_CDRXSYNC(sc, i,
1274 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1275
1276 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1277
1278 if (rxstat & GEM_RD_OWN) {
1279 printf("gem_rint: completed descriptor "
1280 "still owned %d\n", i);
1281 /*
1282 * We have processed all of the receive buffers.
1283 */
1284 break;
1285 }
1286
1287 if (rxstat & GEM_RD_BAD_CRC) {
1288 printf("%s: receive error: CRC error\n",
1289 sc->sc_dev.dv_xname);
1290 GEM_INIT_RXDESC(sc, i);
1291 continue;
1292 }
1293
1294 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1295 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1296 #ifdef GEM_DEBUG
1297 if (ifp->if_flags & IFF_DEBUG) {
1298 printf(" rxsoft %p descriptor %d: ", rxs, i);
1299 printf("gd_flags: 0x%016llx\t", (long long)
1300 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1301 printf("gd_addr: 0x%016llx\n", (long long)
1302 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1303 }
1304 #endif
1305
1306 /*
1307 * No errors; receive the packet. Note the Gem
1308 * includes the CRC with every packet.
1309 */
1310 len = GEM_RD_BUFLEN(rxstat);
1311
1312 /*
1313 * Allocate a new mbuf cluster. If that fails, we are
1314 * out of memory, and must drop the packet and recycle
1315 * the buffer that's already attached to this descriptor.
1316 */
1317 m = rxs->rxs_mbuf;
1318 if (gem_add_rxbuf(sc, i) != 0) {
1319 ifp->if_ierrors++;
1320 GEM_INIT_RXDESC(sc, i);
1321 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1322 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1323 continue;
1324 }
1325 m->m_data += 2; /* We're already off by two */
1326
1327 ifp->if_ipackets++;
1328 eh = mtod(m, struct ether_header *);
1329 m->m_flags |= M_HASFCS;
1330 m->m_pkthdr.rcvif = ifp;
1331 m->m_pkthdr.len = m->m_len = len;
1332
1333 #if NBPFILTER > 0
1334 /*
1335 * Pass this up to any BPF listeners, but only
1336 * pass it up the stack if its for us.
1337 */
1338 if (ifp->if_bpf)
1339 bpf_mtap(ifp->if_bpf, m);
1340 #endif /* NPBFILTER > 0 */
1341
1342 /* Pass it on. */
1343 (*ifp->if_input)(ifp, m);
1344 }
1345
1346 /* Update the receive pointer. */
1347 sc->sc_rxptr = i;
1348 bus_space_write_4(t, h, GEM_RX_KICK, i);
1349
1350 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1351 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1352
1353 return (1);
1354 }
1355
1356
1357 /*
1358 * gem_add_rxbuf:
1359 *
1360 * Add a receive buffer to the indicated descriptor.
1361 */
1362 int
1363 gem_add_rxbuf(struct gem_softc *sc, int idx)
1364 {
1365 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1366 struct mbuf *m;
1367 int error;
1368
1369 MGETHDR(m, M_DONTWAIT, MT_DATA);
1370 if (m == NULL)
1371 return (ENOBUFS);
1372
1373 MCLGET(m, M_DONTWAIT);
1374 if ((m->m_flags & M_EXT) == 0) {
1375 m_freem(m);
1376 return (ENOBUFS);
1377 }
1378
1379 #ifdef GEM_DEBUG
1380 /* bzero the packet to check dma */
1381 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1382 #endif
1383
1384 if (rxs->rxs_mbuf != NULL)
1385 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1386
1387 rxs->rxs_mbuf = m;
1388
1389 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1390 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1391 BUS_DMA_READ|BUS_DMA_NOWAIT);
1392 if (error) {
1393 printf("%s: can't load rx DMA map %d, error = %d\n",
1394 sc->sc_dev.dv_xname, idx, error);
1395 panic("gem_add_rxbuf"); /* XXX */
1396 }
1397
1398 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1399 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1400
1401 GEM_INIT_RXDESC(sc, idx);
1402
1403 return (0);
1404 }
1405
1406
1407 int
1408 gem_eint(sc, status)
1409 struct gem_softc *sc;
1410 u_int status;
1411 {
1412 char bits[128];
1413
1414 if ((status & GEM_INTR_MIF) != 0) {
1415 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1416 return (1);
1417 }
1418
1419 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1420 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1421 return (1);
1422 }
1423
1424
1425 int
1426 gem_intr(v)
1427 void *v;
1428 {
1429 struct gem_softc *sc = (struct gem_softc *)v;
1430 bus_space_tag_t t = sc->sc_bustag;
1431 bus_space_handle_t seb = sc->sc_h;
1432 u_int32_t status;
1433 int r = 0;
1434 #ifdef GEM_DEBUG
1435 char bits[128];
1436 #endif
1437
1438 status = bus_space_read_4(t, seb, GEM_STATUS);
1439 DPRINTF(sc, ("%s: gem_intr: cplt %xstatus %s\n",
1440 sc->sc_dev.dv_xname, (status>>19),
1441 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1442
1443 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1444 r |= gem_eint(sc, status);
1445
1446 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0)
1447 r |= gem_tint(sc);
1448
1449 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
1450 r |= gem_rint(sc);
1451
1452 /* We should eventually do more than just print out error stats. */
1453 if (status & GEM_INTR_TX_MAC) {
1454 int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1455 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1456 printf("%s: MAC tx fault, status %x\n",
1457 sc->sc_dev.dv_xname, txstat);
1458 }
1459 if (status & GEM_INTR_RX_MAC) {
1460 int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1461 if (rxstat & ~GEM_MAC_RX_DONE)
1462 printf("%s: MAC rx fault, status %x\n",
1463 sc->sc_dev.dv_xname, rxstat);
1464 }
1465 return (r);
1466 }
1467
1468
1469 void
1470 gem_watchdog(ifp)
1471 struct ifnet *ifp;
1472 {
1473 struct gem_softc *sc = ifp->if_softc;
1474
1475 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1476 "GEM_MAC_RX_CONFIG %x\n",
1477 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1478 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1479 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1480
1481 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1482 ++ifp->if_oerrors;
1483
1484 /* Try to get more packets going. */
1485 gem_start(ifp);
1486 }
1487
1488 /*
1489 * Initialize the MII Management Interface
1490 */
1491 void
1492 gem_mifinit(sc)
1493 struct gem_softc *sc;
1494 {
1495 bus_space_tag_t t = sc->sc_bustag;
1496 bus_space_handle_t mif = sc->sc_h;
1497
1498 /* Configure the MIF in frame mode */
1499 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1500 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1501 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1502 }
1503
1504 /*
1505 * MII interface
1506 *
1507 * The GEM MII interface supports at least three different operating modes:
1508 *
1509 * Bitbang mode is implemented using data, clock and output enable registers.
1510 *
1511 * Frame mode is implemented by loading a complete frame into the frame
1512 * register and polling the valid bit for completion.
1513 *
1514 * Polling mode uses the frame register but completion is indicated by
1515 * an interrupt.
1516 *
1517 */
1518 static int
1519 gem_mii_readreg(self, phy, reg)
1520 struct device *self;
1521 int phy, reg;
1522 {
1523 struct gem_softc *sc = (void *)self;
1524 bus_space_tag_t t = sc->sc_bustag;
1525 bus_space_handle_t mif = sc->sc_h;
1526 int n;
1527 u_int32_t v;
1528
1529 #ifdef GEM_DEBUG1
1530 if (sc->sc_debug)
1531 printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1532 #endif
1533
1534 #if 0
1535 /* Select the desired PHY in the MIF configuration register */
1536 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1537 /* Clear PHY select bit */
1538 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1539 if (phy == GEM_PHYAD_EXTERNAL)
1540 /* Set PHY select bit to get at external device */
1541 v |= GEM_MIF_CONFIG_PHY_SEL;
1542 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1543 #endif
1544
1545 /* Construct the frame command */
1546 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
1547 GEM_MIF_FRAME_READ;
1548
1549 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1550 for (n = 0; n < 100; n++) {
1551 DELAY(1);
1552 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1553 if (v & GEM_MIF_FRAME_TA0)
1554 return (v & GEM_MIF_FRAME_DATA);
1555 }
1556
1557 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1558 return (0);
1559 }
1560
1561 static void
1562 gem_mii_writereg(self, phy, reg, val)
1563 struct device *self;
1564 int phy, reg, val;
1565 {
1566 struct gem_softc *sc = (void *)self;
1567 bus_space_tag_t t = sc->sc_bustag;
1568 bus_space_handle_t mif = sc->sc_h;
1569 int n;
1570 u_int32_t v;
1571
1572 #ifdef GEM_DEBUG1
1573 if (sc->sc_debug)
1574 printf("gem_mii_writereg: phy %d reg %d val %x\n",
1575 phy, reg, val);
1576 #endif
1577
1578 #if 0
1579 /* Select the desired PHY in the MIF configuration register */
1580 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1581 /* Clear PHY select bit */
1582 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1583 if (phy == GEM_PHYAD_EXTERNAL)
1584 /* Set PHY select bit to get at external device */
1585 v |= GEM_MIF_CONFIG_PHY_SEL;
1586 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1587 #endif
1588 /* Construct the frame command */
1589 v = GEM_MIF_FRAME_WRITE |
1590 (phy << GEM_MIF_PHY_SHIFT) |
1591 (reg << GEM_MIF_REG_SHIFT) |
1592 (val & GEM_MIF_FRAME_DATA);
1593
1594 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1595 for (n = 0; n < 100; n++) {
1596 DELAY(1);
1597 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1598 if (v & GEM_MIF_FRAME_TA0)
1599 return;
1600 }
1601
1602 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1603 }
1604
1605 static void
1606 gem_mii_statchg(dev)
1607 struct device *dev;
1608 {
1609 struct gem_softc *sc = (void *)dev;
1610 #ifdef GEM_DEBUG
1611 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1612 #endif
1613 bus_space_tag_t t = sc->sc_bustag;
1614 bus_space_handle_t mac = sc->sc_h;
1615 u_int32_t v;
1616
1617 #ifdef GEM_DEBUG
1618 if (sc->sc_debug)
1619 printf("gem_mii_statchg: status change: phy = %d\n",
1620 sc->sc_phys[instance];);
1621 #endif
1622
1623
1624 /* Set tx full duplex options */
1625 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1626 delay(10000); /* reg must be cleared and delay before changing. */
1627 v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1628 GEM_MAC_TX_ENABLE;
1629 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1630 v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1631 }
1632 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1633
1634 /* XIF Configuration */
1635 /* We should really calculate all this rather than rely on defaults */
1636 v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1637 v = GEM_MAC_XIF_LINK_LED;
1638 v |= GEM_MAC_XIF_TX_MII_ENA;
1639 /* If an external transceiver is connected, enable its MII drivers */
1640 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1641 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1642 /* External MII needs echo disable if half duplex. */
1643 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1644 /* turn on full duplex LED */
1645 v |= GEM_MAC_XIF_FDPLX_LED;
1646 else
1647 /* half duplex -- disable echo */
1648 v |= GEM_MAC_XIF_ECHO_DISABL;
1649 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
1650 v |= GEM_MAC_XIF_GMII_MODE;
1651 else
1652 v &= ~GEM_MAC_XIF_GMII_MODE;
1653 } else
1654 /* Internal MII needs buf enable */
1655 v |= GEM_MAC_XIF_MII_BUF_ENA;
1656 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1657 }
1658
1659 int
1660 gem_mediachange(ifp)
1661 struct ifnet *ifp;
1662 {
1663 struct gem_softc *sc = ifp->if_softc;
1664
1665 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1666 return (EINVAL);
1667
1668 return (mii_mediachg(&sc->sc_mii));
1669 }
1670
1671 void
1672 gem_mediastatus(ifp, ifmr)
1673 struct ifnet *ifp;
1674 struct ifmediareq *ifmr;
1675 {
1676 struct gem_softc *sc = ifp->if_softc;
1677
1678 if ((ifp->if_flags & IFF_UP) == 0)
1679 return;
1680
1681 mii_pollstat(&sc->sc_mii);
1682 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1683 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1684 }
1685
1686 int gem_ioctldebug = 0;
1687 /*
1688 * Process an ioctl request.
1689 */
1690 int
1691 gem_ioctl(ifp, cmd, data)
1692 struct ifnet *ifp;
1693 u_long cmd;
1694 caddr_t data;
1695 {
1696 struct gem_softc *sc = ifp->if_softc;
1697 struct ifreq *ifr = (struct ifreq *)data;
1698 int s, error = 0;
1699
1700
1701 switch (cmd) {
1702 case SIOCGIFMEDIA:
1703 case SIOCSIFMEDIA:
1704 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1705 break;
1706
1707 default:
1708 error = ether_ioctl(ifp, cmd, data);
1709 if (error == ENETRESET) {
1710 /*
1711 * Multicast list has changed; set the hardware filter
1712 * accordingly.
1713 */
1714 if (gem_ioctldebug) printf("reset1\n");
1715 gem_init(ifp);
1716 delay(50000);
1717 error = 0;
1718 }
1719 break;
1720 }
1721
1722 /* Try to get things going again */
1723 if (ifp->if_flags & IFF_UP) {
1724 if (gem_ioctldebug) printf("start\n");
1725 gem_start(ifp);
1726 }
1727 splx(s);
1728 return (error);
1729 }
1730
1731
1732 void
1733 gem_shutdown(arg)
1734 void *arg;
1735 {
1736 struct gem_softc *sc = (struct gem_softc *)arg;
1737 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1738
1739 gem_stop(ifp, 1);
1740 }
1741
1742 /*
1743 * Set up the logical address filter.
1744 */
1745 void
1746 gem_setladrf(sc)
1747 struct gem_softc *sc;
1748 {
1749 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1750 struct ether_multi *enm;
1751 struct ether_multistep step;
1752 struct ethercom *ec = &sc->sc_ethercom;
1753 bus_space_tag_t t = sc->sc_bustag;
1754 bus_space_handle_t h = sc->sc_h;
1755 u_char *cp;
1756 u_int32_t crc;
1757 u_int32_t hash[16];
1758 u_int32_t v;
1759 int len;
1760
1761 /* Clear hash table */
1762 memset(hash, 0, sizeof(hash));
1763
1764 /* Get current RX configuration */
1765 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1766
1767 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1768 /* Turn on promiscuous mode; turn off the hash filter */
1769 v |= GEM_MAC_RX_PROMISCUOUS;
1770 v &= ~GEM_MAC_RX_HASH_FILTER;
1771 ifp->if_flags |= IFF_ALLMULTI;
1772 goto chipit;
1773 }
1774
1775 /* Turn off promiscuous mode; turn on the hash filter */
1776 v &= ~GEM_MAC_RX_PROMISCUOUS;
1777 v |= GEM_MAC_RX_HASH_FILTER;
1778
1779 /*
1780 * Set up multicast address filter by passing all multicast addresses
1781 * through a crc generator, and then using the high order 6 bits as an
1782 * index into the 256 bit logical address filter. The high order bit
1783 * selects the word, while the rest of the bits select the bit within
1784 * the word.
1785 */
1786
1787 ETHER_FIRST_MULTI(step, ec, enm);
1788 while (enm != NULL) {
1789 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1790 /*
1791 * We must listen to a range of multicast addresses.
1792 * For now, just accept all multicasts, rather than
1793 * trying to set only those filter bits needed to match
1794 * the range. (At this time, the only use of address
1795 * ranges is for IP multicast routing, for which the
1796 * range is big enough to require all bits set.)
1797 */
1798 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1799 ifp->if_flags |= IFF_ALLMULTI;
1800 goto chipit;
1801 }
1802
1803 cp = enm->enm_addrlo;
1804 crc = 0xffffffff;
1805 for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1806 int octet = *cp++;
1807 int i;
1808
1809 #define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
1810 for (i = 0; i < 8; i++) {
1811 if ((crc & 1) ^ (octet & 1)) {
1812 crc >>= 1;
1813 crc ^= MC_POLY_LE;
1814 } else {
1815 crc >>= 1;
1816 }
1817 octet >>= 1;
1818 }
1819 }
1820 /* Just want the 8 most significant bits. */
1821 crc >>= 24;
1822
1823 /* Set the corresponding bit in the filter. */
1824 hash[crc >> 4] |= 1 << (crc & 0xf);
1825
1826 ETHER_NEXT_MULTI(step, enm);
1827 }
1828
1829 ifp->if_flags &= ~IFF_ALLMULTI;
1830
1831 chipit:
1832 /* Now load the hash table into the chip */
1833 bus_space_write_4(t, h, GEM_MAC_HASH0, hash[0]);
1834 bus_space_write_4(t, h, GEM_MAC_HASH1, hash[1]);
1835 bus_space_write_4(t, h, GEM_MAC_HASH2, hash[2]);
1836 bus_space_write_4(t, h, GEM_MAC_HASH3, hash[3]);
1837 bus_space_write_4(t, h, GEM_MAC_HASH4, hash[4]);
1838 bus_space_write_4(t, h, GEM_MAC_HASH5, hash[5]);
1839 bus_space_write_4(t, h, GEM_MAC_HASH6, hash[6]);
1840 bus_space_write_4(t, h, GEM_MAC_HASH7, hash[7]);
1841 bus_space_write_4(t, h, GEM_MAC_HASH8, hash[8]);
1842 bus_space_write_4(t, h, GEM_MAC_HASH9, hash[9]);
1843 bus_space_write_4(t, h, GEM_MAC_HASH10, hash[10]);
1844 bus_space_write_4(t, h, GEM_MAC_HASH11, hash[11]);
1845 bus_space_write_4(t, h, GEM_MAC_HASH12, hash[12]);
1846 bus_space_write_4(t, h, GEM_MAC_HASH13, hash[13]);
1847 bus_space_write_4(t, h, GEM_MAC_HASH14, hash[14]);
1848 bus_space_write_4(t, h, GEM_MAC_HASH15, hash[15]);
1849
1850 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1851 }
1852
1853 #if notyet
1854
1855 /*
1856 * gem_power:
1857 *
1858 * Power management (suspend/resume) hook.
1859 */
1860 void
1861 gem_power(why, arg)
1862 int why;
1863 void *arg;
1864 {
1865 struct gem_softc *sc = arg;
1866 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1867 int s;
1868
1869 s = splnet();
1870 switch (why) {
1871 case PWR_SUSPEND:
1872 case PWR_STANDBY:
1873 gem_stop(ifp, 1);
1874 if (sc->sc_power != NULL)
1875 (*sc->sc_power)(sc, why);
1876 break;
1877 case PWR_RESUME:
1878 if (ifp->if_flags & IFF_UP) {
1879 if (sc->sc_power != NULL)
1880 (*sc->sc_power)(sc, why);
1881 gem_init(ifp);
1882 }
1883 break;
1884 case PWR_SOFTSUSPEND:
1885 case PWR_SOFTSTANDBY:
1886 case PWR_SOFTRESUME:
1887 break;
1888 }
1889 splx(s);
1890 }
1891 #endif
1892