Home | History | Annotate | Line # | Download | only in ic
gem.c revision 1.25
      1 /*	$NetBSD: gem.c,v 1.25 2003/02/20 00:55:21 matt Exp $ */
      2 
      3 /*
      4  *
      5  * Copyright (C) 2001 Eduardo Horvath.
      6  * All rights reserved.
      7  *
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  */
     31 
     32 /*
     33  * Driver for Sun GEM ethernet controllers.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.25 2003/02/20 00:55:21 matt Exp $");
     38 
     39 #include "bpfilter.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/callout.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/syslog.h>
     46 #include <sys/malloc.h>
     47 #include <sys/kernel.h>
     48 #include <sys/socket.h>
     49 #include <sys/ioctl.h>
     50 #include <sys/errno.h>
     51 #include <sys/device.h>
     52 
     53 #include <machine/endian.h>
     54 
     55 #include <uvm/uvm_extern.h>
     56 
     57 #include <net/if.h>
     58 #include <net/if_dl.h>
     59 #include <net/if_media.h>
     60 #include <net/if_ether.h>
     61 
     62 #if NBPFILTER > 0
     63 #include <net/bpf.h>
     64 #endif
     65 
     66 #include <machine/bus.h>
     67 #include <machine/intr.h>
     68 
     69 #include <dev/mii/mii.h>
     70 #include <dev/mii/miivar.h>
     71 #include <dev/mii/mii_bitbang.h>
     72 
     73 #include <dev/ic/gemreg.h>
     74 #include <dev/ic/gemvar.h>
     75 
     76 #define TRIES	10000
     77 
     78 void		gem_start __P((struct ifnet *));
     79 void		gem_stop __P((struct ifnet *, int));
     80 int		gem_ioctl __P((struct ifnet *, u_long, caddr_t));
     81 void		gem_tick __P((void *));
     82 void		gem_watchdog __P((struct ifnet *));
     83 void		gem_shutdown __P((void *));
     84 int		gem_init __P((struct ifnet *));
     85 void		gem_init_regs(struct gem_softc *sc);
     86 static int	gem_ringsize(int sz);
     87 int		gem_meminit __P((struct gem_softc *));
     88 void		gem_mifinit __P((struct gem_softc *));
     89 void		gem_reset __P((struct gem_softc *));
     90 int		gem_reset_rx(struct gem_softc *sc);
     91 int		gem_reset_tx(struct gem_softc *sc);
     92 int		gem_disable_rx(struct gem_softc *sc);
     93 int		gem_disable_tx(struct gem_softc *sc);
     94 void		gem_rxdrain(struct gem_softc *sc);
     95 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
     96 void		gem_setladrf __P((struct gem_softc *));
     97 
     98 /* MII methods & callbacks */
     99 static int	gem_mii_readreg __P((struct device *, int, int));
    100 static void	gem_mii_writereg __P((struct device *, int, int, int));
    101 static void	gem_mii_statchg __P((struct device *));
    102 
    103 int		gem_mediachange __P((struct ifnet *));
    104 void		gem_mediastatus __P((struct ifnet *, struct ifmediareq *));
    105 
    106 struct mbuf	*gem_get __P((struct gem_softc *, int, int));
    107 int		gem_put __P((struct gem_softc *, int, struct mbuf *));
    108 void		gem_read __P((struct gem_softc *, int, int));
    109 int		gem_eint __P((struct gem_softc *, u_int));
    110 int		gem_rint __P((struct gem_softc *));
    111 int		gem_tint __P((struct gem_softc *));
    112 void		gem_power __P((int, void *));
    113 
    114 #ifdef GEM_DEBUG
    115 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
    116 				printf x
    117 #else
    118 #define	DPRINTF(sc, x)	/* nothing */
    119 #endif
    120 
    121 
    122 /*
    123  * gem_attach:
    124  *
    125  *	Attach a Gem interface to the system.
    126  */
    127 void
    128 gem_attach(sc, enaddr)
    129 	struct gem_softc *sc;
    130 	const uint8_t *enaddr;
    131 {
    132 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    133 	struct mii_data *mii = &sc->sc_mii;
    134 	struct mii_softc *child;
    135 	struct ifmedia_entry *ifm;
    136 	int i, error;
    137 	u_int32_t v;
    138 
    139 	/* Make sure the chip is stopped. */
    140 	ifp->if_softc = sc;
    141 	gem_reset(sc);
    142 
    143 	/*
    144 	 * Allocate the control data structures, and create and load the
    145 	 * DMA map for it.
    146 	 */
    147 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
    148 	    sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
    149 	    1, &sc->sc_cdnseg, 0)) != 0) {
    150 		aprint_error(
    151 		   "%s: unable to allocate control data, error = %d\n",
    152 		    sc->sc_dev.dv_xname, error);
    153 		goto fail_0;
    154 	}
    155 
    156 /* XXX should map this in with correct endianness */
    157 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
    158 	    sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
    159 	    BUS_DMA_COHERENT)) != 0) {
    160 		aprint_error("%s: unable to map control data, error = %d\n",
    161 		    sc->sc_dev.dv_xname, error);
    162 		goto fail_1;
    163 	}
    164 
    165 	if ((error = bus_dmamap_create(sc->sc_dmatag,
    166 	    sizeof(struct gem_control_data), 1,
    167 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    168 		aprint_error("%s: unable to create control data DMA map, "
    169 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    170 		goto fail_2;
    171 	}
    172 
    173 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
    174 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
    175 	    0)) != 0) {
    176 		aprint_error(
    177 		    "%s: unable to load control data DMA map, error = %d\n",
    178 		    sc->sc_dev.dv_xname, error);
    179 		goto fail_3;
    180 	}
    181 
    182 	/*
    183 	 * Initialize the transmit job descriptors.
    184 	 */
    185 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    186 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    187 
    188 	/*
    189 	 * Create the transmit buffer DMA maps.
    190 	 */
    191 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    192 		struct gem_txsoft *txs;
    193 
    194 		txs = &sc->sc_txsoft[i];
    195 		txs->txs_mbuf = NULL;
    196 		if ((error = bus_dmamap_create(sc->sc_dmatag,
    197 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
    198 		    ETHER_MAX_LEN_JUMBO, 0, 0,
    199 		    &txs->txs_dmamap)) != 0) {
    200 			aprint_error("%s: unable to create tx DMA map %d, "
    201 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    202 			goto fail_4;
    203 		}
    204 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    205 	}
    206 
    207 	/*
    208 	 * Create the receive buffer DMA maps.
    209 	 */
    210 	for (i = 0; i < GEM_NRXDESC; i++) {
    211 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
    212 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    213 			aprint_error("%s: unable to create rx DMA map %d, "
    214 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    215 			goto fail_5;
    216 		}
    217 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    218 	}
    219 
    220 	/*
    221 	 * From this point forward, the attachment cannot fail.  A failure
    222 	 * before this point releases all resources that may have been
    223 	 * allocated.
    224 	 */
    225 
    226 	/* Announce ourselves. */
    227 	aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
    228 	    ether_sprintf(enaddr));
    229 
    230 	/* Get RX FIFO size */
    231 	sc->sc_rxfifosize = 64 *
    232 	    bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
    233 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
    234 
    235 	/* Get TX FIFO size */
    236 	v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
    237 	aprint_normal(", %uKB TX fifo\n", v / 16);
    238 
    239 	/* Initialize ifnet structure. */
    240 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    241 	ifp->if_softc = sc;
    242 	ifp->if_flags =
    243 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    244 	ifp->if_start = gem_start;
    245 	ifp->if_ioctl = gem_ioctl;
    246 	ifp->if_watchdog = gem_watchdog;
    247 	ifp->if_stop = gem_stop;
    248 	ifp->if_init = gem_init;
    249 	IFQ_SET_READY(&ifp->if_snd);
    250 
    251 	/* Initialize ifmedia structures and MII info */
    252 	mii->mii_ifp = ifp;
    253 	mii->mii_readreg = gem_mii_readreg;
    254 	mii->mii_writereg = gem_mii_writereg;
    255 	mii->mii_statchg = gem_mii_statchg;
    256 
    257 	ifmedia_init(&mii->mii_media, IFM_IMASK, gem_mediachange, gem_mediastatus);
    258 
    259 	gem_mifinit(sc);
    260 
    261 	mii_attach(&sc->sc_dev, mii, 0xffffffff,
    262 			MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    263 
    264 	child = LIST_FIRST(&mii->mii_phys);
    265 	if (child == NULL) {
    266 		/* No PHY attached */
    267 		ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
    268 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
    269 	} else {
    270 		/*
    271 		 * Walk along the list of attached MII devices and
    272 		 * establish an `MII instance' to `phy number'
    273 		 * mapping. We'll use this mapping in media change
    274 		 * requests to determine which phy to use to program
    275 		 * the MIF configuration register.
    276 		 */
    277 		for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
    278 			/*
    279 			 * Note: we support just two PHYs: the built-in
    280 			 * internal device and an external on the MII
    281 			 * connector.
    282 			 */
    283 			if (child->mii_phy > 1 || child->mii_inst > 1) {
    284 				aprint_error(
    285 				    "%s: cannot accomodate MII device %s"
    286 				       " at phy %d, instance %d\n",
    287 				       sc->sc_dev.dv_xname,
    288 				       child->mii_dev.dv_xname,
    289 				       child->mii_phy, child->mii_inst);
    290 				continue;
    291 			}
    292 
    293 			sc->sc_phys[child->mii_inst] = child->mii_phy;
    294 
    295 		}
    296 
    297 		/*
    298 		 * Now select and activate the PHY we will use.
    299 		 *
    300 		 * The order of preference is External (MDI1),
    301 		 * Internal (MDI0), Serial Link (no MII).
    302 		 */
    303 		if (sc->sc_phys[1]) {
    304 #ifdef DEBUG
    305 			aprint_debug("using external phy\n");
    306 #endif
    307 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
    308 		} else {
    309 #ifdef DEBUG
    310 			aprint_debug("using internal phy\n");
    311 #endif
    312 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
    313 		}
    314 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
    315 			sc->sc_mif_config);
    316 
    317 		/*
    318 		 * XXX - we can really do the following ONLY if the
    319 		 * phy indeed has the auto negotiation capability!!
    320 		 */
    321 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
    322 	}
    323 
    324 	/*
    325 	 * If we support GigE media, we support jumbo frames too.
    326 	 * Unless we are Apple.
    327 	 */
    328 	TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
    329 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
    330 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
    331 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
    332 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
    333 			if (sc->sc_variant != GEM_APPLE_GMAC)
    334 				sc->sc_ethercom.ec_capabilities
    335 				    |= ETHERCAP_JUMBO_MTU;
    336 
    337 			sc->sc_flags |= GEM_GIGABIT;
    338 			break;
    339 		}
    340 	}
    341 
    342 	/* claim 802.1q capability */
    343 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    344 
    345 	/* Attach the interface. */
    346 	if_attach(ifp);
    347 	ether_ifattach(ifp, enaddr);
    348 
    349 	sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
    350 	if (sc->sc_sh == NULL)
    351 		panic("gem_config: can't establish shutdownhook");
    352 
    353 #if NRND > 0
    354 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    355 			  RND_TYPE_NET, 0);
    356 #endif
    357 
    358 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    359 	    NULL, sc->sc_dev.dv_xname, "interrupts");
    360 #ifdef GEM_COUNTERS
    361 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
    362 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
    363 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
    364 	    &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
    365 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
    366 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
    367 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
    368 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
    369 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
    370 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
    371 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
    372 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
    373 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
    374 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
    375 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
    376 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
    377 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
    378 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
    379 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
    380 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
    381 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
    382 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
    383 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
    384 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
    385 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
    386 	    &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
    387 #endif
    388 
    389 #if notyet
    390 	/*
    391 	 * Add a suspend hook to make sure we come back up after a
    392 	 * resume.
    393 	 */
    394 	sc->sc_powerhook = powerhook_establish(gem_power, sc);
    395 	if (sc->sc_powerhook == NULL)
    396 		aprint_error("%s: WARNING: unable to establish power hook\n",
    397 		    sc->sc_dev.dv_xname);
    398 #endif
    399 
    400 	callout_init(&sc->sc_tick_ch);
    401 	return;
    402 
    403 	/*
    404 	 * Free any resources we've allocated during the failed attach
    405 	 * attempt.  Do this in reverse order and fall through.
    406 	 */
    407  fail_5:
    408 	for (i = 0; i < GEM_NRXDESC; i++) {
    409 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    410 			bus_dmamap_destroy(sc->sc_dmatag,
    411 			    sc->sc_rxsoft[i].rxs_dmamap);
    412 	}
    413  fail_4:
    414 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
    415 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    416 			bus_dmamap_destroy(sc->sc_dmatag,
    417 			    sc->sc_txsoft[i].txs_dmamap);
    418 	}
    419 	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
    420  fail_3:
    421 	bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
    422  fail_2:
    423 	bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
    424 	    sizeof(struct gem_control_data));
    425  fail_1:
    426 	bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
    427  fail_0:
    428 	return;
    429 }
    430 
    431 
    432 void
    433 gem_tick(arg)
    434 	void *arg;
    435 {
    436 	struct gem_softc *sc = arg;
    437 	int s;
    438 
    439 	s = splnet();
    440 	mii_tick(&sc->sc_mii);
    441 	splx(s);
    442 
    443 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    444 
    445 }
    446 
    447 void
    448 gem_reset(sc)
    449 	struct gem_softc *sc;
    450 {
    451 	bus_space_tag_t t = sc->sc_bustag;
    452 	bus_space_handle_t h = sc->sc_h;
    453 	int i;
    454 	int s;
    455 
    456 	s = splnet();
    457 	DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
    458 	gem_reset_rx(sc);
    459 	gem_reset_tx(sc);
    460 
    461 	/* Do a full reset */
    462 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
    463 	for (i=TRIES; i--; delay(100))
    464 		if ((bus_space_read_4(t, h, GEM_RESET) &
    465 			(GEM_RESET_RX|GEM_RESET_TX)) == 0)
    466 			break;
    467 	if ((bus_space_read_4(t, h, GEM_RESET) &
    468 		(GEM_RESET_RX|GEM_RESET_TX)) != 0) {
    469 		printf("%s: cannot reset device\n",
    470 			sc->sc_dev.dv_xname);
    471 	}
    472 	splx(s);
    473 }
    474 
    475 
    476 /*
    477  * gem_rxdrain:
    478  *
    479  *	Drain the receive queue.
    480  */
    481 void
    482 gem_rxdrain(struct gem_softc *sc)
    483 {
    484 	struct gem_rxsoft *rxs;
    485 	int i;
    486 
    487 	for (i = 0; i < GEM_NRXDESC; i++) {
    488 		rxs = &sc->sc_rxsoft[i];
    489 		if (rxs->rxs_mbuf != NULL) {
    490 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
    491 			m_freem(rxs->rxs_mbuf);
    492 			rxs->rxs_mbuf = NULL;
    493 		}
    494 	}
    495 }
    496 
    497 /*
    498  * Reset the whole thing.
    499  */
    500 void
    501 gem_stop(struct ifnet *ifp, int disable)
    502 {
    503 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    504 	struct gem_txsoft *txs;
    505 
    506 	DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
    507 
    508 	callout_stop(&sc->sc_tick_ch);
    509 	mii_down(&sc->sc_mii);
    510 
    511 	/* XXX - Should we reset these instead? */
    512 	gem_disable_rx(sc);
    513 	gem_disable_tx(sc);
    514 
    515 	/*
    516 	 * Release any queued transmit buffers.
    517 	 */
    518 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
    519 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
    520 		if (txs->txs_mbuf != NULL) {
    521 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
    522 			m_freem(txs->txs_mbuf);
    523 			txs->txs_mbuf = NULL;
    524 		}
    525 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
    526 	}
    527 
    528 	if (disable) {
    529 		gem_rxdrain(sc);
    530 	}
    531 
    532 	/*
    533 	 * Mark the interface down and cancel the watchdog timer.
    534 	 */
    535 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    536 	ifp->if_timer = 0;
    537 }
    538 
    539 
    540 /*
    541  * Reset the receiver
    542  */
    543 int
    544 gem_reset_rx(struct gem_softc *sc)
    545 {
    546 	bus_space_tag_t t = sc->sc_bustag;
    547 	bus_space_handle_t h = sc->sc_h;
    548 	int i;
    549 
    550 
    551 	/*
    552 	 * Resetting while DMA is in progress can cause a bus hang, so we
    553 	 * disable DMA first.
    554 	 */
    555 	gem_disable_rx(sc);
    556 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
    557 	/* Wait till it finishes */
    558 	for (i=TRIES; i--; delay(100))
    559 		if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
    560 			break;
    561 	if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
    562 		printf("%s: cannot disable read dma\n",
    563 			sc->sc_dev.dv_xname);
    564 
    565 	/* Wait 5ms extra. */
    566 	delay(5000);
    567 
    568 	/* Finally, reset the ERX */
    569 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
    570 	/* Wait till it finishes */
    571 	for (i=TRIES; i--; delay(100))
    572 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
    573 			break;
    574 	if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
    575 		printf("%s: cannot reset receiver\n",
    576 			sc->sc_dev.dv_xname);
    577 		return (1);
    578 	}
    579 	return (0);
    580 }
    581 
    582 
    583 /*
    584  * Reset the transmitter
    585  */
    586 int
    587 gem_reset_tx(struct gem_softc *sc)
    588 {
    589 	bus_space_tag_t t = sc->sc_bustag;
    590 	bus_space_handle_t h = sc->sc_h;
    591 	int i;
    592 
    593 	/*
    594 	 * Resetting while DMA is in progress can cause a bus hang, so we
    595 	 * disable DMA first.
    596 	 */
    597 	gem_disable_tx(sc);
    598 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
    599 	/* Wait till it finishes */
    600 	for (i=TRIES; i--; delay(100))
    601 		if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
    602 			break;
    603 	if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
    604 		printf("%s: cannot disable read dma\n",
    605 			sc->sc_dev.dv_xname);
    606 
    607 	/* Wait 5ms extra. */
    608 	delay(5000);
    609 
    610 	/* Finally, reset the ETX */
    611 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
    612 	/* Wait till it finishes */
    613 	for (i=TRIES; i--; delay(100))
    614 		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
    615 			break;
    616 	if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
    617 		printf("%s: cannot reset receiver\n",
    618 			sc->sc_dev.dv_xname);
    619 		return (1);
    620 	}
    621 	return (0);
    622 }
    623 
    624 /*
    625  * disable receiver.
    626  */
    627 int
    628 gem_disable_rx(struct gem_softc *sc)
    629 {
    630 	bus_space_tag_t t = sc->sc_bustag;
    631 	bus_space_handle_t h = sc->sc_h;
    632 	int i;
    633 	u_int32_t cfg;
    634 
    635 	/* Flip the enable bit */
    636 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    637 	cfg &= ~GEM_MAC_RX_ENABLE;
    638 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
    639 
    640 	/* Wait for it to finish */
    641 	for (i=TRIES; i--; delay(100))
    642 		if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
    643 			GEM_MAC_RX_ENABLE) == 0)
    644 			return (0);
    645 	return (1);
    646 }
    647 
    648 /*
    649  * disable transmitter.
    650  */
    651 int
    652 gem_disable_tx(struct gem_softc *sc)
    653 {
    654 	bus_space_tag_t t = sc->sc_bustag;
    655 	bus_space_handle_t h = sc->sc_h;
    656 	int i;
    657 	u_int32_t cfg;
    658 
    659 	/* Flip the enable bit */
    660 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
    661 	cfg &= ~GEM_MAC_TX_ENABLE;
    662 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
    663 
    664 	/* Wait for it to finish */
    665 	for (i=TRIES; i--; delay(100))
    666 		if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
    667 			GEM_MAC_TX_ENABLE) == 0)
    668 			return (0);
    669 	return (1);
    670 }
    671 
    672 /*
    673  * Initialize interface.
    674  */
    675 int
    676 gem_meminit(struct gem_softc *sc)
    677 {
    678 	struct gem_rxsoft *rxs;
    679 	int i, error;
    680 
    681 	/*
    682 	 * Initialize the transmit descriptor ring.
    683 	 */
    684 	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
    685 	for (i = 0; i < GEM_NTXDESC; i++) {
    686 		sc->sc_txdescs[i].gd_flags = 0;
    687 		sc->sc_txdescs[i].gd_addr = 0;
    688 	}
    689 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
    690 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    691 	sc->sc_txfree = GEM_NTXDESC-1;
    692 	sc->sc_txnext = 0;
    693 	sc->sc_txwin = 0;
    694 
    695 	/*
    696 	 * Initialize the receive descriptor and receive job
    697 	 * descriptor rings.
    698 	 */
    699 	for (i = 0; i < GEM_NRXDESC; i++) {
    700 		rxs = &sc->sc_rxsoft[i];
    701 		if (rxs->rxs_mbuf == NULL) {
    702 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
    703 				printf("%s: unable to allocate or map rx "
    704 				    "buffer %d, error = %d\n",
    705 				    sc->sc_dev.dv_xname, i, error);
    706 				/*
    707 				 * XXX Should attempt to run with fewer receive
    708 				 * XXX buffers instead of just failing.
    709 				 */
    710 				gem_rxdrain(sc);
    711 				return (1);
    712 			}
    713 		} else
    714 			GEM_INIT_RXDESC(sc, i);
    715 	}
    716 	sc->sc_rxptr = 0;
    717 
    718 	return (0);
    719 }
    720 
    721 static int
    722 gem_ringsize(int sz)
    723 {
    724 	int v;
    725 
    726 	switch (sz) {
    727 	case 32:
    728 		v = GEM_RING_SZ_32;
    729 		break;
    730 	case 64:
    731 		v = GEM_RING_SZ_64;
    732 		break;
    733 	case 128:
    734 		v = GEM_RING_SZ_128;
    735 		break;
    736 	case 256:
    737 		v = GEM_RING_SZ_256;
    738 		break;
    739 	case 512:
    740 		v = GEM_RING_SZ_512;
    741 		break;
    742 	case 1024:
    743 		v = GEM_RING_SZ_1024;
    744 		break;
    745 	case 2048:
    746 		v = GEM_RING_SZ_2048;
    747 		break;
    748 	case 4096:
    749 		v = GEM_RING_SZ_4096;
    750 		break;
    751 	case 8192:
    752 		v = GEM_RING_SZ_8192;
    753 		break;
    754 	default:
    755 		printf("gem: invalid Receive Descriptor ring size\n");
    756 		break;
    757 	}
    758 	return (v);
    759 }
    760 
    761 /*
    762  * Initialization of interface; set up initialization block
    763  * and transmit/receive descriptor rings.
    764  */
    765 int
    766 gem_init(struct ifnet *ifp)
    767 {
    768 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    769 	bus_space_tag_t t = sc->sc_bustag;
    770 	bus_space_handle_t h = sc->sc_h;
    771 	int s;
    772 	u_int max_frame_size;
    773 	u_int32_t v;
    774 
    775 	s = splnet();
    776 
    777 	DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
    778 	/*
    779 	 * Initialization sequence. The numbered steps below correspond
    780 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
    781 	 * Channel Engine manual (part of the PCIO manual).
    782 	 * See also the STP2002-STQ document from Sun Microsystems.
    783 	 */
    784 
    785 	/* step 1 & 2. Reset the Ethernet Channel */
    786 	gem_stop(ifp, 0);
    787 	gem_reset(sc);
    788 	DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
    789 
    790 	/* Re-initialize the MIF */
    791 	gem_mifinit(sc);
    792 
    793 	/* Call MI reset function if any */
    794 	if (sc->sc_hwreset)
    795 		(*sc->sc_hwreset)(sc);
    796 
    797 	/* step 3. Setup data structures in host memory */
    798 	gem_meminit(sc);
    799 
    800 	/* step 4. TX MAC registers & counters */
    801 	gem_init_regs(sc);
    802 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
    803 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
    804 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
    805 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
    806 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
    807 	    max_frame_size|/* burst size */(0x2000<<16));
    808 
    809 	/* step 5. RX MAC registers & counters */
    810 	gem_setladrf(sc);
    811 
    812 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
    813 	/* NOTE: we use only 32-bit DMA addresses here. */
    814 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
    815 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
    816 
    817 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
    818 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
    819 
    820 	/* step 8. Global Configuration & Interrupt Mask */
    821 	bus_space_write_4(t, h, GEM_INTMASK,
    822 		      ~(GEM_INTR_TX_INTME|
    823 			GEM_INTR_TX_EMPTY|
    824 			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
    825 			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
    826 			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
    827 			GEM_INTR_BERR));
    828 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
    829 			GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
    830 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
    831 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
    832 
    833 	/* step 9. ETX Configuration: use mostly default values */
    834 
    835 	/* Enable DMA */
    836 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
    837 	bus_space_write_4(t, h, GEM_TX_CONFIG,
    838 		v|GEM_TX_CONFIG_TXDMA_EN|
    839 		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
    840 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
    841 
    842 	/* step 10. ERX Configuration */
    843 
    844 	/* Encode Receive Descriptor ring size: four possible values */
    845 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
    846 
    847 	/* Enable DMA */
    848 	bus_space_write_4(t, h, GEM_RX_CONFIG,
    849 		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
    850 		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
    851 		(0<<GEM_RX_CONFIG_CXM_START_SHFT));
    852 	/*
    853 	 * The following value is for an OFF Threshold of about 3/4 full
    854 	 * and an ON Threshold of 1/4 full.
    855 	 */
    856 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
    857 	     (3 * sc->sc_rxfifosize / 256) |
    858 	     (   (sc->sc_rxfifosize / 256) << 12));
    859 	bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
    860 
    861 	/* step 11. Configure Media */
    862 	mii_mediachg(&sc->sc_mii);
    863 
    864 /* XXXX Serial link needs a whole different setup. */
    865 
    866 
    867 	/* step 12. RX_MAC Configuration Register */
    868 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
    869 	v |= GEM_MAC_RX_ENABLE;
    870 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
    871 
    872 	/* step 14. Issue Transmit Pending command */
    873 
    874 	/* Call MI initialization function if any */
    875 	if (sc->sc_hwinit)
    876 		(*sc->sc_hwinit)(sc);
    877 
    878 
    879 	/* step 15.  Give the reciever a swift kick */
    880 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
    881 
    882 	/* Start the one second timer. */
    883 	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
    884 
    885 	ifp->if_flags |= IFF_RUNNING;
    886 	ifp->if_flags &= ~IFF_OACTIVE;
    887 	ifp->if_timer = 0;
    888 	splx(s);
    889 
    890 	return (0);
    891 }
    892 
    893 void
    894 gem_init_regs(struct gem_softc *sc)
    895 {
    896 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    897 	bus_space_tag_t t = sc->sc_bustag;
    898 	bus_space_handle_t h = sc->sc_h;
    899 	const u_char *laddr = LLADDR(ifp->if_sadl);
    900 	u_int32_t v;
    901 
    902 	/* These regs are not cleared on reset */
    903 	if (!sc->sc_inited) {
    904 
    905 		/* Wooo.  Magic values. */
    906 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
    907 		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
    908 		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
    909 
    910 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
    911 		/* Max frame and max burst size */
    912 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
    913 		     ETHER_MAX_LEN | (0x2000<<16));
    914 
    915 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
    916 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
    917 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
    918 		/* Dunno.... */
    919 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
    920 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
    921 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
    922 
    923 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
    924 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
    925 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
    926 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
    927 
    928 		/* MAC control addr set to 01:80:c2:00:00:01 */
    929 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
    930 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
    931 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
    932 
    933 		/* MAC filter addr set to 0:0:0:0:0:0 */
    934 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
    935 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
    936 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
    937 
    938 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
    939 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
    940 
    941 		sc->sc_inited = 1;
    942 	}
    943 
    944 	/* Counters need to be zeroed */
    945 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
    946 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
    947 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
    948 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
    949 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
    950 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
    951 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
    952 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
    953 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
    954 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
    955 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
    956 
    957 	/* Un-pause stuff */
    958 #if 0
    959 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
    960 #else
    961 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
    962 #endif
    963 
    964 	/*
    965 	 * Set the station address.
    966 	 */
    967 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
    968 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
    969 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
    970 
    971 #if 0
    972 	if (sc->sc_variant != APPLE_GMAC)
    973 		return;
    974 #endif
    975 
    976 	/*
    977 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
    978 	 */
    979 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
    980 	v = GEM_MAC_XIF_TX_MII_ENA;
    981 	if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
    982 		v |= GEM_MAC_XIF_FDPLX_LED;
    983 		if (sc->sc_flags & GEM_GIGABIT)
    984 			v |= GEM_MAC_XIF_GMII_MODE;
    985 	}
    986 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
    987 }
    988 
    989 void
    990 gem_start(ifp)
    991 	struct ifnet *ifp;
    992 {
    993 	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
    994 	struct mbuf *m0, *m;
    995 	struct gem_txsoft *txs, *last_txs;
    996 	bus_dmamap_t dmamap;
    997 	int error, firsttx, nexttx, lasttx, ofree, seg;
    998 
    999 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1000 		return;
   1001 
   1002 	/*
   1003 	 * Remember the previous number of free descriptors and
   1004 	 * the first descriptor we'll use.
   1005 	 */
   1006 	ofree = sc->sc_txfree;
   1007 	firsttx = sc->sc_txnext;
   1008 
   1009 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
   1010 	    sc->sc_dev.dv_xname, ofree, firsttx));
   1011 
   1012 	/*
   1013 	 * Loop through the send queue, setting up transmit descriptors
   1014 	 * until we drain the queue, or use up all available transmit
   1015 	 * descriptors.
   1016 	 */
   1017 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
   1018 	       sc->sc_txfree != 0) {
   1019 		/*
   1020 		 * Grab a packet off the queue.
   1021 		 */
   1022 		IFQ_POLL(&ifp->if_snd, m0);
   1023 		if (m0 == NULL)
   1024 			break;
   1025 		m = NULL;
   1026 
   1027 		dmamap = txs->txs_dmamap;
   1028 
   1029 		/*
   1030 		 * Load the DMA map.  If this fails, the packet either
   1031 		 * didn't fit in the alloted number of segments, or we were
   1032 		 * short on resources.  In this case, we'll copy and try
   1033 		 * again.
   1034 		 */
   1035 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
   1036 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
   1037 			if (m0->m_pkthdr.len > MCLBYTES) {
   1038 				printf("%s: unable to allocate jumbo Tx "
   1039 				    "cluster\n", sc->sc_dev.dv_xname);
   1040 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1041 				m_freem(m0);
   1042 				continue;
   1043 			}
   1044 			MGETHDR(m, M_DONTWAIT, MT_DATA);
   1045 			if (m == NULL) {
   1046 				printf("%s: unable to allocate Tx mbuf\n",
   1047 				    sc->sc_dev.dv_xname);
   1048 				break;
   1049 			}
   1050 			if (m0->m_pkthdr.len > MHLEN) {
   1051 				MCLGET(m, M_DONTWAIT);
   1052 				if ((m->m_flags & M_EXT) == 0) {
   1053 					printf("%s: unable to allocate Tx "
   1054 					    "cluster\n", sc->sc_dev.dv_xname);
   1055 					m_freem(m);
   1056 					break;
   1057 				}
   1058 			}
   1059 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
   1060 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
   1061 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
   1062 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1063 			if (error) {
   1064 				printf("%s: unable to load Tx buffer, "
   1065 				    "error = %d\n", sc->sc_dev.dv_xname, error);
   1066 				break;
   1067 			}
   1068 		}
   1069 
   1070 		/*
   1071 		 * Ensure we have enough descriptors free to describe
   1072 		 * the packet.
   1073 		 */
   1074 		if (dmamap->dm_nsegs > sc->sc_txfree) {
   1075 			/*
   1076 			 * Not enough free descriptors to transmit this
   1077 			 * packet.  We haven't committed to anything yet,
   1078 			 * so just unload the DMA map, put the packet
   1079 			 * back on the queue, and punt.  Notify the upper
   1080 			 * layer that there are no more slots left.
   1081 			 *
   1082 			 * XXX We could allocate an mbuf and copy, but
   1083 			 * XXX it is worth it?
   1084 			 */
   1085 			ifp->if_flags |= IFF_OACTIVE;
   1086 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
   1087 			if (m != NULL)
   1088 				m_freem(m);
   1089 			break;
   1090 		}
   1091 
   1092 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1093 		if (m != NULL) {
   1094 			m_freem(m0);
   1095 			m0 = m;
   1096 		}
   1097 
   1098 		/*
   1099 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1100 		 */
   1101 
   1102 		/* Sync the DMA map. */
   1103 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1104 		    BUS_DMASYNC_PREWRITE);
   1105 
   1106 		/*
   1107 		 * Initialize the transmit descriptors.
   1108 		 */
   1109 		for (nexttx = sc->sc_txnext, seg = 0;
   1110 		     seg < dmamap->dm_nsegs;
   1111 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
   1112 			uint64_t flags;
   1113 
   1114 			/*
   1115 			 * If this is the first descriptor we're
   1116 			 * enqueueing, set the start of packet flag,
   1117 			 * and the checksum stuff if we want the hardware
   1118 			 * to do it.
   1119 			 */
   1120 			sc->sc_txdescs[nexttx].gd_addr =
   1121 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
   1122 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
   1123 			if (nexttx == firsttx) {
   1124 				flags |= GEM_TD_START_OF_PACKET;
   1125 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
   1126 					sc->sc_txwin = 0;
   1127 					flags |= GEM_TD_INTERRUPT_ME;
   1128 				}
   1129 			}
   1130 			if (seg == dmamap->dm_nsegs - 1) {
   1131 				flags |= GEM_TD_END_OF_PACKET;
   1132 			}
   1133 			sc->sc_txdescs[nexttx].gd_flags =
   1134 				GEM_DMA_WRITE(sc, flags);
   1135 			lasttx = nexttx;
   1136 		}
   1137 
   1138 #ifdef GEM_DEBUG
   1139 		if (ifp->if_flags & IFF_DEBUG) {
   1140 			printf("     gem_start %p transmit chain:\n", txs);
   1141 			for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
   1142 				printf("descriptor %d:\t", seg);
   1143 				printf("gd_flags:   0x%016llx\t", (long long)
   1144 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
   1145 				printf("gd_addr: 0x%016llx\n", (long long)
   1146 					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
   1147 				if (seg == lasttx)
   1148 					break;
   1149 			}
   1150 		}
   1151 #endif
   1152 
   1153 		/* Sync the descriptors we're using. */
   1154 		GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1155 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1156 
   1157 		/*
   1158 		 * Store a pointer to the packet so we can free it later,
   1159 		 * and remember what txdirty will be once the packet is
   1160 		 * done.
   1161 		 */
   1162 		txs->txs_mbuf = m0;
   1163 		txs->txs_firstdesc = sc->sc_txnext;
   1164 		txs->txs_lastdesc = lasttx;
   1165 		txs->txs_ndescs = dmamap->dm_nsegs;
   1166 
   1167 		/* Advance the tx pointer. */
   1168 		sc->sc_txfree -= dmamap->dm_nsegs;
   1169 		sc->sc_txnext = nexttx;
   1170 
   1171 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
   1172 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
   1173 
   1174 		last_txs = txs;
   1175 
   1176 #if NBPFILTER > 0
   1177 		/*
   1178 		 * Pass the packet to any BPF listeners.
   1179 		 */
   1180 		if (ifp->if_bpf)
   1181 			bpf_mtap(ifp->if_bpf, m0);
   1182 #endif /* NBPFILTER > 0 */
   1183 	}
   1184 
   1185 	if (txs == NULL || sc->sc_txfree == 0) {
   1186 		/* No more slots left; notify upper layer. */
   1187 		ifp->if_flags |= IFF_OACTIVE;
   1188 	}
   1189 
   1190 	if (sc->sc_txfree != ofree) {
   1191 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
   1192 		    sc->sc_dev.dv_xname, lasttx, firsttx));
   1193 		/*
   1194 		 * The entire packet chain is set up.
   1195 		 * Kick the transmitter.
   1196 		 */
   1197 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
   1198 			sc->sc_dev.dv_xname, nexttx));
   1199 		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
   1200 			sc->sc_txnext);
   1201 
   1202 		/* Set a watchdog timer in case the chip flakes out. */
   1203 		ifp->if_timer = 5;
   1204 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
   1205 			sc->sc_dev.dv_xname, ifp->if_timer));
   1206 	}
   1207 }
   1208 
   1209 /*
   1210  * Transmit interrupt.
   1211  */
   1212 int
   1213 gem_tint(sc)
   1214 	struct gem_softc *sc;
   1215 {
   1216 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1217 	bus_space_tag_t t = sc->sc_bustag;
   1218 	bus_space_handle_t mac = sc->sc_h;
   1219 	struct gem_txsoft *txs;
   1220 	int txlast;
   1221 	int progress = 0;
   1222 
   1223 
   1224 	DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
   1225 
   1226 	/*
   1227 	 * Unload collision counters
   1228 	 */
   1229 	ifp->if_collisions +=
   1230 		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
   1231 		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
   1232 		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
   1233 		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
   1234 
   1235 	/*
   1236 	 * then clear the hardware counters.
   1237 	 */
   1238 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
   1239 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
   1240 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
   1241 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
   1242 
   1243 	/*
   1244 	 * Go through our Tx list and free mbufs for those
   1245 	 * frames that have been transmitted.
   1246 	 */
   1247 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1248 		GEM_CDTXSYNC(sc, txs->txs_lastdesc,
   1249 		    txs->txs_ndescs,
   1250 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1251 
   1252 #ifdef GEM_DEBUG
   1253 		if (ifp->if_flags & IFF_DEBUG) {
   1254 			int i;
   1255 			printf("    txsoft %p transmit chain:\n", txs);
   1256 			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
   1257 				printf("descriptor %d: ", i);
   1258 				printf("gd_flags: 0x%016llx\t", (long long)
   1259 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
   1260 				printf("gd_addr: 0x%016llx\n", (long long)
   1261 					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
   1262 				if (i == txs->txs_lastdesc)
   1263 					break;
   1264 			}
   1265 		}
   1266 #endif
   1267 
   1268 		/*
   1269 		 * In theory, we could harveast some descriptors before
   1270 		 * the ring is empty, but that's a bit complicated.
   1271 		 *
   1272 		 * GEM_TX_COMPLETION points to the last descriptor
   1273 		 * processed +1.
   1274 		 */
   1275 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
   1276 		DPRINTF(sc,
   1277 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
   1278 				txs->txs_lastdesc, txlast));
   1279 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
   1280 			if ((txlast >= txs->txs_firstdesc) &&
   1281 				(txlast <= txs->txs_lastdesc))
   1282 				break;
   1283 		} else {
   1284 			/* Ick -- this command wraps */
   1285 			if ((txlast >= txs->txs_firstdesc) ||
   1286 				(txlast <= txs->txs_lastdesc))
   1287 				break;
   1288 		}
   1289 
   1290 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
   1291 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1292 
   1293 		sc->sc_txfree += txs->txs_ndescs;
   1294 
   1295 		if (txs->txs_mbuf == NULL) {
   1296 #ifdef DIAGNOSTIC
   1297 				panic("gem_txintr: null mbuf");
   1298 #endif
   1299 		}
   1300 
   1301 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
   1302 		    0, txs->txs_dmamap->dm_mapsize,
   1303 		    BUS_DMASYNC_POSTWRITE);
   1304 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
   1305 		m_freem(txs->txs_mbuf);
   1306 		txs->txs_mbuf = NULL;
   1307 
   1308 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1309 
   1310 		ifp->if_opackets++;
   1311 		progress = 1;
   1312 	}
   1313 
   1314 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
   1315 		"GEM_TX_DATA_PTR %llx "
   1316 		"GEM_TX_COMPLETION %x\n",
   1317 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
   1318 		((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
   1319 			GEM_TX_DATA_PTR_HI) << 32) |
   1320 			     bus_space_read_4(sc->sc_bustag, sc->sc_h,
   1321 			GEM_TX_DATA_PTR_LO),
   1322 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
   1323 
   1324 	if (progress) {
   1325 		if (sc->sc_txfree == GEM_NTXDESC - 1)
   1326 			sc->sc_txwin = 0;
   1327 
   1328 		ifp->if_flags &= ~IFF_OACTIVE;
   1329 		gem_start(ifp);
   1330 
   1331 		if (SIMPLEQ_EMPTY(&sc->sc_txdirtyq))
   1332 			ifp->if_timer = 0;
   1333 	}
   1334 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
   1335 		sc->sc_dev.dv_xname, ifp->if_timer));
   1336 
   1337 	return (1);
   1338 }
   1339 
   1340 /*
   1341  * Receive interrupt.
   1342  */
   1343 int
   1344 gem_rint(sc)
   1345 	struct gem_softc *sc;
   1346 {
   1347 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1348 	bus_space_tag_t t = sc->sc_bustag;
   1349 	bus_space_handle_t h = sc->sc_h;
   1350 	struct ether_header *eh;
   1351 	struct gem_rxsoft *rxs;
   1352 	struct mbuf *m;
   1353 	u_int64_t rxstat;
   1354 	u_int32_t rxcomp;
   1355 	int i, len, progress = 0;
   1356 
   1357 	DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
   1358 
   1359 	/*
   1360 	 * Read the completion register once.  This limits
   1361 	 * how long the following loop can execute.
   1362 	 */
   1363 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
   1364 
   1365 	/*
   1366 	 * XXXX Read the lastrx only once at the top for speed.
   1367 	 */
   1368 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
   1369 		sc->sc_rxptr, rxcomp));
   1370 
   1371 	/*
   1372 	 * Go into the loop at least once.
   1373 	 */
   1374 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
   1375 	     i = GEM_NEXTRX(i)) {
   1376 		rxs = &sc->sc_rxsoft[i];
   1377 
   1378 		GEM_CDRXSYNC(sc, i,
   1379 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1380 
   1381 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
   1382 
   1383 		if (rxstat & GEM_RD_OWN) {
   1384 			/*
   1385 			 * We have processed all of the receive buffers.
   1386 			 */
   1387 			break;
   1388 		}
   1389 
   1390 		progress++;
   1391 		ifp->if_ipackets++;
   1392 
   1393 		if (rxstat & GEM_RD_BAD_CRC) {
   1394 			ifp->if_ierrors++;
   1395 			printf("%s: receive error: CRC error\n",
   1396 				sc->sc_dev.dv_xname);
   1397 			GEM_INIT_RXDESC(sc, i);
   1398 			continue;
   1399 		}
   1400 
   1401 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1402 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1403 #ifdef GEM_DEBUG
   1404 		if (ifp->if_flags & IFF_DEBUG) {
   1405 			printf("    rxsoft %p descriptor %d: ", rxs, i);
   1406 			printf("gd_flags: 0x%016llx\t", (long long)
   1407 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
   1408 			printf("gd_addr: 0x%016llx\n", (long long)
   1409 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
   1410 		}
   1411 #endif
   1412 
   1413 		/*
   1414 		 * No errors; receive the packet.  Note the Gem
   1415 		 * includes the CRC with every packet.
   1416 		 */
   1417 		len = GEM_RD_BUFLEN(rxstat);
   1418 
   1419 		/*
   1420 		 * Allocate a new mbuf cluster.  If that fails, we are
   1421 		 * out of memory, and must drop the packet and recycle
   1422 		 * the buffer that's already attached to this descriptor.
   1423 		 */
   1424 		m = rxs->rxs_mbuf;
   1425 		if (gem_add_rxbuf(sc, i) != 0) {
   1426 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
   1427 			ifp->if_ierrors++;
   1428 			GEM_INIT_RXDESC(sc, i);
   1429 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1430 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1431 			continue;
   1432 		}
   1433 		m->m_data += 2; /* We're already off by two */
   1434 
   1435 		eh = mtod(m, struct ether_header *);
   1436 		m->m_flags |= M_HASFCS;
   1437 		m->m_pkthdr.rcvif = ifp;
   1438 		m->m_pkthdr.len = m->m_len = len;
   1439 
   1440 #if NBPFILTER > 0
   1441 		/*
   1442 		 * Pass this up to any BPF listeners, but only
   1443 		 * pass it up the stack if its for us.
   1444 		 */
   1445 		if (ifp->if_bpf)
   1446 			bpf_mtap(ifp->if_bpf, m);
   1447 #endif /* NPBFILTER > 0 */
   1448 
   1449 		/* Pass it on. */
   1450 		(*ifp->if_input)(ifp, m);
   1451 	}
   1452 
   1453 	if (progress) {
   1454 		/* Update the receive pointer. */
   1455 		if (i == sc->sc_rxptr) {
   1456 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
   1457 #ifdef GEM_DEBUG
   1458 			if (ifp->if_flags & GEM_DEBUG)
   1459 				printf("%s: rint: ring wrap\n",
   1460 				    sc->sc_dev.dv_xname);
   1461 #endif
   1462 		}
   1463 		sc->sc_rxptr = i;
   1464 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
   1465 	}
   1466 #ifdef GEM_COUNTERS
   1467 	if (progress <= 4) {
   1468 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
   1469 	} else if (progress > 31) {
   1470 		if (progress < 16)
   1471 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
   1472 		else
   1473 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
   1474 
   1475 	} else {
   1476 		if (progress < 64)
   1477 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
   1478 		else
   1479 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
   1480 	}
   1481 #endif
   1482 
   1483 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
   1484 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
   1485 
   1486 	return (1);
   1487 }
   1488 
   1489 
   1490 /*
   1491  * gem_add_rxbuf:
   1492  *
   1493  *	Add a receive buffer to the indicated descriptor.
   1494  */
   1495 int
   1496 gem_add_rxbuf(struct gem_softc *sc, int idx)
   1497 {
   1498 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1499 	struct mbuf *m;
   1500 	int error;
   1501 
   1502 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1503 	if (m == NULL)
   1504 		return (ENOBUFS);
   1505 
   1506 	MCLGET(m, M_DONTWAIT);
   1507 	if ((m->m_flags & M_EXT) == 0) {
   1508 		m_freem(m);
   1509 		return (ENOBUFS);
   1510 	}
   1511 
   1512 #ifdef GEM_DEBUG
   1513 /* bzero the packet to check dma */
   1514 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
   1515 #endif
   1516 
   1517 	if (rxs->rxs_mbuf != NULL)
   1518 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
   1519 
   1520 	rxs->rxs_mbuf = m;
   1521 
   1522 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
   1523 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1524 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1525 	if (error) {
   1526 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1527 		    sc->sc_dev.dv_xname, idx, error);
   1528 		panic("gem_add_rxbuf");	/* XXX */
   1529 	}
   1530 
   1531 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
   1532 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1533 
   1534 	GEM_INIT_RXDESC(sc, idx);
   1535 
   1536 	return (0);
   1537 }
   1538 
   1539 
   1540 int
   1541 gem_eint(sc, status)
   1542 	struct gem_softc *sc;
   1543 	u_int status;
   1544 {
   1545 	char bits[128];
   1546 
   1547 	if ((status & GEM_INTR_MIF) != 0) {
   1548 		printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
   1549 		return (1);
   1550 	}
   1551 
   1552 	printf("%s: status=%s\n", sc->sc_dev.dv_xname,
   1553 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
   1554 	return (1);
   1555 }
   1556 
   1557 
   1558 int
   1559 gem_intr(v)
   1560 	void *v;
   1561 {
   1562 	struct gem_softc *sc = (struct gem_softc *)v;
   1563 	bus_space_tag_t t = sc->sc_bustag;
   1564 	bus_space_handle_t seb = sc->sc_h;
   1565 	u_int32_t status;
   1566 	int r = 0;
   1567 #ifdef GEM_DEBUG
   1568 	char bits[128];
   1569 #endif
   1570 
   1571 	sc->sc_ev_intr.ev_count++;
   1572 
   1573 	status = bus_space_read_4(t, seb, GEM_STATUS);
   1574 	DPRINTF(sc, ("%s: gem_intr: cplt %xstatus %s\n",
   1575 		sc->sc_dev.dv_xname, (status>>19),
   1576 		bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
   1577 
   1578 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
   1579 		r |= gem_eint(sc, status);
   1580 
   1581 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
   1582 		GEM_COUNTER_INCR(sc, sc_ev_txint);
   1583 		r |= gem_tint(sc);
   1584 	}
   1585 
   1586 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
   1587 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
   1588 		r |= gem_rint(sc);
   1589 	}
   1590 
   1591 	/* We should eventually do more than just print out error stats. */
   1592 	if (status & GEM_INTR_TX_MAC) {
   1593 		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
   1594 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
   1595 			printf("%s: MAC tx fault, status %x\n",
   1596 			    sc->sc_dev.dv_xname, txstat);
   1597 	}
   1598 	if (status & GEM_INTR_RX_MAC) {
   1599 		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
   1600 		if (rxstat & ~GEM_MAC_RX_DONE)
   1601 			printf("%s: MAC rx fault, status %x\n",
   1602 			    sc->sc_dev.dv_xname, rxstat);
   1603 	}
   1604 	return (r);
   1605 }
   1606 
   1607 
   1608 void
   1609 gem_watchdog(ifp)
   1610 	struct ifnet *ifp;
   1611 {
   1612 	struct gem_softc *sc = ifp->if_softc;
   1613 
   1614 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
   1615 		"GEM_MAC_RX_CONFIG %x\n",
   1616 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
   1617 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
   1618 		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
   1619 
   1620 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
   1621 	++ifp->if_oerrors;
   1622 
   1623 	/* Try to get more packets going. */
   1624 	gem_start(ifp);
   1625 }
   1626 
   1627 /*
   1628  * Initialize the MII Management Interface
   1629  */
   1630 void
   1631 gem_mifinit(sc)
   1632 	struct gem_softc *sc;
   1633 {
   1634 	bus_space_tag_t t = sc->sc_bustag;
   1635 	bus_space_handle_t mif = sc->sc_h;
   1636 
   1637 	/* Configure the MIF in frame mode */
   1638 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1639 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
   1640 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
   1641 }
   1642 
   1643 /*
   1644  * MII interface
   1645  *
   1646  * The GEM MII interface supports at least three different operating modes:
   1647  *
   1648  * Bitbang mode is implemented using data, clock and output enable registers.
   1649  *
   1650  * Frame mode is implemented by loading a complete frame into the frame
   1651  * register and polling the valid bit for completion.
   1652  *
   1653  * Polling mode uses the frame register but completion is indicated by
   1654  * an interrupt.
   1655  *
   1656  */
   1657 static int
   1658 gem_mii_readreg(self, phy, reg)
   1659 	struct device *self;
   1660 	int phy, reg;
   1661 {
   1662 	struct gem_softc *sc = (void *)self;
   1663 	bus_space_tag_t t = sc->sc_bustag;
   1664 	bus_space_handle_t mif = sc->sc_h;
   1665 	int n;
   1666 	u_int32_t v;
   1667 
   1668 #ifdef GEM_DEBUG1
   1669 	if (sc->sc_debug)
   1670 		printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
   1671 #endif
   1672 
   1673 #if 0
   1674 	/* Select the desired PHY in the MIF configuration register */
   1675 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1676 	/* Clear PHY select bit */
   1677 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
   1678 	if (phy == GEM_PHYAD_EXTERNAL)
   1679 		/* Set PHY select bit to get at external device */
   1680 		v |= GEM_MIF_CONFIG_PHY_SEL;
   1681 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
   1682 #endif
   1683 
   1684 	/* Construct the frame command */
   1685 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
   1686 		GEM_MIF_FRAME_READ;
   1687 
   1688 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   1689 	for (n = 0; n < 100; n++) {
   1690 		DELAY(1);
   1691 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   1692 		if (v & GEM_MIF_FRAME_TA0)
   1693 			return (v & GEM_MIF_FRAME_DATA);
   1694 	}
   1695 
   1696 	printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
   1697 	return (0);
   1698 }
   1699 
   1700 static void
   1701 gem_mii_writereg(self, phy, reg, val)
   1702 	struct device *self;
   1703 	int phy, reg, val;
   1704 {
   1705 	struct gem_softc *sc = (void *)self;
   1706 	bus_space_tag_t t = sc->sc_bustag;
   1707 	bus_space_handle_t mif = sc->sc_h;
   1708 	int n;
   1709 	u_int32_t v;
   1710 
   1711 #ifdef GEM_DEBUG1
   1712 	if (sc->sc_debug)
   1713 		printf("gem_mii_writereg: phy %d reg %d val %x\n",
   1714 			phy, reg, val);
   1715 #endif
   1716 
   1717 #if 0
   1718 	/* Select the desired PHY in the MIF configuration register */
   1719 	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
   1720 	/* Clear PHY select bit */
   1721 	v &= ~GEM_MIF_CONFIG_PHY_SEL;
   1722 	if (phy == GEM_PHYAD_EXTERNAL)
   1723 		/* Set PHY select bit to get at external device */
   1724 		v |= GEM_MIF_CONFIG_PHY_SEL;
   1725 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
   1726 #endif
   1727 	/* Construct the frame command */
   1728 	v = GEM_MIF_FRAME_WRITE			|
   1729 	    (phy << GEM_MIF_PHY_SHIFT)		|
   1730 	    (reg << GEM_MIF_REG_SHIFT)		|
   1731 	    (val & GEM_MIF_FRAME_DATA);
   1732 
   1733 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
   1734 	for (n = 0; n < 100; n++) {
   1735 		DELAY(1);
   1736 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
   1737 		if (v & GEM_MIF_FRAME_TA0)
   1738 			return;
   1739 	}
   1740 
   1741 	printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
   1742 }
   1743 
   1744 static void
   1745 gem_mii_statchg(dev)
   1746 	struct device *dev;
   1747 {
   1748 	struct gem_softc *sc = (void *)dev;
   1749 #ifdef GEM_DEBUG
   1750 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
   1751 #endif
   1752 	bus_space_tag_t t = sc->sc_bustag;
   1753 	bus_space_handle_t mac = sc->sc_h;
   1754 	u_int32_t v;
   1755 
   1756 #ifdef GEM_DEBUG
   1757 	if (sc->sc_debug)
   1758 		printf("gem_mii_statchg: status change: phy = %d\n",
   1759 			sc->sc_phys[instance];);
   1760 #endif
   1761 
   1762 
   1763 	/* Set tx full duplex options */
   1764 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
   1765 	delay(10000); /* reg must be cleared and delay before changing. */
   1766 	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
   1767 		GEM_MAC_TX_ENABLE;
   1768 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
   1769 		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
   1770 	}
   1771 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
   1772 
   1773 	/* XIF Configuration */
   1774  /* We should really calculate all this rather than rely on defaults */
   1775 	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
   1776 	v = GEM_MAC_XIF_LINK_LED;
   1777 	v |= GEM_MAC_XIF_TX_MII_ENA;
   1778 
   1779 	/* If an external transceiver is connected, enable its MII drivers */
   1780 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
   1781 	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
   1782 		/* External MII needs echo disable if half duplex. */
   1783 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
   1784 			/* turn on full duplex LED */
   1785 			v |= GEM_MAC_XIF_FDPLX_LED;
   1786 		else
   1787 	 		/* half duplex -- disable echo */
   1788 		 	v |= GEM_MAC_XIF_ECHO_DISABL;
   1789 
   1790 		if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
   1791 			v |= GEM_MAC_XIF_GMII_MODE;
   1792 		else
   1793 			v &= ~GEM_MAC_XIF_GMII_MODE;
   1794 	} else
   1795 		/* Internal MII needs buf enable */
   1796 		v |= GEM_MAC_XIF_MII_BUF_ENA;
   1797 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
   1798 }
   1799 
   1800 int
   1801 gem_mediachange(ifp)
   1802 	struct ifnet *ifp;
   1803 {
   1804 	struct gem_softc *sc = ifp->if_softc;
   1805 
   1806 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
   1807 		return (EINVAL);
   1808 
   1809 	return (mii_mediachg(&sc->sc_mii));
   1810 }
   1811 
   1812 void
   1813 gem_mediastatus(ifp, ifmr)
   1814 	struct ifnet *ifp;
   1815 	struct ifmediareq *ifmr;
   1816 {
   1817 	struct gem_softc *sc = ifp->if_softc;
   1818 
   1819 	if ((ifp->if_flags & IFF_UP) == 0)
   1820 		return;
   1821 
   1822 	mii_pollstat(&sc->sc_mii);
   1823 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
   1824 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
   1825 }
   1826 
   1827 int gem_ioctldebug = 0;
   1828 /*
   1829  * Process an ioctl request.
   1830  */
   1831 int
   1832 gem_ioctl(ifp, cmd, data)
   1833 	struct ifnet *ifp;
   1834 	u_long cmd;
   1835 	caddr_t data;
   1836 {
   1837 	struct gem_softc *sc = ifp->if_softc;
   1838 	struct ifreq *ifr = (struct ifreq *)data;
   1839 	int s, error = 0;
   1840 
   1841 	s = splnet();
   1842 
   1843 	switch (cmd) {
   1844 	case SIOCGIFMEDIA:
   1845 	case SIOCSIFMEDIA:
   1846 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1847 		break;
   1848 
   1849 	default:
   1850 		error = ether_ioctl(ifp, cmd, data);
   1851 		if (error == ENETRESET) {
   1852 			/*
   1853 			 * Multicast list has changed; set the hardware filter
   1854 			 * accordingly.
   1855 			 */
   1856 if (gem_ioctldebug) printf("reset1\n");
   1857 			gem_init(ifp);
   1858 			delay(50000);
   1859 			error = 0;
   1860 		}
   1861 		break;
   1862 	}
   1863 
   1864 	/* Try to get things going again */
   1865 	if (ifp->if_flags & IFF_UP) {
   1866 if (gem_ioctldebug) printf("start\n");
   1867 		gem_start(ifp);
   1868 	}
   1869 	splx(s);
   1870 	return (error);
   1871 }
   1872 
   1873 
   1874 void
   1875 gem_shutdown(arg)
   1876 	void *arg;
   1877 {
   1878 	struct gem_softc *sc = (struct gem_softc *)arg;
   1879 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1880 
   1881 	gem_stop(ifp, 1);
   1882 }
   1883 
   1884 /*
   1885  * Set up the logical address filter.
   1886  */
   1887 void
   1888 gem_setladrf(sc)
   1889 	struct gem_softc *sc;
   1890 {
   1891 	struct ethercom *ec = &sc->sc_ethercom;
   1892 	struct ifnet *ifp = &ec->ec_if;
   1893 	struct ether_multi *enm;
   1894 	struct ether_multistep step;
   1895 	bus_space_tag_t t = sc->sc_bustag;
   1896 	bus_space_handle_t h = sc->sc_h;
   1897 	u_int32_t crc;
   1898 	u_int32_t hash[16];
   1899 	u_int32_t v;
   1900 	int i;
   1901 
   1902 	/* Get current RX configuration */
   1903 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
   1904 
   1905 	/*
   1906 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
   1907 	 * and hash filter.  Depending on the case, the right bit will be
   1908 	 * enabled.
   1909 	 */
   1910 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
   1911 	    GEM_MAC_RX_PROMISC_GRP);
   1912 
   1913 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
   1914 		/* Turn on promiscuous mode */
   1915 		v |= GEM_MAC_RX_PROMISCUOUS;
   1916 		ifp->if_flags |= IFF_ALLMULTI;
   1917 		goto chipit;
   1918 	}
   1919 
   1920 	/*
   1921 	 * Set up multicast address filter by passing all multicast addresses
   1922 	 * through a crc generator, and then using the high order 8 bits as an
   1923 	 * index into the 256 bit logical address filter.  The high order 4
   1924 	 * bits select the word, while the other 4 bits select the bit within
   1925 	 * the word (where bit 0 is the MSB).
   1926 	 */
   1927 
   1928 	/* Clear hash table */
   1929 	memset(hash, 0, sizeof(hash));
   1930 
   1931 	ETHER_FIRST_MULTI(step, ec, enm);
   1932 	while (enm != NULL) {
   1933 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1934 			/*
   1935 			 * We must listen to a range of multicast addresses.
   1936 			 * For now, just accept all multicasts, rather than
   1937 			 * trying to set only those filter bits needed to match
   1938 			 * the range.  (At this time, the only use of address
   1939 			 * ranges is for IP multicast routing, for which the
   1940 			 * range is big enough to require all bits set.)
   1941 			 * XXX use the addr filter for this
   1942 			 */
   1943 			ifp->if_flags |= IFF_ALLMULTI;
   1944 			v |= GEM_MAC_RX_PROMISC_GRP;
   1945 			goto chipit;
   1946 		}
   1947 
   1948 		/* Get the LE CRC32 of the address */
   1949 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
   1950 
   1951 		/* Just want the 8 most significant bits. */
   1952 		crc >>= 24;
   1953 
   1954 		/* Set the corresponding bit in the filter. */
   1955 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
   1956 
   1957 		ETHER_NEXT_MULTI(step, enm);
   1958 	}
   1959 
   1960 	v |= GEM_MAC_RX_HASH_FILTER;
   1961 	ifp->if_flags &= ~IFF_ALLMULTI;
   1962 
   1963 	/* Now load the hash table into the chip (if we are using it) */
   1964 	for (i = 0; i < 16; i++) {
   1965 		bus_space_write_4(t, h,
   1966 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
   1967 		    hash[i]);
   1968 	}
   1969 
   1970 chipit:
   1971 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
   1972 }
   1973 
   1974 #if notyet
   1975 
   1976 /*
   1977  * gem_power:
   1978  *
   1979  *	Power management (suspend/resume) hook.
   1980  */
   1981 void
   1982 gem_power(why, arg)
   1983 	int why;
   1984 	void *arg;
   1985 {
   1986 	struct gem_softc *sc = arg;
   1987 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1988 	int s;
   1989 
   1990 	s = splnet();
   1991 	switch (why) {
   1992 	case PWR_SUSPEND:
   1993 	case PWR_STANDBY:
   1994 		gem_stop(ifp, 1);
   1995 		if (sc->sc_power != NULL)
   1996 			(*sc->sc_power)(sc, why);
   1997 		break;
   1998 	case PWR_RESUME:
   1999 		if (ifp->if_flags & IFF_UP) {
   2000 			if (sc->sc_power != NULL)
   2001 				(*sc->sc_power)(sc, why);
   2002 			gem_init(ifp);
   2003 		}
   2004 		break;
   2005 	case PWR_SOFTSUSPEND:
   2006 	case PWR_SOFTSTANDBY:
   2007 	case PWR_SOFTRESUME:
   2008 		break;
   2009 	}
   2010 	splx(s);
   2011 }
   2012 #endif
   2013