gem.c revision 1.17 1 /* $NetBSD: gem.c,v 1.17 2002/05/14 23:33:41 matt Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * All rights reserved.
7 *
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32 /*
33 * Driver for Sun GEM ethernet controllers.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.17 2002/05/14 23:33:41 matt Exp $");
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/syslog.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52
53 #include <machine/endian.h>
54
55 #include <uvm/uvm_extern.h>
56
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <machine/bus.h>
67 #include <machine/intr.h>
68
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71 #include <dev/mii/mii_bitbang.h>
72
73 #include <dev/ic/gemreg.h>
74 #include <dev/ic/gemvar.h>
75
76 #define TRIES 10000
77
78 void gem_start __P((struct ifnet *));
79 void gem_stop __P((struct ifnet *, int));
80 int gem_ioctl __P((struct ifnet *, u_long, caddr_t));
81 void gem_tick __P((void *));
82 void gem_watchdog __P((struct ifnet *));
83 void gem_shutdown __P((void *));
84 int gem_init __P((struct ifnet *));
85 void gem_init_regs(struct gem_softc *sc);
86 static int gem_ringsize(int sz);
87 int gem_meminit __P((struct gem_softc *));
88 void gem_mifinit __P((struct gem_softc *));
89 void gem_reset __P((struct gem_softc *));
90 int gem_reset_rx(struct gem_softc *sc);
91 int gem_reset_tx(struct gem_softc *sc);
92 int gem_disable_rx(struct gem_softc *sc);
93 int gem_disable_tx(struct gem_softc *sc);
94 void gem_rxdrain(struct gem_softc *sc);
95 int gem_add_rxbuf(struct gem_softc *sc, int idx);
96 void gem_setladrf __P((struct gem_softc *));
97
98 /* MII methods & callbacks */
99 static int gem_mii_readreg __P((struct device *, int, int));
100 static void gem_mii_writereg __P((struct device *, int, int, int));
101 static void gem_mii_statchg __P((struct device *));
102
103 int gem_mediachange __P((struct ifnet *));
104 void gem_mediastatus __P((struct ifnet *, struct ifmediareq *));
105
106 struct mbuf *gem_get __P((struct gem_softc *, int, int));
107 int gem_put __P((struct gem_softc *, int, struct mbuf *));
108 void gem_read __P((struct gem_softc *, int, int));
109 int gem_eint __P((struct gem_softc *, u_int));
110 int gem_rint __P((struct gem_softc *));
111 int gem_tint __P((struct gem_softc *));
112 void gem_power __P((int, void *));
113
114 #ifdef GEM_DEBUG
115 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
116 printf x
117 #else
118 #define DPRINTF(sc, x) /* nothing */
119 #endif
120
121
122 /*
123 * gem_attach:
124 *
125 * Attach a Gem interface to the system.
126 */
127 void
128 gem_attach(sc, enaddr)
129 struct gem_softc *sc;
130 const uint8_t *enaddr;
131 {
132 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
133 struct mii_data *mii = &sc->sc_mii;
134 struct mii_softc *child;
135 struct ifmedia_entry *ifm;
136 int i, error;
137 u_int32_t v;
138
139 /* Make sure the chip is stopped. */
140 ifp->if_softc = sc;
141 gem_reset(sc);
142
143 /*
144 * Allocate the control data structures, and create and load the
145 * DMA map for it.
146 */
147 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
148 sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
149 1, &sc->sc_cdnseg, 0)) != 0) {
150 printf("%s: unable to allocate control data, error = %d\n",
151 sc->sc_dev.dv_xname, error);
152 goto fail_0;
153 }
154
155 /* XXX should map this in with correct endianness */
156 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
157 sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
158 BUS_DMA_COHERENT)) != 0) {
159 printf("%s: unable to map control data, error = %d\n",
160 sc->sc_dev.dv_xname, error);
161 goto fail_1;
162 }
163
164 if ((error = bus_dmamap_create(sc->sc_dmatag,
165 sizeof(struct gem_control_data), 1,
166 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
167 printf("%s: unable to create control data DMA map, "
168 "error = %d\n", sc->sc_dev.dv_xname, error);
169 goto fail_2;
170 }
171
172 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
173 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
174 0)) != 0) {
175 printf("%s: unable to load control data DMA map, error = %d\n",
176 sc->sc_dev.dv_xname, error);
177 goto fail_3;
178 }
179
180 /*
181 * Initialize the transmit job descriptors.
182 */
183 SIMPLEQ_INIT(&sc->sc_txfreeq);
184 SIMPLEQ_INIT(&sc->sc_txdirtyq);
185
186 /*
187 * Create the transmit buffer DMA maps.
188 */
189 for (i = 0; i < GEM_TXQUEUELEN; i++) {
190 struct gem_txsoft *txs;
191
192 txs = &sc->sc_txsoft[i];
193 txs->txs_mbuf = NULL;
194 if ((error = bus_dmamap_create(sc->sc_dmatag,
195 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
196 ETHER_MAX_LEN_JUMBO, 0, 0,
197 &txs->txs_dmamap)) != 0) {
198 printf("%s: unable to create tx DMA map %d, "
199 "error = %d\n", sc->sc_dev.dv_xname, i, error);
200 goto fail_4;
201 }
202 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
203 }
204
205 /*
206 * Create the receive buffer DMA maps.
207 */
208 for (i = 0; i < GEM_NRXDESC; i++) {
209 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
210 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
211 printf("%s: unable to create rx DMA map %d, "
212 "error = %d\n", sc->sc_dev.dv_xname, i, error);
213 goto fail_5;
214 }
215 sc->sc_rxsoft[i].rxs_mbuf = NULL;
216 }
217
218 /*
219 * From this point forward, the attachment cannot fail. A failure
220 * before this point releases all resources that may have been
221 * allocated.
222 */
223
224 /* Announce ourselves. */
225 printf("%s: Ethernet address %s", sc->sc_dev.dv_xname,
226 ether_sprintf(enaddr));
227
228 /* Get RX FIFO size */
229 sc->sc_rxfifosize = 64 *
230 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
231 printf(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
232
233 /* Get TX FIFO size */
234 v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
235 printf(", %uKB TX fifo\n", v / 16);
236
237 /* Initialize ifnet structure. */
238 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
239 ifp->if_softc = sc;
240 ifp->if_flags =
241 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
242 ifp->if_start = gem_start;
243 ifp->if_ioctl = gem_ioctl;
244 ifp->if_watchdog = gem_watchdog;
245 ifp->if_stop = gem_stop;
246 ifp->if_init = gem_init;
247 IFQ_SET_READY(&ifp->if_snd);
248
249 /* Initialize ifmedia structures and MII info */
250 mii->mii_ifp = ifp;
251 mii->mii_readreg = gem_mii_readreg;
252 mii->mii_writereg = gem_mii_writereg;
253 mii->mii_statchg = gem_mii_statchg;
254
255 ifmedia_init(&mii->mii_media, 0, gem_mediachange, gem_mediastatus);
256
257 gem_mifinit(sc);
258
259 mii_attach(&sc->sc_dev, mii, 0xffffffff,
260 MII_PHY_ANY, MII_OFFSET_ANY, 0);
261
262 child = LIST_FIRST(&mii->mii_phys);
263 if (child == NULL) {
264 /* No PHY attached */
265 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
266 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
267 } else {
268 /*
269 * Walk along the list of attached MII devices and
270 * establish an `MII instance' to `phy number'
271 * mapping. We'll use this mapping in media change
272 * requests to determine which phy to use to program
273 * the MIF configuration register.
274 */
275 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
276 /*
277 * Note: we support just two PHYs: the built-in
278 * internal device and an external on the MII
279 * connector.
280 */
281 if (child->mii_phy > 1 || child->mii_inst > 1) {
282 printf("%s: cannot accomodate MII device %s"
283 " at phy %d, instance %d\n",
284 sc->sc_dev.dv_xname,
285 child->mii_dev.dv_xname,
286 child->mii_phy, child->mii_inst);
287 continue;
288 }
289
290 sc->sc_phys[child->mii_inst] = child->mii_phy;
291
292 }
293
294 /*
295 * Now select and activate the PHY we will use.
296 *
297 * The order of preference is External (MDI1),
298 * Internal (MDI0), Serial Link (no MII).
299 */
300 if (sc->sc_phys[1]) {
301 #ifdef DEBUG
302 printf("using external phy\n");
303 #endif
304 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
305 } else {
306 #ifdef DEBUG
307 printf("using internal phy\n");
308 #endif
309 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
310 }
311 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
312 sc->sc_mif_config);
313
314 /*
315 * XXX - we can really do the following ONLY if the
316 * phy indeed has the auto negotiation capability!!
317 */
318 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
319 }
320
321 /*
322 * If we support GigE media, we support jumbo frames too.
323 * Unless we are Apple.
324 */
325 TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
326 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
327 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
328 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
329 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
330 if (sc->sc_variant != GEM_APPLE_GMAC)
331 sc->sc_ethercom.ec_capabilities
332 |= ETHERCAP_JUMBO_MTU;
333
334 sc->sc_flags |= GEM_GIGABIT;
335 break;
336 }
337 }
338
339 /* claim 802.1q capability */
340 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
341
342 /* Attach the interface. */
343 if_attach(ifp);
344 ether_ifattach(ifp, enaddr);
345
346 sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
347 if (sc->sc_sh == NULL)
348 panic("gem_config: can't establish shutdownhook");
349
350 #if NRND > 0
351 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
352 RND_TYPE_NET, 0);
353 #endif
354
355
356 #if notyet
357 /*
358 * Add a suspend hook to make sure we come back up after a
359 * resume.
360 */
361 sc->sc_powerhook = powerhook_establish(gem_power, sc);
362 if (sc->sc_powerhook == NULL)
363 printf("%s: WARNING: unable to establish power hook\n",
364 sc->sc_dev.dv_xname);
365 #endif
366
367 callout_init(&sc->sc_tick_ch);
368 return;
369
370 /*
371 * Free any resources we've allocated during the failed attach
372 * attempt. Do this in reverse order and fall through.
373 */
374 fail_5:
375 for (i = 0; i < GEM_NRXDESC; i++) {
376 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
377 bus_dmamap_destroy(sc->sc_dmatag,
378 sc->sc_rxsoft[i].rxs_dmamap);
379 }
380 fail_4:
381 for (i = 0; i < GEM_TXQUEUELEN; i++) {
382 if (sc->sc_txsoft[i].txs_dmamap != NULL)
383 bus_dmamap_destroy(sc->sc_dmatag,
384 sc->sc_txsoft[i].txs_dmamap);
385 }
386 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
387 fail_3:
388 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
389 fail_2:
390 bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
391 sizeof(struct gem_control_data));
392 fail_1:
393 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
394 fail_0:
395 return;
396 }
397
398
399 void
400 gem_tick(arg)
401 void *arg;
402 {
403 struct gem_softc *sc = arg;
404 int s;
405
406 s = splnet();
407 mii_tick(&sc->sc_mii);
408 splx(s);
409
410 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
411
412 }
413
414 void
415 gem_reset(sc)
416 struct gem_softc *sc;
417 {
418 bus_space_tag_t t = sc->sc_bustag;
419 bus_space_handle_t h = sc->sc_h;
420 int i;
421 int s;
422
423 s = splnet();
424 DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
425 gem_reset_rx(sc);
426 gem_reset_tx(sc);
427
428 /* Do a full reset */
429 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
430 for (i=TRIES; i--; delay(100))
431 if ((bus_space_read_4(t, h, GEM_RESET) &
432 (GEM_RESET_RX|GEM_RESET_TX)) == 0)
433 break;
434 if ((bus_space_read_4(t, h, GEM_RESET) &
435 (GEM_RESET_RX|GEM_RESET_TX)) != 0) {
436 printf("%s: cannot reset device\n",
437 sc->sc_dev.dv_xname);
438 }
439 splx(s);
440 }
441
442
443 /*
444 * gem_rxdrain:
445 *
446 * Drain the receive queue.
447 */
448 void
449 gem_rxdrain(struct gem_softc *sc)
450 {
451 struct gem_rxsoft *rxs;
452 int i;
453
454 for (i = 0; i < GEM_NRXDESC; i++) {
455 rxs = &sc->sc_rxsoft[i];
456 if (rxs->rxs_mbuf != NULL) {
457 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
458 m_freem(rxs->rxs_mbuf);
459 rxs->rxs_mbuf = NULL;
460 }
461 }
462 }
463
464 /*
465 * Reset the whole thing.
466 */
467 void
468 gem_stop(struct ifnet *ifp, int disable)
469 {
470 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
471 struct gem_txsoft *txs;
472
473 DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
474
475 callout_stop(&sc->sc_tick_ch);
476 mii_down(&sc->sc_mii);
477
478 /* XXX - Should we reset these instead? */
479 gem_disable_rx(sc);
480 gem_disable_rx(sc);
481
482 /*
483 * Release any queued transmit buffers.
484 */
485 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
486 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
487 if (txs->txs_mbuf != NULL) {
488 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
489 m_freem(txs->txs_mbuf);
490 txs->txs_mbuf = NULL;
491 }
492 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
493 }
494
495 if (disable) {
496 gem_rxdrain(sc);
497 }
498
499 /*
500 * Mark the interface down and cancel the watchdog timer.
501 */
502 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
503 ifp->if_timer = 0;
504 }
505
506
507 /*
508 * Reset the receiver
509 */
510 int
511 gem_reset_rx(struct gem_softc *sc)
512 {
513 bus_space_tag_t t = sc->sc_bustag;
514 bus_space_handle_t h = sc->sc_h;
515 int i;
516
517
518 /*
519 * Resetting while DMA is in progress can cause a bus hang, so we
520 * disable DMA first.
521 */
522 gem_disable_rx(sc);
523 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
524 /* Wait till it finishes */
525 for (i=TRIES; i--; delay(100))
526 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
527 break;
528 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
529 printf("%s: cannot disable read dma\n",
530 sc->sc_dev.dv_xname);
531
532 /* Wait 5ms extra. */
533 delay(5000);
534
535 /* Finally, reset the ERX */
536 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
537 /* Wait till it finishes */
538 for (i=TRIES; i--; delay(100))
539 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
540 break;
541 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
542 printf("%s: cannot reset receiver\n",
543 sc->sc_dev.dv_xname);
544 return (1);
545 }
546 return (0);
547 }
548
549
550 /*
551 * Reset the transmitter
552 */
553 int
554 gem_reset_tx(struct gem_softc *sc)
555 {
556 bus_space_tag_t t = sc->sc_bustag;
557 bus_space_handle_t h = sc->sc_h;
558 int i;
559
560 /*
561 * Resetting while DMA is in progress can cause a bus hang, so we
562 * disable DMA first.
563 */
564 gem_disable_tx(sc);
565 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
566 /* Wait till it finishes */
567 for (i=TRIES; i--; delay(100))
568 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
569 break;
570 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
571 printf("%s: cannot disable read dma\n",
572 sc->sc_dev.dv_xname);
573
574 /* Wait 5ms extra. */
575 delay(5000);
576
577 /* Finally, reset the ETX */
578 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
579 /* Wait till it finishes */
580 for (i=TRIES; i--; delay(100))
581 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
582 break;
583 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
584 printf("%s: cannot reset receiver\n",
585 sc->sc_dev.dv_xname);
586 return (1);
587 }
588 return (0);
589 }
590
591 /*
592 * disable receiver.
593 */
594 int
595 gem_disable_rx(struct gem_softc *sc)
596 {
597 bus_space_tag_t t = sc->sc_bustag;
598 bus_space_handle_t h = sc->sc_h;
599 int i;
600 u_int32_t cfg;
601
602 /* Flip the enable bit */
603 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
604 cfg &= ~GEM_MAC_RX_ENABLE;
605 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
606
607 /* Wait for it to finish */
608 for (i=TRIES; i--; delay(100))
609 if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
610 GEM_MAC_RX_ENABLE) == 0)
611 return (0);
612 return (1);
613 }
614
615 /*
616 * disable transmitter.
617 */
618 int
619 gem_disable_tx(struct gem_softc *sc)
620 {
621 bus_space_tag_t t = sc->sc_bustag;
622 bus_space_handle_t h = sc->sc_h;
623 int i;
624 u_int32_t cfg;
625
626 /* Flip the enable bit */
627 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
628 cfg &= ~GEM_MAC_TX_ENABLE;
629 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
630
631 /* Wait for it to finish */
632 for (i=TRIES; i--; delay(100))
633 if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
634 GEM_MAC_TX_ENABLE) == 0)
635 return (0);
636 return (1);
637 }
638
639 /*
640 * Initialize interface.
641 */
642 int
643 gem_meminit(struct gem_softc *sc)
644 {
645 struct gem_rxsoft *rxs;
646 int i, error;
647
648 /*
649 * Initialize the transmit descriptor ring.
650 */
651 memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
652 for (i = 0; i < GEM_NTXDESC; i++) {
653 sc->sc_txdescs[i].gd_flags = 0;
654 sc->sc_txdescs[i].gd_addr = 0;
655 }
656 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
657 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
658 sc->sc_txfree = GEM_NTXDESC-1;
659 sc->sc_txnext = 0;
660 sc->sc_txwin = 0;
661
662 /*
663 * Initialize the receive descriptor and receive job
664 * descriptor rings.
665 */
666 for (i = 0; i < GEM_NRXDESC; i++) {
667 rxs = &sc->sc_rxsoft[i];
668 if (rxs->rxs_mbuf == NULL) {
669 if ((error = gem_add_rxbuf(sc, i)) != 0) {
670 printf("%s: unable to allocate or map rx "
671 "buffer %d, error = %d\n",
672 sc->sc_dev.dv_xname, i, error);
673 /*
674 * XXX Should attempt to run with fewer receive
675 * XXX buffers instead of just failing.
676 */
677 gem_rxdrain(sc);
678 return (1);
679 }
680 } else
681 GEM_INIT_RXDESC(sc, i);
682 }
683 sc->sc_rxptr = 0;
684
685 return (0);
686 }
687
688 static int
689 gem_ringsize(int sz)
690 {
691 int v;
692
693 switch (sz) {
694 case 32:
695 v = GEM_RING_SZ_32;
696 break;
697 case 64:
698 v = GEM_RING_SZ_64;
699 break;
700 case 128:
701 v = GEM_RING_SZ_128;
702 break;
703 case 256:
704 v = GEM_RING_SZ_256;
705 break;
706 case 512:
707 v = GEM_RING_SZ_512;
708 break;
709 case 1024:
710 v = GEM_RING_SZ_1024;
711 break;
712 case 2048:
713 v = GEM_RING_SZ_2048;
714 break;
715 case 4096:
716 v = GEM_RING_SZ_4096;
717 break;
718 case 8192:
719 v = GEM_RING_SZ_8192;
720 break;
721 default:
722 printf("gem: invalid Receive Descriptor ring size\n");
723 break;
724 }
725 return (v);
726 }
727
728 /*
729 * Initialization of interface; set up initialization block
730 * and transmit/receive descriptor rings.
731 */
732 int
733 gem_init(struct ifnet *ifp)
734 {
735 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
736 bus_space_tag_t t = sc->sc_bustag;
737 bus_space_handle_t h = sc->sc_h;
738 int s;
739 u_int max_frame_size;
740 u_int32_t v;
741
742 s = splnet();
743
744 DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
745 /*
746 * Initialization sequence. The numbered steps below correspond
747 * to the sequence outlined in section 6.3.5.1 in the Ethernet
748 * Channel Engine manual (part of the PCIO manual).
749 * See also the STP2002-STQ document from Sun Microsystems.
750 */
751
752 /* step 1 & 2. Reset the Ethernet Channel */
753 gem_stop(ifp, 0);
754 gem_reset(sc);
755 DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
756
757 /* Re-initialize the MIF */
758 gem_mifinit(sc);
759
760 /* Call MI reset function if any */
761 if (sc->sc_hwreset)
762 (*sc->sc_hwreset)(sc);
763
764 /* step 3. Setup data structures in host memory */
765 gem_meminit(sc);
766
767 /* step 4. TX MAC registers & counters */
768 gem_init_regs(sc);
769 max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
770 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
771 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
772 max_frame_size += ETHER_VLAN_ENCAP_LEN;
773 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
774 max_frame_size|/* burst size */(0x2000<<16));
775
776 /* step 5. RX MAC registers & counters */
777 gem_setladrf(sc);
778
779 /* step 6 & 7. Program Descriptor Ring Base Addresses */
780 /* NOTE: we use only 32-bit DMA addresses here. */
781 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
782 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
783
784 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
785 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
786
787 /* step 8. Global Configuration & Interrupt Mask */
788 bus_space_write_4(t, h, GEM_INTMASK,
789 ~(GEM_INTR_TX_INTME|
790 GEM_INTR_TX_EMPTY|
791 GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
792 GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
793 GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
794 GEM_INTR_BERR));
795 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
796 GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
797 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
798 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
799
800 /* step 9. ETX Configuration: use mostly default values */
801
802 /* Enable DMA */
803 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
804 bus_space_write_4(t, h, GEM_TX_CONFIG,
805 v|GEM_TX_CONFIG_TXDMA_EN|
806 ((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
807 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
808
809 /* step 10. ERX Configuration */
810
811 /* Encode Receive Descriptor ring size: four possible values */
812 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
813
814 /* Enable DMA */
815 bus_space_write_4(t, h, GEM_RX_CONFIG,
816 v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
817 (2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
818 (0<<GEM_RX_CONFIG_CXM_START_SHFT));
819 /*
820 * The following value is for an OFF Threshold of about 3/4 full
821 * and an ON Threshold of 1/4 full.
822 */
823 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
824 (3 * sc->sc_rxfifosize / 256) |
825 ( (sc->sc_rxfifosize / 256) << 12));
826 bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
827
828 /* step 11. Configure Media */
829 mii_mediachg(&sc->sc_mii);
830
831 /* XXXX Serial link needs a whole different setup. */
832
833
834 /* step 12. RX_MAC Configuration Register */
835 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
836 v |= GEM_MAC_RX_ENABLE;
837 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
838
839 /* step 14. Issue Transmit Pending command */
840
841 /* Call MI initialization function if any */
842 if (sc->sc_hwinit)
843 (*sc->sc_hwinit)(sc);
844
845
846 /* step 15. Give the reciever a swift kick */
847 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
848
849 /* Start the one second timer. */
850 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
851
852 ifp->if_flags |= IFF_RUNNING;
853 ifp->if_flags &= ~IFF_OACTIVE;
854 ifp->if_timer = 0;
855 splx(s);
856
857 return (0);
858 }
859
860 void
861 gem_init_regs(struct gem_softc *sc)
862 {
863 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
864 bus_space_tag_t t = sc->sc_bustag;
865 bus_space_handle_t h = sc->sc_h;
866 const u_char *laddr = LLADDR(ifp->if_sadl);
867 u_int32_t v;
868
869 /* These regs are not cleared on reset */
870 if (!sc->sc_inited) {
871
872 /* Wooo. Magic values. */
873 bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
874 bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
875 bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
876
877 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
878 /* Max frame and max burst size */
879 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
880 ETHER_MAX_LEN | (0x2000<<16));
881
882 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
883 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
884 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
885 /* Dunno.... */
886 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
887 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
888 ((laddr[5]<<8)|laddr[4])&0x3ff);
889
890 /* Secondary MAC addr set to 0:0:0:0:0:0 */
891 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
892 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
893 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
894
895 /* MAC control addr set to 01:80:c2:00:00:01 */
896 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
897 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
898 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
899
900 /* MAC filter addr set to 0:0:0:0:0:0 */
901 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
902 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
903 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
904
905 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
906 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
907
908 sc->sc_inited = 1;
909 }
910
911 /* Counters need to be zeroed */
912 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
913 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
914 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
915 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
916 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
917 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
918 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
919 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
920 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
921 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
922 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
923
924 /* Un-pause stuff */
925 #if 0
926 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
927 #else
928 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
929 #endif
930
931 /*
932 * Set the station address.
933 */
934 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
935 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
936 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
937
938 #if 0
939 if (sc->sc_variant != APPLE_GMAC)
940 return;
941 #endif
942
943 /*
944 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
945 */
946 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
947 v = GEM_MAC_XIF_TX_MII_ENA;
948 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
949 v |= GEM_MAC_XIF_FDPLX_LED;
950 if (sc->sc_flags & GEM_GIGABIT)
951 v |= GEM_MAC_XIF_GMII_MODE;
952 }
953 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
954 }
955
956 void
957 gem_start(ifp)
958 struct ifnet *ifp;
959 {
960 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
961 struct mbuf *m0, *m;
962 struct gem_txsoft *txs, *last_txs;
963 bus_dmamap_t dmamap;
964 int error, firsttx, nexttx, lasttx, ofree, seg;
965
966 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
967 return;
968
969 /*
970 * Remember the previous number of free descriptors and
971 * the first descriptor we'll use.
972 */
973 ofree = sc->sc_txfree;
974 firsttx = sc->sc_txnext;
975
976 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
977 sc->sc_dev.dv_xname, ofree, firsttx));
978
979 /*
980 * Loop through the send queue, setting up transmit descriptors
981 * until we drain the queue, or use up all available transmit
982 * descriptors.
983 */
984 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
985 sc->sc_txfree != 0) {
986 /*
987 * Grab a packet off the queue.
988 */
989 IFQ_POLL(&ifp->if_snd, m0);
990 if (m0 == NULL)
991 break;
992 m = NULL;
993
994 dmamap = txs->txs_dmamap;
995
996 /*
997 * Load the DMA map. If this fails, the packet either
998 * didn't fit in the alloted number of segments, or we were
999 * short on resources. In this case, we'll copy and try
1000 * again.
1001 */
1002 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1003 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1004 if (m0->m_pkthdr.len > MCLBYTES) {
1005 printf("%s: unable to allocate jumbo Tx "
1006 "cluster\n", sc->sc_dev.dv_xname);
1007 IFQ_DEQUEUE(&ifp->if_snd, m0);
1008 m_freem(m0);
1009 continue;
1010 }
1011 MGETHDR(m, M_DONTWAIT, MT_DATA);
1012 if (m == NULL) {
1013 printf("%s: unable to allocate Tx mbuf\n",
1014 sc->sc_dev.dv_xname);
1015 break;
1016 }
1017 if (m0->m_pkthdr.len > MHLEN) {
1018 MCLGET(m, M_DONTWAIT);
1019 if ((m->m_flags & M_EXT) == 0) {
1020 printf("%s: unable to allocate Tx "
1021 "cluster\n", sc->sc_dev.dv_xname);
1022 m_freem(m);
1023 break;
1024 }
1025 }
1026 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1027 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1028 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1029 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1030 if (error) {
1031 printf("%s: unable to load Tx buffer, "
1032 "error = %d\n", sc->sc_dev.dv_xname, error);
1033 break;
1034 }
1035 }
1036
1037 /*
1038 * Ensure we have enough descriptors free to describe
1039 * the packet.
1040 */
1041 if (dmamap->dm_nsegs > sc->sc_txfree) {
1042 /*
1043 * Not enough free descriptors to transmit this
1044 * packet. We haven't committed to anything yet,
1045 * so just unload the DMA map, put the packet
1046 * back on the queue, and punt. Notify the upper
1047 * layer that there are no more slots left.
1048 *
1049 * XXX We could allocate an mbuf and copy, but
1050 * XXX it is worth it?
1051 */
1052 ifp->if_flags |= IFF_OACTIVE;
1053 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1054 if (m != NULL)
1055 m_freem(m);
1056 break;
1057 }
1058
1059 IFQ_DEQUEUE(&ifp->if_snd, m0);
1060 if (m != NULL) {
1061 m_freem(m0);
1062 m0 = m;
1063 }
1064
1065 /*
1066 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1067 */
1068
1069 /* Sync the DMA map. */
1070 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1071 BUS_DMASYNC_PREWRITE);
1072
1073 /*
1074 * Initialize the transmit descriptors.
1075 */
1076 for (nexttx = sc->sc_txnext, seg = 0;
1077 seg < dmamap->dm_nsegs;
1078 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1079 uint64_t flags;
1080
1081 /*
1082 * If this is the first descriptor we're
1083 * enqueueing, set the start of packet flag,
1084 * and the checksum stuff if we want the hardware
1085 * to do it.
1086 */
1087 sc->sc_txdescs[nexttx].gd_addr =
1088 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1089 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1090 if (nexttx == firsttx) {
1091 flags |= GEM_TD_START_OF_PACKET;
1092 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1093 sc->sc_txwin = 0;
1094 flags |= GEM_TD_INTERRUPT_ME;
1095 }
1096 }
1097 if (seg == dmamap->dm_nsegs - 1) {
1098 flags |= GEM_TD_END_OF_PACKET;
1099 }
1100 sc->sc_txdescs[nexttx].gd_flags =
1101 GEM_DMA_WRITE(sc, flags);
1102 lasttx = nexttx;
1103 }
1104
1105 #ifdef GEM_DEBUG
1106 if (ifp->if_flags & IFF_DEBUG) {
1107 printf(" gem_start %p transmit chain:\n", txs);
1108 for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1109 printf("descriptor %d:\t", seg);
1110 printf("gd_flags: 0x%016llx\t", (long long)
1111 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1112 printf("gd_addr: 0x%016llx\n", (long long)
1113 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1114 if (seg == lasttx)
1115 break;
1116 }
1117 }
1118 #endif
1119
1120 /* Sync the descriptors we're using. */
1121 GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1122 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1123
1124 /*
1125 * Store a pointer to the packet so we can free it later,
1126 * and remember what txdirty will be once the packet is
1127 * done.
1128 */
1129 txs->txs_mbuf = m0;
1130 txs->txs_firstdesc = sc->sc_txnext;
1131 txs->txs_lastdesc = lasttx;
1132 txs->txs_ndescs = dmamap->dm_nsegs;
1133
1134 /* Advance the tx pointer. */
1135 sc->sc_txfree -= dmamap->dm_nsegs;
1136 sc->sc_txnext = nexttx;
1137
1138 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1139 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1140
1141 last_txs = txs;
1142
1143 #if NBPFILTER > 0
1144 /*
1145 * Pass the packet to any BPF listeners.
1146 */
1147 if (ifp->if_bpf)
1148 bpf_mtap(ifp->if_bpf, m0);
1149 #endif /* NBPFILTER > 0 */
1150 }
1151
1152 if (txs == NULL || sc->sc_txfree == 0) {
1153 /* No more slots left; notify upper layer. */
1154 ifp->if_flags |= IFF_OACTIVE;
1155 }
1156
1157 if (sc->sc_txfree != ofree) {
1158 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1159 sc->sc_dev.dv_xname, lasttx, firsttx));
1160 /*
1161 * The entire packet chain is set up.
1162 * Kick the transmitter.
1163 */
1164 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1165 sc->sc_dev.dv_xname, nexttx));
1166 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1167 sc->sc_txnext);
1168
1169 /* Set a watchdog timer in case the chip flakes out. */
1170 ifp->if_timer = 5;
1171 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1172 sc->sc_dev.dv_xname, ifp->if_timer));
1173 }
1174 }
1175
1176 /*
1177 * Transmit interrupt.
1178 */
1179 int
1180 gem_tint(sc)
1181 struct gem_softc *sc;
1182 {
1183 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1184 bus_space_tag_t t = sc->sc_bustag;
1185 bus_space_handle_t mac = sc->sc_h;
1186 struct gem_txsoft *txs;
1187 int txlast;
1188 int progress = 0;
1189
1190
1191 DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1192
1193 /*
1194 * Unload collision counters
1195 */
1196 ifp->if_collisions +=
1197 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1198 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1199 bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1200 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1201
1202 /*
1203 * then clear the hardware counters.
1204 */
1205 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1206 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1207 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1208 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1209
1210 /*
1211 * Go through our Tx list and free mbufs for those
1212 * frames that have been transmitted.
1213 */
1214 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1215 GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1216 txs->txs_ndescs,
1217 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1218
1219 #ifdef GEM_DEBUG
1220 if (ifp->if_flags & IFF_DEBUG) {
1221 int i;
1222 printf(" txsoft %p transmit chain:\n", txs);
1223 for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1224 printf("descriptor %d: ", i);
1225 printf("gd_flags: 0x%016llx\t", (long long)
1226 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1227 printf("gd_addr: 0x%016llx\n", (long long)
1228 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1229 if (i == txs->txs_lastdesc)
1230 break;
1231 }
1232 }
1233 #endif
1234
1235 /*
1236 * In theory, we could harveast some descriptors before
1237 * the ring is empty, but that's a bit complicated.
1238 *
1239 * GEM_TX_COMPLETION points to the last descriptor
1240 * processed +1.
1241 */
1242 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1243 DPRINTF(sc,
1244 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1245 txs->txs_lastdesc, txlast));
1246 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1247 if ((txlast >= txs->txs_firstdesc) &&
1248 (txlast <= txs->txs_lastdesc))
1249 break;
1250 } else {
1251 /* Ick -- this command wraps */
1252 if ((txlast >= txs->txs_firstdesc) ||
1253 (txlast <= txs->txs_lastdesc))
1254 break;
1255 }
1256
1257 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1258 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1259
1260 sc->sc_txfree += txs->txs_ndescs;
1261
1262 if (txs->txs_mbuf == NULL) {
1263 #ifdef DIAGNOSTIC
1264 panic("gem_txintr: null mbuf");
1265 #endif
1266 }
1267
1268 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1269 0, txs->txs_dmamap->dm_mapsize,
1270 BUS_DMASYNC_POSTWRITE);
1271 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1272 m_freem(txs->txs_mbuf);
1273 txs->txs_mbuf = NULL;
1274
1275 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1276
1277 ifp->if_opackets++;
1278 progress = 1;
1279 }
1280
1281 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1282 "GEM_TX_DATA_PTR %llx "
1283 "GEM_TX_COMPLETION %x\n",
1284 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1285 ((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1286 GEM_TX_DATA_PTR_HI) << 32) |
1287 bus_space_read_4(sc->sc_bustag, sc->sc_h,
1288 GEM_TX_DATA_PTR_LO),
1289 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1290
1291 if (progress) {
1292 if (sc->sc_txfree == GEM_NTXDESC - 1)
1293 sc->sc_txwin = 0;
1294
1295 ifp->if_flags &= ~IFF_OACTIVE;
1296 gem_start(ifp);
1297
1298 if (SIMPLEQ_FIRST(&sc->sc_txdirtyq) == NULL)
1299 ifp->if_timer = 0;
1300 }
1301 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1302 sc->sc_dev.dv_xname, ifp->if_timer));
1303
1304 return (1);
1305 }
1306
1307 /*
1308 * Receive interrupt.
1309 */
1310 int
1311 gem_rint(sc)
1312 struct gem_softc *sc;
1313 {
1314 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1315 bus_space_tag_t t = sc->sc_bustag;
1316 bus_space_handle_t h = sc->sc_h;
1317 struct ether_header *eh;
1318 struct gem_rxsoft *rxs;
1319 struct mbuf *m;
1320 u_int64_t rxstat;
1321 int i, len;
1322
1323 DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1324 /*
1325 * XXXX Read the lastrx only once at the top for speed.
1326 */
1327 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1328 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1329 for (i = sc->sc_rxptr; i != bus_space_read_4(t, h, GEM_RX_COMPLETION);
1330 i = GEM_NEXTRX(i)) {
1331 rxs = &sc->sc_rxsoft[i];
1332
1333 GEM_CDRXSYNC(sc, i,
1334 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1335
1336 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1337
1338 if (rxstat & GEM_RD_OWN) {
1339 printf("gem_rint: completed descriptor "
1340 "still owned %d\n", i);
1341 /*
1342 * We have processed all of the receive buffers.
1343 */
1344 break;
1345 }
1346
1347 if (rxstat & GEM_RD_BAD_CRC) {
1348 printf("%s: receive error: CRC error\n",
1349 sc->sc_dev.dv_xname);
1350 GEM_INIT_RXDESC(sc, i);
1351 continue;
1352 }
1353
1354 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1355 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1356 #ifdef GEM_DEBUG
1357 if (ifp->if_flags & IFF_DEBUG) {
1358 printf(" rxsoft %p descriptor %d: ", rxs, i);
1359 printf("gd_flags: 0x%016llx\t", (long long)
1360 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1361 printf("gd_addr: 0x%016llx\n", (long long)
1362 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1363 }
1364 #endif
1365
1366 /*
1367 * No errors; receive the packet. Note the Gem
1368 * includes the CRC with every packet.
1369 */
1370 len = GEM_RD_BUFLEN(rxstat);
1371
1372 /*
1373 * Allocate a new mbuf cluster. If that fails, we are
1374 * out of memory, and must drop the packet and recycle
1375 * the buffer that's already attached to this descriptor.
1376 */
1377 m = rxs->rxs_mbuf;
1378 if (gem_add_rxbuf(sc, i) != 0) {
1379 ifp->if_ierrors++;
1380 GEM_INIT_RXDESC(sc, i);
1381 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1382 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1383 continue;
1384 }
1385 m->m_data += 2; /* We're already off by two */
1386
1387 ifp->if_ipackets++;
1388 eh = mtod(m, struct ether_header *);
1389 m->m_flags |= M_HASFCS;
1390 m->m_pkthdr.rcvif = ifp;
1391 m->m_pkthdr.len = m->m_len = len;
1392
1393 #if NBPFILTER > 0
1394 /*
1395 * Pass this up to any BPF listeners, but only
1396 * pass it up the stack if its for us.
1397 */
1398 if (ifp->if_bpf)
1399 bpf_mtap(ifp->if_bpf, m);
1400 #endif /* NPBFILTER > 0 */
1401
1402 /* Pass it on. */
1403 (*ifp->if_input)(ifp, m);
1404 }
1405
1406 /* Update the receive pointer. */
1407 sc->sc_rxptr = i;
1408 bus_space_write_4(t, h, GEM_RX_KICK, i);
1409
1410 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1411 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1412
1413 return (1);
1414 }
1415
1416
1417 /*
1418 * gem_add_rxbuf:
1419 *
1420 * Add a receive buffer to the indicated descriptor.
1421 */
1422 int
1423 gem_add_rxbuf(struct gem_softc *sc, int idx)
1424 {
1425 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1426 struct mbuf *m;
1427 int error;
1428
1429 MGETHDR(m, M_DONTWAIT, MT_DATA);
1430 if (m == NULL)
1431 return (ENOBUFS);
1432
1433 MCLGET(m, M_DONTWAIT);
1434 if ((m->m_flags & M_EXT) == 0) {
1435 m_freem(m);
1436 return (ENOBUFS);
1437 }
1438
1439 #ifdef GEM_DEBUG
1440 /* bzero the packet to check dma */
1441 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1442 #endif
1443
1444 if (rxs->rxs_mbuf != NULL)
1445 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1446
1447 rxs->rxs_mbuf = m;
1448
1449 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1450 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1451 BUS_DMA_READ|BUS_DMA_NOWAIT);
1452 if (error) {
1453 printf("%s: can't load rx DMA map %d, error = %d\n",
1454 sc->sc_dev.dv_xname, idx, error);
1455 panic("gem_add_rxbuf"); /* XXX */
1456 }
1457
1458 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1459 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1460
1461 GEM_INIT_RXDESC(sc, idx);
1462
1463 return (0);
1464 }
1465
1466
1467 int
1468 gem_eint(sc, status)
1469 struct gem_softc *sc;
1470 u_int status;
1471 {
1472 char bits[128];
1473
1474 if ((status & GEM_INTR_MIF) != 0) {
1475 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1476 return (1);
1477 }
1478
1479 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1480 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1481 return (1);
1482 }
1483
1484
1485 int
1486 gem_intr(v)
1487 void *v;
1488 {
1489 struct gem_softc *sc = (struct gem_softc *)v;
1490 bus_space_tag_t t = sc->sc_bustag;
1491 bus_space_handle_t seb = sc->sc_h;
1492 u_int32_t status;
1493 int r = 0;
1494 #ifdef GEM_DEBUG
1495 char bits[128];
1496 #endif
1497
1498 status = bus_space_read_4(t, seb, GEM_STATUS);
1499 DPRINTF(sc, ("%s: gem_intr: cplt %xstatus %s\n",
1500 sc->sc_dev.dv_xname, (status>>19),
1501 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1502
1503 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1504 r |= gem_eint(sc, status);
1505
1506 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0)
1507 r |= gem_tint(sc);
1508
1509 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
1510 r |= gem_rint(sc);
1511
1512 /* We should eventually do more than just print out error stats. */
1513 if (status & GEM_INTR_TX_MAC) {
1514 int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1515 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1516 printf("%s: MAC tx fault, status %x\n",
1517 sc->sc_dev.dv_xname, txstat);
1518 }
1519 if (status & GEM_INTR_RX_MAC) {
1520 int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1521 if (rxstat & ~GEM_MAC_RX_DONE)
1522 printf("%s: MAC rx fault, status %x\n",
1523 sc->sc_dev.dv_xname, rxstat);
1524 }
1525 return (r);
1526 }
1527
1528
1529 void
1530 gem_watchdog(ifp)
1531 struct ifnet *ifp;
1532 {
1533 struct gem_softc *sc = ifp->if_softc;
1534
1535 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1536 "GEM_MAC_RX_CONFIG %x\n",
1537 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1538 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1539 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1540
1541 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1542 ++ifp->if_oerrors;
1543
1544 /* Try to get more packets going. */
1545 gem_start(ifp);
1546 }
1547
1548 /*
1549 * Initialize the MII Management Interface
1550 */
1551 void
1552 gem_mifinit(sc)
1553 struct gem_softc *sc;
1554 {
1555 bus_space_tag_t t = sc->sc_bustag;
1556 bus_space_handle_t mif = sc->sc_h;
1557
1558 /* Configure the MIF in frame mode */
1559 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1560 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1561 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1562 }
1563
1564 /*
1565 * MII interface
1566 *
1567 * The GEM MII interface supports at least three different operating modes:
1568 *
1569 * Bitbang mode is implemented using data, clock and output enable registers.
1570 *
1571 * Frame mode is implemented by loading a complete frame into the frame
1572 * register and polling the valid bit for completion.
1573 *
1574 * Polling mode uses the frame register but completion is indicated by
1575 * an interrupt.
1576 *
1577 */
1578 static int
1579 gem_mii_readreg(self, phy, reg)
1580 struct device *self;
1581 int phy, reg;
1582 {
1583 struct gem_softc *sc = (void *)self;
1584 bus_space_tag_t t = sc->sc_bustag;
1585 bus_space_handle_t mif = sc->sc_h;
1586 int n;
1587 u_int32_t v;
1588
1589 #ifdef GEM_DEBUG1
1590 if (sc->sc_debug)
1591 printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1592 #endif
1593
1594 #if 0
1595 /* Select the desired PHY in the MIF configuration register */
1596 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1597 /* Clear PHY select bit */
1598 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1599 if (phy == GEM_PHYAD_EXTERNAL)
1600 /* Set PHY select bit to get at external device */
1601 v |= GEM_MIF_CONFIG_PHY_SEL;
1602 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1603 #endif
1604
1605 /* Construct the frame command */
1606 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
1607 GEM_MIF_FRAME_READ;
1608
1609 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1610 for (n = 0; n < 100; n++) {
1611 DELAY(1);
1612 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1613 if (v & GEM_MIF_FRAME_TA0)
1614 return (v & GEM_MIF_FRAME_DATA);
1615 }
1616
1617 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1618 return (0);
1619 }
1620
1621 static void
1622 gem_mii_writereg(self, phy, reg, val)
1623 struct device *self;
1624 int phy, reg, val;
1625 {
1626 struct gem_softc *sc = (void *)self;
1627 bus_space_tag_t t = sc->sc_bustag;
1628 bus_space_handle_t mif = sc->sc_h;
1629 int n;
1630 u_int32_t v;
1631
1632 #ifdef GEM_DEBUG1
1633 if (sc->sc_debug)
1634 printf("gem_mii_writereg: phy %d reg %d val %x\n",
1635 phy, reg, val);
1636 #endif
1637
1638 #if 0
1639 /* Select the desired PHY in the MIF configuration register */
1640 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1641 /* Clear PHY select bit */
1642 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1643 if (phy == GEM_PHYAD_EXTERNAL)
1644 /* Set PHY select bit to get at external device */
1645 v |= GEM_MIF_CONFIG_PHY_SEL;
1646 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1647 #endif
1648 /* Construct the frame command */
1649 v = GEM_MIF_FRAME_WRITE |
1650 (phy << GEM_MIF_PHY_SHIFT) |
1651 (reg << GEM_MIF_REG_SHIFT) |
1652 (val & GEM_MIF_FRAME_DATA);
1653
1654 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1655 for (n = 0; n < 100; n++) {
1656 DELAY(1);
1657 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1658 if (v & GEM_MIF_FRAME_TA0)
1659 return;
1660 }
1661
1662 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1663 }
1664
1665 static void
1666 gem_mii_statchg(dev)
1667 struct device *dev;
1668 {
1669 struct gem_softc *sc = (void *)dev;
1670 #ifdef GEM_DEBUG
1671 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1672 #endif
1673 bus_space_tag_t t = sc->sc_bustag;
1674 bus_space_handle_t mac = sc->sc_h;
1675 u_int32_t v;
1676
1677 #ifdef GEM_DEBUG
1678 if (sc->sc_debug)
1679 printf("gem_mii_statchg: status change: phy = %d\n",
1680 sc->sc_phys[instance];);
1681 #endif
1682
1683
1684 /* Set tx full duplex options */
1685 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1686 delay(10000); /* reg must be cleared and delay before changing. */
1687 v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1688 GEM_MAC_TX_ENABLE;
1689 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1690 v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1691 }
1692 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1693
1694 /* XIF Configuration */
1695 /* We should really calculate all this rather than rely on defaults */
1696 v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1697 v = GEM_MAC_XIF_LINK_LED;
1698 v |= GEM_MAC_XIF_TX_MII_ENA;
1699
1700 /* If an external transceiver is connected, enable its MII drivers */
1701 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1702 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1703 /* External MII needs echo disable if half duplex. */
1704 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1705 /* turn on full duplex LED */
1706 v |= GEM_MAC_XIF_FDPLX_LED;
1707 else
1708 /* half duplex -- disable echo */
1709 v |= GEM_MAC_XIF_ECHO_DISABL;
1710
1711 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
1712 v |= GEM_MAC_XIF_GMII_MODE;
1713 else
1714 v &= ~GEM_MAC_XIF_GMII_MODE;
1715 } else
1716 /* Internal MII needs buf enable */
1717 v |= GEM_MAC_XIF_MII_BUF_ENA;
1718 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1719 }
1720
1721 int
1722 gem_mediachange(ifp)
1723 struct ifnet *ifp;
1724 {
1725 struct gem_softc *sc = ifp->if_softc;
1726
1727 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1728 return (EINVAL);
1729
1730 return (mii_mediachg(&sc->sc_mii));
1731 }
1732
1733 void
1734 gem_mediastatus(ifp, ifmr)
1735 struct ifnet *ifp;
1736 struct ifmediareq *ifmr;
1737 {
1738 struct gem_softc *sc = ifp->if_softc;
1739
1740 if ((ifp->if_flags & IFF_UP) == 0)
1741 return;
1742
1743 mii_pollstat(&sc->sc_mii);
1744 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1745 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1746 }
1747
1748 int gem_ioctldebug = 0;
1749 /*
1750 * Process an ioctl request.
1751 */
1752 int
1753 gem_ioctl(ifp, cmd, data)
1754 struct ifnet *ifp;
1755 u_long cmd;
1756 caddr_t data;
1757 {
1758 struct gem_softc *sc = ifp->if_softc;
1759 struct ifreq *ifr = (struct ifreq *)data;
1760 int s, error = 0;
1761
1762
1763 switch (cmd) {
1764 case SIOCGIFMEDIA:
1765 case SIOCSIFMEDIA:
1766 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1767 break;
1768
1769 default:
1770 error = ether_ioctl(ifp, cmd, data);
1771 if (error == ENETRESET) {
1772 /*
1773 * Multicast list has changed; set the hardware filter
1774 * accordingly.
1775 */
1776 if (gem_ioctldebug) printf("reset1\n");
1777 gem_init(ifp);
1778 delay(50000);
1779 error = 0;
1780 }
1781 break;
1782 }
1783
1784 /* Try to get things going again */
1785 if (ifp->if_flags & IFF_UP) {
1786 if (gem_ioctldebug) printf("start\n");
1787 gem_start(ifp);
1788 }
1789 splx(s);
1790 return (error);
1791 }
1792
1793
1794 void
1795 gem_shutdown(arg)
1796 void *arg;
1797 {
1798 struct gem_softc *sc = (struct gem_softc *)arg;
1799 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1800
1801 gem_stop(ifp, 1);
1802 }
1803
1804 /*
1805 * Set up the logical address filter.
1806 */
1807 void
1808 gem_setladrf(sc)
1809 struct gem_softc *sc;
1810 {
1811 struct ethercom *ec = &sc->sc_ethercom;
1812 struct ifnet *ifp = &ec->ec_if;
1813 struct ether_multi *enm;
1814 struct ether_multistep step;
1815 bus_space_tag_t t = sc->sc_bustag;
1816 bus_space_handle_t h = sc->sc_h;
1817 u_int32_t crc;
1818 u_int32_t hash[16];
1819 u_int32_t v;
1820 int i;
1821
1822 /* Get current RX configuration */
1823 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1824
1825 /*
1826 * Turn off promiscuous mode, promiscuous group mode (all multicast),
1827 * and hash filter. Depending on the case, the right bit will be
1828 * enabled.
1829 */
1830 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
1831 GEM_MAC_RX_PROMISC_GRP);
1832
1833 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1834 /* Turn on promiscuous mode */
1835 v |= GEM_MAC_RX_PROMISCUOUS;
1836 ifp->if_flags |= IFF_ALLMULTI;
1837 goto chipit;
1838 }
1839
1840 /*
1841 * Set up multicast address filter by passing all multicast addresses
1842 * through a crc generator, and then using the high order 8 bits as an
1843 * index into the 256 bit logical address filter. The high order 4
1844 * bits select the word, while the other 4 bits select the bit within
1845 * the word (where bit 0 is the MSB).
1846 */
1847
1848 /* Clear hash table */
1849 memset(hash, 0, sizeof(hash));
1850
1851 ETHER_FIRST_MULTI(step, ec, enm);
1852 while (enm != NULL) {
1853 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1854 /*
1855 * We must listen to a range of multicast addresses.
1856 * For now, just accept all multicasts, rather than
1857 * trying to set only those filter bits needed to match
1858 * the range. (At this time, the only use of address
1859 * ranges is for IP multicast routing, for which the
1860 * range is big enough to require all bits set.)
1861 * XXX use the addr filter for this
1862 */
1863 ifp->if_flags |= IFF_ALLMULTI;
1864 v |= GEM_MAC_RX_PROMISC_GRP;
1865 goto chipit;
1866 }
1867
1868 /* Get the LE CRC32 of the address */
1869 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
1870
1871 /* Just want the 8 most significant bits. */
1872 crc >>= 24;
1873
1874 /* Set the corresponding bit in the filter. */
1875 hash[crc >> 4] |= 1 << (15 - (crc & 15));
1876
1877 ETHER_NEXT_MULTI(step, enm);
1878 }
1879
1880 v |= GEM_MAC_RX_HASH_FILTER;
1881 ifp->if_flags &= ~IFF_ALLMULTI;
1882
1883 /* Now load the hash table into the chip (if we are using it) */
1884 for (i = 0; i < 16; i++) {
1885 bus_space_write_4(t, h,
1886 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
1887 hash[i]);
1888 }
1889
1890 chipit:
1891 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1892 }
1893
1894 #if notyet
1895
1896 /*
1897 * gem_power:
1898 *
1899 * Power management (suspend/resume) hook.
1900 */
1901 void
1902 gem_power(why, arg)
1903 int why;
1904 void *arg;
1905 {
1906 struct gem_softc *sc = arg;
1907 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1908 int s;
1909
1910 s = splnet();
1911 switch (why) {
1912 case PWR_SUSPEND:
1913 case PWR_STANDBY:
1914 gem_stop(ifp, 1);
1915 if (sc->sc_power != NULL)
1916 (*sc->sc_power)(sc, why);
1917 break;
1918 case PWR_RESUME:
1919 if (ifp->if_flags & IFF_UP) {
1920 if (sc->sc_power != NULL)
1921 (*sc->sc_power)(sc, why);
1922 gem_init(ifp);
1923 }
1924 break;
1925 case PWR_SOFTSUSPEND:
1926 case PWR_SOFTSTANDBY:
1927 case PWR_SOFTRESUME:
1928 break;
1929 }
1930 splx(s);
1931 }
1932 #endif
1933