gem.c revision 1.30 1 /* $NetBSD: gem.c,v 1.30 2003/10/26 19:11:33 christos Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * All rights reserved.
7 *
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 */
31
32 /*
33 * Driver for Sun GEM ethernet controllers.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.30 2003/10/26 19:11:33 christos Exp $");
38
39 #include "bpfilter.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/syslog.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52
53 #include <machine/endian.h>
54
55 #include <uvm/uvm_extern.h>
56
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <machine/bus.h>
67 #include <machine/intr.h>
68
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71 #include <dev/mii/mii_bitbang.h>
72
73 #include <dev/ic/gemreg.h>
74 #include <dev/ic/gemvar.h>
75
76 #define TRIES 10000
77
78 void gem_start __P((struct ifnet *));
79 void gem_stop __P((struct ifnet *, int));
80 int gem_ioctl __P((struct ifnet *, u_long, caddr_t));
81 void gem_tick __P((void *));
82 void gem_watchdog __P((struct ifnet *));
83 void gem_shutdown __P((void *));
84 int gem_init __P((struct ifnet *));
85 void gem_init_regs(struct gem_softc *sc);
86 static int gem_ringsize(int sz);
87 int gem_meminit __P((struct gem_softc *));
88 void gem_mifinit __P((struct gem_softc *));
89 void gem_reset __P((struct gem_softc *));
90 int gem_reset_rx(struct gem_softc *sc);
91 int gem_reset_tx(struct gem_softc *sc);
92 int gem_disable_rx(struct gem_softc *sc);
93 int gem_disable_tx(struct gem_softc *sc);
94 void gem_rxdrain(struct gem_softc *sc);
95 int gem_add_rxbuf(struct gem_softc *sc, int idx);
96 void gem_setladrf __P((struct gem_softc *));
97
98 /* MII methods & callbacks */
99 static int gem_mii_readreg __P((struct device *, int, int));
100 static void gem_mii_writereg __P((struct device *, int, int, int));
101 static void gem_mii_statchg __P((struct device *));
102
103 int gem_mediachange __P((struct ifnet *));
104 void gem_mediastatus __P((struct ifnet *, struct ifmediareq *));
105
106 struct mbuf *gem_get __P((struct gem_softc *, int, int));
107 int gem_put __P((struct gem_softc *, int, struct mbuf *));
108 void gem_read __P((struct gem_softc *, int, int));
109 int gem_eint __P((struct gem_softc *, u_int));
110 int gem_rint __P((struct gem_softc *));
111 int gem_tint __P((struct gem_softc *));
112 void gem_power __P((int, void *));
113
114 #ifdef GEM_DEBUG
115 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
116 printf x
117 #else
118 #define DPRINTF(sc, x) /* nothing */
119 #endif
120
121
122 /*
123 * gem_attach:
124 *
125 * Attach a Gem interface to the system.
126 */
127 void
128 gem_attach(sc, enaddr)
129 struct gem_softc *sc;
130 const uint8_t *enaddr;
131 {
132 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
133 struct mii_data *mii = &sc->sc_mii;
134 struct mii_softc *child;
135 struct ifmedia_entry *ifm;
136 int i, error;
137 u_int32_t v;
138
139 /* Make sure the chip is stopped. */
140 ifp->if_softc = sc;
141 gem_reset(sc);
142
143 /*
144 * Allocate the control data structures, and create and load the
145 * DMA map for it.
146 */
147 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
148 sizeof(struct gem_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
149 1, &sc->sc_cdnseg, 0)) != 0) {
150 aprint_error(
151 "%s: unable to allocate control data, error = %d\n",
152 sc->sc_dev.dv_xname, error);
153 goto fail_0;
154 }
155
156 /* XXX should map this in with correct endianness */
157 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
158 sizeof(struct gem_control_data), (caddr_t *)&sc->sc_control_data,
159 BUS_DMA_COHERENT)) != 0) {
160 aprint_error("%s: unable to map control data, error = %d\n",
161 sc->sc_dev.dv_xname, error);
162 goto fail_1;
163 }
164
165 if ((error = bus_dmamap_create(sc->sc_dmatag,
166 sizeof(struct gem_control_data), 1,
167 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
168 aprint_error("%s: unable to create control data DMA map, "
169 "error = %d\n", sc->sc_dev.dv_xname, error);
170 goto fail_2;
171 }
172
173 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
174 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
175 0)) != 0) {
176 aprint_error(
177 "%s: unable to load control data DMA map, error = %d\n",
178 sc->sc_dev.dv_xname, error);
179 goto fail_3;
180 }
181
182 /*
183 * Initialize the transmit job descriptors.
184 */
185 SIMPLEQ_INIT(&sc->sc_txfreeq);
186 SIMPLEQ_INIT(&sc->sc_txdirtyq);
187
188 /*
189 * Create the transmit buffer DMA maps.
190 */
191 for (i = 0; i < GEM_TXQUEUELEN; i++) {
192 struct gem_txsoft *txs;
193
194 txs = &sc->sc_txsoft[i];
195 txs->txs_mbuf = NULL;
196 if ((error = bus_dmamap_create(sc->sc_dmatag,
197 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
198 ETHER_MAX_LEN_JUMBO, 0, 0,
199 &txs->txs_dmamap)) != 0) {
200 aprint_error("%s: unable to create tx DMA map %d, "
201 "error = %d\n", sc->sc_dev.dv_xname, i, error);
202 goto fail_4;
203 }
204 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
205 }
206
207 /*
208 * Create the receive buffer DMA maps.
209 */
210 for (i = 0; i < GEM_NRXDESC; i++) {
211 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
212 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
213 aprint_error("%s: unable to create rx DMA map %d, "
214 "error = %d\n", sc->sc_dev.dv_xname, i, error);
215 goto fail_5;
216 }
217 sc->sc_rxsoft[i].rxs_mbuf = NULL;
218 }
219
220 /*
221 * From this point forward, the attachment cannot fail. A failure
222 * before this point releases all resources that may have been
223 * allocated.
224 */
225
226 /* Announce ourselves. */
227 aprint_normal("%s: Ethernet address %s", sc->sc_dev.dv_xname,
228 ether_sprintf(enaddr));
229
230 /* Get RX FIFO size */
231 sc->sc_rxfifosize = 64 *
232 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
233 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
234
235 /* Get TX FIFO size */
236 v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
237 aprint_normal(", %uKB TX fifo\n", v / 16);
238
239 /* Initialize ifnet structure. */
240 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
241 ifp->if_softc = sc;
242 ifp->if_flags =
243 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
244 ifp->if_start = gem_start;
245 ifp->if_ioctl = gem_ioctl;
246 ifp->if_watchdog = gem_watchdog;
247 ifp->if_stop = gem_stop;
248 ifp->if_init = gem_init;
249 IFQ_SET_READY(&ifp->if_snd);
250
251 /* Initialize ifmedia structures and MII info */
252 mii->mii_ifp = ifp;
253 mii->mii_readreg = gem_mii_readreg;
254 mii->mii_writereg = gem_mii_writereg;
255 mii->mii_statchg = gem_mii_statchg;
256
257 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_mediachange, gem_mediastatus);
258
259 gem_mifinit(sc);
260
261 mii_attach(&sc->sc_dev, mii, 0xffffffff,
262 MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
263
264 child = LIST_FIRST(&mii->mii_phys);
265 if (child == NULL) {
266 /* No PHY attached */
267 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
268 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
269 } else {
270 /*
271 * Walk along the list of attached MII devices and
272 * establish an `MII instance' to `phy number'
273 * mapping. We'll use this mapping in media change
274 * requests to determine which phy to use to program
275 * the MIF configuration register.
276 */
277 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
278 /*
279 * Note: we support just two PHYs: the built-in
280 * internal device and an external on the MII
281 * connector.
282 */
283 if (child->mii_phy > 1 || child->mii_inst > 1) {
284 aprint_error(
285 "%s: cannot accomodate MII device %s"
286 " at phy %d, instance %d\n",
287 sc->sc_dev.dv_xname,
288 child->mii_dev.dv_xname,
289 child->mii_phy, child->mii_inst);
290 continue;
291 }
292
293 sc->sc_phys[child->mii_inst] = child->mii_phy;
294
295 }
296
297 /*
298 * Now select and activate the PHY we will use.
299 *
300 * The order of preference is External (MDI1),
301 * Internal (MDI0), Serial Link (no MII).
302 */
303 if (sc->sc_phys[1]) {
304 #ifdef DEBUG
305 aprint_debug("using external phy\n");
306 #endif
307 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
308 } else {
309 #ifdef DEBUG
310 aprint_debug("using internal phy\n");
311 #endif
312 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
313 }
314 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
315 sc->sc_mif_config);
316
317 /*
318 * XXX - we can really do the following ONLY if the
319 * phy indeed has the auto negotiation capability!!
320 */
321 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
322 }
323
324 /*
325 * If we support GigE media, we support jumbo frames too.
326 * Unless we are Apple.
327 */
328 TAILQ_FOREACH(ifm, &sc->sc_media.ifm_list, ifm_list) {
329 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
330 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
331 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
332 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
333 if (sc->sc_variant != GEM_APPLE_GMAC)
334 sc->sc_ethercom.ec_capabilities
335 |= ETHERCAP_JUMBO_MTU;
336
337 sc->sc_flags |= GEM_GIGABIT;
338 break;
339 }
340 }
341
342 /* claim 802.1q capability */
343 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
344
345 /* Attach the interface. */
346 if_attach(ifp);
347 ether_ifattach(ifp, enaddr);
348
349 sc->sc_sh = shutdownhook_establish(gem_shutdown, sc);
350 if (sc->sc_sh == NULL)
351 panic("gem_config: can't establish shutdownhook");
352
353 #if NRND > 0
354 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
355 RND_TYPE_NET, 0);
356 #endif
357
358 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
359 NULL, sc->sc_dev.dv_xname, "interrupts");
360 #ifdef GEM_COUNTERS
361 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
362 &sc->sc_ev_intr, sc->sc_dev.dv_xname, "tx interrupts");
363 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
364 &sc->sc_ev_intr, sc->sc_dev.dv_xname, "rx interrupts");
365 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
366 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx ring full");
367 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
368 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx malloc failure");
369 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
370 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 0desc");
371 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
372 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 1desc");
373 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
374 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 2desc");
375 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
376 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx 3desc");
377 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
378 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >3desc");
379 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
380 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >7desc");
381 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
382 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >15desc");
383 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
384 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >31desc");
385 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
386 &sc->sc_ev_rxint, sc->sc_dev.dv_xname, "rx >63desc");
387 #endif
388
389 #if notyet
390 /*
391 * Add a suspend hook to make sure we come back up after a
392 * resume.
393 */
394 sc->sc_powerhook = powerhook_establish(gem_power, sc);
395 if (sc->sc_powerhook == NULL)
396 aprint_error("%s: WARNING: unable to establish power hook\n",
397 sc->sc_dev.dv_xname);
398 #endif
399
400 callout_init(&sc->sc_tick_ch);
401 return;
402
403 /*
404 * Free any resources we've allocated during the failed attach
405 * attempt. Do this in reverse order and fall through.
406 */
407 fail_5:
408 for (i = 0; i < GEM_NRXDESC; i++) {
409 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
410 bus_dmamap_destroy(sc->sc_dmatag,
411 sc->sc_rxsoft[i].rxs_dmamap);
412 }
413 fail_4:
414 for (i = 0; i < GEM_TXQUEUELEN; i++) {
415 if (sc->sc_txsoft[i].txs_dmamap != NULL)
416 bus_dmamap_destroy(sc->sc_dmatag,
417 sc->sc_txsoft[i].txs_dmamap);
418 }
419 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
420 fail_3:
421 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
422 fail_2:
423 bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data,
424 sizeof(struct gem_control_data));
425 fail_1:
426 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
427 fail_0:
428 return;
429 }
430
431
432 void
433 gem_tick(arg)
434 void *arg;
435 {
436 struct gem_softc *sc = arg;
437 int s;
438
439 s = splnet();
440 mii_tick(&sc->sc_mii);
441 splx(s);
442
443 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
444
445 }
446
447 void
448 gem_reset(sc)
449 struct gem_softc *sc;
450 {
451 bus_space_tag_t t = sc->sc_bustag;
452 bus_space_handle_t h = sc->sc_h;
453 int i;
454 int s;
455
456 s = splnet();
457 DPRINTF(sc, ("%s: gem_reset\n", sc->sc_dev.dv_xname));
458 gem_reset_rx(sc);
459 gem_reset_tx(sc);
460
461 /* Do a full reset */
462 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
463 for (i=TRIES; i--; delay(100))
464 if ((bus_space_read_4(t, h, GEM_RESET) &
465 (GEM_RESET_RX|GEM_RESET_TX)) == 0)
466 break;
467 if ((bus_space_read_4(t, h, GEM_RESET) &
468 (GEM_RESET_RX|GEM_RESET_TX)) != 0) {
469 printf("%s: cannot reset device\n",
470 sc->sc_dev.dv_xname);
471 }
472 splx(s);
473 }
474
475
476 /*
477 * gem_rxdrain:
478 *
479 * Drain the receive queue.
480 */
481 void
482 gem_rxdrain(struct gem_softc *sc)
483 {
484 struct gem_rxsoft *rxs;
485 int i;
486
487 for (i = 0; i < GEM_NRXDESC; i++) {
488 rxs = &sc->sc_rxsoft[i];
489 if (rxs->rxs_mbuf != NULL) {
490 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
491 m_freem(rxs->rxs_mbuf);
492 rxs->rxs_mbuf = NULL;
493 }
494 }
495 }
496
497 /*
498 * Reset the whole thing.
499 */
500 void
501 gem_stop(struct ifnet *ifp, int disable)
502 {
503 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
504 struct gem_txsoft *txs;
505
506 DPRINTF(sc, ("%s: gem_stop\n", sc->sc_dev.dv_xname));
507
508 callout_stop(&sc->sc_tick_ch);
509 mii_down(&sc->sc_mii);
510
511 /* XXX - Should we reset these instead? */
512 gem_disable_rx(sc);
513 gem_disable_tx(sc);
514
515 /*
516 * Release any queued transmit buffers.
517 */
518 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
519 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
520 if (txs->txs_mbuf != NULL) {
521 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
522 m_freem(txs->txs_mbuf);
523 txs->txs_mbuf = NULL;
524 }
525 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
526 }
527
528 if (disable) {
529 gem_rxdrain(sc);
530 }
531
532 /*
533 * Mark the interface down and cancel the watchdog timer.
534 */
535 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
536 ifp->if_timer = 0;
537 }
538
539
540 /*
541 * Reset the receiver
542 */
543 int
544 gem_reset_rx(struct gem_softc *sc)
545 {
546 bus_space_tag_t t = sc->sc_bustag;
547 bus_space_handle_t h = sc->sc_h;
548 int i;
549
550
551 /*
552 * Resetting while DMA is in progress can cause a bus hang, so we
553 * disable DMA first.
554 */
555 gem_disable_rx(sc);
556 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
557 /* Wait till it finishes */
558 for (i=TRIES; i--; delay(100))
559 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) == 0)
560 break;
561 if ((bus_space_read_4(t, h, GEM_RX_CONFIG) & 1) != 0)
562 printf("%s: cannot disable read DMA\n",
563 sc->sc_dev.dv_xname);
564
565 /* Wait 5ms extra. */
566 delay(5000);
567
568 /* Finally, reset the ERX */
569 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
570 /* Wait till it finishes */
571 for (i=TRIES; i--; delay(100))
572 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) == 0)
573 break;
574 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_RX) != 0) {
575 printf("%s: cannot reset receiver\n",
576 sc->sc_dev.dv_xname);
577 return (1);
578 }
579 return (0);
580 }
581
582
583 /*
584 * Reset the transmitter
585 */
586 int
587 gem_reset_tx(struct gem_softc *sc)
588 {
589 bus_space_tag_t t = sc->sc_bustag;
590 bus_space_handle_t h = sc->sc_h;
591 int i;
592
593 /*
594 * Resetting while DMA is in progress can cause a bus hang, so we
595 * disable DMA first.
596 */
597 gem_disable_tx(sc);
598 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
599 /* Wait till it finishes */
600 for (i=TRIES; i--; delay(100))
601 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) == 0)
602 break;
603 if ((bus_space_read_4(t, h, GEM_TX_CONFIG) & 1) != 0)
604 printf("%s: cannot disable read DMA\n",
605 sc->sc_dev.dv_xname);
606
607 /* Wait 5ms extra. */
608 delay(5000);
609
610 /* Finally, reset the ETX */
611 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
612 /* Wait till it finishes */
613 for (i=TRIES; i--; delay(100))
614 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
615 break;
616 if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) != 0) {
617 printf("%s: cannot reset receiver\n",
618 sc->sc_dev.dv_xname);
619 return (1);
620 }
621 return (0);
622 }
623
624 /*
625 * disable receiver.
626 */
627 int
628 gem_disable_rx(struct gem_softc *sc)
629 {
630 bus_space_tag_t t = sc->sc_bustag;
631 bus_space_handle_t h = sc->sc_h;
632 int i;
633 u_int32_t cfg;
634
635 /* Flip the enable bit */
636 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
637 cfg &= ~GEM_MAC_RX_ENABLE;
638 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
639
640 /* Wait for it to finish */
641 for (i=TRIES; i--; delay(100))
642 if ((bus_space_read_4(t, h, GEM_MAC_RX_CONFIG) &
643 GEM_MAC_RX_ENABLE) == 0)
644 return (0);
645 return (1);
646 }
647
648 /*
649 * disable transmitter.
650 */
651 int
652 gem_disable_tx(struct gem_softc *sc)
653 {
654 bus_space_tag_t t = sc->sc_bustag;
655 bus_space_handle_t h = sc->sc_h;
656 int i;
657 u_int32_t cfg;
658
659 /* Flip the enable bit */
660 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
661 cfg &= ~GEM_MAC_TX_ENABLE;
662 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
663
664 /* Wait for it to finish */
665 for (i=TRIES; i--; delay(100))
666 if ((bus_space_read_4(t, h, GEM_MAC_TX_CONFIG) &
667 GEM_MAC_TX_ENABLE) == 0)
668 return (0);
669 return (1);
670 }
671
672 /*
673 * Initialize interface.
674 */
675 int
676 gem_meminit(struct gem_softc *sc)
677 {
678 struct gem_rxsoft *rxs;
679 int i, error;
680
681 /*
682 * Initialize the transmit descriptor ring.
683 */
684 memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
685 for (i = 0; i < GEM_NTXDESC; i++) {
686 sc->sc_txdescs[i].gd_flags = 0;
687 sc->sc_txdescs[i].gd_addr = 0;
688 }
689 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
690 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
691 sc->sc_txfree = GEM_NTXDESC-1;
692 sc->sc_txnext = 0;
693 sc->sc_txwin = 0;
694
695 /*
696 * Initialize the receive descriptor and receive job
697 * descriptor rings.
698 */
699 for (i = 0; i < GEM_NRXDESC; i++) {
700 rxs = &sc->sc_rxsoft[i];
701 if (rxs->rxs_mbuf == NULL) {
702 if ((error = gem_add_rxbuf(sc, i)) != 0) {
703 printf("%s: unable to allocate or map rx "
704 "buffer %d, error = %d\n",
705 sc->sc_dev.dv_xname, i, error);
706 /*
707 * XXX Should attempt to run with fewer receive
708 * XXX buffers instead of just failing.
709 */
710 gem_rxdrain(sc);
711 return (1);
712 }
713 } else
714 GEM_INIT_RXDESC(sc, i);
715 }
716 sc->sc_rxptr = 0;
717
718 return (0);
719 }
720
721 static int
722 gem_ringsize(int sz)
723 {
724 switch (sz) {
725 case 32:
726 return GEM_RING_SZ_32;
727 case 64:
728 return GEM_RING_SZ_64;
729 case 128:
730 return GEM_RING_SZ_128;
731 case 256:
732 return GEM_RING_SZ_256;
733 case 512:
734 return GEM_RING_SZ_512;
735 case 1024:
736 return GEM_RING_SZ_1024;
737 case 2048:
738 return GEM_RING_SZ_2048;
739 case 4096:
740 return GEM_RING_SZ_4096;
741 case 8192:
742 return GEM_RING_SZ_8192;
743 default:
744 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
745 return GEM_RING_SZ_32;
746 }
747 }
748
749 /*
750 * Initialization of interface; set up initialization block
751 * and transmit/receive descriptor rings.
752 */
753 int
754 gem_init(struct ifnet *ifp)
755 {
756 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
757 bus_space_tag_t t = sc->sc_bustag;
758 bus_space_handle_t h = sc->sc_h;
759 int s;
760 u_int max_frame_size;
761 u_int32_t v;
762
763 s = splnet();
764
765 DPRINTF(sc, ("%s: gem_init: calling stop\n", sc->sc_dev.dv_xname));
766 /*
767 * Initialization sequence. The numbered steps below correspond
768 * to the sequence outlined in section 6.3.5.1 in the Ethernet
769 * Channel Engine manual (part of the PCIO manual).
770 * See also the STP2002-STQ document from Sun Microsystems.
771 */
772
773 /* step 1 & 2. Reset the Ethernet Channel */
774 gem_stop(ifp, 0);
775 gem_reset(sc);
776 DPRINTF(sc, ("%s: gem_init: restarting\n", sc->sc_dev.dv_xname));
777
778 /* Re-initialize the MIF */
779 gem_mifinit(sc);
780
781 /* Call MI reset function if any */
782 if (sc->sc_hwreset)
783 (*sc->sc_hwreset)(sc);
784
785 /* step 3. Setup data structures in host memory */
786 gem_meminit(sc);
787
788 /* step 4. TX MAC registers & counters */
789 gem_init_regs(sc);
790 max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
791 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
792 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
793 max_frame_size += ETHER_VLAN_ENCAP_LEN;
794 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
795 max_frame_size|/* burst size */(0x2000<<16));
796
797 /* step 5. RX MAC registers & counters */
798 gem_setladrf(sc);
799
800 /* step 6 & 7. Program Descriptor Ring Base Addresses */
801 /* NOTE: we use only 32-bit DMA addresses here. */
802 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
803 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
804
805 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
806 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
807
808 /* step 8. Global Configuration & Interrupt Mask */
809 bus_space_write_4(t, h, GEM_INTMASK,
810 ~(GEM_INTR_TX_INTME|
811 GEM_INTR_TX_EMPTY|
812 GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
813 GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
814 GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
815 GEM_INTR_BERR));
816 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
817 GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
818 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
819 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
820
821 /* step 9. ETX Configuration: use mostly default values */
822
823 /* Enable DMA */
824 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
825 bus_space_write_4(t, h, GEM_TX_CONFIG,
826 v|GEM_TX_CONFIG_TXDMA_EN|
827 ((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
828 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
829
830 /* step 10. ERX Configuration */
831
832 /* Encode Receive Descriptor ring size: four possible values */
833 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
834
835 /* Enable DMA */
836 bus_space_write_4(t, h, GEM_RX_CONFIG,
837 v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
838 (2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
839 (0<<GEM_RX_CONFIG_CXM_START_SHFT));
840 /*
841 * The following value is for an OFF Threshold of about 3/4 full
842 * and an ON Threshold of 1/4 full.
843 */
844 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
845 (3 * sc->sc_rxfifosize / 256) |
846 ( (sc->sc_rxfifosize / 256) << 12));
847 bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
848
849 /* step 11. Configure Media */
850 mii_mediachg(&sc->sc_mii);
851
852 /* XXXX Serial link needs a whole different setup. */
853
854
855 /* step 12. RX_MAC Configuration Register */
856 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
857 v |= GEM_MAC_RX_ENABLE;
858 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
859
860 /* step 14. Issue Transmit Pending command */
861
862 /* Call MI initialization function if any */
863 if (sc->sc_hwinit)
864 (*sc->sc_hwinit)(sc);
865
866
867 /* step 15. Give the reciever a swift kick */
868 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
869
870 /* Start the one second timer. */
871 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
872
873 ifp->if_flags |= IFF_RUNNING;
874 ifp->if_flags &= ~IFF_OACTIVE;
875 ifp->if_timer = 0;
876 splx(s);
877
878 return (0);
879 }
880
881 void
882 gem_init_regs(struct gem_softc *sc)
883 {
884 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
885 bus_space_tag_t t = sc->sc_bustag;
886 bus_space_handle_t h = sc->sc_h;
887 const u_char *laddr = LLADDR(ifp->if_sadl);
888 u_int32_t v;
889
890 /* These regs are not cleared on reset */
891 if (!sc->sc_inited) {
892
893 /* Wooo. Magic values. */
894 bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
895 bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
896 bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
897
898 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
899 /* Max frame and max burst size */
900 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
901 ETHER_MAX_LEN | (0x2000<<16));
902
903 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
904 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
905 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
906 /* Dunno.... */
907 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
908 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
909 ((laddr[5]<<8)|laddr[4])&0x3ff);
910
911 /* Secondary MAC addr set to 0:0:0:0:0:0 */
912 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
913 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
914 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
915
916 /* MAC control addr set to 01:80:c2:00:00:01 */
917 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
918 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
919 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
920
921 /* MAC filter addr set to 0:0:0:0:0:0 */
922 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
923 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
924 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
925
926 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
927 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
928
929 sc->sc_inited = 1;
930 }
931
932 /* Counters need to be zeroed */
933 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
934 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
935 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
936 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
937 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
938 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
939 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
940 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
941 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
942 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
943 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
944
945 /* Un-pause stuff */
946 #if 0
947 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
948 #else
949 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
950 #endif
951
952 /*
953 * Set the station address.
954 */
955 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
956 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
957 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
958
959 #if 0
960 if (sc->sc_variant != APPLE_GMAC)
961 return;
962 #endif
963
964 /*
965 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
966 */
967 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
968 v = GEM_MAC_XIF_TX_MII_ENA;
969 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
970 v |= GEM_MAC_XIF_FDPLX_LED;
971 if (sc->sc_flags & GEM_GIGABIT)
972 v |= GEM_MAC_XIF_GMII_MODE;
973 }
974 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
975 }
976
977 void
978 gem_start(ifp)
979 struct ifnet *ifp;
980 {
981 struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
982 struct mbuf *m0, *m;
983 struct gem_txsoft *txs, *last_txs;
984 bus_dmamap_t dmamap;
985 int error, firsttx, nexttx, lasttx = -1, ofree, seg;
986
987 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
988 return;
989
990 /*
991 * Remember the previous number of free descriptors and
992 * the first descriptor we'll use.
993 */
994 ofree = sc->sc_txfree;
995 firsttx = sc->sc_txnext;
996
997 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
998 sc->sc_dev.dv_xname, ofree, firsttx));
999
1000 /*
1001 * Loop through the send queue, setting up transmit descriptors
1002 * until we drain the queue, or use up all available transmit
1003 * descriptors.
1004 */
1005 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1006 sc->sc_txfree != 0) {
1007 /*
1008 * Grab a packet off the queue.
1009 */
1010 IFQ_POLL(&ifp->if_snd, m0);
1011 if (m0 == NULL)
1012 break;
1013 m = NULL;
1014
1015 dmamap = txs->txs_dmamap;
1016
1017 /*
1018 * Load the DMA map. If this fails, the packet either
1019 * didn't fit in the alloted number of segments, or we were
1020 * short on resources. In this case, we'll copy and try
1021 * again.
1022 */
1023 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1024 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1025 if (m0->m_pkthdr.len > MCLBYTES) {
1026 printf("%s: unable to allocate jumbo Tx "
1027 "cluster\n", sc->sc_dev.dv_xname);
1028 IFQ_DEQUEUE(&ifp->if_snd, m0);
1029 m_freem(m0);
1030 continue;
1031 }
1032 MGETHDR(m, M_DONTWAIT, MT_DATA);
1033 if (m == NULL) {
1034 printf("%s: unable to allocate Tx mbuf\n",
1035 sc->sc_dev.dv_xname);
1036 break;
1037 }
1038 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1039 if (m0->m_pkthdr.len > MHLEN) {
1040 MCLGET(m, M_DONTWAIT);
1041 if ((m->m_flags & M_EXT) == 0) {
1042 printf("%s: unable to allocate Tx "
1043 "cluster\n", sc->sc_dev.dv_xname);
1044 m_freem(m);
1045 break;
1046 }
1047 }
1048 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1049 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1050 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1051 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1052 if (error) {
1053 printf("%s: unable to load Tx buffer, "
1054 "error = %d\n", sc->sc_dev.dv_xname, error);
1055 break;
1056 }
1057 }
1058
1059 /*
1060 * Ensure we have enough descriptors free to describe
1061 * the packet.
1062 */
1063 if (dmamap->dm_nsegs > sc->sc_txfree) {
1064 /*
1065 * Not enough free descriptors to transmit this
1066 * packet. We haven't committed to anything yet,
1067 * so just unload the DMA map, put the packet
1068 * back on the queue, and punt. Notify the upper
1069 * layer that there are no more slots left.
1070 *
1071 * XXX We could allocate an mbuf and copy, but
1072 * XXX it is worth it?
1073 */
1074 ifp->if_flags |= IFF_OACTIVE;
1075 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1076 if (m != NULL)
1077 m_freem(m);
1078 break;
1079 }
1080
1081 IFQ_DEQUEUE(&ifp->if_snd, m0);
1082 if (m != NULL) {
1083 m_freem(m0);
1084 m0 = m;
1085 }
1086
1087 /*
1088 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1089 */
1090
1091 /* Sync the DMA map. */
1092 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1093 BUS_DMASYNC_PREWRITE);
1094
1095 /*
1096 * Initialize the transmit descriptors.
1097 */
1098 for (nexttx = sc->sc_txnext, seg = 0;
1099 seg < dmamap->dm_nsegs;
1100 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1101 uint64_t flags;
1102
1103 /*
1104 * If this is the first descriptor we're
1105 * enqueueing, set the start of packet flag,
1106 * and the checksum stuff if we want the hardware
1107 * to do it.
1108 */
1109 sc->sc_txdescs[nexttx].gd_addr =
1110 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1111 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1112 if (nexttx == firsttx) {
1113 flags |= GEM_TD_START_OF_PACKET;
1114 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1115 sc->sc_txwin = 0;
1116 flags |= GEM_TD_INTERRUPT_ME;
1117 }
1118 }
1119 if (seg == dmamap->dm_nsegs - 1) {
1120 flags |= GEM_TD_END_OF_PACKET;
1121 }
1122 sc->sc_txdescs[nexttx].gd_flags =
1123 GEM_DMA_WRITE(sc, flags);
1124 lasttx = nexttx;
1125 }
1126
1127 KASSERT(lasttx != -1);
1128
1129 #ifdef GEM_DEBUG
1130 if (ifp->if_flags & IFF_DEBUG) {
1131 printf(" gem_start %p transmit chain:\n", txs);
1132 for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1133 printf("descriptor %d:\t", seg);
1134 printf("gd_flags: 0x%016llx\t", (long long)
1135 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1136 printf("gd_addr: 0x%016llx\n", (long long)
1137 GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1138 if (seg == lasttx)
1139 break;
1140 }
1141 }
1142 #endif
1143
1144 /* Sync the descriptors we're using. */
1145 GEM_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1146 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1147
1148 /*
1149 * Store a pointer to the packet so we can free it later,
1150 * and remember what txdirty will be once the packet is
1151 * done.
1152 */
1153 txs->txs_mbuf = m0;
1154 txs->txs_firstdesc = sc->sc_txnext;
1155 txs->txs_lastdesc = lasttx;
1156 txs->txs_ndescs = dmamap->dm_nsegs;
1157
1158 /* Advance the tx pointer. */
1159 sc->sc_txfree -= dmamap->dm_nsegs;
1160 sc->sc_txnext = nexttx;
1161
1162 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1163 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1164
1165 last_txs = txs;
1166
1167 #if NBPFILTER > 0
1168 /*
1169 * Pass the packet to any BPF listeners.
1170 */
1171 if (ifp->if_bpf)
1172 bpf_mtap(ifp->if_bpf, m0);
1173 #endif /* NBPFILTER > 0 */
1174 }
1175
1176 if (txs == NULL || sc->sc_txfree == 0) {
1177 /* No more slots left; notify upper layer. */
1178 ifp->if_flags |= IFF_OACTIVE;
1179 }
1180
1181 if (sc->sc_txfree != ofree) {
1182 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1183 sc->sc_dev.dv_xname, lasttx, firsttx));
1184 /*
1185 * The entire packet chain is set up.
1186 * Kick the transmitter.
1187 */
1188 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1189 sc->sc_dev.dv_xname, nexttx));
1190 bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1191 sc->sc_txnext);
1192
1193 /* Set a watchdog timer in case the chip flakes out. */
1194 ifp->if_timer = 5;
1195 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1196 sc->sc_dev.dv_xname, ifp->if_timer));
1197 }
1198 }
1199
1200 /*
1201 * Transmit interrupt.
1202 */
1203 int
1204 gem_tint(sc)
1205 struct gem_softc *sc;
1206 {
1207 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1208 bus_space_tag_t t = sc->sc_bustag;
1209 bus_space_handle_t mac = sc->sc_h;
1210 struct gem_txsoft *txs;
1211 int txlast;
1212 int progress = 0;
1213
1214
1215 DPRINTF(sc, ("%s: gem_tint\n", sc->sc_dev.dv_xname));
1216
1217 /*
1218 * Unload collision counters
1219 */
1220 ifp->if_collisions +=
1221 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1222 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1223 bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1224 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1225
1226 /*
1227 * then clear the hardware counters.
1228 */
1229 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1230 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1231 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1232 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1233
1234 /*
1235 * Go through our Tx list and free mbufs for those
1236 * frames that have been transmitted.
1237 */
1238 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1239 GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1240 txs->txs_ndescs,
1241 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1242
1243 #ifdef GEM_DEBUG
1244 if (ifp->if_flags & IFF_DEBUG) {
1245 int i;
1246 printf(" txsoft %p transmit chain:\n", txs);
1247 for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1248 printf("descriptor %d: ", i);
1249 printf("gd_flags: 0x%016llx\t", (long long)
1250 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1251 printf("gd_addr: 0x%016llx\n", (long long)
1252 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1253 if (i == txs->txs_lastdesc)
1254 break;
1255 }
1256 }
1257 #endif
1258
1259 /*
1260 * In theory, we could harveast some descriptors before
1261 * the ring is empty, but that's a bit complicated.
1262 *
1263 * GEM_TX_COMPLETION points to the last descriptor
1264 * processed +1.
1265 */
1266 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1267 DPRINTF(sc,
1268 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1269 txs->txs_lastdesc, txlast));
1270 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1271 if ((txlast >= txs->txs_firstdesc) &&
1272 (txlast <= txs->txs_lastdesc))
1273 break;
1274 } else {
1275 /* Ick -- this command wraps */
1276 if ((txlast >= txs->txs_firstdesc) ||
1277 (txlast <= txs->txs_lastdesc))
1278 break;
1279 }
1280
1281 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1282 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1283
1284 sc->sc_txfree += txs->txs_ndescs;
1285
1286 if (txs->txs_mbuf == NULL) {
1287 #ifdef DIAGNOSTIC
1288 panic("gem_txintr: null mbuf");
1289 #endif
1290 }
1291
1292 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1293 0, txs->txs_dmamap->dm_mapsize,
1294 BUS_DMASYNC_POSTWRITE);
1295 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1296 m_freem(txs->txs_mbuf);
1297 txs->txs_mbuf = NULL;
1298
1299 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1300
1301 ifp->if_opackets++;
1302 progress = 1;
1303 }
1304
1305 #if 0
1306 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1307 "GEM_TX_DATA_PTR %llx "
1308 "GEM_TX_COMPLETION %x\n",
1309 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1310 ((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1311 GEM_TX_DATA_PTR_HI) << 32) |
1312 bus_space_read_4(sc->sc_bustag, sc->sc_h,
1313 GEM_TX_DATA_PTR_LO),
1314 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1315 #endif
1316
1317 if (progress) {
1318 if (sc->sc_txfree == GEM_NTXDESC - 1)
1319 sc->sc_txwin = 0;
1320
1321 ifp->if_flags &= ~IFF_OACTIVE;
1322 gem_start(ifp);
1323
1324 if (SIMPLEQ_EMPTY(&sc->sc_txdirtyq))
1325 ifp->if_timer = 0;
1326 }
1327 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1328 sc->sc_dev.dv_xname, ifp->if_timer));
1329
1330 return (1);
1331 }
1332
1333 /*
1334 * Receive interrupt.
1335 */
1336 int
1337 gem_rint(sc)
1338 struct gem_softc *sc;
1339 {
1340 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1341 bus_space_tag_t t = sc->sc_bustag;
1342 bus_space_handle_t h = sc->sc_h;
1343 struct ether_header *eh;
1344 struct gem_rxsoft *rxs;
1345 struct mbuf *m;
1346 u_int64_t rxstat;
1347 u_int32_t rxcomp;
1348 int i, len, progress = 0;
1349
1350 DPRINTF(sc, ("%s: gem_rint\n", sc->sc_dev.dv_xname));
1351
1352 /*
1353 * Read the completion register once. This limits
1354 * how long the following loop can execute.
1355 */
1356 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1357
1358 /*
1359 * XXXX Read the lastrx only once at the top for speed.
1360 */
1361 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1362 sc->sc_rxptr, rxcomp));
1363
1364 /*
1365 * Go into the loop at least once.
1366 */
1367 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1368 i = GEM_NEXTRX(i)) {
1369 rxs = &sc->sc_rxsoft[i];
1370
1371 GEM_CDRXSYNC(sc, i,
1372 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1373
1374 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1375
1376 if (rxstat & GEM_RD_OWN) {
1377 /*
1378 * We have processed all of the receive buffers.
1379 */
1380 break;
1381 }
1382
1383 progress++;
1384 ifp->if_ipackets++;
1385
1386 if (rxstat & GEM_RD_BAD_CRC) {
1387 ifp->if_ierrors++;
1388 printf("%s: receive error: CRC error\n",
1389 sc->sc_dev.dv_xname);
1390 GEM_INIT_RXDESC(sc, i);
1391 continue;
1392 }
1393
1394 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1395 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1396 #ifdef GEM_DEBUG
1397 if (ifp->if_flags & IFF_DEBUG) {
1398 printf(" rxsoft %p descriptor %d: ", rxs, i);
1399 printf("gd_flags: 0x%016llx\t", (long long)
1400 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1401 printf("gd_addr: 0x%016llx\n", (long long)
1402 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1403 }
1404 #endif
1405
1406 /*
1407 * No errors; receive the packet. Note the Gem
1408 * includes the CRC with every packet.
1409 */
1410 len = GEM_RD_BUFLEN(rxstat);
1411
1412 /*
1413 * Allocate a new mbuf cluster. If that fails, we are
1414 * out of memory, and must drop the packet and recycle
1415 * the buffer that's already attached to this descriptor.
1416 */
1417 m = rxs->rxs_mbuf;
1418 if (gem_add_rxbuf(sc, i) != 0) {
1419 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1420 ifp->if_ierrors++;
1421 GEM_INIT_RXDESC(sc, i);
1422 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1423 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1424 continue;
1425 }
1426 m->m_data += 2; /* We're already off by two */
1427
1428 eh = mtod(m, struct ether_header *);
1429 m->m_flags |= M_HASFCS;
1430 m->m_pkthdr.rcvif = ifp;
1431 m->m_pkthdr.len = m->m_len = len;
1432
1433 #if NBPFILTER > 0
1434 /*
1435 * Pass this up to any BPF listeners, but only
1436 * pass it up the stack if its for us.
1437 */
1438 if (ifp->if_bpf)
1439 bpf_mtap(ifp->if_bpf, m);
1440 #endif /* NPBFILTER > 0 */
1441
1442 /* Pass it on. */
1443 (*ifp->if_input)(ifp, m);
1444 }
1445
1446 if (progress) {
1447 /* Update the receive pointer. */
1448 if (i == sc->sc_rxptr) {
1449 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1450 #ifdef GEM_DEBUG
1451 if (ifp->if_flags & IFF_DEBUG)
1452 printf("%s: rint: ring wrap\n",
1453 sc->sc_dev.dv_xname);
1454 #endif
1455 }
1456 sc->sc_rxptr = i;
1457 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1458 }
1459 #ifdef GEM_COUNTERS
1460 if (progress <= 4) {
1461 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1462 } else if (progress < 32) {
1463 if (progress < 16)
1464 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1465 else
1466 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1467
1468 } else {
1469 if (progress < 64)
1470 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1471 else
1472 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1473 }
1474 #endif
1475
1476 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1477 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1478
1479 return (1);
1480 }
1481
1482
1483 /*
1484 * gem_add_rxbuf:
1485 *
1486 * Add a receive buffer to the indicated descriptor.
1487 */
1488 int
1489 gem_add_rxbuf(struct gem_softc *sc, int idx)
1490 {
1491 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1492 struct mbuf *m;
1493 int error;
1494
1495 MGETHDR(m, M_DONTWAIT, MT_DATA);
1496 if (m == NULL)
1497 return (ENOBUFS);
1498
1499 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1500 MCLGET(m, M_DONTWAIT);
1501 if ((m->m_flags & M_EXT) == 0) {
1502 m_freem(m);
1503 return (ENOBUFS);
1504 }
1505
1506 #ifdef GEM_DEBUG
1507 /* bzero the packet to check DMA */
1508 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1509 #endif
1510
1511 if (rxs->rxs_mbuf != NULL)
1512 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1513
1514 rxs->rxs_mbuf = m;
1515
1516 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1517 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1518 BUS_DMA_READ|BUS_DMA_NOWAIT);
1519 if (error) {
1520 printf("%s: can't load rx DMA map %d, error = %d\n",
1521 sc->sc_dev.dv_xname, idx, error);
1522 panic("gem_add_rxbuf"); /* XXX */
1523 }
1524
1525 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1526 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1527
1528 GEM_INIT_RXDESC(sc, idx);
1529
1530 return (0);
1531 }
1532
1533
1534 int
1535 gem_eint(sc, status)
1536 struct gem_softc *sc;
1537 u_int status;
1538 {
1539 char bits[128];
1540
1541 if ((status & GEM_INTR_MIF) != 0) {
1542 printf("%s: XXXlink status changed\n", sc->sc_dev.dv_xname);
1543 return (1);
1544 }
1545
1546 printf("%s: status=%s\n", sc->sc_dev.dv_xname,
1547 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits)));
1548 return (1);
1549 }
1550
1551
1552 int
1553 gem_intr(v)
1554 void *v;
1555 {
1556 struct gem_softc *sc = (struct gem_softc *)v;
1557 bus_space_tag_t t = sc->sc_bustag;
1558 bus_space_handle_t seb = sc->sc_h;
1559 u_int32_t status;
1560 int r = 0;
1561 #ifdef GEM_DEBUG
1562 char bits[128];
1563 #endif
1564
1565 sc->sc_ev_intr.ev_count++;
1566
1567 status = bus_space_read_4(t, seb, GEM_STATUS);
1568 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
1569 sc->sc_dev.dv_xname, (status >> 19),
1570 bitmask_snprintf(status, GEM_INTR_BITS, bits, sizeof(bits))));
1571
1572 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1573 r |= gem_eint(sc, status);
1574
1575 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
1576 GEM_COUNTER_INCR(sc, sc_ev_txint);
1577 r |= gem_tint(sc);
1578 }
1579
1580 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
1581 GEM_COUNTER_INCR(sc, sc_ev_rxint);
1582 r |= gem_rint(sc);
1583 }
1584
1585 /* We should eventually do more than just print out error stats. */
1586 if (status & GEM_INTR_TX_MAC) {
1587 int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1588 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1589 printf("%s: MAC tx fault, status %x\n",
1590 sc->sc_dev.dv_xname, txstat);
1591 }
1592 if (status & GEM_INTR_RX_MAC) {
1593 int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1594 if (rxstat & ~GEM_MAC_RX_DONE)
1595 printf("%s: MAC rx fault, status %x\n",
1596 sc->sc_dev.dv_xname, rxstat);
1597 }
1598 return (r);
1599 }
1600
1601
1602 void
1603 gem_watchdog(ifp)
1604 struct ifnet *ifp;
1605 {
1606 struct gem_softc *sc = ifp->if_softc;
1607
1608 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1609 "GEM_MAC_RX_CONFIG %x\n",
1610 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1611 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1612 bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1613
1614 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1615 ++ifp->if_oerrors;
1616
1617 /* Try to get more packets going. */
1618 gem_start(ifp);
1619 }
1620
1621 /*
1622 * Initialize the MII Management Interface
1623 */
1624 void
1625 gem_mifinit(sc)
1626 struct gem_softc *sc;
1627 {
1628 bus_space_tag_t t = sc->sc_bustag;
1629 bus_space_handle_t mif = sc->sc_h;
1630
1631 /* Configure the MIF in frame mode */
1632 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1633 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1634 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1635 }
1636
1637 /*
1638 * MII interface
1639 *
1640 * The GEM MII interface supports at least three different operating modes:
1641 *
1642 * Bitbang mode is implemented using data, clock and output enable registers.
1643 *
1644 * Frame mode is implemented by loading a complete frame into the frame
1645 * register and polling the valid bit for completion.
1646 *
1647 * Polling mode uses the frame register but completion is indicated by
1648 * an interrupt.
1649 *
1650 */
1651 static int
1652 gem_mii_readreg(self, phy, reg)
1653 struct device *self;
1654 int phy, reg;
1655 {
1656 struct gem_softc *sc = (void *)self;
1657 bus_space_tag_t t = sc->sc_bustag;
1658 bus_space_handle_t mif = sc->sc_h;
1659 int n;
1660 u_int32_t v;
1661
1662 #ifdef GEM_DEBUG1
1663 if (sc->sc_debug)
1664 printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1665 #endif
1666
1667 #if 0
1668 /* Select the desired PHY in the MIF configuration register */
1669 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1670 /* Clear PHY select bit */
1671 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1672 if (phy == GEM_PHYAD_EXTERNAL)
1673 /* Set PHY select bit to get at external device */
1674 v |= GEM_MIF_CONFIG_PHY_SEL;
1675 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1676 #endif
1677
1678 /* Construct the frame command */
1679 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
1680 GEM_MIF_FRAME_READ;
1681
1682 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1683 for (n = 0; n < 100; n++) {
1684 DELAY(1);
1685 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1686 if (v & GEM_MIF_FRAME_TA0)
1687 return (v & GEM_MIF_FRAME_DATA);
1688 }
1689
1690 printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname);
1691 return (0);
1692 }
1693
1694 static void
1695 gem_mii_writereg(self, phy, reg, val)
1696 struct device *self;
1697 int phy, reg, val;
1698 {
1699 struct gem_softc *sc = (void *)self;
1700 bus_space_tag_t t = sc->sc_bustag;
1701 bus_space_handle_t mif = sc->sc_h;
1702 int n;
1703 u_int32_t v;
1704
1705 #ifdef GEM_DEBUG1
1706 if (sc->sc_debug)
1707 printf("gem_mii_writereg: phy %d reg %d val %x\n",
1708 phy, reg, val);
1709 #endif
1710
1711 #if 0
1712 /* Select the desired PHY in the MIF configuration register */
1713 v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1714 /* Clear PHY select bit */
1715 v &= ~GEM_MIF_CONFIG_PHY_SEL;
1716 if (phy == GEM_PHYAD_EXTERNAL)
1717 /* Set PHY select bit to get at external device */
1718 v |= GEM_MIF_CONFIG_PHY_SEL;
1719 bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1720 #endif
1721 /* Construct the frame command */
1722 v = GEM_MIF_FRAME_WRITE |
1723 (phy << GEM_MIF_PHY_SHIFT) |
1724 (reg << GEM_MIF_REG_SHIFT) |
1725 (val & GEM_MIF_FRAME_DATA);
1726
1727 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1728 for (n = 0; n < 100; n++) {
1729 DELAY(1);
1730 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1731 if (v & GEM_MIF_FRAME_TA0)
1732 return;
1733 }
1734
1735 printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname);
1736 }
1737
1738 static void
1739 gem_mii_statchg(dev)
1740 struct device *dev;
1741 {
1742 struct gem_softc *sc = (void *)dev;
1743 #ifdef GEM_DEBUG
1744 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1745 #endif
1746 bus_space_tag_t t = sc->sc_bustag;
1747 bus_space_handle_t mac = sc->sc_h;
1748 u_int32_t v;
1749
1750 #ifdef GEM_DEBUG
1751 if (sc->sc_debug)
1752 printf("gem_mii_statchg: status change: phy = %d\n",
1753 sc->sc_phys[instance]);
1754 #endif
1755
1756
1757 /* Set tx full duplex options */
1758 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1759 delay(10000); /* reg must be cleared and delay before changing. */
1760 v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1761 GEM_MAC_TX_ENABLE;
1762 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1763 v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1764 }
1765 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1766
1767 /* XIF Configuration */
1768 /* We should really calculate all this rather than rely on defaults */
1769 v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1770 v = GEM_MAC_XIF_LINK_LED;
1771 v |= GEM_MAC_XIF_TX_MII_ENA;
1772
1773 /* If an external transceiver is connected, enable its MII drivers */
1774 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1775 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1776 /* External MII needs echo disable if half duplex. */
1777 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1778 /* turn on full duplex LED */
1779 v |= GEM_MAC_XIF_FDPLX_LED;
1780 else
1781 /* half duplex -- disable echo */
1782 v |= GEM_MAC_XIF_ECHO_DISABL;
1783
1784 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
1785 v |= GEM_MAC_XIF_GMII_MODE;
1786 else
1787 v &= ~GEM_MAC_XIF_GMII_MODE;
1788 } else
1789 /* Internal MII needs buf enable */
1790 v |= GEM_MAC_XIF_MII_BUF_ENA;
1791 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1792 }
1793
1794 int
1795 gem_mediachange(ifp)
1796 struct ifnet *ifp;
1797 {
1798 struct gem_softc *sc = ifp->if_softc;
1799
1800 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
1801 return (EINVAL);
1802
1803 return (mii_mediachg(&sc->sc_mii));
1804 }
1805
1806 void
1807 gem_mediastatus(ifp, ifmr)
1808 struct ifnet *ifp;
1809 struct ifmediareq *ifmr;
1810 {
1811 struct gem_softc *sc = ifp->if_softc;
1812
1813 if ((ifp->if_flags & IFF_UP) == 0)
1814 return;
1815
1816 mii_pollstat(&sc->sc_mii);
1817 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1818 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1819 }
1820
1821 int gem_ioctldebug = 0;
1822 /*
1823 * Process an ioctl request.
1824 */
1825 int
1826 gem_ioctl(ifp, cmd, data)
1827 struct ifnet *ifp;
1828 u_long cmd;
1829 caddr_t data;
1830 {
1831 struct gem_softc *sc = ifp->if_softc;
1832 struct ifreq *ifr = (struct ifreq *)data;
1833 int s, error = 0;
1834
1835 s = splnet();
1836
1837 switch (cmd) {
1838 case SIOCGIFMEDIA:
1839 case SIOCSIFMEDIA:
1840 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1841 break;
1842
1843 default:
1844 error = ether_ioctl(ifp, cmd, data);
1845 if (error == ENETRESET) {
1846 /*
1847 * Multicast list has changed; set the hardware filter
1848 * accordingly.
1849 */
1850 if (gem_ioctldebug) printf("reset1\n");
1851 gem_init(ifp);
1852 delay(50000);
1853 error = 0;
1854 }
1855 break;
1856 }
1857
1858 /* Try to get things going again */
1859 if (ifp->if_flags & IFF_UP) {
1860 if (gem_ioctldebug) printf("start\n");
1861 gem_start(ifp);
1862 }
1863 splx(s);
1864 return (error);
1865 }
1866
1867
1868 void
1869 gem_shutdown(arg)
1870 void *arg;
1871 {
1872 struct gem_softc *sc = (struct gem_softc *)arg;
1873 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1874
1875 gem_stop(ifp, 1);
1876 }
1877
1878 /*
1879 * Set up the logical address filter.
1880 */
1881 void
1882 gem_setladrf(sc)
1883 struct gem_softc *sc;
1884 {
1885 struct ethercom *ec = &sc->sc_ethercom;
1886 struct ifnet *ifp = &ec->ec_if;
1887 struct ether_multi *enm;
1888 struct ether_multistep step;
1889 bus_space_tag_t t = sc->sc_bustag;
1890 bus_space_handle_t h = sc->sc_h;
1891 u_int32_t crc;
1892 u_int32_t hash[16];
1893 u_int32_t v;
1894 int i;
1895
1896 /* Get current RX configuration */
1897 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1898
1899 /*
1900 * Turn off promiscuous mode, promiscuous group mode (all multicast),
1901 * and hash filter. Depending on the case, the right bit will be
1902 * enabled.
1903 */
1904 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
1905 GEM_MAC_RX_PROMISC_GRP);
1906
1907 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1908 /* Turn on promiscuous mode */
1909 v |= GEM_MAC_RX_PROMISCUOUS;
1910 ifp->if_flags |= IFF_ALLMULTI;
1911 goto chipit;
1912 }
1913
1914 /*
1915 * Set up multicast address filter by passing all multicast addresses
1916 * through a crc generator, and then using the high order 8 bits as an
1917 * index into the 256 bit logical address filter. The high order 4
1918 * bits select the word, while the other 4 bits select the bit within
1919 * the word (where bit 0 is the MSB).
1920 */
1921
1922 /* Clear hash table */
1923 memset(hash, 0, sizeof(hash));
1924
1925 ETHER_FIRST_MULTI(step, ec, enm);
1926 while (enm != NULL) {
1927 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1928 /*
1929 * We must listen to a range of multicast addresses.
1930 * For now, just accept all multicasts, rather than
1931 * trying to set only those filter bits needed to match
1932 * the range. (At this time, the only use of address
1933 * ranges is for IP multicast routing, for which the
1934 * range is big enough to require all bits set.)
1935 * XXX use the addr filter for this
1936 */
1937 ifp->if_flags |= IFF_ALLMULTI;
1938 v |= GEM_MAC_RX_PROMISC_GRP;
1939 goto chipit;
1940 }
1941
1942 /* Get the LE CRC32 of the address */
1943 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
1944
1945 /* Just want the 8 most significant bits. */
1946 crc >>= 24;
1947
1948 /* Set the corresponding bit in the filter. */
1949 hash[crc >> 4] |= 1 << (15 - (crc & 15));
1950
1951 ETHER_NEXT_MULTI(step, enm);
1952 }
1953
1954 v |= GEM_MAC_RX_HASH_FILTER;
1955 ifp->if_flags &= ~IFF_ALLMULTI;
1956
1957 /* Now load the hash table into the chip (if we are using it) */
1958 for (i = 0; i < 16; i++) {
1959 bus_space_write_4(t, h,
1960 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
1961 hash[i]);
1962 }
1963
1964 chipit:
1965 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1966 }
1967
1968 #if notyet
1969
1970 /*
1971 * gem_power:
1972 *
1973 * Power management (suspend/resume) hook.
1974 */
1975 void
1976 gem_power(why, arg)
1977 int why;
1978 void *arg;
1979 {
1980 struct gem_softc *sc = arg;
1981 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1982 int s;
1983
1984 s = splnet();
1985 switch (why) {
1986 case PWR_SUSPEND:
1987 case PWR_STANDBY:
1988 gem_stop(ifp, 1);
1989 if (sc->sc_power != NULL)
1990 (*sc->sc_power)(sc, why);
1991 break;
1992 case PWR_RESUME:
1993 if (ifp->if_flags & IFF_UP) {
1994 if (sc->sc_power != NULL)
1995 (*sc->sc_power)(sc, why);
1996 gem_init(ifp);
1997 }
1998 break;
1999 case PWR_SOFTSUSPEND:
2000 case PWR_SOFTSTANDBY:
2001 case PWR_SOFTRESUME:
2002 break;
2003 }
2004 splx(s);
2005 }
2006 #endif
2007